1
|
Ricci-Tam C, Kuipa S, Kostman MP, Aronson MS, Sgro AE. Microbial models of development: Inspiration for engineering self-assembled synthetic multicellularity. Semin Cell Dev Biol 2023; 141:50-62. [PMID: 35537929 DOI: 10.1016/j.semcdb.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
While the field of synthetic developmental biology has traditionally focused on the study of the rich developmental processes seen in metazoan systems, an attractive alternate source of inspiration comes from microbial developmental models. Microbes face unique lifestyle challenges when forming emergent multicellular collectives. As a result, the solutions they employ can inspire the design of novel multicellular systems. In this review, we dissect the strategies employed in multicellular development by two model microbial systems: the cellular slime mold Dictyostelium discoideum and the biofilm-forming bacterium Bacillus subtilis. Both microbes face similar challenges but often have different solutions, both from metazoan systems and from each other, to create emergent multicellularity. These challenges include assembling and sustaining a critical mass of participating individuals to support development, regulating entry into development, and assigning cell fates. The mechanisms these microbial systems exploit to robustly coordinate development under a wide range of conditions offer inspiration for a new toolbox of solutions to the synthetic development community. Additionally, recreating these phenomena synthetically offers a pathway to understanding the key principles underlying how these behaviors are coordinated naturally.
Collapse
Affiliation(s)
- Chiara Ricci-Tam
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Sophia Kuipa
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Maya Peters Kostman
- Biological Design Center, Boston University, Boston, MA 02215, USA; Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA 02215, USA
| | - Mark S Aronson
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Allyson E Sgro
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA; Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Gross JD, Pears CJ. Possible Involvement of the Nutrient and Energy Sensors mTORC1 and AMPK in Cell Fate Diversification in a Non-Metazoan Organism. Front Cell Dev Biol 2021; 9:758317. [PMID: 34820379 PMCID: PMC8606421 DOI: 10.3389/fcell.2021.758317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
mTORC1 and AMPK are mutually antagonistic sensors of nutrient and energy status that have been implicated in many human diseases including cancer, Alzheimer’s disease, obesity and type 2 diabetes. Starved cells of the social amoeba Dictyostelium discoideum aggregate and eventually form fruiting bodies consisting of stalk cells and spores. We focus on how this bifurcation of cell fate is achieved. During growth mTORC1 is highly active and AMPK relatively inactive. Upon starvation, AMPK is activated and mTORC1 inhibited; cell division is arrested and autophagy induced. After aggregation, a minority of the cells (prestalk cells) continue to express much the same set of developmental genes as during aggregation, but the majority (prespore cells) switch to the prespore program. We describe evidence suggesting that overexpressing AMPK increases the proportion of prestalk cells, as does inhibiting mTORC1. Furthermore, stimulating the acidification of intracellular acidic compartments likewise increases the proportion of prestalk cells, while inhibiting acidification favors the spore pathway. We conclude that the choice between the prestalk and the prespore pathways of cell differentiation may depend on the relative strength of the activities of AMPK and mTORC1, and that these may be controlled by the acidity of intracellular acidic compartments/lysosomes (pHv), cells with low pHv compartments having high AMPK activity/low mTORC1 activity, and those with high pHv compartments having high mTORC1/low AMPK activity. Increased insight into the regulation and downstream consequences of this switch should increase our understanding of its potential role in human diseases, and indicate possible therapeutic interventions.
Collapse
Affiliation(s)
- Julian D Gross
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Catherine J Pears
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Saiz N, Hadjantonakis AK. Coordination between patterning and morphogenesis ensures robustness during mouse development. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190562. [PMID: 32829684 PMCID: PMC7482220 DOI: 10.1098/rstb.2019.0562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
The mammalian preimplantation embryo is a highly tractable, self-organizing developmental system in which three cell types are consistently specified without the need for maternal factors or external signals. Studies in the mouse over the past decades have greatly improved our understanding of the cues that trigger symmetry breaking in the embryo, the transcription factors that control lineage specification and commitment, and the mechanical forces that drive morphogenesis and inform cell fate decisions. These studies have also uncovered how these multiple inputs are integrated to allocate the right number of cells to each lineage despite inherent biological noise, and as a response to perturbations. In this review, we summarize our current understanding of how these processes are coordinated to ensure a robust and precise developmental outcome during early mouse development. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Néstor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
4
|
Saiz N, Mora-Bitria L, Rahman S, George H, Herder JP, Garcia-Ojalvo J, Hadjantonakis AK. Growth-factor-mediated coupling between lineage size and cell fate choice underlies robustness of mammalian development. eLife 2020; 9:e56079. [PMID: 32720894 PMCID: PMC7513828 DOI: 10.7554/elife.56079] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/24/2020] [Indexed: 01/03/2023] Open
Abstract
Precise control and maintenance of population size is fundamental for organismal development and homeostasis. The three cell types of the mammalian blastocyst are generated in precise proportions over a short time, suggesting a mechanism to ensure a reproducible outcome. We developed a minimal mathematical model demonstrating growth factor signaling is sufficient to guarantee this robustness and which anticipates an embryo's response to perturbations in lineage composition. Addition of lineage-restricted cells both in vivo and in silico, causes a shift of the fate of progenitors away from the supernumerary cell type, while eliminating cells using laser ablation biases the specification of progenitors toward the targeted cell type. Finally, FGF4 couples fate decisions to lineage composition through changes in local growth factor concentration, providing a basis for the regulative abilities of the early mammalian embryo whereby fate decisions are coordinated at the population level to robustly generate tissues in the right proportions.
