1
|
Liaci C, Camera M, Zamboni V, Sarò G, Ammoni A, Parmigiani E, Ponzoni L, Hidisoglu E, Chiantia G, Marcantoni A, Giustetto M, Tomagra G, Carabelli V, Torelli F, Sala M, Yanagawa Y, Obata K, Hirsch E, Merlo GR. Loss of ARHGAP15 affects the directional control of migrating interneurons in the embryonic cortex and increases susceptibility to epilepsy. Front Cell Dev Biol 2022; 10:875468. [PMID: 36568982 PMCID: PMC9774038 DOI: 10.3389/fcell.2022.875468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
GTPases of the Rho family are components of signaling pathways linking extracellular signals to the control of cytoskeleton dynamics. Among these, RAC1 plays key roles during brain development, ranging from neuronal migration to neuritogenesis, synaptogenesis, and plasticity. RAC1 activity is positively and negatively controlled by guanine nucleotide exchange factors (GEFs), guanosine nucleotide dissociation inhibitors (GDIs), and GTPase-activating proteins (GAPs), but the specific role of each regulator in vivo is poorly known. ARHGAP15 is a RAC1-specific GAP expressed during development in a fraction of migrating cortical interneurons (CINs) and in the majority of adult CINs. During development, loss of ARHGAP15 causes altered directionality of the leading process of tangentially migrating CINs, along with altered morphology in vitro. Likewise, time-lapse imaging of embryonic CINs revealed a poorly coordinated directional control during radial migration, possibly due to a hyper-exploratory behavior. In the adult cortex, the observed defects lead to subtle alteration in the distribution of CALB2-, SST-, and VIP-positive interneurons. Adult Arhgap15-knock-out mice also show reduced CINs intrinsic excitability, spontaneous subclinical seizures, and increased susceptibility to the pro-epileptic drug pilocarpine. These results indicate that ARHGAP15 imposes a fine negative regulation on RAC1 that is required for morphological maturation and directional control during CIN migration, with consequences on their laminar distribution and inhibitory function.
Collapse
Affiliation(s)
- Carla Liaci
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Mattia Camera
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Valentina Zamboni
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Gabriella Sarò
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Alessandra Ammoni
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | | | - Luisa Ponzoni
- Neuroscience Institute, Consiglio Nazionale Ricerche, Milan, Italy
| | - Enis Hidisoglu
- Department of Drug Science, NIS Center, University of Turin, Turin, Italy
| | - Giuseppe Chiantia
- Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy
| | - Andrea Marcantoni
- Department of Drug Science, NIS Center, University of Turin, Turin, Italy
| | - Maurizio Giustetto
- Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy
| | - Giulia Tomagra
- Department of Drug Science, NIS Center, University of Turin, Turin, Italy
| | | | - Federico Torelli
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Freiburg, Germany,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mariaelvina Sala
- Neuroscience Institute, Consiglio Nazionale Ricerche, Milan, Italy
| | - Yuchio Yanagawa
- Department of Genetic Behavioral Neuroscience, Gunma University, Maebashi, Japan
| | | | - Emilio Hirsch
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Giorgio R. Merlo
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy,*Correspondence: Giorgio R. Merlo,
| |
Collapse
|
2
|
Hazra D, Yoshinaga S, Yoshida K, Takata N, Tanaka KF, Kubo KI, Nakajima K. Rhythmic activation of excitatory neurons in the mouse frontal cortex improves the prefrontal cortex-mediated cognitive function. Cereb Cortex 2022; 32:5243-5258. [PMID: 35136976 DOI: 10.1093/cercor/bhac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/27/2022] Open
Abstract
The prefrontal cortex (PFC) plays essential roles in cognitive processes. Previous studies have suggested the layer and the cell type-specific activation for cognitive enhancement. However, the mechanism by which a temporal pattern of activation affects cognitive function remains to be elucidated. Here, we investigated whether the specific activation of excitatory neurons in the superficial layers mainly in the PFC according to a rhythmic or nonrhythmic pattern could modulate the cognitive functions of normal mice. We used a C128S mutant of channelrhodopsin 2, a step function opsin, and administered two light illumination patterns: (i) alternating pulses of blue and yellow light for rhythmic activation or (ii) pulsed blue light only for nonrhythmic activation. Behavioral analyses were performed to compare the behavioral consequences of these two neural activation patterns. The alternating blue and yellow light pulses, but not the pulsed blue light only, significantly improved spatial working memory and social recognition without affecting motor activity or the anxiety level. These results suggest that the rhythmic, but not the nonrhythmic, activation could enhance cognitive functions. This study indicates that not only the population of neurons that are activated but also the pattern of activation plays a crucial role in the cognitive enhancement.
