1
|
Principi N, Petropulacos K, Esposito S. Genetic Variations and Antibiotic-Related Adverse Events. Pharmaceuticals (Basel) 2024; 17:331. [PMID: 38543117 PMCID: PMC10974439 DOI: 10.3390/ph17030331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 11/12/2024] Open
Abstract
Antibiotic-related adverse events are common in both adults and children, and knowledge of the factors that favor the development of antibiotic-related adverse events is essential to limit their occurrence and severity. Genetics can condition the development of antibiotic-related adverse events, and the screening of patients with supposed or demonstrated specific genetic mutations may reduce drug-related adverse events. This narrative review discusses which genetic variations may influence the risk of antibiotic-related adverse events and which conclusions can be applied to clinical practice. An analysis of the literature showed that defined associations between genetic variations and specific adverse events are very few and that, at the moment, none of them have led to the implementation of a systematic screening process for patients that must be treated with a given antibiotic in order to select those at risk of specific adverse events. On the other hand, in most of the cases, more than one variation is implicated in the determination of adverse events, and this can be a limitation in planning a systematic screening. Moreover, presently, the methods used to establish whether a patient carries a "dangerous" genetic mutation require too much time and waiting for the result of the test can be deleterious for those patients urgently requiring therapy. Further studies are needed to definitively confirm which genetic variations are responsible for an increased risk of a well-defined adverse event.
Collapse
Affiliation(s)
| | | | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
2
|
Pourmohamadi N, Pour Abdollah Toutkaboni M, Hayati Roodbari N, Tabarsi P, Baniasadi S. Association of Cytochrome P450 2E1 and N-Acetyltransferase 2 Genotypes with Serum Isoniazid Level and Anti-Tuberculosis Drug-Induced Hepatotoxicity: A Cross-Sectional Study. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:474-483. [PMID: 37786472 PMCID: PMC10541540 DOI: 10.30476/ijms.2023.96145.2765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/26/2022] [Accepted: 12/17/2022] [Indexed: 10/04/2023]
Abstract
Background Anti-tuberculosis drug-induced hepatotoxicity can result from genetic polymorphism of the isoniazid (INH) metabolizing enzyme. This study aimed to determine the effect of genetic polymorphism of N-acetyltransferase 2 (NAT2) and cytochrome P450 2E1 (CYP2E1) genes on serum isoniazid level and drug-induced hepatotoxicity. Methods A cross-sectional study was conducted on 120 patients (with and without hepatotoxicity) with pulmonary tuberculosis from June 2019 to April 2022 in Tehran (Iran). High-performance liquid chromatography was used to measure the serum concentration of INH and acetylisoniazid (AcINH). NAT2 and CYP2E1 genotypes were determined using polymerase chain reaction and restriction fragment length polymorphism methods. Data were analyzed using SPSS software (version 22.0) with independent two-sample t test, Chi square test, or Fisher's exact test. P<0.05 was considered statistically significant. Results A total of 40 patients showed hepatotoxicity. The risk of anti-tuberculosis drug-induced hepatotoxicity was significantly higher in patients who are slow acetylator (SA) phenotype than in rapid or intermediate acetylator (P<0.001). NAT2*4/*4 genotypes were not found in patients with hepatotoxicity. The frequency of NAT2*5 and NAT2*6 haplotypes and serum INH concentration was significantly higher in patients with hepatotoxicity than in those without (P=0.003, P<0.001, and P<0.001, respectively). NAT2*4 haplotype was correlated with protection against hepatotoxicity. A combination of SA and CYP2E1 C1/C1 genotype was significantly associated with hepatotoxicity (P<0.001). Conclusion Hepatotoxicity in Iranian patients with tuberculosis was confirmed due to the presence of NAT2 SA polymorphism. Determining NAT2 and CYP2E1 genotypes and/or INH concentration can be a valuable tool to identify patients susceptible to hepatotoxicity.
Collapse
Affiliation(s)
- Nasir Pourmohamadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mihan Pour Abdollah Toutkaboni
- Molecular Medicine Laboratory, Department of Pathology, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Baniasadi
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Meitei HN, Pandey A, Haobam R. Polymorphisms in drug metabolism genes as a risk factor for first-line anti-tuberculosis drug-induced liver injury. Mol Biol Rep 2023; 50:2893-2900. [PMID: 36562936 DOI: 10.1007/s11033-022-08158-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Anti-tuberculosis drug-induced liver injury (AT-DILI) is one of the most common side effects in TB patients during treatment. The prime cause of liver injury during TB treatment is reported to be isoniazid and its metabolites. Different factors influenced the development of AT-DILI, and genetic factors are one of the major factors. METHODS AND RESULTS Polymorphisms in drug metabolism genes like NAT2, CYP2E1, PXR, and GST have been reported to be associated with AT-DILI, and they are one of the major areas of focus at present. Attempts are met in this review to analyse the different markers in these drug metabolism genes for their association with AT-DILI. CONCLUSION A better understanding of the polymorphisms in these genes and their functional effects will give better insights into the development of AT-DILI, and it could facilitate in designing and developing more effective personalized treatment for TB.
Collapse
Affiliation(s)
| | - Anupama Pandey
- Department of Biotechnology, Manipur University, Canchipur, Imphal, Manipur, 795003, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, Manipur, 795003, India.
| |
Collapse
|
4
|
Amos K, Garcia-Bournissen F, Zhao L, Taheri S. Carbamazepine-induced liver injury in an 11-year-old female: Case report and review of the literature. J Paediatr Child Health 2023; 59:165-168. [PMID: 36069405 DOI: 10.1111/jpc.16200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/14/2023]
Affiliation(s)
- Kiersten Amos
- Department of Paediatrics, Western University, London, Ontario, Canada
| | | | - Liena Zhao
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Sepideh Taheri
- Department of Paediatrics, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Yang S, Dou X, Wang Z, Zhang W, Ding K, Meng W, Li H, Liu J, Liu Y, Jin T. Genetic variation of pharmacogenomic VIP variants in the Chinese Li population: an updated research. Mol Genet Genomics 2022; 297:407-417. [PMID: 35146537 DOI: 10.1007/s00438-022-01855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Previous studies have shown that the frequency of very important pharmacogenomic (VIP) genes varies in different populations which leads to the diversities in drug efficacy, safety, and the risk associated with adverse drug reactions (ADRs). The purpose of this study was to identify the distribution differences of VIP variants between the Li population and the other 13 populations. Based on the Pharmacogenomics Knowledgebase database (PhamGKB), we successfully genotyped 52 VIP variants within 27 genes in 200 unrelated Li population. χ2 test was used to evaluate the significant differences of genotype and allele frequencies between the Li and the other 13 populations from 1000 Genomes Project. Our study showed that the genotype frequencies of single nucleotide polymorphisms (SNPs) on KCNH2, ACE, CYP4F2, and CYP2E1 were considerably different between Li and the other 13 populations, especially in rs1805123 (KCNH2), rs4291 (ACE), rs3093105 (CYP4F2), and rs6413432 (CYP2E1) loci. Meanwhile, we found several VIP variants that might alter the drug metabolism of cisplatin-cyclophosphamide (CYP2E1), vitamin E (CYP4F2), asthma amlodipine, chlorthalidone, and lisinopril (ACE) through PharmGKB. We also identified other variants which were associated with adverse effects in isoniazid and rifampicin (CYP2E1; hepatotoxicity). The four loci rs1805123 (KCNH2), rs4291 (ACE), rs3093105 (CYP4F2), and rs6413432 (CYP2E1) provided a reliable basis for the prediction of the efficacy of certain drugs. The study complemented the existed pharmacogenomics information, which could provide theoretical basis for predicting the efficacy of certain drugs in the Li population.