Collapse
Affiliation(s)
- Néstor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Laura Mora-Bitria
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Shahadat Rahman
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Hannah George
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jeremy P Herder
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
5
|
Meena NP, Jaiswal P, Chang FS, Brzostowski J, Kimmel AR. DPF is a cell-density sensing factor, with cell-autonomous and non-autonomous functions during Dictyostelium growth and development. BMC Biol 2019; 17:97. [PMID: 31791330 PMCID: PMC6889452 DOI: 10.1186/s12915-019-0714-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Background Cellular functions can be regulated by cell-cell interactions that are influenced by extra-cellular, density-dependent signaling factors. Dictyostelium grow as individual cells in nutrient-rich sources, but, as nutrients become depleted, they initiate a multi-cell developmental program that is dependent upon a cell-density threshold. We hypothesized that novel secreted proteins may serve as density-sensing factors to promote multi-cell developmental fate decisions at a specific cell-density threshold, and use Dictyostelium in the identification of such a factor. Results We show that multi-cell developmental aggregation in Dictyostelium is lost upon minimal (2-fold) reduction in local cell density. Remarkably, developmental aggregation response at non-permissive cell densities is rescued by addition of conditioned media from high-density, developmentally competent cells. Using rescued aggregation of low-density cells as an assay, we purified a single, 150-kDa extra-cellular protein with density aggregation activity. MS/MS peptide sequence analysis identified the gene sequence, and cells that overexpress the full-length protein accumulate higher levels of a development promoting factor (DPF) activity than parental cells, allowing cells to aggregate at lower cell densities; cells deficient for this DPF gene lack density-dependent developmental aggregation activity and require higher cell density for cell aggregation compared to WT. Density aggregation activity co-purifies with tagged versions of DPF and tag-affinity-purified DPF possesses density aggregation activity. In mixed development with WT, cells that overexpress DPF preferentially localize at centers for multi-cell aggregation and define cell-fate choice during cytodifferentiation. Finally, we show that DPF is synthesized as a larger precursor, single-pass transmembrane protein, with the p150 fragment released by proteolytic cleavage and ectodomain shedding. The TM/cytoplasmic domain of DPF possesses cell-autonomous activity for cell-substratum adhesion and for cellular growth. Conclusions We have purified a novel secreted protein, DPF, that acts as a density-sensing factor for development and functions to define local collective thresholds for Dictyostelium development and to facilitate cell-cell communication and multi-cell formation. Regions of high DPF expression are enriched at centers for cell-cell signal-response, multi-cell formation, and cell-fate determination. Additionally, DPF has separate cell-autonomous functions for regulation of cellular adhesion and growth.
Collapse
Affiliation(s)
- Netra Pal Meena
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pundrik Jaiswal
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fu-Sheng Chang
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joseph Brzostowski
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, 20892, USA.,Laboratory of Immunogenetics Twinbrook Imaging Facility, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Rockville, MD, 20852, USA
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Miermont A, Antolović V, Lenn T, Nichols JME, Millward LJ, Chubb JR. The fate of cells undergoing spontaneous DNA damage during development. Development 2019; 146:dev174268. [PMID: 30975700 PMCID: PMC6602350 DOI: 10.1242/dev.174268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
Embryonic development involves extensive and often rapid cell proliferation. An unavoidable side effect of cell proliferation is DNA damage. The consequences of spontaneous DNA damage during development are not clear. Here, we define an approach to determine the effects of DNA damage on cell fate choice. Using single cell transcriptomics, we identified a subpopulation of Dictyostelium cells experiencing spontaneous DNA damage. Damaged cells displayed high expression of rad51, with the gene induced by multiple types of genotoxic stress. Using live imaging, we tracked high Rad51 cells from differentiation onset until cell fate assignment. High Rad51 cells were shed from multicellular structures, excluding damaged cells from the spore population. Cell shedding resulted from impaired cell motility and defective cell-cell adhesion, with damaged cells additionally defective in activation of spore gene expression. These data indicate DNA damage is not insulated from other aspects of cell physiology during development and multiple features of damaged cells prevent propagation of genetic error. Our approach is generally applicable for monitoring rare subpopulations during development, and permits analysis of developmental perturbations occurring within a physiological dynamic range.
Collapse
Affiliation(s)
- Agnes Miermont
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, London, UK
| | - Vlatka Antolović
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, London, UK
| | - Tchern Lenn
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, London, UK
| | - John M E Nichols
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, London, UK
| | - Lindsey J Millward
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, London, UK
| | - Jonathan R Chubb
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, London, UK
| |
Collapse
|
7
|
Hehmeyer J. Two potential evolutionary origins of the fruiting bodies of the dictyostelid slime moulds. Biol Rev Camb Philos Soc 2019; 94:1591-1604. [PMID: 30989827 DOI: 10.1111/brv.12516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 11/29/2022]
Abstract
Dictyostelium discoideum and the other dictyostelid slime moulds ('social amoebae') are popular model organisms best known for their demonstration of sorocarpic development. In this process, many cells aggregate to form a multicellular unit that ultimately becomes a fruiting body bearing asexual spores. Several other unrelated microorganisms undergo comparable processes, and in some it is evident that their multicellular development evolved from the differentiation process of encystation. While it has been argued that the dictyostelid fruiting body had similar origins, it has also been proposed that dictyostelid sorocarpy evolved from the unicellular fruiting process found in other amoebozoan slime moulds. This paper reviews the developmental biology of the dictyostelids and other relevant organisms and reassesses the two hypotheses on the evolutionary origins of dictyostelid development. Recent advances in phylogeny, genetics, and genomics and transcriptomics indicate that further research is necessary to determine whether or not the fruiting bodies of the dictyostelids and their closest relatives, the myxomycetes and protosporangids, are homologous.