Collapse
Affiliation(s)
- Debabrata Hazra
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satoshi Yoshinaga
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan.,Department of Anatomy, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Keitaro Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Norio Takata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan.,Department of Anatomy, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
3
|
Yildiz CB, Zimmer-Bensch G. Role of DNMTs in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:363-394. [DOI: 10.1007/978-3-031-11454-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Wang Y, Liu L, Lin M. Psychiatric risk gene transcription factor 4 preferentially regulates cortical interneuron neurogenesis during early brain development. J Biomed Res 2022; 36:242-254. [PMID: 35965434 PMCID: PMC9376727 DOI: 10.7555/jbr.36.20220074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic variants within or near the transcription factor 4 gene (TCF4) are robustly implicated in psychiatric disorders including schizophrenia. However, the biological pleiotropy poses considerable obstacles to dissect the potential relationship between TCF4 and those highly heterogeneous diseases. Through integrative transcriptomic analysis, we demonstrated that TCF4 is preferentially expressed in cortical interneurons during early brain development. Therefore, disruptions of interneuron development might be the underlying contribution of TCF4 perturbation to a range of neurodevelopmental disorders. Here, we performed chromatin immunoprecipitation sequencing (ChIP-seq) of TCF4 on human medial ganglionic eminence-like organoids (hMGEOs) to identify genome-wide TCF4 binding sites, followed by integration of multi-omics data from human fetal brain. We observed preferential expression of the isoform TCF4-B over TCF4-A. De novo motif analysis found that the identified 5916 TCF4 binding sites are significantly enriched for the E-box sequence. The predicted TCF4 targets in general have positively correlated expression levels with TCF4 in the cortical interneurons, and are primarily involved in biological processes related to neurogenesis. Interestingly, we found that TCF4 interacts with non-bHLH proteins such as FOS/JUN, which may underlie the functional specificity of TCF4 in hMGEOs. This study highlights the regulatory role of TCF4 in interneuron development and provides compelling evidence to support the biological rationale linking TCF4 to the developing cortical interneuron and psychiatric disorders.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Liya Liu
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Mingyan Lin, Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869432, E-mail:
| |
Collapse
|
5
|
Reichard J, Zimmer-Bensch G. The Epigenome in Neurodevelopmental Disorders. Front Neurosci 2021; 15:776809. [PMID: 34803599 PMCID: PMC8595945 DOI: 10.3389/fnins.2021.776809] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Neurodevelopmental diseases (NDDs), such as autism spectrum disorders, epilepsy, and schizophrenia, are characterized by diverse facets of neurological and psychiatric symptoms, differing in etiology, onset and severity. Such symptoms include mental delay, cognitive and language impairments, or restrictions to adaptive and social behavior. Nevertheless, all have in common that critical milestones of brain development are disrupted, leading to functional deficits of the central nervous system and clinical manifestation in child- or adulthood. To approach how the different development-associated neuropathologies can occur and which risk factors or critical processes are involved in provoking higher susceptibility for such diseases, a detailed understanding of the mechanisms underlying proper brain formation is required. NDDs rely on deficits in neuronal identity, proportion or function, whereby a defective development of the cerebral cortex, the seat of higher cognitive functions, is implicated in numerous disorders. Such deficits can be provoked by genetic and environmental factors during corticogenesis. Thereby, epigenetic mechanisms can act as an interface between external stimuli and the genome, since they are known to be responsive to external stimuli also in cortical neurons. In line with that, DNA methylation, histone modifications/variants, ATP-dependent chromatin remodeling, as well as regulatory non-coding RNAs regulate diverse aspects of neuronal development, and alterations in epigenomic marks have been associated with NDDs of varying phenotypes. Here, we provide an overview of essential steps of mammalian corticogenesis, and discuss the role of epigenetic mechanisms assumed to contribute to pathophysiological aspects of NDDs, when being disrupted.