Collapse
Affiliation(s)
- Shuangyu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.,College of Life Science, Northwest University, Xi'an, 710069, China
| | - Xia Dou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.,College of Life Science, Northwest University, Xi'an, 710069, China
| | - Zhen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.,College of Life Science, Northwest University, Xi'an, 710069, China
| | - Wenjie Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.,College of Life Science, Northwest University, Xi'an, 710069, China
| | - Kefan Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.,College of Life Science, Northwest University, Xi'an, 710069, China
| | - Wenting Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.,College of Life Science, Northwest University, Xi'an, 710069, China
| | - Haiyue Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.,College of Life Science, Northwest University, Xi'an, 710069, China
| | - Jianfeng Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.,College of Life Science, Northwest University, Xi'an, 710069, China
| | - Yuanwei Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.,College of Life Science, Northwest University, Xi'an, 710069, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China. .,Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China. .,Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, 712000, Shaanxi, China.
| |
Collapse
|
6
|
Verma R, Patil S, Zhang N, Moreira FMF, Vitorio MT, Santos ADS, Wallace E, Gnanashanmugam D, Persing D, Savic R, Croda J, Andrews JR. A Rapid Pharmacogenomic Assay to Detect NAT2 Polymorphisms and Guide Isoniazid Dosing for Tuberculosis Treatment. Am J Respir Crit Care Med 2021; 204:1317-1326. [PMID: 34375564 DOI: 10.1164/rccm.202103-0564oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Standardized dosing of anti-tubercular drugs contributes to a substantial incidence of toxicities, inadequate treatment response, and relapse, in part due to variable drug levels achieved. Single nucleotide polymorphisms (SNPs) in the N-acetyltransferase-2 (NAT2) gene explain the majority of interindividual pharmacokinetic variability of isoniazid (INH). However, an obstacle to implementing pharmacogenomic-guided dosing is the lack of a point-of-care assay. OBJECTIVES To develop and test a NAT2 classification algorithm, validate its performance in predicting isoniazid clearance, and develop a prototype pharmacogenomic assay. METHODS We trained random forest models to predict NAT2 acetylation genotype from unphased SNP data using a global collection of 8,561 phased genomes. We enrolled 48 pulmonary TB patients, performed sparse pharmacokinetic sampling, and tested the acetylator prediction algorithm accuracy against estimated INH clearance. We then developed a cartridge-based multiplex qPCR assay on the GeneXpert platform and assessed its analytical sensitivity on whole blood samples from healthy individuals. MEASUREMENTS AND MAIN RESULTS With a 5-SNP model trained on two-thirds of the data (n=5,738), out-of-sample acetylation genotype prediction accuracy on the remaining third (n=2,823) was 100%. Among the 48 TB patients, predicted acetylator types were: 27 (56.2%) slow, 16 (33.3%) intermediate and 5 (10.4%) rapid. INH clearance rates were lowest in predicted slow acetylators (median 14.5 L/hr), moderate in intermediate acetylators (median 40.3 L/hr) and highest in fast acetylators (median 53.0 L/hr). The cartridge-based assay accurately detected all allele patterns directly from 25 ul of whole blood. CONCLUSIONS An automated pharmacogenomic assay on a platform widely used globally for tuberculosis diagnosis could enable personalized dosing of isoniazid.
Collapse
Affiliation(s)
- Renu Verma
- Stanford University School of Medicine, 10624, Infectious Diseases and Geographic Medicine, Stanford, California, United States
| | - Sunita Patil
- Stanford University School of Medicine, 10624, Infectious Diseases, Stanford, California, United States
| | - Nan Zhang
- University of California San Francisco, 8785, Department of Bioengineering and Therapeutic Sciences, San Francisco, California, United States
| | - Flora M F Moreira
- Federal University of Campina Grande, 154624, Campina Grande, Brazil
| | - Marize T Vitorio
- Federal University of Campina Grande, 154624, Campina Grande, Brazil
| | | | - Ellen Wallace
- Cepheid, 60159, Sunnyvale, California, United States
| | | | - David Persing
- Cepheid, 60159, Sunnyvale, California, United States
| | - Rada Savic
- University of California San Francisco, Department of Bioengineering and Therapeutic Sciences, San Francisco, California, United States
| | - Julio Croda
- Federal University of Mato Grosso do Sul, 54534, Postgraduate Program in Infectious and Parasitic Diseases, Campo Grande, Brazil
| | - Jason R Andrews
- Stanford University, Division of Infectious Diseases and Geographic Medicine, Stanford, California, United States;
| |
Collapse
|
7
|
Yang M, Pan H, Lu L, He X, Chen H, Tao B, Liu W, Yi H, Tang S. Home-based Anti-Tuberculosis Treatment Adverse Reactions (HATTAR) study: a protocol for a prospective observational study. BMJ Open 2019; 9:e027321. [PMID: 30928962 PMCID: PMC6475199 DOI: 10.1136/bmjopen-2018-027321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Tuberculosis (TB) continues to be an important public health problem throughout much of the world. Drug treatment is the only effective treatment method, but adverse drug events (ADEs) and adverse drug reactions (ADRs) can affect medication adherence. As the number of drug-resistant TB patients and the number of anti-TB drugs have increased, it is necessary to explore the risk factors for ADEs/ADRs to reduce their occurrence. This study aims to build a home-based anti-TB treatment cohort and to recognise the incidences, prognosis and risk factors of anti-TB drug-induced ADEs/ADRs in real-world experiences. METHODS AND ANALYSIS This study is a multicentre, prospective observational cohort study. The study population will consist of 3200 newly diagnosed TB patients between January 2019 and December 2020. After initiating the anti-TB treatment, all patients will be followed up until finishing treatment unless they withdraw, and we will record personal drug use and signs and/or symptoms of discomfort. Patients will receive scheduled laboratory tests in designated hospitals every 2 weeks during the first 2 months, and the residual blood sample after conducting the laboratory tests will be preserved. The ADEs/ADRs will be placed into eight categories: liver dysfunction, gastrointestinal reactions, drug allergy, arthralgia or muscle pain, nervous system disorders, haematological system disorders, renal impairment and others. ETHICS AND DISSEMINATION This study protocol has been approved by the ethics committees of Nanjing Medical University. All patients will give written informed consent before enrollment. The findings of the study will be published in peer-reviewed journals and will be presented at national and international conferences.
Collapse
Affiliation(s)
- Miaomiao Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongqiu Pan
- Department of Tuberculosis, The Third People’s Hospital of Zhenjiang affiliated to Jiangsu University, Zhenjiang, China
| | - Lihuan Lu
- Department of Tuberculosis, The Second People’s Hospital of Changshu, Changshu, China
| | - Xiaomin He
- Department of Infectious Disease, The People’s Hospital of Taixing, Taixing, China
| | - Hongbo Chen
- Department of Infectious Disease, The Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Bilin Tao
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenpei Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Honggang Yi
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shaowen Tang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Richardson M, Kirkham J, Dwan K, Sloan DJ, Davies G, Jorgensen AL. CYP genetic variants and toxicity related to anti-tubercular agents: a systematic review and meta-analysis. Syst Rev 2018; 7:204. [PMID: 30458875 PMCID: PMC6247669 DOI: 10.1186/s13643-018-0861-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Treatment with anti-tuberculosis drugs may cause patients to experience serious adverse effects. Genetic factors, such as polymorphisms of CYP genes, may increase the likelihood of a patient experiencing such adverse drug reactions. In this systematic review and meta-analysis, we synthesised evidence for associations between CYP genetic variants and anti-tuberculosis drug-related toxicity outcomes. METHODS We searched MEDLINE, PubMed, EMBASE, BIOSIS and Web of Science to identify relevant studies. We performed meta-analyses to obtain an effect estimate for each genetic variant on each outcome, and stratified all analyses by country. We qualitatively assessed the methodological quality of the included studies. RESULTS We included data from 28 distinct cohorts of patients in the review. We identified many areas of concern with regard to the quality of included studies. Patients with homozygous mutant-type or heterozygous genotype at the CYP2E1 RsaI polymorphism were significantly less likely to experience hepatotoxicity than patients with homozygous wild-type genotype (odds ratio [OR] = 0.75, 95% confidence interval [CI] 0.56-1.00; p = 0.047, I2 = 58.2%). No significant differences were observed for the CYP2E1 DraI and PstI polymorphisms. For the 96-bp deletion-insertion single-nucleotide polymorphism (SNP) of the CYP2E1 gene, homozygous mutant-type significantly increased hepatotoxicity risk compared with homozygous wild-type (OR = 8.20, 95% CI 1.38-48.68, I2 = 0%); no significant difference was observed for heterozygous genotype compared with homozygous wild-type (OR = 0.77, 95% CI 0.19-3.21, I2 = 0%). CONCLUSIONS Generally, we identified that coverage of the association between SNPs of CYP genes and anti-tuberculosis drug-related toxicity outcomes is incomplete. We observed significant associations between the RsaI and 96-bp deletion-insertion SNPs of the CYP2E1 gene and anti-tuberculosis drug-related hepatotoxicity. We were unable to comment on the impact of ethnicity on the investigated associations, as information on participants' ethnicity was sparsely reported in the included studies. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number: CRD42017068448.