Collapse
|
8
|
Gruenheit N, Parkinson K, Brimson CA, Kuwana S, Johnson EJ, Nagayama K, Llewellyn J, Salvidge WM, Stewart B, Keller T, van Zon W, Cotter SL, Thompson CRL. Cell Cycle Heterogeneity Can Generate Robust Cell Type Proportioning. Dev Cell 2018; 47:494-508.e4. [PMID: 30473004 PMCID: PMC6251973 DOI: 10.1016/j.devcel.2018.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 07/27/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023]
Abstract
Cell-cell heterogeneity can facilitate lineage choice during embryonic development because it primes cells to respond to differentiation cues. However, remarkably little is known about the origin of heterogeneity or whether intrinsic and extrinsic variation can be controlled to generate reproducible cell type proportioning seen in vivo. Here, we use experimentation and modeling in D. discoideum to demonstrate that population-level cell cycle heterogeneity can be optimized to generate robust cell fate proportioning. First, cell cycle position is quantitatively linked to responsiveness to differentiation-inducing signals. Second, intrinsic variation in cell cycle length ensures cells are randomly distributed throughout the cell cycle at the onset of multicellular development. Finally, extrinsic perturbation of optimal cell cycle heterogeneity is buffered by compensatory changes in global signal responsiveness. These studies thus illustrate key regulatory principles underlying cell-cell heterogeneity optimization and the generation of robust and reproducible fate choice in development. Dictyostelium cells break symmetry in a stochastic salt and pepper fashion Cell cycle position affects responsiveness to differentiation inducing signals Cell cycle length variation ensures cells are distributed in different cycle phases Perturbation of cell cycle dynamics is buffered by changes in signal responsiveness
Collapse
Affiliation(s)
- Nicole Gruenheit
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Katie Parkinson
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Christopher A Brimson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Satoshi Kuwana
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Edward J Johnson
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Koki Nagayama
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Jack Llewellyn
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; School of Mathematics, Faculty of Science and Engineering, The University of Manchester, Alan Turing Building, Manchester M13 9PL, UK
| | - William M Salvidge
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Balint Stewart
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Thomas Keller
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Wouter van Zon
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon L Cotter
- School of Mathematics, Faculty of Science and Engineering, The University of Manchester, Alan Turing Building, Manchester M13 9PL, UK
| | - Christopher R L Thompson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
9
|
Chubb JR. Symmetry breaking in development and stochastic gene expression. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [DOI: 10.1002/wdev.284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/11/2017] [Accepted: 06/05/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Jonathan R. Chubb
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology; University College London; London UK
| |
Collapse
|
10
|
Headon D. Cells or signals: which moves to drive skin pattern formation? Exp Dermatol 2014; 22:795-6. [PMID: 24164411 DOI: 10.1111/exd.12270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2013] [Indexed: 11/28/2022]
Abstract
During its development, the skin produces an array of evenly spaced hair follicles. How the location of each follicle is determined to produce this pattern has been the subject of study and speculation for several decades. A central unresolved issue is the extent to which movement of scattered, precommitted follicle cells might play a role in this process. Xavier et al. now report the identification of subpopulations of dermal cells in developing sheep skin which are positive for Delta1 expression, suggesting that these cells may represent precommitted dermal papilla cells and that dermal Notch pathway signalling plays a role in hair follicle patterning.
Collapse
Affiliation(s)
- Denis Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| |
Collapse
|
11
|
Evolutionary reconstruction of pattern formation in 98 Dictyostelium species reveals that cell-type specialization by lateral inhibition is a derived trait. EvoDevo 2014; 5:34. [PMID: 25904998 PMCID: PMC4406040 DOI: 10.1186/2041-9139-5-34] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/22/2014] [Indexed: 02/07/2023] Open
Abstract
Background Multicellularity provides organisms with opportunities for cell-type specialization, but requires novel mechanisms to position correct proportions of different cell types throughout the organism. Dictyostelid social amoebas display an early form of multicellularity, where amoebas aggregate to form fruiting bodies, which contain only spores or up to four additional cell-types. These cell types will form the stalk and support structures for the stalk and spore head. Phylogenetic inference subdivides Dictyostelia into four major groups, with the model organism D. discoideum residing in group 4. In D. discoideum differentiation of its five cell types is dominated by lateral inhibition-type mechanisms that trigger scattered cell differentiation, with tissue patterns being formed by cell sorting. Results To reconstruct the evolution of pattern formation in Dictyostelia, we used cell-type specific antibodies and promoter-reporter fusion constructs to investigate pattern formation in 98 species that represent all groupings. Our results indicate that in all early diverging Dictyostelia and most members of groups 1–3, cells differentiate into maximally two cell types, prestalk and prespore cells, with pattern formation being dominated by position-dependent transdifferentiation of prespore cells into prestalk cells. In clade 2A, prestalk and stalk cell differentiation are lost and the prespore cells construct an acellular stalk. Group 4 species set aside correct proportions of prestalk and prespore cells early in development, and differentiate into up to three more supporting cell types. Conclusions Our experiments show that positional transdifferentiation is the ancestral mode of pattern formation in Dictyostelia. The early specification of a prestalk population equal to the number of stalk cells is a derived trait that emerged in group 4 and a few late diverging species in the other groups. Group 4 spore masses are larger than those of other groups and the differentiation of supporting cell types by lateral inhibition may have facilitated this increase in size. The signal DIF-1, which is secreted by prespore cells, triggers differentiation of supporting cell types. The synthesis and degradation of DIF-1 were shown to be restricted to group 4. This suggests that the emergence of DIF-1 signalling caused increased cell-type specialization in this group. Electronic supplementary material The online version of this article (doi:10.1186/2041-9139-5-34) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Chattwood A, Nagayama K, Bolourani P, Harkin L, Kamjoo M, Weeks G, Thompson CRL. Developmental lineage priming in Dictyostelium by heterogeneous Ras activation. eLife 2013; 2:e01067. [PMID: 24282234 PMCID: PMC3838634 DOI: 10.7554/elife.01067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In cell culture, genetically identical cells often exhibit heterogeneous behavior, with only 'lineage primed' cells responding to differentiation inducing signals. It has recently been proposed that such heterogeneity exists during normal embryonic development to allow position independent patterning based on 'salt and pepper' differentiation and sorting out. However, the molecular basis of lineage priming and how it leads to reproducible cell type proportioning are poorly understood. To address this, we employed a novel forward genetic approach in the model organism Dictyostelium discoideum. These studies reveal that the Ras-GTPase regulator gefE is required for normal lineage priming and salt and pepper differentiation. This is because Ras-GTPase activity sets the intrinsic response threshold to lineage specific differentiation signals. Importantly, we show that although gefE expression is uniform, transcription of its target, rasD, is both heterogeneous and dynamic, thus providing a novel mechanism for heterogeneity generation and position-independent differentiation. DOI: http://dx.doi.org/10.7554/eLife.01067.001.
