1
|
Forget M, Adiba S, De Monte S. Single-cell phenotypic plasticity modulates social behavior in Dictyostelium discoideum. iScience 2023; 26:106783. [PMID: 37235054 PMCID: PMC10206496 DOI: 10.1016/j.isci.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/09/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
In Dictyostelium chimeras, "cheaters" are strains that positively bias their contribution to the pool of spores, i.e., the reproductive cells resulting from development. On evolutionary time scales, the selective advantage; thus, gained by cheaters is predicted to undermine collective functions whenever social behaviors are genetically determined. Genotypes; however, are not the sole determinant of spore bias, but the relative role of genetic and plastic differences in evolutionary success is unclear. Here, we study chimeras composed of cells harvested in different phases of population growth. We show that such heterogeneity induces frequency-dependent, plastic variation in spore bias. In genetic chimeras, the magnitude of such variation is not negligible and can even reverse the classification of a strain's social behavior. Our results suggest that differential cell mechanical properties can underpin, through biases emerging during aggregation, a "lottery" in strains' reproductive success that may counter the evolution of cheating.
Collapse
Affiliation(s)
- Mathieu Forget
- Institut de Biologie de l’Ecole Normale Supérieure, Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plőn, Germany
| | - Sandrine Adiba
- Institut de Biologie de l’Ecole Normale Supérieure, Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Silvia De Monte
- Institut de Biologie de l’Ecole Normale Supérieure, Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plőn, Germany
| |
Collapse
|
2
|
Signaling interplay between PARP1 and ROS regulates stress-induced cell death and developmental changes in Dictyostelium discoideum. Exp Cell Res 2020; 397:112364. [DOI: 10.1016/j.yexcr.2020.112364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/22/2022]
|
3
|
Guinn MT, Wan Y, Levovitz S, Yang D, Rosner MR, Balázsi G. Observation and Control of Gene Expression Noise: Barrier Crossing Analogies Between Drug Resistance and Metastasis. Front Genet 2020; 11:586726. [PMID: 33193723 PMCID: PMC7662081 DOI: 10.3389/fgene.2020.586726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Michael Tyler Guinn
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States.,Stony Brook Medical Scientist Training Program, Stony Brook, NY, United States
| | - Yiming Wan
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States
| | - Sarah Levovitz
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States
| | - Dongbo Yang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Marsha R Rosner
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Gábor Balázsi
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
4
|
Saiz N, Hadjantonakis AK. Coordination between patterning and morphogenesis ensures robustness during mouse development. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190562. [PMID: 32829684 PMCID: PMC7482220 DOI: 10.1098/rstb.2019.0562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
The mammalian preimplantation embryo is a highly tractable, self-organizing developmental system in which three cell types are consistently specified without the need for maternal factors or external signals. Studies in the mouse over the past decades have greatly improved our understanding of the cues that trigger symmetry breaking in the embryo, the transcription factors that control lineage specification and commitment, and the mechanical forces that drive morphogenesis and inform cell fate decisions. These studies have also uncovered how these multiple inputs are integrated to allocate the right number of cells to each lineage despite inherent biological noise, and as a response to perturbations. In this review, we summarize our current understanding of how these processes are coordinated to ensure a robust and precise developmental outcome during early mouse development. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Néstor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
5
|
Noh S, Christopher L, Strassmann JE, Queller DC. Wild Dictyostelium discoideum social amoebae show plastic responses to the presence of nonrelatives during multicellular development. Ecol Evol 2020; 10:1119-1134. [PMID: 32076502 PMCID: PMC7029077 DOI: 10.1002/ece3.5924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/30/2019] [Accepted: 11/18/2019] [Indexed: 11/11/2022] Open
Abstract
When multiple strains of microbes form social groups, such as the multicellular fruiting bodies of Dictyostelium discoideum, conflict can arise regarding cell fate. Both fixed and plastic differences among strains can contribute to cell fate, and plastic responses may be particularly important if social environments frequently change. We used RNA-sequencing and photographic time series analysis to detect possible conflict-induced plastic differences between wild D. discoideum aggregates formed by single strains compared with mixed pairs of strains (chimeras). We found one hundred and two differentially expressed genes that were enriched for biological processes including cytoskeleton organization and cyclic AMP response (up-regulated in chimeras), and DNA replication and cell cycle (down-regulated in chimeras). In addition, our data indicate that in reference to a time series of multicellular development in the laboratory strain AX4, chimeras may be slightly behind clonal aggregates in their development. Finally, phenotypic analysis supported slower splitting of aggregates and a nonsignificant trend for larger group sizes in chimeras. The transcriptomic comparison and phenotypic analyses support discoordination among aggregate group members due to social conflict. These results are consistent with previously observed factors that affect cell fate decision in D. discoideum and provide evidence for plasticity in cAMP signaling and phenotypic coordination during development in response to social conflict in D. discoideum and similar microbial social groups.