Collapse
Affiliation(s)
- Marty Richardson
- Department of Biostatistics, University of Liverpool, Liverpool, L69 3GB UK
| | - Jamie Kirkham
- Department of Biostatistics, University of Liverpool, Liverpool, L69 3GB UK
| | - Kerry Dwan
- Cochrane Editorial Unit, London, SW1Y 4QX UK
| | - Derek J. Sloan
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF UK
| | - Geraint Davies
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, L69 3GB UK
| | | |
Collapse
|
9
|
Zhang H, Qian H, Tao B, Yang M, Gong J, Yi H, Tang S. The association between BACH1 polymorphisms and anti-tuberculosis drug-induced hepatotoxicity in a Chinese cohort. INFECTION GENETICS AND EVOLUTION 2018; 66:217-221. [PMID: 30316884 DOI: 10.1016/j.meegid.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/12/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Anti-tuberculosis drug-induced hepatotoxicity (ATDH) is related to hepatotoxic intermediaries, which are detoxified by glutathione S-transferases (GSTs). GSTM1 and GSTT1 are regulated by nuclear factor erythroid 2-related factor 2 (Nrf2) signalling pathway, and the BTB domain and CNC homologue 1 (Bach1) could compete with Nrf2 for binding to the DNA. Thus, bach1 may indirectly affect GSTs expression. The present study aimed to examine the role of tagSNPs in BACH1 in a Chinese population-based cohort. METHODS A nested case-control study was conducted. Each ATDH case was matched with two controls by age, gender, treatment history, etc. Seven tagSNPs were detected and analysed. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated using a conditional logistic regression model. RESULTS A total of 290 ATDH cases and 580 controls were included in the present study. Patients carrying GG genotype of rs372883 were at a lower risk of ATDH than with AA genotype (OR = 0.553, 95%CI: 0.357-0.857, P = .008), and significant differences were also found under recessive model (P = .021) and additive model (P = .009). Similar results were also found in the polymorphism of rs1153285 (AA vs. GG, OR = 0.574, 95%CI: 0.360-0.914, P = .019), and under its recessive model (P = .033) and additive model (P = .026). Two haplotypes of A-G-T and C-T-G were identified to be associated with ATDH development. Further subgroup analysis also suggested significant association between BACH1 polymorphisms and ATDH among certain and probable hepatotoxicity cases. CONCLUSIONS This is the first study to explore the relationship between tagSNPs of BACH1 and ATDH in a Chinese cohort. Based on this cohort, genetic polymorphisms of BACH1 may be associated with susceptibility to ATDH in the Chinese population.
Collapse
Affiliation(s)
- Haiping Zhang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Haisheng Qian
- The First Clinical Medical College, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Bilin Tao
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Miaomiao Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jingye Gong
- The First Clinical Medical College, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Honggang Yi
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shaowen Tang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
10
|
Abel L, Fellay J, Haas DW, Schurr E, Srikrishna G, Urbanowski M, Chaturvedi N, Srinivasan S, Johnson DH, Bishai WR. Genetics of human susceptibility to active and latent tuberculosis: present knowledge and future perspectives. THE LANCET. INFECTIOUS DISEASES 2018; 18:e64-e75. [DOI: 10.1016/s1473-3099(17)30623-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 01/18/2017] [Accepted: 01/27/2017] [Indexed: 02/07/2023]
|
11
|
|
12
|
Chan SL, Chua APG, Aminkeng F, Chee CBE, Jin S, Loh M, Gan SH, Wang YT, Brunham LR. Association and clinical utility of NAT2 in the prediction of isoniazid-induced liver injury in Singaporean patients. PLoS One 2017; 12:e0186200. [PMID: 29036176 PMCID: PMC5642896 DOI: 10.1371/journal.pone.0186200] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND AIMS Isoniazid (INH) is part of the first-line-therapy for tuberculosis (TB) but can cause drug-induced liver injury (DILI). Several candidate single nucleotide polymorphisms (SNPs) have been previously identified but the clinical utility of these SNPs in the prediction of INH-DILI remains uncertain. The aim of this study was to assess the association between selected candidate SNPs and the risk of INH-DILI and to assess the clinical validity of associated variants in a Singaporean population. METHODS This was a case-control study where 24 INH-DILI cases and 79 controls were recruited from the TB control unit in a tertiary hospital. Logistic regression was used to test for the association between candidate SNPs and INH-DILI. NAT2 acetylator status was inferred from genotypes and tested for association with INH-DILI. Finally, clinical validity measures were estimated for significant variants. RESULTS Two SNPs in NAT2 (rs1041983 and rs1495741) and NAT2 slow acetylators (SA) were significantly associated with INH-DILI (OR (95% CI) = 13.86 (4.30-44.70), 0.10 (0.03-0.33) and 9.98 (3.32-33.80), respectively). Based on an INH-DILI prevalence of 10%, the sensitivity, specificity, positive and negative predictive values of NAT2 SA were 75%, 78%, 28% and 97%, respectively. The population attributable fraction (PAF) and number needed to test (NNT) for NAT2 SA were estimated to be 0.67 and 4.08, respectively. A model with clinical and NAT2 acetylator status provided significantly better prediction for INH-DILI than a clinical model alone (area under receiver operating characteristic curve = 0.863 vs. 0.766, respectively, p = 0.027). CONCLUSIONS We show the association between NAT2 SA and INH-DILI in a Singaporean population and demonstrated its clinical utility in the prediction of INH-DILI.
Collapse
Affiliation(s)
- Sze Ling Chan
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore and the National University of Singapore, Singapore
| | | | - Folefac Aminkeng
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore and the National University of Singapore, Singapore
| | | | - Shengnan Jin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Marie Loh
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore and the National University of Singapore, Singapore
| | - Suay Hong Gan
- Department of Respiratory Medicine, Tan Tock Seng Hospital, Singapore
| | - Yee Tang Wang
- Department of Respiratory Medicine, Tan Tock Seng Hospital, Singapore
| | - Liam R. Brunham
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore and the National University of Singapore, Singapore
- Department of Medicine, Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
13
|
Shi Q, Yang X, Greenhaw JJ, Salminen AT, Russotti GM, Salminen WF. Drug-Induced Liver Injury in Children: Clinical Observations, Animal Models, and Regulatory Status. Int J Toxicol 2017; 36:365-379. [PMID: 28820004 DOI: 10.1177/1091581817721675] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drug-induced liver injury in children (cDILI) accounts for about 1% of all reported adverse drug reactions throughout all age groups, less than 10% of all clinical DILI cases, and around 20% of all acute liver failure cases in children. The overall DILI susceptibility in children has been assumed to be lower than in adults. Nevertheless, controversial evidence is emerging about children's sensitivity to DILI, with children's relative susceptibility to DILI appearing to be highly drug-specific. The culprit drugs in cDILI are similar but not identical to DILI in adults (aDILI). This is demonstrated by recent findings that a drug frequently associated with aDILI (amoxicillin/clavulanate) was rarely associated with cDILI and that the drug basiliximab caused only cDILI but not aDILI. The fatality in reported cDILI studies ranged from 4% to 31%. According to the US Food and Drug Administration-approved drugs labels, valproic acid, dactinomycin, and ampicillin appear more likely to cause cDILI. In contrast, deferasirox, isoniazid, dantrolene, and levofloxacin appear more likely to cause aDILI. Animal models have been explored to mimic children's increased susceptibility to valproic acid hepatotoxicity or decreased susceptibility to acetaminophen or halothane hepatotoxicity. However, for most drugs, animal models are not readily available, and the underlying mechanisms for the differential reactions to DILI between children and adults remain highly hypothetical. Diagnosis tools for cDILI are not yet available. A critical need exists to fill the knowledge gaps in cDILI. This review article provides an overview of cDILI and specific drugs associated with cDILI.