Collapse
Affiliation(s)
- Alex Chattwood
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
13
|
Singleton CK, Xiong Y. Loss of the histidine kinase DhkD results in mobile mounds during development of Dictyostelium discoideum. PLoS One 2013; 8:e75618. [PMID: 24086589 PMCID: PMC3783435 DOI: 10.1371/journal.pone.0075618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/15/2013] [Indexed: 12/04/2022] Open
Abstract
Background Histidine kinases are receptors for sensing cellular and environmental signals, and in response to the appropriate cue they initiate phosphorelays that regulate the activity of response regulators. The Dictyostelium discoideum genome encodes 15 histidine kinases that function to regulate several processes during the multicellular developmental program, including the slug to culmination transition, osmoregulation, and spore differentiation. While there are many histidine kinases, there is only a single response regulator, RegA. Not surprisingly given the ubiquitous involvement of cAMP in numerous processes of development in Dictyostelium, RegA is a cAMP phosphodiesterase that is activated upon receiving phosphates through a phosphorelay. Hence, all of the histidine kinases characterized to date regulate developmental processes through modulating cAMP production. Here we investigate the function of the histidine kinase DhkD. Principal Findings The dhkD gene was disrupted, and the resulting cells when developed gave a novel phenotype. Upon aggregation, which occurred without streaming, the mounds were motile, a phenotype termed the pollywog stage. The pollywog phenotype was dependent on a functional RegA. After a period of random migration, the pollywogs attempted to form fingers but mostly generated aberrant structures with no tips. While prestalk and prespore cell differentiation occurred with normal timing, proper patterning did not occur. In contrast, wild type mounds are not motile, and the cAMP chemotactic movement of cells within the mound facilitates proper prestalk and prespore patterning, tip formation, and the vertical elongation of the mound into a finger. Conclusions We postulate that DhkD functions to ensure the proper cAMP distribution within mounds that in turn results in patterning, tip formation and the transition of mounds to fingers. In the absence of DhkD, aberrant cell movements in response to an altered cAMP distribution result in mound migration, a lack of proper patterning, and an inability to generate normal finger morphology.
Collapse
Affiliation(s)
- Charles K. Singleton
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| | - Yanhua Xiong
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
14
|
Tian X, Strassmann JE, Queller DC. Dictyostelium development shows a novel pattern of evolutionary conservation. Mol Biol Evol 2013; 30:977-84. [PMID: 23329689 DOI: 10.1093/molbev/mst007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
von Baer's law states that early stages of animal development are the most conserved. More recent evidence supports a modified "hourglass" pattern in which an early but somewhat later stage is most conserved. Both patterns have been explained by the relative complexity of either temporal or spatial interactions; the greatest conservation and lowest evolvability occur at the time of the most complex interactions, because these cause larger effects that are harder for selection to alter. This general kind of explanation might apply universally across independent multicellular systems, as supported by the recent finding of the hourglass pattern in plants. We use RNA-seq expression data from the development of the slime mold Dictyostelium to demonstrate that it does not follow either of the two canonical patterns but instead tends to show the strongest conservation and weakest evolvability late in development. We propose that this is consistent with a version of the spatial constraints model, modified for organisms that never achieve a high degree of developmental modularity.
Collapse
Affiliation(s)
- Xiangjun Tian
- Department of Biology, Washington University in St. Louis, St. Louis, USA
| | | | | |
Collapse
|
15
|
Live imaging of nascent RNA dynamics reveals distinct types of transcriptional pulse regulation. Proc Natl Acad Sci U S A 2012; 109:7350-5. [PMID: 22529358 DOI: 10.1073/pnas.1117603109] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription of genes can be discontinuous, occurring in pulses or bursts. It is not clear how properties of transcriptional pulses vary between different genes. We compared the pulsing of five housekeeping and five developmentally induced genes by direct imaging of single gene transcriptional events in individual living Dictyostelium cells. Each gene displayed its own transcriptional signature, differing in probability of firing and pulse duration, frequency, and intensity. In contrast to the prevailing view from both prokaryotes and eukaryotes that transcription displays binary behavior, strongly expressed housekeeping genes altered the magnitude of their transcriptional pulses during development. These nonbinary "tunable" responses may be better suited than stochastic switch behavior for housekeeping functions. Analysis of RNA synthesis kinetics using fluorescence recovery after photobleaching implied modulation of housekeeping-gene pulse strength occurs at the level of transcription initiation rather than elongation. In addition, disparities between single cell and population measures of transcript production suggested differences in RNA stability between gene classes. Analysis of stability using RNAseq revealed no major global differences in stability between developmental and housekeeping transcripts, although strongly induced RNAs showed unusually rapid decay, indicating tight regulation of expression.
Collapse
|
16
|
Chattwood A, Thompson CRL. Non-genetic heterogeneity and cell fate choice in Dictyostelium discoideum. Dev Growth Differ 2011; 53:558-66. [PMID: 21585359 DOI: 10.1111/j.1440-169x.2011.01270.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
From microbes to metazoans, it is now clear that fluctuations in the abundance of mRNA transcripts and protein molecules enable genetically identical cells to oscillate between several distinct states (Kaern et al. 2005). Since this cell-cell variability does not derive from physical differences in the genetic code it is termed non-genetic heterogeneity. Non-genetic heterogeneity endows cell populations with useful capabilities they could never achieve if each cell were the same as its neighbors (Raj & van Oudenaarden 2008; Eldar & Elowitz 2010). One such example is seen during multicellular development and "salt and pepper" cell type differentiation. In this review, we will first examine the importance of non-genetic heterogeneity in initiating "salt and pepper" pattern formation during Dictyostelium discoideum development. Second, we will discuss the various ways in which non-genetic heterogeneity might be generated, as well as recent advances in understanding the molecular basis of heterogeneity in this system.
Collapse
Affiliation(s)
- Alex Chattwood
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
17
|
Strassmann JE, Queller DC. How social evolution theory impacts our understanding of development in the social amoeba Dictyostelium. Dev Growth Differ 2011; 53:597-607. [DOI: 10.1111/j.1440-169x.2011.01272.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Blagg SL, Battom SE, Annesley SJ, Keller T, Parkinson K, Wu JMF, Fisher PR, Thompson CRL. Cell type-specific filamin complex regulation by a novel class of HECT ubiquitin ligase is required for normal cell motility and patterning. Development 2011; 138:1583-93. [PMID: 21389049 PMCID: PMC3062426 DOI: 10.1242/dev.063800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2011] [Indexed: 11/20/2022]
Abstract
Differential cell motility, which plays a key role in many developmental processes, is perhaps most evident in examples of pattern formation in which the different cell types arise intermingled before sorting out into discrete tissues. This is thought to require heterogeneities in responsiveness to differentiation-inducing signals that result in the activation of cell type-specific genes and 'salt and pepper' patterning. How differential gene expression results in cell sorting is poorly defined. Here we describe a novel gene (hfnA) that provides the first mechanistic link between cell signalling, differential gene expression and cell type-specific sorting in Dictyostelium. HfnA defines a novel group of evolutionarily conserved HECT ubiquitin ligases with an N-terminal filamin domain (HFNs). HfnA expression is induced by the stalk differentiation-inducing factor DIF-1 and is restricted to a subset of prestalk cells (pstO). hfnA(-) pstO cells differentiate but their sorting out is delayed. Genetic interactions suggest that this is due to misregulation of filamin complex activity. Overexpression of filamin complex members phenocopies the hfnA(-) pstO cell sorting defect, whereas disruption of filamin complex function in a wild-type background results in pstO cells sorting more strongly. Filamin disruption in an hfnA(-) background rescues pstO cell localisation. hfnA(-) cells exhibit altered slug phototaxis phenotypes consistent with filamin complex hyperactivity. We propose that HfnA regulates filamin complex activity and cell type-specific motility through the breakdown of filamin complexes. These findings provide a novel mechanism for filamin regulation and demonstrate that filamin is a crucial mechanistic link between responses to differentiation signals and cell movement in patterning based on 'salt and pepper' differentiation and sorting out.