Collapse
Affiliation(s)
- Suegene Noh
- Department of BiologyColby CollegeWatervilleMEUSA
| | | | | | - David C. Queller
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| |
Collapse
|
6
|
Barteneva NS, Vorobjev IA. Heterogeneity of Metazoan Cells and Beyond: To Integrative Analysis of Cellular Populations at Single-Cell Level. Methods Mol Biol 2018; 1745:3-23. [PMID: 29476460 DOI: 10.1007/978-1-4939-7680-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, we review some of the recent advances in cellular heterogeneity and single-cell analysis methods. In modern research of cellular heterogeneity, there are four major approaches: analysis of pooled samples, single-cell analysis, high-throughput single-cell analysis, and lately integrated analysis of cellular population at a single-cell level. Recently developed high-throughput single-cell genetic analysis methods such as RNA-Seq require purification step and destruction of an analyzed cell often are providing a snapshot of the investigated cell without spatiotemporal context. Correlative analysis of multiparameter morphological, functional, and molecular information is important for differentiation of more uniform groups in the spectrum of different cell types. Simplified distributions (histograms and 2D plots) can underrepresent biologically significant subpopulations. Future directions may include the development of nondestructive methods for dissecting molecular events in intact cells, simultaneous correlative cellular analysis of phenotypic and molecular features by hybrid technologies such as imaging flow cytometry, and further progress in supervised and non-supervised statistical analysis algorithms.
Collapse
Affiliation(s)
- Natasha S Barteneva
- PCMM-Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.
- Department of Biology, School of Sciences and Technology, Nazarbayev University, Astana, Kazakhstan.
| | - Ivan A Vorobjev
- Department of Biology, School of Sciences and Technology, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
7
|
Pfeuty B, Kaneko K. Requirements for efficient cell-type proportioning: regulatory timescales, stochasticity and lateral inhibition. Phys Biol 2016; 13:026007. [PMID: 27172110 DOI: 10.1088/1478-3975/13/2/026007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The proper functioning of multicellular organisms requires the robust establishment of precise proportions between distinct cell types. This developmental differentiation process typically involves intracellular regulatory and stochastic mechanisms to generate cell-fate diversity as well as intercellular signaling mechanisms to coordinate cell-fate decisions at tissue level. We thus surmise that key insights about the developmental regulation of cell-type proportion can be captured by the modeling study of clustering dynamics in population of inhibitory-coupled noisy bistable systems. This general class of dynamical system is shown to exhibit a very stable two-cluster state, but also metastability, collective oscillations or noise-induced state hopping, which can prevent from timely and reliably reaching a robust and well-proportioned clustered state. To circumvent these obstacles or to avoid fine-tuning, we highlight a general strategy based on dual-time positive feedback loops, such as mediated through transcriptional versus epigenetic mechanisms, which improves proportion regulation by coordinating early and flexible lineage priming with late and firm commitment. This result sheds new light on the respective and cooperative roles of multiple regulatory feedback, stochasticity and lateral inhibition in developmental dynamics.
Collapse
Affiliation(s)
- B Pfeuty
- Université de Lille, CNRS, Laboratoire de Physique des Lasers, Atomes, et Molécules, F-59000, Lille, France
| | | |
Collapse
|
8
|
Yang Q, Wang H, Chen S, Lan X, Xiao H, Shi H, Ma Y. Fiber-Optic-Based Micro-Probe Using Hexagonal 1-in-6 Fiber Configuration for Intracellular Single-Cell pH Measurement. Anal Chem 2015; 87:7171-9. [DOI: 10.1021/acs.analchem.5b01040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qingbo Yang
- Department
of Chemistry and Center for Single Nanoparticle, Single Cell, and
Single Molecular Monitoring, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Hanzheng Wang
- Department
of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Sisi Chen
- Department
of Chemistry and Center for Single Nanoparticle, Single Cell, and
Single Molecular Monitoring, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Xinwei Lan
- Department
of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Hai Xiao
- Department
of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Honglan Shi
- Department
of Chemistry and Center for Single Nanoparticle, Single Cell, and
Single Molecular Monitoring, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Yinfa Ma
- Department
of Chemistry and Center for Single Nanoparticle, Single Cell, and
Single Molecular Monitoring, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
9
|
van Vliet S, Hol FJH, Weenink T, Galajda P, Keymer JE. The effects of chemical interactions and culture history on the colonization of structured habitats by competing bacterial populations. BMC Microbiol 2014; 14:116. [PMID: 24884963 PMCID: PMC4032360 DOI: 10.1186/1471-2180-14-116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 05/01/2014] [Indexed: 02/01/2023] Open
Abstract