Collapse
Affiliation(s)
- Qiang Shi
- 1 Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Xi Yang
- 1 Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - James J Greenhaw
- 1 Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | | | | | | |
Collapse
|
14
|
Richardson M, Kirkham J, Dwan K, Sloan D, Davies G, Jorgensen A. Influence of genetic variants on toxicity to anti-tubercular agents: a systematic review and meta-analysis (protocol). Syst Rev 2017; 6:142. [PMID: 28701180 PMCID: PMC5508765 DOI: 10.1186/s13643-017-0533-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/23/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Tuberculosis patients receiving anti-tuberculosis treatment may experience serious adverse drug reactions, such as hepatotoxicity. Genetic risk factors, such as polymorphisms of the NAT2, CYP2E1 and GSTM1 genes, may increase the risk of experiencing such toxicity events. Many pharmacogenetic studies have investigated the association between genetic variants and anti-tuberculosis drug-related toxicity events, and several meta-analyses have synthesised data from these studies, although conclusions from these meta-analyses are conflicting. Many meta-analyses also have serious methodological limitations, such as applying restrictive inclusion criteria, or not assessing the quality of included studies. Most also only consider hepatotoxicity outcomes and specific genetic variants. The purpose of this systematic review and meta-analysis is to give a comprehensive evaluation of the evidence base for associations between any genetic variant and anti-tuberculosis drug-related toxicity. METHODS We will search for studies in MEDLINE, EMBASE, BIOSIS and Web of Science. We will also hand search reference lists from relevant studies and contact experts in the field. We will include cohort studies, case-control studies and randomised controlled trials that recruited patients with tuberculosis who were either already established on anti-tuberculosis treatment or were commencing treatment and who were genotyped to investigate the effect of genetic variants on any anti-tuberculosis drug-related toxicity outcome. One author will screen abstracts to identify potentially relevant studies and will then obtain the full text for each potentially relevant study in order to assess eligibility. At each of these stages, a second author will independently screen/assess 10% of studies. Two authors will independently extract data and assess the quality of studies using a pre-piloted data extraction form. If appropriate, we will pool estimates of effect for each genotype on each outcome using meta-analyses stratified by ethnicity. DISCUSSION Our review and meta-analysis will update and add to the existing research in this field. By not restricting the scope of the review to a specific drug, genetic variant, or toxicity outcome, we hope to synthesise data for associations between genetic variants and anti-tuberculosis drug-related toxicity outcomes that have previously not been summarised in systematic reviews, and consequently, add to the knowledge base of the pharmacogenetics of anti-tuberculosis drugs. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42017068448.
Collapse
Affiliation(s)
- Marty Richardson
- Department of Biostatistics, University of Liverpool, Whelan Building, Liverpool, L69 3GB UK
| | - Jamie Kirkham
- Department of Biostatistics, University of Liverpool, Whelan Building, Liverpool, L69 3GB UK
| | - Kerry Dwan
- Cochrane Editorial Unit, London, SW1Y 4QX UK
| | - Derek Sloan
- School of Medicine, University of St Andrews, St. Andrews, KY16 9TF UK
| | - Geraint Davies
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, L69 3GB UK
| | - Andrea Jorgensen
- Department of Biostatistics, University of Liverpool, Whelan Building, Liverpool, L69 3GB UK
| |
Collapse
|
15
|
Wang FJ, Wang Y, Niu T, Lu WX, Sandford AJ, He JQ. Update meta-analysis of the CYP2E1 RsaI/PstI and DraI polymorphisms and risk of antituberculosis drug-induced hepatotoxicity: evidence from 26 studies. J Clin Pharm Ther 2016; 41:334-40. [PMID: 27062377 DOI: 10.1111/jcpt.12388] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/14/2016] [Indexed: 02/05/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Several studies have investigated the association of the CYP2E1 RsaI/PstI and/or DraI polymorphisms with susceptibility to antituberculosis drug-induced hepatotoxicity (ATDH), but the results have been inconsistent. Therefore, we performed a large meta-analysis to determine a more precise estimation of this relationship. METHODS The PubMed, EMBASE, China National Knowledge Infrastructure and Chinese Biomedical Literature databases were systematically searched to identify relevant studies. Meta-analyses based on the entire population and subgroups were performed to examine the association between CYP2E1 polymorphisms and susceptibility to ATDH. The odds ratio (OR) with 95% confidence interval (CI) was used to assess the strength of the associations. RESULTS AND DISCUSSION Twenty-six studies with a total of 7423 participants were analysed. The overall ORs of relevant studies demonstrated that the CYP2E1 RsaI/PstI C1/C1 genotype was associated with an elevated risk of ATDH (OR = 1·32, 95% CI 1·03-1·69, P = 0·027), but for the DraI polymorphism there was no increase in risk (OR = 1·05, 95% CI 0·80-1·37, P = 0·748). In subgroup analyses of the RsaI/PstI polymorphism, significant results were found in East Asians, patients who used isoniazid + rifampicin + pyrazinamide + ethambutol and patients with twice the upper limit of normal as the minimum standard for defining ATDH. WHAT IS NEW AND CONCLUSION This meta-analysis suggests that there is an increased risk of ATDH in individuals carrying the C1/C1 genotype of the CYP2E1 RsaI/PstI polymorphism. However, no association was found for the DraI polymorphism.
Collapse
Affiliation(s)
- F-J Wang
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - T Niu
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - W-X Lu
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - A J Sandford
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
| | - J-Q He
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
A Long-term Co-perfused Disseminated Tuberculosis-3D Liver Hollow Fiber Model for Both Drug Efficacy and Hepatotoxicity in Babies. EBioMedicine 2016; 6:126-138. [PMID: 27211555 PMCID: PMC4856747 DOI: 10.1016/j.ebiom.2016.02.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/15/2016] [Accepted: 02/25/2016] [Indexed: 11/21/2022] Open
Abstract
Treatment of disseminated tuberculosis in children ≤ 6 years has not been optimized. The pyrazinamide-containing combination regimen used to treat disseminated tuberculosis in babies and toddlers was extrapolated from adult pulmonary tuberculosis. Due to hepatotoxicity worries, there are no dose–response studies in children. We designed a hollow fiber system model of disseminated intracellular tuberculosis with co-perfused three-dimensional organotypic liver modules to simultaneously test for efficacy and toxicity. We utilized pediatric pharmacokinetics of pyrazinamide and acetaminophen to determine dose-dependent pyrazinamide efficacy and hepatotoxicity. Acetaminophen concentrations that cause hepatotoxicity in children led to elevated liver function tests, while 100 mg/kg pyrazinamide did not. Surprisingly, pyrazinamide did not kill intracellular Mycobacterium tuberculosis up to fourfold the standard dose as monotherapy or as combination therapy, despite achieving high intracellular concentrations. Host-pathogen RNA-sequencing revealed lack of a pyrazinamide exposure transcript signature in intracellular bacteria or of phagolysosome acidification on pH imaging. Artificial intelligence algorithms confirmed that pyrazinamide was not predictive of good clinical outcomes in children ≤ 6 years who had extrapulmonary tuberculosis. Thus, adding a drug that works inside macrophages could benefit children with disseminated tuberculosis. Our in vitro model can be used to identify such new regimens that could accelerate cure while minimizing toxicity. We designed a pre-clinical of disseminated for simultaneous identification of toxicity and efficacy in children. The system is a co-culture of infected monocytes and 3 dimensional organotypic liver recapitulating children pharmacokinetics. Pyrazinamide, central drug in treatment regimen, had no effect as monotherapy or contribute to the combination therapy.
Due to fear of toxicity children are often not involved in clinical trials, and as a result the optimal treatment regimens are often lacking. As an example, toddlers and babies develop disseminated tuberculosis but are treated with regimens designed for adults with lung cavity disease. We designed a “glass-mouse” model of disseminated tuberculosis that simultaneously tests for the efficacy and toxicity of the anti-tuberculosis drugs for children with disseminated disease. We found that while not causing dose-dependent liver toxicity, one of the central drugs used to treat this children is likely not efficacious.
Collapse
|
17
|
Implications of Pharmacogenetics for Antimicrobial Prescribing. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Shi J, Xie M, Wang J, Xu Y, Liu X. Susceptibility of N-acetyltransferase 2 slow acetylators to antituberculosis drug-induced liver injury: a meta-analysis. Pharmacogenomics 2015; 16:2083-97. [PMID: 26616266 DOI: 10.2217/pgs.15.144] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM This study aimed to evaluate the association between N-acetyltransferase 2 (NAT2) gene polymorphisms and the risk of antituberculosis drug-induced liver injury (ATLI). MATERIALS & METHODS A meta-analysis was performed including 27 studies with 1289 cases and 5462 controls. Odds ratio with 95% CI was used to evaluate the strength of association. RESULTS Our meta-analysis found that NAT2 slow acetylators were associated with increased risk of ATLI compared with fast and intermediate acetylators when standard dose of isoniazid was administrated (odds ratio: 3.08; 95% CI: 2.29-4.15). CONCLUSION Individuals with NAT2 slow acetylators may have increased risk of ATLI when standard dose of isoniazid was used. Detection of NAT2 genotype may benefit to the prevention of ATLI.