Collapse
Affiliation(s)
- Simone L. Blagg
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Suzanne E. Battom
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Sarah J. Annesley
- Department of Microbiology, La Trobe University, VIC 3086, Australia
| | - Thomas Keller
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Katie Parkinson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jasmine M. F. Wu
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Paul R. Fisher
- Department of Microbiology, La Trobe University, VIC 3086, Australia
| | - Christopher R. L. Thompson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
19
|
Parkinson K, Buttery NJ, Wolf JB, Thompson CRL. A simple mechanism for complex social behavior. PLoS Biol 2011; 9:e1001039. [PMID: 21468302 PMCID: PMC3066132 DOI: 10.1371/journal.pbio.1001039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 02/18/2011] [Indexed: 11/19/2022] Open
Abstract
The evolution of cooperation is a paradox because natural selection should favor exploitative individuals that avoid paying their fair share of any costs. Such conflict between the self-interests of cooperating individuals often results in the evolution of complex, opponent-specific, social strategies and counterstrategies. However, the genetic and biological mechanisms underlying complex social strategies, and therefore the evolution of cooperative behavior, are largely unknown. To address this dearth of empirical data, we combine mathematical modeling, molecular genetic, and developmental approaches to test whether variation in the production of and response to social signals is sufficient to generate the complex partner-specific social success seen in the social amoeba Dictyostelium discoideum. Firstly, we find that the simple model of production of and response to social signals can generate the sort of apparent complex changes in social behavior seen in this system, without the need for partner recognition. Secondly, measurements of signal production and response in a mutant with a change in a single gene that leads to a shift in social behavior provide support for this model. Finally, these simple measurements of social signaling can also explain complex patterns of variation in social behavior generated by the natural genetic diversity found in isolates collected from the wild. Our studies therefore demonstrate a novel and elegantly simple underlying mechanistic basis for natural variation in complex social strategies in D. discoideum. More generally, they suggest that simple rules governing interactions between individuals can be sufficient to generate a diverse array of outcomes that appear complex and unpredictable when those rules are unknown. Despite the appearance of cooperation in nature, selection should often favor exploitative individuals who perform less of any cooperative behaviors while maintaining the benefits accrued from the cooperative behavior of others. This conflict of interest among cooperating individuals can lead to the evolution of complex social strategies that depend on the identity (e.g. genotype or strategy) of the individuals with whom you interact. The social amoeba Dictyostelium discoideum provides a compelling model for studying such “partner specific” conflict and cooperation. Upon starvation, free-living amoebae aggregate and form a fruiting body composed of dead stalk cells and hardy spores. Different genotypes will aggregate to produce chimeric fruiting bodies, resulting in potential social conflict over who will contribute to the reproductive sporehead and who will “sacrifice” themselves to produce the dead stalk. The outcomes of competitive interactions in chimera appear complex, with social success being strongly partner specific. Here we propose a simple mechanism to explain social strategies in D. discoideum, based on the production of and response to stalk-inducing factors, the social signals that determine whether cells become stalk or spore. Indeed, measurements of signal production and response can predict social behavior of different strains, thus demonstrating a novel and elegantly simple underlying mechanistic basis for natural variation in complex facultative social strategies. This suggests that simple social rules can be sufficient to generate a diverse array of behavioral outcomes that appear complex and unpredictable when those rules are unknown.
Collapse
Affiliation(s)
- Katie Parkinson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Neil J. Buttery
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Jason B. Wolf
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail: (JBW); (CRLT)
| | - Christopher R. L. Thompson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
- * E-mail: (JBW); (CRLT)
| |
Collapse
|
20
|
Abstract
Dictyostelium discoideum belongs to a group of multicellular life forms that can also exist for long periods as single cells. This ability to shift between uni- and multicellularity makes the group ideal for studying the genetic changes that occurred at the crossroads between uni- and multicellular life. In this Primer, I discuss the mechanisms that control multicellular development in Dictyostelium discoideum and reconstruct how some of these mechanisms evolved from a stress response in the unicellular ancestor.
Collapse
Affiliation(s)
- Pauline Schaap
- College of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
21
|
Chubb JR, Liverpool TB. Bursts and pulses: insights from single cell studies into transcriptional mechanisms. Curr Opin Genet Dev 2010; 20:478-84. [PMID: 20638837 DOI: 10.1016/j.gde.2010.06.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/18/2010] [Accepted: 06/22/2010] [Indexed: 11/30/2022]
Abstract
With a developing appreciation of how noisy gene expression can be, and difficulties in deciphering conventional gene expression data into cell control mechanisms, it has become clear that single cell techniques for measuring transcription are necessary to illuminate basic cell regulation strategies. The resultant use of in situ hybridisation and live cell RNA visualisation approaches in single cells revealed transcription is not adequately reflected by the smooth, seamless process we tend to infer from standard measures of RNA level. When RNA production is measured in single cells, the process of transcription has been shown to occur in bursts, or pulses. This review will highlight the evidence for these phenomena, the proposed mechanisms underlying discontinuity, and the biological implications of such behaviour.