Collapse
Affiliation(s)
- Julia Reichard
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Franchini LF. Genetic Mechanisms Underlying Cortical Evolution in Mammals. Front Cell Dev Biol 2021; 9:591017. [PMID: 33659245 PMCID: PMC7917222 DOI: 10.3389/fcell.2021.591017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The remarkable sensory, motor, and cognitive abilities of mammals mainly depend on the neocortex. Thus, the emergence of the six-layered neocortex in reptilian ancestors of mammals constitutes a fundamental evolutionary landmark. The mammalian cortex is a columnar epithelium of densely packed cells organized in layers where neurons are generated mainly in the subventricular zone in successive waves throughout development. Newborn cells move away from their site of neurogenesis through radial or tangential migration to reach their specific destination closer to the pial surface of the same or different cortical area. Interestingly, the genetic programs underlying neocortical development diversified in different mammalian lineages. In this work, I will review several recent studies that characterized how distinct transcriptional programs relate to the development and functional organization of the neocortex across diverse mammalian lineages. In some primates such as the anthropoids, the neocortex became extremely large, especially in humans where it comprises around 80% of the brain. It has been hypothesized that the massive expansion of the cortical surface and elaboration of its connections in the human lineage, has enabled our unique cognitive capacities including abstract thinking, long-term planning, verbal language and elaborated tool making capabilities. I will also analyze the lineage-specific genetic changes that could have led to the modification of key neurodevelopmental events, including regulation of cell number, neuronal migration, and differentiation into specific phenotypes, in order to shed light on the evolutionary mechanisms underlying the diversity of mammalian brains including the human brain.
Collapse
Affiliation(s)
- Lucía Florencia Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
Analysis of pallial/cortical interneurons in key vertebrate models of Testudines, Anurans and Polypteriform fishes. Brain Struct Funct 2020; 225:2239-2269. [PMID: 32743670 DOI: 10.1007/s00429-020-02123-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 07/24/2020] [Indexed: 01/09/2023]
Abstract
The organization of the pallial derivatives across vertebrates follows a comparable elementary arrangement, although not all of them possess a layered cortical structure as sophisticated as the cerebral cortex of mammals. However, its expansion along evolution has only been possible by the development and coevolution of the cellular networks formed by excitatory neurons and inhibitory interneurons. Thus, the comparative analysis of interneuron types in vertebrate models of key evolutionary significance will provide important information, due to the extraordinary anatomical sophistication of their interneuron systems with simpler behavioral implications. Particularly in mammals, the main consensus for classifying interneuron types is based on non-overlapping markers, which do not form a single population, but consist of several distinct classes of inhibitory cells showing co-expression of other markers. In our study, we analyzed immunohistochemically the expression of the main markers like somatostatin (SOM), parvalbumin (PV), calretinin (CR), calbindin (CB), neuropeptide Y (NPY) and/or nitric oxide synthase (NOS) at the pallial regions of three different models of Osteichthyes. First, we selected two tetrapods, one amniote from the genus Pseudemys belonging to the order Testudine, at the base of the amniote diversification and with a three-layered simple cortex, and the Anuran Xenopus laevis, an anamniote tetrapod with a non-layered evaginated pallium, and finally the order Polypteriform, a small fish group at the base of the actinopterygian diversification with an everted telencephalon. SOM was the most conserved interneuron type in terms of its distribution and co-expression with other markers such as CR, in contrast to PV, which showed a different pattern between the models analyzed. In addition, the SOM expression supports a homological relationship between the medial pallial derivatives in all the models. CR and CB expressions in the tetrapods were observed, particularly, CR expressing cells were detected in the medial and the dorsal pallial derivatives, in contrast to CB, which appeared only in discrete scattered populations. However, the pallium of Polypteriforms fishes was almost devoid of CR cells, in contrast to the important number of CB cells observed in all the pallial regions. The NPY immunoreactivity was detected in all the pallial domains of all the models, as well as cells coexpressing CR. Finally, the pallial nitrergic expression was also conserved, which allows to postulate the homological relationships between the ventropallial and the amygdaloid derivatives. In summary, even in basal pallial models the neurochemically characterized interneurons indicate that their first appearance took place before the common ancestor of amniotes. Thus, our results suggest a shared pattern of interneuron types in the pallium of all Osteichthyes.