Background Bacterial habitats, such as soil and the gut, are structured at the micrometer scale. Important aspects of microbial life in such spatial ecosystems are migration and colonization. Here we explore the colonization of a structured ecosystem by two neutrally labeled strains of Escherichia coli. Using time-lapse microscopy we studied the colonization of one-dimensional arrays of habitat patches linked by connectors, which were invaded by the two E. coli strains from opposite sides. Results The two strains colonize a habitat from opposite sides by a series of traveling waves followed by an expansion front. When population waves collide, they branch into a continuing traveling wave, a reflected wave and a stationary population. When the two strains invade the landscape from opposite sides, they remain segregated in space and often one population will displace the other from most of the habitat. However, when the strains are co-cultured before entering the habitats, they colonize the habitat together and do not separate spatially. Using physically separated, but diffusionally coupled, habitats we show that colonization waves and expansion fronts interact trough diffusible molecules, and not by direct competition for space. Furthermore, we found that colonization outcome is influenced by a culture’s history, as the culture with the longest doubling time in bulk conditions tends to take over the largest fraction of the habitat. Finally, we observed that population distributions in parallel habitats located on the same device and inoculated with cells from the same overnight culture are significantly more similar to each other than to patterns in identical habitats located on different devices inoculated with cells from different overnight cultures, even tough all cultures were started from the same −80°C frozen stock. Conclusions We found that the colonization of spatially structure habitats by two interacting populations can lead to the formation of complex, but reproducible, spatiotemporal patterns. Furthermore, we showed that chemical interactions between two populations cause them to remain spatially segregated while they compete for habitat space. Finally, we observed that growth properties in bulk conditions correlate with the outcome of habitat colonization. Together, our data show the crucial roles of chemical interactions between populations and a culture’s history in determining the outcome of habitat colonization.
Collapse
Affiliation(s)
- Simon van Vliet
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft, CJ 2628, The Netherlands.
| | | | | | | | | |
Collapse
|
10
|
Huber RJ. The cyclin-dependent kinase family in the social amoebozoan Dictyostelium discoideum. Cell Mol Life Sci 2014; 71:629-39. [PMID: 23974243 PMCID: PMC11113532 DOI: 10.1007/s00018-013-1449-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
Cyclin-dependent kinases (Cdk) are a family of serine/threonine protein kinases that regulate eukaryotic cell cycle progression. Their ability to modulate the cell cycle has made them an attractive target for anti-cancer therapies. Cdk protein function has been studied in a variety of Eukaryotes ranging from yeast to humans. In the social amoebozoan Dictyostelium discoideum, several homologues of mammalian Cdks have been identified and characterized. The life cycle of this model organism is comprised of a feeding stage where single cells grow and divide mitotically as they feed on their bacterial food source and a multicellular developmental stage that is induced by starvation. Thus it is a valuable system for studying a variety of cellular and developmental processes. In this review I summarize the current knowledge of the Cdk protein family in Dictyostelium by highlighting the research efforts focused on the characterization of Cdk1, Cdk5, and Cdk8 in this model Eukaryote. Accumulated evidence indicates that each protein performs distinct functions during the Dictyostelium life cycle with Cdk1 being required for growth and Cdk5 and Cdk8 being required for processes that occur during development. Recent studies have shown that Dictyostelium Cdk5 shares attributes with mammalian Cdk5 and that the mammalian Cdk inhibitor roscovitine can be used to inhibit Cdk5 activity in Dictyostelium. Together, these results show that Dictyostelium can be used as a model system for studying Cdk protein function.
Collapse
Affiliation(s)
- Robert J Huber
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, MA, 02114, USA,
| |
Collapse
|
11
|
Smith J, Van Dyken JD, Velicer GJ. Nonadaptive processes can create the appearance of facultative cheating in microbes. Evolution 2013; 68:816-26. [PMID: 24171718 DOI: 10.1111/evo.12306] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
Adaptations to social life may take the form of facultative cheating, in which organisms cooperate with genetically similar individuals but exploit others. Consistent with this possibility, many strains of social microbes like Myxococcus bacteria and Dictyostelium amoebae have equal fitness in single-genotype social groups but outcompete other strains in mixed-genotype groups. Here we show that these observations are also consistent with an alternative, nonadaptive scenario: kin selection-mutation balance under local competition. Using simple mathematical models, we show that deleterious mutations that reduce competitiveness within social groups (growth rate, e.g.) without affecting group productivity can create fitness effects that are only expressed in the presence of other strains. In Myxococcus, mutations that delay sporulation may strongly reduce developmental competitiveness. Deleterious mutations are expected to accumulate when high levels of kin selection relatedness relax selection within groups. Interestingly, local resource competition can create nonzero "cost" and "benefit" terms in Hamilton's rule even in the absence of any cooperative trait. Our results show how deleterious mutations can play a significant role even in organisms with large populations and highlight the need to test evolutionary causes of social competition among microbes.