Collapse
Affiliation(s)
- Jonathan R Chubb
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.
| | | |
Collapse
|
22
|
Stevense M, Muramoto T, Müller I, Chubb JR. Digital nature of the immediate-early transcriptional response. Development 2010; 137:579-84. [PMID: 20110323 DOI: 10.1242/dev.043836] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stimulation of transcription by extracellular signals is a major component of a cell's decision making. Yet the quantitative relationship between signal and acute transcriptional response is unclear. One view is that transcription is directly graded with inducer concentration. In an alternative model, the response occurs only above a threshold inducer concentration. Standard methods for monitoring transcription lack continuous information from individual cells or mask immediate-early transcription by measuring downstream protein expression. We have therefore used a technique for directly monitoring nascent RNA in living cells, to quantify the direct transcriptional response to an extracellular signal in real time, in single cells. At increasing doses of inducer, increasing numbers of cells displayed a transcriptional response. However, over the same range of doses, the change in cell response strength, measured as the length, frequency and intensity of transcriptional pulses, was small, with considerable variation between cells. These data support a model in which cells have different sensitivities to developmental inducer and respond in a digital manner above individual stimulus thresholds. Biased digital responses may be necessary for certain forms of developmental specification. Limiting bias in responsiveness is required to reduce noise in positional signalling.
Collapse
Affiliation(s)
- Michelle Stevense
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | |
Collapse
|
23
|
Kay RR, Thompson CRL. Forming patterns in development without morphogen gradients: scattered differentiation and sorting out. Cold Spring Harb Perspect Biol 2009; 1:a001503. [PMID: 20457561 PMCID: PMC2882119 DOI: 10.1101/cshperspect.a001503] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Few mechanisms provide alternatives to morphogen gradients for producing spatial patterns of cells in development. One possibility is based on the sorting out of cells that initially differentiate in a salt and pepper mixture and then physically move to create coherent tissues. Here, we describe the evidence suggesting this is the major mode of patterning in Dictyostelium. In addition, we discuss whether convergent evolution could have produced a conceptually similar mechanism in other organisms.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge
| | | |
Collapse
|
24
|
Sawarkar R, Visweswariah SS, Nellen W, Nanjundiah V. Histone deacetylases regulate multicellular development in the social amoeba Dictyostelium discoideum. J Mol Biol 2009; 391:833-48. [PMID: 19576222 DOI: 10.1016/j.jmb.2009.06.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/18/2009] [Accepted: 06/25/2009] [Indexed: 11/29/2022]
Abstract
Epigenetic modifications of histones regulate gene expression and lead to the establishment and maintenance of cellular phenotypes during development. Histone acetylation depends on a balance between the activities of histone acetyltransferases and histone deacetylases (HDACs) and influences transcriptional regulation. In this study, we analyse the roles of HDACs during growth and development of one of the cellular slime moulds, the social amoeba Dictyostelium discoideum. The inhibition of HDAC activity by trichostatin A results in histone hyperacetylation and a delay in cell aggregation and differentiation. Cyclic AMP oscillations are normal in starved amoebae treated with trichostatin A but the expression of a subset of cAMP-regulated genes is delayed. Bioinformatic analysis indicates that there are four genes encoding putative HDACs in D. discoideum. Using biochemical, genetic and developmental approaches, we demonstrate that one of these four genes, hdaB, is dispensable for growth and development under laboratory conditions. A knockout of the hdaB gene results in a social context-dependent phenotype: hdaB(-) cells develop normally but sporulate less efficiently than the wild type in chimeras. We infer that HDAC activity is important for regulating the timing of gene expression during the development of D. discoideum and for defining aspects of the phenotype that mediate social behaviour in genetically heterogeneous groups.
Collapse
Affiliation(s)
- Ritwick Sawarkar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| | | | | | | |
Collapse
|
25
|
Parkinson K, Bolourani P, Traynor D, Aldren NL, Kay RR, Weeks G, Thompson CRL. Regulation of Rap1 activity is required for differential adhesion, cell-type patterning and morphogenesis in Dictyostelium. J Cell Sci 2009; 122:335-44. [PMID: 19126673 PMCID: PMC2724730 DOI: 10.1242/jcs.036822] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2008] [Indexed: 12/19/2022] Open
Abstract
Regulated cell adhesion and motility have important roles during growth, development and tissue homeostasis. Consequently, great efforts have been made to identify genes that control these processes. One candidate is Rap1, as it has been implicated in the regulation of adhesion and motility in cell culture. To further study the role of Rap1 during multicellular development, we generated a mutant in a potential Rap1 GTPase activating protein (RapGAPB) in Dictyostelium. rapGAPB(-) cells have increased levels of active Rap1 compared with wild-type cells, indicating that RapGAPB regulates Rap1 activity. Furthermore, rapGAPB(-) cells exhibit hallmark phenotypes of other known mutants with hyperactivated Rap1, including increased substrate adhesion and abnormal F-actin distribution. However, unlike these other mutants, rapGAPB(-) cells do not exhibit impaired motility or chemotaxis, indicating that RapGAPB might only regulate specific roles of Rap1. Importantly, we also found that RapGAPB regulates Rap1 activity during multicellular development and is required for normal morphogenesis. First, streams of aggregating rapGAPB(-) cells break up as a result of decreased cell-cell adhesion. Second, rapGAPB(-) cells exhibit cell-autonomous defects in prestalk cell patterning. Using cell-type-specific markers, we demonstrate that RapGAPB is required for the correct sorting behaviour of different cell types. Finally, we show that inactivation of RapGAPB affects prestalk and prespore cell adhesion. We therefore propose that a possible mechanism for RapGAPB-regulated cell sorting is through differential adhesion.
Collapse
Affiliation(s)
- Katie Parkinson
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Reduced amyloidogenic processing of the amyloid beta-protein precursor by the small-molecule Differentiation Inducing Factor-1. Cell Signal 2008; 21:567-76. [PMID: 19154786 DOI: 10.1016/j.cellsig.2008.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/15/2008] [Accepted: 12/17/2008] [Indexed: 11/23/2022]
Abstract
The detection of cell cycle proteins in Alzheimer's disease (AD) brains may represent an early event leading to neurodegeneration. To identify cell cycle modifiers with anti-Abeta properties, we assessed the effect of Differentiation-Inducing Factor-1 (DIF-1), a unique, small-molecule from Dictyostelium discoideum, on the proteolysis of the amyloid beta-protein precursor (APP) in a variety of different cell types. We show that DIF-1 slows cell cycle progression through G0/G1 that correlates with a reduction in cyclin D1 protein levels. Western blot analysis of DIF-treated cells and conditioned medium revealed decreases in the levels of secreted APP, mature APP, and C-terminal fragments. Assessment of conditioned media by sandwich ELISA showed reduced levels of Abeta40 and Abeta42, also demonstrating that treatment with DIF-1 effectively decreases the ratio of Abeta42 to Abeta40. In addition, DIF-1 significantly diminished APP phosphorylation at residue T668. Interestingly, site-directed mutagenesis of APP residue Thr668 to alanine or glutamic acid abolished the effect of DIF-1 on APP proteolysis and restored secreted levels of Abeta. Finally, DIF-1 prevented the accumulation of APP C-terminal fragments induced by the proteasome inhibitor lactacystin, and calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN). Our findings suggest that DIF-1 affects G0/G1-associated amyloidogenic processing of APP by a gamma-secretase-, proteasome- and calpain-insensitive pathway, and that this effect requires the presence of residue Thr668.