Collapse
|
8
|
Hsing HW, Zhuang ZH, Niou ZX, Chou SJ. Temporal Differences in Interneuron Invasion of Neocortex and Piriform Cortex during Mouse Cortical Development. Cereb Cortex 2019; 30:3015-3029. [PMID: 31838488 DOI: 10.1093/cercor/bhz291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022] Open
Abstract
Establishing a balance between excitation and inhibition is critical for brain functions. However, how inhibitory interneurons (INs) generated in the ventral telencephalon integrate with the excitatory neurons generated in the dorsal telencephalon remains elusive. Previous studies showed that INs migrating tangentially to enter the neocortex (NCx), remain in the migratory stream for days before invading the cortical plate during late corticogenesis. Here we show that in developing mouse cortices, INs in the piriform cortex (PCx; the major olfactory cortex) distribute differently from those in the NCx. We provide evidence that during development INs invade and mature earlier in PCx than in NCx, likely owing to the lack of CXCR4 expression in INs from PCx compared to those in NCx. We analyzed IN distribution patterns in Lhx2 cKO mice, where projection neurons in the lateral NCx are re-fated to generate an ectopic PCx (ePCx). The PCx-specific IN distribution patterns found in ePCx suggest that properties of PCx projection neurons regulate IN distribution. Collectively, our results show that the timing of IN invasion in the developing PCx fundamentally differs from what is known in the NCx. Further, our results suggest that projection neurons instruct the PCx-specific pattern of IN distribution.
Collapse
Affiliation(s)
- Hsiang-Wei Hsing
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Zi-Hui Zhuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Zhen-Xian Niou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| |
Collapse
|
9
|
Dowell J, Elser BA, Schroeder RE, Stevens HE. Cellular stress mechanisms of prenatal maternal stress: Heat shock factors and oxidative stress. Neurosci Lett 2019; 709:134368. [PMID: 31299286 DOI: 10.1016/j.neulet.2019.134368] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022]
Abstract
Development of the brain prenatally is affected by maternal experience and exposure. Prenatal maternal psychological stress changes brain development and results in increased risk for neuropsychiatric disorders. In this review, multiple levels of prenatal stress mechanisms (offspring brain, placenta, and maternal physiology) are discussed and their intersection with cellular stress mechanisms explicated. Heat shock factors and oxidative stress are closely related to each other and converge with the inflammation, hormones, and cellular development that have been more deeply explored as the basis of prenatal stress risk. Increasing evidence implicates cellular stress mechanisms in neuropsychiatric disorders associated with prenatal stress including affective disorders, schizophrenia, and child-onset psychiatric disorders. Heat shock factors and oxidative stress also have links with the mechanisms involved in other kinds of prenatal stress including external exposures such as environmental toxicants and internal disruptions such as preeclampsia. Integrative understanding of developmental neurobiology with these cellular and physiological mechanisms is necessary to reduce risks and promote healthy brain development.
Collapse
Affiliation(s)
- Jonathan Dowell
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - Benjamin A Elser
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA.
| | - Rachel E Schroeder
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA.
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, Iowa City, IA, USA.