Collapse
Affiliation(s)
- Jing Shi
- Department of Respiration & Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Min Xie
- Department of Respiration & Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Jianmiao Wang
- Department of Respiration & Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yongjian Xu
- Department of Respiration & Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Xiansheng Liu
- Department of Respiration & Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
19
|
Pharmacogenomics Implications of Using Herbal Medicinal Plants on African Populations in Health Transition. Pharmaceuticals (Basel) 2015; 8:637-63. [PMID: 26402689 PMCID: PMC4588186 DOI: 10.3390/ph8030637] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 01/20/2023] Open
Abstract
The most accessible points of call for most African populations with respect to primary health care are traditional health systems that include spiritual, religious, and herbal medicine. This review focusses only on the use of herbal medicines. Most African people accept herbal medicines as generally safe with no serious adverse effects. However, the overlap between conventional medicine and herbal medicine is a reality among countries in health systems transition. Patients often simultaneously seek treatment from both conventional and traditional health systems for the same condition. Commonly encountered conditions/diseases include malaria, HIV/AIDS, hypertension, tuberculosis, and bleeding disorders. It is therefore imperative to understand the modes of interaction between different drugs from conventional and traditional health care systems when used in treatment combinations. Both conventional and traditional drug entities are metabolized by the same enzyme systems in the human body, resulting in both pharmacokinetics and pharmacodynamics interactions, whose properties remain unknown/unquantified. Thus, it is important that profiles of interaction between different herbal and conventional medicines be evaluated. This review evaluates herbal and conventional drugs in a few African countries and their potential interaction at the pharmacogenomics level.
Collapse
|
20
|
Baietto L, Corcione S, Pacini G, Perri GD, D'Avolio A, De Rosa FG. A 30-years review on pharmacokinetics of antibiotics: is the right time for pharmacogenetics? Curr Drug Metab 2015; 15:581-98. [PMID: 24909419 PMCID: PMC4435065 DOI: 10.2174/1389200215666140605130935] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/17/2014] [Accepted: 05/21/2014] [Indexed: 12/28/2022]
Abstract
Drug bioavailability may vary greatly amongst individuals, affecting both efficacy and toxicity: in humans, genetic variations account for a relevant proportion of such variability. In the last decade the use of pharmacogenetics in clinical practice, as a tool to individualize treatment, has shown a different degree of diffusion in various clinical fields. In the field of infectious diseases, several studies identified a great number of associations between host genetic polymor-phisms and responses to antiretroviral therapy. For example, in patients treated with abacavir the screening for HLA-B*5701 before starting treatment is routine clinical practice and standard of care for all patients; efavirenz plasma levels are influenced by single nucleotide polymorphism (SNP) CYP2B6-516G> T (rs3745274). Regarding antibiotics, many studies investigated drug transporters involved in antibiotic bioavailability, especially for fluoroquinolones, cephalosporins, and antituberculars. To date, few data are available about pharmacogenetics of recently developed antibiotics such as tigecycline, daptomycin or linezolid. Considering the effect of SNPs in gene coding for proteins involved in antibiotics bioavailability, few data have been published. Increasing knowledge in the field of antibiotic pharmacogenetics could be useful to explain the high drug inter-patients variability and to individualize therapy. In this paper we reported an overview of pharmacokinetics, pharmacodynamics, and pharmacogenetics of antibiotics to underline the importance of an integrated approach in choosing the right dosage in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Giuseppe De Rosa
- Department of Medical Sciences, University of Turin, Infectious Diseases at Amedeo di Savoia Hospital, Corso Svizzera 164, 10149. Turin, Italy.
| |
Collapse
|
21
|
Aung AK, Haas DW, Hulgan T, Phillips EJ. Pharmacogenomics of antimicrobial agents. Pharmacogenomics 2015; 15:1903-30. [PMID: 25495412 DOI: 10.2217/pgs.14.147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial efficacy and toxicity varies between individuals owing to multiple factors. Genetic variants that affect drug-metabolizing enzymes may influence antimicrobial pharmacokinetics and pharmacodynamics, thereby determining efficacy and/or toxicity. In addition, many severe immune-mediated reactions have been associated with HLA class I and class II genes. In the last two decades, understanding of pharmacogenomic factors that influence antimicrobial efficacy and toxicity has rapidly evolved, leading to translational success such as the routine use of HLA-B*57:01 screening to prevent abacavir hypersensitivity reactions. This article examines recent advances in the field of antimicrobial pharmacogenomics that potentially affect treatment efficacy and toxicity, and challenges that exist between pharmacogenomic discovery and translation into clinical use.
Collapse
Affiliation(s)
- Ar Kar Aung
- Department of General Medicine & Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
22
|
Guaoua S, Ratbi I, Laarabi FZ, Elalaoui SC, Jaouad IC, Barkat A, Sefiani A. Distribution of allelic and genotypic frequencies of NAT2 and CYP2E1 variants in Moroccan population. BMC Genet 2014; 15:156. [PMID: 25544508 PMCID: PMC4299568 DOI: 10.1186/s12863-014-0156-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 12/18/2014] [Indexed: 11/10/2022] Open
Abstract
Background Several pathogenesis and genetic factors influence predisposition to antituberculosis drug-induced hepatotoxicity (ATDH) especially for isoniazid (INH). However, the major susceptibility genes for ATDH are N-acetyltransferase 2 (NAT2) and cytochrome P450 2E1 (CYP2E1). NAT2 gene determines the individual’s acetylator status (fast, intermediate or slow) to metabolize drugs and xenobiotics, while CYP2E1 c1/c1 genotype carriers had an increased risk of ATDH. Polymorphisms of the NAT2 and CYP2E1 genes vary remarkably among the populations of different ethnic origins. The aim of this study was to determine, for the first time, the frequency of slow acetylators in Moroccan population by genotyping of NAT2 gene variants and determining the genotype c1/c1 for CYP2E1 gene, in order to predict adverse effects of Tuberculosis treatment, particularly hepatotoxicity. Results The frequencies of specific NAT2 alleles were 53%, 25%, 2% and 4% for NAT2*5, NAT2*6, NAT2*7 and NAT2*14 respectively among 163 Moroccan studied group. Genotyping of CYP2E1 gene, by real-time polymerase chain reaction using TaqMan probes, revealed frequencies of 98.5% for c1/c1 and 1.5% for c1/c2 among 130 Moroccan studied group. Conclusion The most prevalent genotypes of NAT2 gene in Moroccans are those which encode slow acetylation phenotype (72.39%), leading to a high risk of ATDH. Most Moroccans are homozygous for c1 allele of CYP2E1 gene which aggravates hepatotoxicity in slow acetylators. This genetic background should be taken into account in determining the minimum dose of INH needed to treat Moroccan TB patients, in order to decrease adverse effects.
Collapse
Affiliation(s)
- Soukaina Guaoua
- Centre de génomique humaine, Faculté de médecine et de pharmacie, Université Mohammed V, Rabat, Morocco.
| | - Ilham Ratbi
- Centre de génomique humaine, Faculté de médecine et de pharmacie, Université Mohammed V, Rabat, Morocco.
| | | | - Siham Chafai Elalaoui
- Centre de génomique humaine, Faculté de médecine et de pharmacie, Université Mohammed V, Rabat, Morocco. .,Département de génétique médicale, Institut National d'Hygiène, Rabat, Morocco.
| | - Imane Cherkaoui Jaouad
- Centre de génomique humaine, Faculté de médecine et de pharmacie, Université Mohammed V, Rabat, Morocco. .,Département de génétique médicale, Institut National d'Hygiène, Rabat, Morocco.
| | - Amina Barkat
- Centre National de Référence en Néonatologie et en Nutrition, Rabat, Morocco.
| | - Abdelaziz Sefiani
- Centre de génomique humaine, Faculté de médecine et de pharmacie, Université Mohammed V, Rabat, Morocco. .,Département de génétique médicale, Institut National d'Hygiène, Rabat, Morocco.