Collapse
|
27
|
Núñez-Corcuera B, Serafimidis I, Arias-Palomo E, Rivera-Calzada A, Suarez T. A new protein carrying an NmrA-like domain is required for cell differentiation and development in Dictyostelium discoideum. Dev Biol 2008; 321:331-42. [PMID: 18638468 DOI: 10.1016/j.ydbio.2008.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 11/15/2022]
Abstract
We have isolated a Dictyostelium mutant unable to induce expression of the prestalk-specific marker ecmB in monolayer assays. The disrupted gene, padA, leads to a range of phenotypic defects in growth and development. We show that padA is essential for growth, and we have generated a thermosensitive mutant allele, padA(-). At the permissive temperature, mutant cells grow poorly; they remain longer at the slug stage during development and are defective in terminal differentiation. At the restrictive temperature, growth is completely blocked, while development is permanently arrested prior to culmination. padA(-) slugs are deficient in prestalk A cell differentiation and present an abnormal ecmB expression pattern. Sequence comparisons and predicted three-dimensional structure analyses show that PadA carries an NmrA-like domain. NmrA is a negative transcriptional regulator involved in nitrogen metabolite repression in Aspergillus nidulans. PadA predicted structure shows a NAD(P)(+)-binding domain, which we demonstrate that is essential for function. We show that padA(-) development is more sensitive to ammonia than wild-type cells and two ammonium transporters, amtA and amtC, appear derepressed during padA(-) development. Our data suggest that PadA belongs to a new family of NAD(P)(+)-binding proteins that link metabolic changes to gene expression and is required for growth and normal development.
Collapse
Affiliation(s)
- Beatriz Núñez-Corcuera
- Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biologicas (CSIC), 9, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
28
|
Palsson E. A 3-D model used to explore how cell adhesion and stiffness affect cell sorting and movement in multicellular systems. J Theor Biol 2008; 254:1-13. [PMID: 18582903 DOI: 10.1016/j.jtbi.2008.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 05/06/2008] [Accepted: 05/06/2008] [Indexed: 10/22/2022]
Abstract
A three-dimensional mathematical model is used to determine the effects of adhesion and cell signalling on cell movements during the aggregation and slug stages of Dictyostelium discoideum (Dd) and to visualize cell sorting. The building blocks of the model are individual deformable ellipsoidal cells, where movement depends on internal parameter state (cell size and stiffness) and on external cues from the neighboring cells, extracellular matrix, and chemical signals. Cell movement and deformation are calculated from equations of motion using the total force acting on each cell, ensuring that forces are balanced. The simulations show that the sorting patterns of prestalk and prespore cells, emerging during the slug stage, depend critically on the type of cell adhesion and not just on chemotactic differences between cells. This occurs because cell size and stiffness can prevent the otherwise faster cells from passing the slower cells. The patterns are distinctively different when the prestalk cells are more or less adhesive than the prespore cells. These simulations suggest that sorting is not solely due to differential chemotaxis, and that differences in both adhesion strength and type between different cell types play a very significant role, both in Dictyostelium and other systems.
Collapse
Affiliation(s)
- Eirikur Palsson
- Department of Biology, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.
| |
Collapse
|
29
|
Keller T, Thompson CRL. Cell type specificity of a diffusible inducer is determined by a GATA family transcription factor. Development 2008; 135:1635-45. [PMID: 18367552 PMCID: PMC3942654 DOI: 10.1242/dev.020883] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One poorly understood mechanism of developmental patterning involves the intermingled differentiation of different cell types that then sort out to generate pattern. Examples of this are known in nematodes and vertebrates, and in Dictyostelium it is the major mechanism. However, a general problem with this mechanism is the possibility that different inducers are required for each cell type that arises independently of positional information. Consistent with this idea, in Dictyostelium the signalling molecule DIF acts as a position-independent signal and was thought only to regulate the differentiation of a single cell type (pstO). The results presented here challenge this idea. In a novel genetic selection to isolate genes required for DIF signal transduction, we found a mutant (dimC(-)) that is a hypomorphic allele of a GATA family transcription factor (gtaC). gtaC expression is directly regulated by DIF, and GtaC rapidly translocates to the nucleus in response to DIF. gtaC(-) null cells showed some hallmark DIF signalling defects. Surprisingly, other aspects of the mutant were distinct from those of other DIF signalling mutants, suggesting that gtaC regulates a subset of DIF responses. For example, pstO cell differentiation appeared normal. However, we found that pstB cells were mislocalised and the pstB-derived basal disc was much reduced or missing. These defects are due to a failure to respond to DIF as they are phenocopied in other DIF signalling mutants. These findings therefore identify a novel small-molecule-activated GATA factor that is required to regulate the cell type-specific effects of DIF. They also reveal that a non-positional signal can regulate the differentiation of multiple cell types through differential interpretation in receiving cells.