| |
Collapse
|
10
|
Cell migration promotes dynamic cellular interactions to control cerebral cortex morphogenesis. Nat Rev Neurosci 2019; 20:318-329. [DOI: 10.1038/s41583-019-0148-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Vaez Ghaemi R, Co IL, McFee MC, Yadav VG. Brain Organoids: A New, Transformative Investigational Tool for Neuroscience Research. ACTA ACUST UNITED AC 2019; 3:e1800174. [PMID: 32627343 DOI: 10.1002/adbi.201800174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Indexed: 12/22/2022]
Abstract
Brain organoids are self-assembled, three-dimensionally structured tissues that are typically derived from pluripotent stem cells. They are multicellular aggregates that more accurately recapitulate the tissue microenvironment compared to the other cell culture systems and can also reproduce organ function. They are promising models for evaluating drug leads, particularly those that target neurodegeneration, since they are genetically and phenotypically stable over prolonged durations of culturing and they reasonably reproduce critical physiological phenomena such as biochemical gradients and responses by the native tissue to stimuli. Beyond drug discovery, the use of brain organoids could also be extended to investigating early brain development and identifying the mechanisms that elicit neurodegeneration. Herein, the current state of the fabrication and use of brain organoids in drug development and medical research is summarized. Although the use of brain organoids represents a quantum leap over existing investigational tools used by the pharmaceutical industry, they are nonetheless imperfect systems that could be greatly improved through bioengineering. To this end, some key scientific challenges that would need to be addressed in order to enhance the relevance of brain organoids as model tissue are listed. Potential solutions to these challenges, including the use of bioprinting, are highlighted thereafter.
Collapse
Affiliation(s)
- Roza Vaez Ghaemi
- Department of Chemical & Biological Engineering & School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Ileana L Co
- Department of Chemical & Biological Engineering & School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Matthew C McFee
- Department of Chemical & Biological Engineering & School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Vikramaditya G Yadav
- Department of Chemical & Biological Engineering & School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
12
|
Psychiatry in a Dish: Stem Cells and Brain Organoids Modeling Autism Spectrum Disorders. Biol Psychiatry 2018; 83:558-568. [PMID: 29295738 DOI: 10.1016/j.biopsych.2017.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/23/2022]
Abstract
Autism spectrum disorders are a group of pervasive neurodevelopmental conditions with heterogeneous etiology, characterized by deficits in social cognition, communication, and behavioral flexibility. Despite an increasing scientific effort to find the pathophysiological explanations for the disease, the neurobiological links remain unclear. A large amount of evidence suggests that pathological processes taking place in early embryonic neurodevelopment might be responsible for later manifestation of autistic symptoms. This dysfunctional development includes altered maturation/differentiation processes, disturbances in cell-cell communication, and an unbalanced ratio between certain neuronal populations. All those processes are highly dependent on the interconnectivity and three-dimensional organizations of the brain. Moreover, in order to gain a deeper understanding of the complex neurobiology of autism spectrum disorders, valid disease models are pivotal. Induced pluripotent stem cells could potentially help to elucidate the complex mechanisms of the disease and lead to the development of more effective individualized treatment. The induced pluripotent stem cells approach allows comparison between the development of various cellular phenotypes generated from cell lines of patients and healthy individuals. A newly advanced organoid technology makes it possible to create three-dimensional in vitro models of brain development and structural interconnectivity, based on induced pluripotent stem cells derived from the respective individuals. The biggest challenge for modeling psychiatric diseases in vitro is finding and establishing the link between cellular and molecular findings with the clinical symptoms, and this review aims to give an overview over the feasibility and applicability of this new tissue engineering tool in psychiatry.
Collapse
|
13
|
Kelava I, Lancaster MA. Dishing out mini-brains: Current progress and future prospects in brain organoid research. Dev Biol 2016; 420:199-209. [PMID: 27402594 PMCID: PMC5161139 DOI: 10.1016/j.ydbio.2016.06.037] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/16/2016] [Accepted: 06/25/2016] [Indexed: 01/15/2023]
Abstract
The ability to model human brain development in vitro represents an important step in our study of developmental processes and neurological disorders. Protocols that utilize human embryonic and induced pluripotent stem cells can now generate organoids which faithfully recapitulate, on a cell-biological and gene expression level, the early period of human embryonic and fetal brain development. In combination with novel gene editing tools, such as CRISPR, these methods represent an unprecedented model system in the field of mammalian neural development. In this review, we focus on the similarities of current organoid methods to in vivo brain development, discuss their limitations and potential improvements, and explore the future venues of brain organoid research.