Collapse
Affiliation(s)
- Jeff Smith
- Department of Biology, Washington University in St. Louis, Saint Louis, Missouri.
| | | | | |
Collapse
|
12
|
Chattwood A, Nagayama K, Bolourani P, Harkin L, Kamjoo M, Weeks G, Thompson CRL. Developmental lineage priming in Dictyostelium by heterogeneous Ras activation. eLife 2013; 2:e01067. [PMID: 24282234 PMCID: PMC3838634 DOI: 10.7554/elife.01067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In cell culture, genetically identical cells often exhibit heterogeneous behavior, with only 'lineage primed' cells responding to differentiation inducing signals. It has recently been proposed that such heterogeneity exists during normal embryonic development to allow position independent patterning based on 'salt and pepper' differentiation and sorting out. However, the molecular basis of lineage priming and how it leads to reproducible cell type proportioning are poorly understood. To address this, we employed a novel forward genetic approach in the model organism Dictyostelium discoideum. These studies reveal that the Ras-GTPase regulator gefE is required for normal lineage priming and salt and pepper differentiation. This is because Ras-GTPase activity sets the intrinsic response threshold to lineage specific differentiation signals. Importantly, we show that although gefE expression is uniform, transcription of its target, rasD, is both heterogeneous and dynamic, thus providing a novel mechanism for heterogeneity generation and position-independent differentiation. DOI: http://dx.doi.org/10.7554/eLife.01067.001.
Collapse
Affiliation(s)
- Alex Chattwood
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Much of our knowledge of molecular cellular functions is based on studies with a few number of model organisms that were established during the last 50 years. The social amoeba Dictyostelium discoideum is one such model, and has been particularly useful for the study of cell motility, chemotaxis, phagocytosis, endocytic vesicle traffic, cell adhesion, pattern formation, caspase-independent cell death, and, more recently, autophagy and social evolution. As nonmammalian model of human diseases D. discoideum is a newcomer, yet it has proven to be a powerful genetic and cellular model for investigating host-pathogen interactions and microbial infections, for mitochondrial diseases, and for pharmacogenetic studies. The D. discoideum genome harbors several homologs of human genes responsible for a variety of diseases, -including Chediak-Higashi syndrome, lissencephaly, mucolipidosis, Huntington disease, IBMPFD, and Shwachman-Diamond syndrome. A few genes have already been studied, providing new insights on the mechanism of action of the encoded proteins and in some cases on the defect underlying the disease. The opportunities offered by the organism and its place among the nonmammalian models for human diseases will be discussed.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy.
| |
Collapse
|
14
|
Strassmann JE, Queller DC. Evolution of cooperation and control of cheating in a social microbe. Proc Natl Acad Sci U S A 2011; 108 Suppl 2:10855-62. [PMID: 21690338 PMCID: PMC3131822 DOI: 10.1073/pnas.1102451108] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Much of what we know about the evolution of altruism comes from animals. Here, we show that studying a microbe has yielded unique insights, particularly in understanding how social cheaters are controlled. The social stage of Dictylostelium discoideum occurs when the amoebae run out of their bacterial prey and aggregate into a multicellular, motile slug. This slug forms a fruiting body in which about a fifth of cells die to form a stalk that supports the remaining cells as they form hardy dispersal-ready spores. Because this social stage forms from aggregation, it is analogous to a social group, or a chimeric multicellular organism, and is vulnerable to internal conflict. Advances in cell labeling, microscopy, single-gene knockouts, and genomics, as well as the results of decades of study of D. discoideum as a model for development, allow us to explore the genetic basis of social contests and control of cheaters in unprecedented detail. Cheaters are limited from exploiting other clones by high relatedness, kin discrimination, pleiotropy, noble resistance, and lottery-like role assignment. The active nature of these limits is reflected in the elevated rates of change in social genes compared with nonsocial genes. Despite control of cheaters, some conflict is still expressed in chimeras, with slower movement of slugs, slightly decreased investment in stalk compared with spore cells, and differential contributions to stalk and spores. D. discoideum is rapidly becoming a model system of choice for molecular studies of social evolution.
Collapse
Affiliation(s)
- Joan E Strassmann
- Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA.
| | | |
Collapse
|