| |
Collapse
|
23
|
PharmGKB summary: very important pharmacogene information for N-acetyltransferase 2. Pharmacogenet Genomics 2014; 24:409-25. [PMID: 24892773 DOI: 10.1097/fpc.0000000000000062] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Association of genetic variants with anti-tuberculosis drug induced hepatotoxicity: A high resolution melting analysis. INFECTION GENETICS AND EVOLUTION 2014; 23:42-8. [DOI: 10.1016/j.meegid.2014.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/15/2014] [Accepted: 01/24/2014] [Indexed: 01/01/2023]
|
25
|
Xiang Y, Ma L, Wu W, Liu W, Li Y, Zhu X, Wang Q, Ma J, Cao M, Wang Q, Yao X, Yang L, Wubuli A, Merle C, Milligan P, Mao Y, Gu J, Xin X. The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1. PLoS One 2014; 9:e85905. [PMID: 24465778 PMCID: PMC3900431 DOI: 10.1371/journal.pone.0085905] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/09/2013] [Indexed: 12/15/2022] Open
Abstract
Background and Objective Of three first-line anti-tuberculosis (anti-TB) drugs, isoniazid is most commonly associated with hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, NAT2, CYP2E1, GSTM1and GSTT1, that code for drug-metabolizing enzymes. This study evaluated whether the polymorphisms in these enzymes were associated with an increased risk of anti-TB drug-induced hepatitis in patients and could potentially be used to identify patients at risk of liver injury. Methods and Design In a cross-sectional study, 2244 tuberculosis patients were assessed two months after the start of treatment. Anti-TB drug-induced liver injury (ATLI) was defined as an ALT, AST or bilirubin value more than twice the upper limit of normal. NAT2, CYP2E1, GSTM1 and GSTT1 genotypes were determined using the PCR/ligase detection reaction assays. Results 2244 patients were evaluated, there were 89 cases of ATLI, a prevalence of 4% 9 patients (0.4%) had ALT levels more than 5 times the upper limit of normal. The prevalence of ATLI was greater among men than women, and there was a weak association with NAT2*5 genotypes, with ATLI more common among patients with the NAT2*5*CT genotype. The sensitivity of the CT genotype for identifying patients with ATLI was 42% and the positive predictive value 5.9%. CT ATLI was more common among slow acetylators (prevalence ratio 2.0 (95% CI 0.95,4.20) )compared to rapid acetylators. There was no evidence that ATLI was associated with CYP2E1 RsaIc1/c1genotype, CYP2E1 RsaIc1/c2 or c2/c2 genotypes, or GSTM1/GSTT1 null genotypes. Conclusions In Xinjiang Uyghur TB patients, liver injury was associated with the genetic variant NAT2*5, however the genetic markers studied are unlikely to be useful for screening patients due to the low sensitivity and low positive predictive values for identifying persons at risk of liver injury.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Epidemiology and Biostatistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Long Ma
- The Red Cross of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- * E-mail:
| | - Weidong Wu
- Center for Tuberculosis Control and Prevention, Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, Xinjiang, China
| | - Wei Liu
- Xinjiang Ili Kazak Autonomous Prefecture Centers for Disease Control and Prevention, Ili, Xinjiang, China
| | - Yongguang Li
- Xinjiang Aksu District Center for Disease Control and Prevention, Aksu, Xinjiang, China
| | - Xia Zhu
- Library of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qian Wang
- Graduation School of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jinfeng Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mingqin Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qian Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xuemei Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Lei Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Atikaimu Wubuli
- Department of Epidemiology and Biostatistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Corinne Merle
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Paul Milligan
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ying Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jiayi Gu
- Department of Epidemiology and Biostatistics, School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiumei Xin
- Care Division, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
26
|
Gupta VH, Amarapurkar DN, Singh M, Sasi P, Joshi JM, Baijal R, Ramegowda PH, Amarapurkar AD, Joshi K, Wangikar PP. Association of N-acetyltransferase 2 and cytochrome P450 2E1 gene polymorphisms with antituberculosis drug-induced hepatotoxicity in Western India. J Gastroenterol Hepatol 2013; 28:1368-74. [PMID: 23875638 DOI: 10.1111/jgh.12194] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIM Tuberculosis (TB) is a major public health problem in India. Despite the treatment availability and monitoring, drug-induced hepatotoxicity (DIH) is a serious concern and can lead to discontinuation of treatment. Anti-TB DIH is well known and can aggravate because of pharmacokinetic and pharmacodynamic interactions. Genetic polymorphism in the drug-metabolizing enzyme genes is an important factor that predisposes certain fraction of the population to drug-induced toxicity. The purpose of this study was to assess the association of N-acetyltransferase 2 (NAT2) and cytochrome P450 2E1 (CYP2E1) gene polymorphism with anti-TB DIH in Western Indian population. METHODS A prospective cohort study of 215 patients taking treatment against TB was performed. The NAT2 and CYP2E1 genotypes were determined using polymerase chain reaction and restriction fragment length polymorphism methods. Logistic regression model was used to calculate odds ratio at 95% confidence interval and their respective P values. RESULTS The risk of anti-TB DIH was significantly higher in slow acetylator (SA) than in intermediate and rapid acetylator of NAT2 genotypes (odds ratio: 2.3, P = 0.01). We also observed the homozygous point mutation at position 481, associated with higher risk of hepatotoxicity (P < 0.01). The major haplotype NAT2*4 seems to provide protection in DIH compared with non-DIH TB patients (P = 0.04). However, we did not find a significant association between CYP2E1 genotypes and anti-TB DIH. CONCLUSION Increased susceptibility to isoniazid (INH)-induced hepatotoxicity due to presence of NAT2 SA polymorphism was demonstrated in Western Indian population. NAT2 genotyping can therefore serve as an important tool for identifying patients predisposed to anti-TB DIH.
Collapse
Affiliation(s)
- Vinod H Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tang SW, Lv XZ, Chen R, Wu SS, Yang ZR, Chen DF, Zhan SY. Lack of association between genetic polymorphisms ofCYP3A4,CYP2C9andCYP2C19and antituberculosis drug-induced liver injury in a community-based Chinese population. Clin Exp Pharmacol Physiol 2013; 40:326-32. [DOI: 10.1111/1440-1681.12074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/24/2013] [Accepted: 02/28/2013] [Indexed: 01/11/2023]
Affiliation(s)
| | | | - Ru Chen
- Department of Epidemiology and Biostatistics; School of Public Health; Peking University Health Science Centre; Beijing; China
| | - Shan-Shan Wu
- Department of Epidemiology and Biostatistics; School of Public Health; Peking University Health Science Centre; Beijing; China
| | - Zhi-Rong Yang
- Department of Epidemiology and Biostatistics; School of Public Health; Peking University Health Science Centre; Beijing; China
| | - Da-Fang Chen
- Department of Epidemiology and Biostatistics; School of Public Health; Peking University Health Science Centre; Beijing; China
| | - Si-Yan Zhan
- Department of Epidemiology and Biostatistics; School of Public Health; Peking University Health Science Centre; Beijing; China
| |
Collapse
|
28
|
Tang S, Lv X, Zhang Y, Wu S, Yang Z, Xia Y, Tu D, Deng P, Ma Y, Chen D, Zhan S. Cytochrome P450 2E1 gene polymorphisms/haplotypes and anti-tuberculosis drug-induced hepatitis in a Chinese cohort. PLoS One 2013; 8:e57526. [PMID: 23460870 PMCID: PMC3583841 DOI: 10.1371/journal.pone.0057526] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/22/2013] [Indexed: 01/28/2023] Open
Abstract
Objective The pathogenic mechanism of anti-tuberculosis (anti-TB) drug-induced hepatitis is associated with drug metabolizing enzymes. No tagging single-nucleotide polymorphisms (tSNPs) of cytochrome P450 2E1(CYP2E1) in the risk of anti-TB drug-induced hepatitis have been reported. The present study was aimed at exploring the role of tSNPs in CYP2E1 gene in a population-based anti-TB treatment cohort. Methods and Design A nested case-control study was designed. Each hepatitis case was 14 matched with controls by age, gender, treatment history, disease severity and drug dosage. The tSNPs were selected by using Haploview 4.2 based on the HapMap database of Han Chinese in Beijing, and detected by using TaqMan allelic discrimination technology. Results Eighty-nine anti-TB drug-induced hepatitis cases and 356 controls were included in this study. 6 tSNPs (rs2031920, rs2070672, rs915908, rs8192775, rs2515641, rs2515644) were genotyped and minor allele frequencies of these tSNPs were 21.9%, 23.0%, 19.1%, 23.6%, 20.8% and 44.4% in the cases and 20.9%, 22.7%, 18.9%, 23.2%, 18.2% and 43.2% in the controls, respectively. No significant difference was observed in genotypes or allele frequencies of the 6 tSNPs between case group and control group, and neither of haplotypes in block 1 nor in block 2 was significantly associated with the development of hepatitis. Conclusion Based on the Chinese anti-TB treatment cohort, we did not find a statistically significant association between genetic polymorphisms of CYP2E1 and the risk of anti-TB drug-induced hepatitis. None of the haplotypes showed a significant association with the development of hepatitis in Chinese TB population.