Collapse
Affiliation(s)
- Iva Kelava
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, CB2 0QH Cambridge, United Kingdom
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, CB2 0QH Cambridge, United Kingdom.
| |
Collapse
|
14
|
Huilgol D, Tole S. Cell migration in the developing rodent olfactory system. Cell Mol Life Sci 2016; 73:2467-90. [PMID: 26994098 PMCID: PMC4894936 DOI: 10.1007/s00018-016-2172-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/08/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
The components of the nervous system are assembled in development by the process of cell migration. Although the principles of cell migration are conserved throughout the brain, different subsystems may predominantly utilize specific migratory mechanisms, or may display unusual features during migration. Examining these subsystems offers not only the potential for insights into the development of the system, but may also help in understanding disorders arising from aberrant cell migration. The olfactory system is an ancient sensory circuit that is essential for the survival and reproduction of a species. The organization of this circuit displays many evolutionarily conserved features in vertebrates, including molecular mechanisms and complex migratory pathways. In this review, we describe the elaborate migrations that populate each component of the olfactory system in rodents and compare them with those described in the well-studied neocortex. Understanding how the components of the olfactory system are assembled will not only shed light on the etiology of olfactory and sexual disorders, but will also offer insights into how conserved migratory mechanisms may have shaped the evolution of the brain.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
15
|
Reprogramming patient-derived cells to study the epilepsies. Nat Neurosci 2015; 18:360-6. [PMID: 25710838 DOI: 10.1038/nn.3944] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/08/2015] [Indexed: 02/07/2023]
Abstract
The epilepsies and related disorders of brain circuitry present significant challenges associated with the use of human cells to study disease mechanisms and develop new therapies. Some of these obstacles are being overcome through the use of induced pluripotent stem cells to obtain patient-derived neural cells for in vitro studies and as a source of cell-based treatments. The field is evolving rapidly with the addition of genome-editing approaches and expanding protocols for generating different neural cell types and three-dimensional tissues, but the application of these techniques to neurological disorders, and particularly to the epilepsies, is in its infancy. We discuss the progress made and the distinct advantages and limitations of using patient-derived cells to study or treat epilepsy, as well as critical future directions for the field.
Collapse
|
16
|
Nomura T, Murakami Y, Gotoh H, Ono K. Reconstruction of ancestral brains: exploring the evolutionary process of encephalization in amniotes. Neurosci Res 2014; 86:25-36. [PMID: 24671134 DOI: 10.1016/j.neures.2014.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/20/2014] [Accepted: 03/03/2014] [Indexed: 11/24/2022]
Abstract
There is huge divergence in the size and complexity of vertebrate brains. Notably, mammals and birds have bigger brains than other vertebrates, largely because these animal groups established larger dorsal telencephali. Fossil evidence suggests that this anatomical trait could have evolved independently. However, recent comparative developmental analyses demonstrate surprising commonalities in neuronal subtypes among species, although this interpretation is highly controversial. In this review, we introduce intriguing evidence regarding brain evolution collected from recent studies in paleontology and developmental biology, and we discuss possible evolutionary changes in the cortical developmental programs that led to the encephalization and structural complexity of amniote brains. New research concepts and approaches will shed light on the origin and evolutionary processes of amniote brains, particularly the mammalian cerebral cortex.
Collapse
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Nishitakatsukasa-cho 13, Taishogun, Kita-ku, Kyoto 603-8334, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Nishitakatsukasa-cho 13, Taishogun, Kita-ku, Kyoto 603-8334, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Nishitakatsukasa-cho 13, Taishogun, Kita-ku, Kyoto 603-8334, Japan
| |
Collapse
|
17
|
Alfano C, Magrinelli E, Harb K, Studer M. The nuclear receptors COUP-TF: a long-lasting experience in forebrain assembly. Cell Mol Life Sci 2014; 71:43-62. [PMID: 23525662 PMCID: PMC11114017 DOI: 10.1007/s00018-013-1320-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 02/14/2013] [Accepted: 03/04/2013] [Indexed: 12/16/2022]
Abstract
Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) are nuclear receptors belonging to the superfamily of the steroid/thyroid hormone receptors. Members of this family are internalized to the nucleus both in a ligand-dependent or -independent manner and act as strong transcriptional regulators by binding to the DNA of their target genes. COUP-TFs are defined as orphan receptors, since ligands regulating their activity have not so far been identified. From the very beginning of metazoan evolution, these molecules have been involved in various key events during embryonic development and organogenesis. In this review, we will mainly focus on their function during development and maturation of the central nervous system, which has been well characterized in various animal classes ranging from ctenophores to mammals. We will start by introducing the current knowledge on COUP-TF mechanisms of action and then focus our discussion on the crucial processes underlying forebrain ontogenesis, with special emphasis on mammalian development. Finally, the conserved roles of COUP-TFs along phylogenesis will be highlighted, and some hypotheses, worth exploring in future years to gain more insight into the mechanisms controlled by these factors, will be proposed.
