1
|
Hoyos Sanchez MC, Bayat T, Gee RRF, Fon Tacer K. Hormonal Imbalances in Prader-Willi and Schaaf-Yang Syndromes Imply the Evolution of Specific Regulation of Hypothalamic Neuroendocrine Function in Mammals. Int J Mol Sci 2023; 24:13109. [PMID: 37685915 PMCID: PMC10487939 DOI: 10.3390/ijms241713109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The hypothalamus regulates fundamental aspects of physiological homeostasis and behavior, including stress response, reproduction, growth, sleep, and feeding, several of which are affected in patients with Prader-Willi (PWS) and Schaaf-Yang syndrome (SYS). PWS is caused by paternal deletion, maternal uniparental disomy, or imprinting defects that lead to loss of expression of a maternally imprinted region of chromosome 15 encompassing non-coding RNAs and five protein-coding genes; SYS patients have a mutation in one of them, MAGEL2. Throughout life, PWS and SYS patients suffer from musculoskeletal deficiencies, intellectual disabilities, and hormonal abnormalities, which lead to compulsive behaviors like hyperphagia and temper outbursts. Management of PWS and SYS is mostly symptomatic and cures for these debilitating disorders do not exist, highlighting a clear, unmet medical need. Research over several decades into the molecular and cellular roles of PWS genes has uncovered that several impinge on the neuroendocrine system. In this review, we will discuss the expression and molecular functions of PWS genes, connecting them with hormonal imbalances in patients and animal models. Besides the observed hormonal imbalances, we will describe the recent findings about how the loss of individual genes, particularly MAGEL2, affects the molecular mechanisms of hormone secretion. These results suggest that MAGEL2 evolved as a mammalian-specific regulator of hypothalamic neuroendocrine function.
Collapse
Affiliation(s)
- Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Tara Bayat
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| |
Collapse
|
2
|
Al Deleemy M, Huynh B, Waters KA, Machaalani R. Immunohistochemistry for acetylcholinesterase and butyrylcholinesterase in the dorsal motor nucleus of the vagus (DMNV) of formalin-fixed, paraffin-embedded tissue: comparison with reported literature. Histochem Cell Biol 2023; 159:247-262. [PMID: 36422707 DOI: 10.1007/s00418-022-02164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 11/27/2022]
Abstract
The majority of research regarding the expression of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the brain has been conducted using histochemistry to identify enzymatic activity in frozen fixed tissue. However, retrospective human neurochemistry studies are generally restricted to formalin-fixed, paraffin-embedded (FFPE) tissues that are not suitable for histochemical procedures. The availability of commercially available antibody formulations provides the means to study such tissues by immunohistochemistry (IHC). In this study, we optimised IHC conditions for evaluating the expression of AChE and BuChE in the brainstem, focusing on the dorsal motor nucleus of the vagus, in human and piglet FFPE tissues, using commercially available antibodies. Our results were compared to published reports of histochemically determined AChE and BuChE expression. We varied antibody concentrations and antigen retrieval methods, and evaluated different detection systems, with the overall aim to optimise immunohistochemical staining. The primary findings, consistent across both species, are: (1) AChE and BuChE expression dominated in the neuronal somata, specifically in the neuronal cytoplasm; and (2) no change in the protocol resulted in axonal/neuropil expression of AChE. These results indicate that IHC is a suitable tool to detect AChE and BuChE in FFPE tissue using commercial antibodies, albeit the staining patterns obtained differed from those using histochemistry in frozen tissue. The underlying cause(s) for these differences are discussed in detail and may be associated with the principal components of the staining method, the antibody protein target and/or limitations to the detection of epitopes by tissue fixation.