Collapse
Affiliation(s)
- Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaozhen Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Shanshan Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Zhirong Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yinyin Xia
- Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dehua Tu
- Department of Tuberculosis Treatment, Beijing Institute for Tuberculosis Control, Beijing, China
| | - Peiyuan Deng
- Center for Drug Reassessment, State Food and Drug Administration, Beijing, China
| | - Yu Ma
- Department of Tuberculosis Treatment, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Dafang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Siyan Zhan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
- * E-mail:
| |
Collapse
|
29
|
Cai Y, Yi J, Zhou C, Shen X. Pharmacogenetic study of drug-metabolising enzyme polymorphisms on the risk of anti-tuberculosis drug-induced liver injury: a meta-analysis. PLoS One 2012; 7:e47769. [PMID: 23082213 PMCID: PMC3474796 DOI: 10.1371/journal.pone.0047769] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/20/2012] [Indexed: 11/27/2022] Open
Abstract
Background Three first-line antituberculosis drugs, isoniazid, rifampicin and pyrazinamide, may induce liver injury, especially isoniazid. This antituberculosis drug-induced liver injury (ATLI) ranges from a mild to severe form, and the associated mortality cases are not rare. In the past decade, many investigations have focused the association between drug-metabolising enzyme (DME) gene polymorphisms and risk for ATLI; however, these studies have yielded contradictory results. Methods PubMed, EMBASE, ISI web of science and the Chinese National Knowledge Infrastructure databases were systematically searched to identify relevant studies. A meta-analysis was performed to examine the association between polymorphisms from 4 DME genes (NAT2, CYP2E1, GSTM1 and GSTT1) and susceptibility to ATLI. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Heterogeneity among articles and their publication bias were also tested. Results 38 studies involving 2,225 patients and 4,906 controls were included. Overall, significantly increased ATLI risk was associated with slow NAT2 genotype and GSTM1 null genotype when all studies were pooled into the meta-analysis. Significantly increased risk was also found for CYP2E1*1A in East Asians when stratified by ethnicity. However, no significant results were observed for GSTT1. Conclusions Our results demonstrated that slow NAT2 genotype, CYP2E1*1A and GSTM1 null have a modest effect on genetic susceptibility to ATLI.
Collapse
Affiliation(s)
- Yu Cai
- Department of Gastroenterology, Zhongshan Hospital, Fudan Unversity, Shanghai, People’s Republic of China
| | - JiaYong Yi
- Departments of Orthopedics, Zhongshan Hospital, Fudan Unversity, Shanghai, People’s Republic of China
| | - ChaoHui Zhou
- Department of Gastroenterology, Zhongshan Hospital, Fudan Unversity, Shanghai, People’s Republic of China
- * E-mail:
| | - XiZhong Shen
- Department of Gastroenterology, Zhongshan Hospital, Fudan Unversity, Shanghai, People’s Republic of China
| |
Collapse
|
30
|
Ramachandran G, Swaminathan S. Role of pharmacogenomics in the treatment of tuberculosis: a review. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2012; 5:89-98. [PMID: 23226065 PMCID: PMC3513231 DOI: 10.2147/pgpm.s15454] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND Tuberculosis is one of the major public health problems worldwide. Modern antituberculous treatment can cure most patients; cure rates > 95% are achieved with standard short-course chemotherapy regimens containing isoniazid, rifampicin, pyrazinamide, and ethambutol among patients with drug-susceptible strains of tuberculosis; however, a small proportion do not respond to treatment or develop serious adverse events. Pharmacogenomic studies of drugs used in the treatment of tuberculosis could help us understand intersubject variations in treatment response. In this review, we compiled pharmacogenomic data on antituberculous drugs that were available from different settings that would give a better insight into the role of pharmacogenomics in the treatment of tuberculosis, thereby enhancing the efficacy and limiting the toxicity of existing antituberculosis medications. METHODS The PubMed database was searched from 1960 to the present using the keywords "tuberculosis", "antituberculosis treatment", "isoniazid", "rifampicin", "pyrazinamide", "ethambutol", "pharmacogenomics", and "polymorphism". Abstracts from meetings and review articles were included. CONCLUSION Studies conducted in different settings suggest that pharmacogenomics plays a significant role in isoniazid metabolism, and impacts both treatment efficacy and frequency of adverse reactions. Single nucleotide polymorphisms influencing plasma rifampicin concentrations are also reported. No data are available regarding other first-line drugs, ie, ethambutol and pyrazinamide. There is a need to incorporate pharmacogenomics into clinical trials of tuberculosis in order to understand the factors impacting therapeutic success and occurrence of adverse drug effects.
Collapse
Affiliation(s)
- Geetha Ramachandran
- National Institute for Research in Tuberculosis, Indian Council of Medical Research, Chennai, India
| | | |
Collapse
|
31
|
|
32
|
Teixeira RLDF, Morato RG, Cabello PH, Muniz LMK, Moreira ADSR, Kritski AL, Mello FCQ, Suffys PN, Miranda ABD, Santos AR. Genetic polymorphisms of NAT2, CYP2E1 and GST enzymes and the occurrence of antituberculosis drug-induced hepatitis in Brazilian TB patients. Mem Inst Oswaldo Cruz 2012; 106:716-24. [PMID: 22012226 DOI: 10.1590/s0074-02762011000600011] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/14/2011] [Indexed: 12/12/2022] Open
Abstract
Isoniazid (INH), one of the most important drugs used in antituberculosis (anti-TB) treatment, is also the major drug involved in hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, such as NAT2, CYP2E1, GSTM1 and GSTT1, that code for drug-metabolising enzymes. Our goal was to examine the polymorphisms in these enzymes as susceptibility factors to anti-TB drug-induced hepatitis in Brazilian individuals. In a case-control design, 167 unrelated active tuberculosis patients from the University Hospital of the Federal University of Rio de Janeiro, Brazil, were enrolled in this study. Patients with a history of anti-TB drug-induced acute hepatitis (cases with an increase to 3 times the upper limit of normal serum transaminases and symptoms of hepatitis) and patients with no evidence of anti-TB hepatic side effects (controls) were genotyped for NAT2, CYP2E1, GSTM1 and GSTT1 polymorphisms. Slow acetylators had a higher incidence of hepatitis than intermediate/rapid acetylators [22% (18/82) vs. 9.8% (6/61), odds ratio (OR), 2.86, 95% confidence interval (CI), 1.06-7.68, p = 0.04). Logistic regression showed that slow acetylation status was the only independent risk factor (OR 3.59, 95% CI, 2.53-4.64, p = 0.02) for the occurrence of anti-TB drug-induced hepatitis during anti-TB treatment with INH-containing schemes in Brazilian individuals.
Collapse
|
33
|
Tang SW, Lv XZ, Zhang Y, Wu SS, Yang ZR, Xia YY, Tu DH, Deng PY, Ma Y, Chen DF, Zhan SY. CYP2E1, GSTM1 and GSTT1 genetic polymorphisms and susceptibility to antituberculosis drug-induced hepatotoxicity: a nested case-control study. J Clin Pharm Ther 2012; 37:588-93. [PMID: 22335459 DOI: 10.1111/j.1365-2710.2012.01334.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE The pathogenic mechanism of antituberculosis drug-induced hepatotoxicity (ATDH) is thought to involve drug-metabolizing enzymes including N-acetyl transferase2 (NAT2), cytochrome P4502E1 (CYP2E1) and glutathione S-transferase (GST) M1, T1. The associations between genetic polymorphisms of those genes and ATDH have been reported but with inconsistent results. Moreover, most studies were hospital-based retrospective studies and not prospective. We aimed to investigate possible associations of CYP2E1, GSTM1 and GSTT1 genetic polymorphisms with ATDH using a more robust case-control study nested in a population-based prospective antituberculosis treatment cohort. METHODS A total of 4304 patients with smear-positive tuberculosis (TB) who received standard short-course chemotherapy were monitored for 6-9 months. Incidence density sampling method was adopted to select controls and 4 : 1 matched with each ATDH cases by age (± 5 years), sex, treatment history, disease severity and drug dosage. The CYP2E1, GSTM1 and GSTT1 polymorphisms were genotyped using PCR-RFLP and multiplex PCR methods. Conditional logistic regression model was used to calculate odds ratio (OR) and 95% confidence interval (CI), as well as corresponding P-values. RESULTS AND DISCUSSION A total of 89 ATDH cases and 356 controls were included in this study. There was no statistically significant association between CYP2E1 RsaI c1/c1 genotype or DraI C/C genotype and ATDH (OR = 0·99, 95% CI:0·62-1·59; OR = 1·13, 95% CI: 0·40-3·20, respectively) compared with CYP2E1 RsaI c1/c2 or c2/c2 genotypes or DraI D/D genotype, or between GSTM1/GSTT1 null genotypes and ATDH (OR = 1·22, 95% CI: 0·76-1·96; OR = 0·96, 95% CI: 0·60-1·52, respectively) compared with non-null genotypes. WHAT IS NEW AND CONCLUSION This is the first study of the involvement of CYP2E1, GSTM1 and GSTT1 genetic polymorphisms in ATDH using a nested case-control population-based prospective cohort design. We could not confirm positive associations of genetic polymorphisms of CYP2E1 RsaI, CYP2E1 DraI, GSTM1 null and GSTT1 null with ATDH reported by various groups, in our Chinese TB population.