Collapse
Affiliation(s)
- Christian Alfano
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, 06108 Nice, France
- University of Nice-Sophia Antipolis, UFR Sciences, 06108 Nice, France
| | - Elia Magrinelli
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, 06108 Nice, France
- University of Nice-Sophia Antipolis, UFR Sciences, 06108 Nice, France
| | - Kawssar Harb
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, 06108 Nice, France
- University of Nice-Sophia Antipolis, UFR Sciences, 06108 Nice, France
| | - Michèle Studer
- Institute of Biology Valrose, iBV, UMR INSERM1091/CNRS7277/UNS, 06108 Nice, France
- University of Nice-Sophia Antipolis, UFR Sciences, 06108 Nice, France
| |
Collapse
|
18
|
Kolasinski J, Takahashi E, Stevens AA, Benner T, Fischl B, Zöllei L, Grant PE. Radial and tangential neuronal migration pathways in the human fetal brain: anatomically distinct patterns of diffusion MRI coherence. Neuroimage 2013; 79:412-22. [PMID: 23672769 DOI: 10.1016/j.neuroimage.2013.04.125] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/28/2013] [Accepted: 04/29/2013] [Indexed: 01/06/2023] Open
Abstract
Corticogenesis is underpinned by a complex process of subcortical neuroproliferation, followed by highly orchestrated cellular migration. A greater appreciation of the processes involved in human fetal corticogenesis is vital to gaining an understanding of how developmental disturbances originating in gestation could establish a variety of complex neuropathology manifesting in childhood, or even in adult life. Magnetic resonance imaging modalities offer a unique insight into anatomical structure, and increasingly infer information regarding underlying microstructure in the human brain. In this study we applied a combination of high-resolution structural and diffusion-weighted magnetic resonance imaging to a unique cohort of three post-mortem fetal brain specimens, aged between 19 and 22 post-conceptual weeks. Specifically, we sought to assess patterns of diffusion coherence associated with subcortical neuroproliferative structures: the pallial ventricular/subventricular zone and subpallial ganglionic eminence. Two distinct three-dimensional patterns of diffusion coherence were evident: a clear radial pattern originating in ventricular/subventricular zone, and a tangentio-radial patterns originating in ganglionic eminence. These patterns appeared to regress in a caudo-rostral and lateral-ventral to medial-dorsal direction across the short period of fetal development under study. Our findings demonstrate for the first time distinct patterns of diffusion coherence associated with known anatomical proliferative structures. The radial pattern associated with dorsopallial ventricular/subventricular zone and the tangentio-radial pattern associated with subpallial ganglionic eminence are consistent with reports of radial-glial mediated neuronal migration pathways identified during human corticogenesis, supported by our prior studies of comparative fetal diffusion MRI and histology. The ability to assess such pathways in the fetal brain using MR imaging offers a unique insight into three-dimensional trajectories beyond those visualized using traditional histological techniques. Our results suggest that ex-vivo fetal MRI is a potentially useful modality in understanding normal human development and various disease processes whose etiology may originate in aberrant fetal neuronal migration.
Collapse
Affiliation(s)
- James Kolasinski
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02119, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Suzuki IK, Hirata T. Neocortical neurogenesis is not really “neo”: A new evolutionary model derived from a comparative study of chick pallial development. Dev Growth Differ 2012; 55:173-87. [DOI: 10.1111/dgd.12020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/18/2012] [Accepted: 10/18/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Ikuo K. Suzuki
- Division of Brain Function; National Institute of Genetics; Graduate University for Advanced Studies (Sokendai); Yata 1111; Mishima; 411-8540; Japan
| | - Tatsumi Hirata
- Division of Brain Function; National Institute of Genetics; Graduate University for Advanced Studies (Sokendai); Yata 1111; Mishima; 411-8540; Japan
| |
Collapse
|