Collapse
Affiliation(s)
- Thomas Keller
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT
| | - Christopher R. L. Thompson
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT
| |
Collapse
|
30
|
Nizak C, Fitzhenry RJ, Kessin RH. Exploitation of other social amoebae by Dictyostelium caveatum. PLoS One 2007; 2:e212. [PMID: 17299592 PMCID: PMC1790701 DOI: 10.1371/journal.pone.0000212] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Accepted: 01/18/2007] [Indexed: 11/19/2022] Open
Abstract
Dictyostelium amoebae faced with starvation trigger a developmental program during which many cells aggregate and form fruiting bodies that consist of a ball of spores held aloft by a thin stalk. This developmental strategy is open to several forms of exploitation, including the remarkable case of Dictyostelium caveatum, which, even when it constitutes 1/10(3) of the cells in an aggregate, can inhibit the development of the host and eventually devour it. We show that it accomplishes this feat by inhibiting a region of cells, called the tip, which organizes the development of the aggregate into a fruiting body. We use live-cell microscopy to define the D. caveatum developmental cycle and to show that D. caveatum amoebae have the capacity to ingest amoebae of other Dictyostelid species, but do not attack each other. The block in development induced by D. caveatum does not affect the expression of specific markers of prespore cell or prestalk cell differentiation, but does stop the coordinated cell movement leading to tip formation. The inhibition mechanism involves the constitutive secretion of a small molecule by D. caveatum and is reversible. Four Dictyostelid species were inhibited in their development, while D. caveatum is not inhibited by its own compound(s). D. caveatum has evolved a predation strategy to exploit other members of its genus, including mechanisms of developmental inhibition and specific phagocytosis.
Collapse
Affiliation(s)
- Clément Nizak
- Living Matter Laboratory, Center for Physics and Biology, Rockefeller University, New York, New York, United States of America.
| | | | | |
Collapse
|
31
|
Rai M, Xiong Y, Singleton CK. Disruption of the ifkA and ifkB genes results in altered cell adhesion, morphological defects and a propensity to form pre-stalk O cells during development of Dictyostelium. Differentiation 2006; 74:583-95. [PMID: 17177855 DOI: 10.1111/j.1432-0436.2006.00085.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
IfkA and ifkB are two GCN2-like genes present in Dictyostelium. Disruption of either gene alone results in subtle developmental defects. However, disruption of ifkA and ifkB within the same strain results in severe morphological and patterning defects in the developing double null cells. The mutant cells aggregate in streams that give tightly clumped mounds. Fingers form from the mounds but remain attached to one another, especially at their bases. The fingers culminate to give fused and entangled structures lacking proper stalk but containing some spores. The morphological defects are consistent with an enhanced cell-cell and cell-substrate adhesiveness of the developing double null cells, which may result in inappropriate cell contacts and altered cell motility and sorting properties. In ifkA/ifkB nulls, cell type proportioning and patterning is altered in favor of ALC/pstO cell types. The bias toward the ALC/pstO cell types may be due, in part, to the nuclear localization of the transcription factor STATc in growing ifkA/ifkB null cells. STATc normally becomes localized to the nucleus during finger formation and only within the pre-stalk O zone. The precocious nuclear localization seen in the mutant cells may predispose the cells to a ALC/pstO cell fate. The findings indicate that IfkA and IfkB have redundant functions in Dictyostelium morphogenesis that involve maintaining proper cell-cell and cell-substrate adhesion and the equilibrium between different cell types for proper spatial patterning.
Collapse
Affiliation(s)
- Meena Rai
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | |
Collapse
|
32
|
Huang E, Blagg SL, Keller T, Katoh M, Shaulsky G, Thompson CRL. bZIP transcription factor interactions regulate DIF responses in Dictyostelium. Development 2006; 133:449-58. [PMID: 16410410 PMCID: PMC3531922 DOI: 10.1242/dev.02240] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The signalling molecule DIF-1 is required for normal cell fate choice and patterning in Dictyostelium. To understand how these developmental processes are regulated will require knowledge of how cells receive and respond to the DIF-1 signal. Previously, we have described a bZIP transcription factor, DimA, which is required for cells to respond to DIF-1. However, it was unknown whether DimA activity is required to activate the DIF response pathway in certain cells or is a component of the response pathway itself. In this study, we describe the identification of a DimA-related bZIP transcription factor, DimB. Rapid changes in the subcellular localisation of both DimA and DimB in response to DIF-1 suggest that they are directly downstream of the DIF-1 signal. Genetic and biochemical interactions between DimA and DimB provides evidence that their ability to regulate diverse targets in response to DIF-1 is partly due to their ability to form homo- and heterodimeric complexes. DimA and DimB are therefore direct regulators of cellular responses to DIF-1.
Collapse
Affiliation(s)
- Eryong Huang
- Graduate Program in Structural Computational Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Simone L. Blagg
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Thomas Keller
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Mariko Katoh
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Christopher R. L. Thompson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
33
|
Strmecki L, Greene DM, Pears CJ. Developmental decisions in Dictyostelium discoideum. Dev Biol 2005; 284:25-36. [PMID: 15964562 DOI: 10.1016/j.ydbio.2005.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/14/2005] [Accepted: 05/06/2005] [Indexed: 11/28/2022]
Abstract
Dictyostelium discoideum is an excellent system in which to study developmental decisions. Synchronous development is triggered by starvation and rapidly generates a limited number of cell types. Genetic and image analyses have revealed the elegant intricacies associated with this simple development system. Key signaling pathways identified as regulating cell fate decisions are likely to be conserved with metazoa and are providing insight into differentiation decisions under circumstances where considerable cell movement takes place during development.
Collapse
Affiliation(s)
- Lana Strmecki
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
34
|
Maeda Y. Regulation of growth and differentiation in Dictyostelium. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:287-332. [PMID: 16157183 DOI: 10.1016/s0074-7696(05)44007-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In general, growth and differentiation are mutually exclusive, but they are cooperatively regulated during the course of development. Thus, the process of a cell's transition from growth to differentiation is of general importance not only for the development of organisms but also for the initiation of malignant transformation, in which this process is reversed. The cellular slime mold Dictyostelium, a wonderful model organism, grows and multiplies as long as nutrients are supplied, and its differentiation is triggered by starvation. A strict checkpoint (growth/differentiation transition or GDT point), from which cells start differentiating in response to starvation, has been specified in the cell cycle of D. discoideum Ax-2 cells. Accordingly, integration of GDT point-specific events with starvation-induced events is needed to understand the mechanism regulating GDTs. A variety of intercellular and intracellular signals are involved positively or negatively in the initiation of differentiation, making a series of cross-talks. As was expected from the presence of GDT points, the cell's positioning in cell masses and subsequent cell-type choices occur depending on the cell's phase in the cell cycle at the onset of starvation. Since novel and somewhat unexpected multiple functions of mitochondria in cell movement, differentiation, and pattern formation have been well realized in Dictyostelium cells, they are reviewed in this article.
Collapse
Affiliation(s)
- Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|