Collapse
Affiliation(s)
- S-W Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kim SH, Kim SH, Lee JH, Lee BH, Kim YS, Park JS, Jee YK. Polymorphisms in drug transporter genes (ABCB1, SLCO1B1 and ABCC2) and hepatitis induced by antituberculosis drugs. Tuberculosis (Edinb) 2012; 92:100-4. [DOI: 10.1016/j.tube.2011.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 09/14/2011] [Accepted: 09/20/2011] [Indexed: 10/14/2022]
|
35
|
Devarbhavi H, Karanth D, Prasanna KS, Adarsh CK, Patil M. Drug-Induced liver injury with hypersensitivity features has a better outcome: a single-center experience of 39 children and adolescents. Hepatology 2011; 54:1344-50. [PMID: 21735470 DOI: 10.1002/hep.24527] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/17/2011] [Indexed: 12/22/2022]
Abstract
UNLABELLED Drug-induced liver injury (DILI) is rare in children and adolescents, and, consequently, data are remarkably limited. We analyzed the causes, clinical and biochemical features, natural history, and outcomes of children with DILI. Consecutive children with DILI from 1997 to 2004 (retrospective) and 2005 to 2010 (prospective) were studied based on standard criteria for DILI. Thirty-nine children constituted 8.7% of 450 cases of DILI. There were 22 boys and 17 girls. Median age was 16 years (range, 2.6-17). Combination antituberculous drugs were the most common cause (n = 22), followed by the anticonvulsants, phenytoin (n = 10) and carbamazepine (n = 6). All of the 16 children (41%) who developed hypersensitivity features, such as skin rashes, fever, lymphadenopathy, and/or eosinophilia, including the 3 with Stevens-Johnson syndrome, survived. Those with hypersensitivity presented earlier (24.5 versus 35 days; P = 0.24) had less severe disease (MELD, 16 versus 29; P = 0.01) and had no mortality (0/16 versus 12/23; P < 0.001), compared to those without hypersensitivity. The 12 fatalities were largely the result of antituberculous DILI (n = 11). The presence of encephalopathy and ascites were associated with mortality, along with hyperbilirubinemia, high international normalized ratio, and serum creatinine. According to the Roussel Uclaf Causality Assessment Method, 18 were highly probable, 14 probable, and 7 possible. Thirty-two children were hospitalized. CONCLUSION DILI is not uncommon in children and accounts for 8.7% of all patients with DILI. Antituberculous drugs and anticonvulsants are the leading causes of DILI in India. Overall mortality is high (30.7%), largely accounted by antituberculous drugs. Children with DILI and hypersensitivity features present early, have less severe disease, and, consequently, a better prognosis, compared to those without, and are often associated with anticonvulsants or sulfonamides.
Collapse
Affiliation(s)
- Harshad Devarbhavi
- Department of Gastroenterology, St. John's Medical College Hospital, Bangalore, India.
| | | | | | | | | |
Collapse
|
36
|
Wang T, Yu HT, Wang W, Pan YY, He LX, Wang ZY. Genetic polymorphisms of cytochrome P450 and glutathione S-transferase associated with antituberculosis drug-induced hepatotoxicity in Chinese tuberculosis patients. J Int Med Res 2010; 38:977-86. [PMID: 20819434 DOI: 10.1177/147323001003800324] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study was designed to investigate the association of genetic polymorphisms of cytochrome P450 subtype 2E1 (CYP2E1) and glutathione S-transferase mu 1 (GSTM1) with susceptibility to antituberculosis drug-induced hepatotoxicity (ADIH) in Chinese tuberculosis patients. All patients were treated with a combination of isoniazid, rifampicin, pyrazinamide and ethambutol. Genomic DNA from 104 patients with ADIH and 111 without ADIH was analysed for the frequency of CYP2E1 RsaI and GSTM1 RsaI genotypes by polymerase chain reaction and restriction fragment length polymorphism. The association of polymorphisms with susceptibility to ADIH was calculated using the chi(2)-test and logistic regression analysis. The CYP2E1 RsaI polymorphisms were significantly associated with ADIH and the c1/c1 genotype was an independent risk factor for ADIH. Compared with the GSTM1 RsaI present genotype, the GSTM1 RsaI null genotype tended to increase susceptibility to ADIH, but the association with ADIH was not significant. The results indicate that CYP2E1 RsaI genotype c1/c1 is a potential risk factor for ADIH in the Chinese population. The tendency of the GSTM1 RsaI null genotype to increase susceptibility to ADIH needs further study.
Collapse
Affiliation(s)
- T Wang
- Tuberculosis Research Institute, 309 Hospital of the People's Liberation Army, Beijing, China
| | | | | | | | | | | |
Collapse
|
37
|
Huang YS. Tailored drug therapy for mitigating drug-induced liver injury: is this the era of genetic screening? Per Med 2010; 7:5-8. [DOI: 10.2217/pme.09.69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yi-Shin Huang
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, 201, Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan
| |
Collapse
|
38
|
Roy PD, Majumder M, Roy B. Pharmacogenomics of anti-TB drugs-related hepatotoxicity. Pharmacogenomics 2008; 9:311-21. [DOI: 10.2217/14622416.9.3.311] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Anti-TB drug (ATD)-related hepatotoxicity is a worldwide serious medical problem among TB patients. Apart from acting on the bacteria, isoniazid, the principal ATD, is also metabolized by human enzymes to generate toxic chemicals that might cause hepatotoxicity. It has been proposed that the production and elimination of the toxic metabolites depends on the activities of several enzymes, such as N-acetyl transferase 2 (NAT2), cytochrome P450 oxidase (CYP2E1) and glutathione S-transferase (GSTM1). There is now evidence that DNA sequence variations or polymorphisms at these loci (NAT2, CYP2E1 and GSTM1) could modulate the activities of these enzymes and, hence, the risk of hepatotoxicity. Since the prevalence of polymorphisms is different in worldwide populations, the risk of ATD hepatotoxicity varies in the populations. Thus, the knowledge of polymorphisms at these loci, prior to medication, may be useful in evaluating risk and controlling ATD hepatotoxicity.
Collapse
Affiliation(s)
- Puspita Das Roy
- Human Genetics Unit, Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Mousumi Majumder
- Human Genetics Unit, Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Bidyut Roy
- Human Genetics Unit, Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
39
|
Huang YS. Genetic polymorphisms of drug-metabolizing enzymes and the susceptibility to antituberculosis drug-induced liver injury. Expert Opin Drug Metab Toxicol 2007; 3:1-8. [PMID: 17269890 DOI: 10.1517/17425255.3.1.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Three first-line antituberculosis drugs, isoniazid, rifampicin and pyrazinamide, may induce liver injury, especially isoniazid. This antituberculosis drug-induced liver injury ranges from a mild to severe form, and the associated mortality cases are not rare. The major drug-metabolizing enzyme of isoniazid is N-acetyltransferase. Other possible enzymes are CYP2E1 and glutathione S-transferase. There is evidence that polymorphisms of the genes that encode these enzymes may influence the activity of the corresponding drug-metabolizing enzymes. Recent studies demonstrated that these genetic polymorphisms may be associated with the susceptibility to antituberculosis drug-induced liver injury. The proposed risk-associated genotypes are NAT2 slow acetylator (without wild-type NAT2*4 allele), CYP2E1 *1A/*1A (homozygous wild type) and homozygous null GSTM1 genotype. Although the available data in the field are still limited and warrants further confirmation in different ethnic populations with larger sample sizes, it still cast some light on the application of these pharmacogenetic or pharmacogenomic approaches to prevent grave antituberculosis drug-induced liver injury in the near future.
Collapse
Affiliation(s)
- Yi-Shin Huang
- Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Division of Gastroenterology, Department of Medicine, 201, Section 2, Shih-Pai Road, Taipei 112, Taiwan.
| |
Collapse
|
40
|
John Wiley & Sons, Ltd.. Current awareness: Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2006. [DOI: 10.1002/pds.1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|