Collapse
Affiliation(s)
- Masarra Al Deleemy
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Benjamin Huynh
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Karen A Waters
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Rita Machaalani
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW This paper reviews how sleep is impacted in patients with Prader-Willi syndrome (PWS), focusing on sleep-related breathing disturbances and excessive daytime sleepiness (EDS). RECENT FINDINGS Hypothalamic dysfunction may underlie several aspects of the PWS phenotype. Central sleep apnea (CSA) can persist beyond infancy. Nocturnal hypoventilation is common and may occur without central or obstructive sleep apnea (OSA). Adenotonsillectomy, a mainstay of OSA treatment, may cause velopharyngeal insufficiency. Growth hormone (GH) is considered safe, but close surveillance for OSA remains important. Cardiac autonomic dysfunction occurs during slow wave sleep and may increase the risk of cardiovascular events. EDS and narcolepsy are also common. Modafinil and pitolisant are treatment options currently being studied. Sleep disorders are prevalent in individuals with PWS. Sleep-related breathing disorders present as CSA in infancy and later in life as OSA and hypoventilation. GH therapy has improved the clinical outcomes of patients with PWS, but close surveillance and treatment for OSA is recommended. EDS can persist even after sleep-related breathing disorders are treated, and some individuals may even develop narcolepsy. Early recognition and treatment of sleep-related disorders may prevent morbidity and result in improved survival of patients with PWS.
Collapse
|
4
|
Yamada K, Watanabe M, Suzuki K. Differential volume reductions in the subcortical, limbic, and brainstem structures associated with behavior in Prader-Willi syndrome. Sci Rep 2022; 12:4978. [PMID: 35322075 PMCID: PMC8943009 DOI: 10.1038/s41598-022-08898-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
Individuals with Prader-Willi syndrome (PWS) exhibit complex behavioral characteristics, including hyperphagia, autistic features, and subsequent age-related maladaptive behaviors. While this suggests functional involvements of subcortical, limbic, and brainstem areas, developmental abnormalities in such structures remain to be investigated systematically. Twenty-one Japanese individuals with PWS and 32 healthy controls with typical development were included. T1-weighted three-dimensional structural magnetic resonance images were analyzed for subcortical, limbic, and brainstem structural volumes, with age as a covariate, using a model-based automatic segmentation tool. Correlations were determined between each volume measurement and behavioral characteristics as indexed by questionnaires and block test scores for hyperphagia (HQ), autistic and obsessional traits, non-verbal intelligence (IQ), and maladaptive behavior (VABS_mal). Compared with the control group, the PWS group showed significantly reduced relative volume ratios per total intracranial volume (TIV) in thalamus, amygdala, and brainstem structures, along with TIV and native volumes in all substructures. While the brainstem volume ratio was significantly lower in all age ranges, amygdala volume ratios were significantly lower during early adulthood and negatively correlated to HQ and VABS_mal but positively correlated to Kohs IQ. Thus, limbic and brainstem volume alterations and differential volume trajectories may contribute to the developmental and behavioral pathophysiology of PWS.
Collapse
Affiliation(s)
- Kenichi Yamada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1 Asahimachi, Chuo-ku, Niigata, 9518585, Japan. .,Hayakawa Children's Clinic, 2-1-5, Nishikobaridai, Nishi-ku, Niigata, 9502015, Japan.
| | - Masaki Watanabe
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1 Asahimachi, Chuo-ku, Niigata, 9518585, Japan
| | - Kiyotaka Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1 Asahimachi, Chuo-ku, Niigata, 9518585, Japan
| |
Collapse
|
5
|
Yamada K, Watanabe M, Suzuki K, Suzuki Y. Cerebellar Volumes Associate with Behavioral Phenotypes in Prader-Willi Syndrome. THE CEREBELLUM 2021; 19:778-787. [PMID: 32661798 PMCID: PMC7588377 DOI: 10.1007/s12311-020-01163-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of this study was to investigate lobule-specific cerebellar structural alterations relevant to clinical behavioral characteristics of Prader-Willi syndrome (PWS). We performed a case-control study of 21 Japanese individuals with PWS (age; median 21.0, range 13–50 years, 14 males, 7 females) and 40 age- and sex-matched healthy controls with typical development. Participants underwent 3-Tesla magnetic resonance imaging. Three-dimensional T1-weighted images were assessed for cerebellar lobular volume and adjusted for total intracerebellar volume (TIV) using a spatially unbiased atlas template to give a relative volume ratio. A region of interest analysis included the deep cerebellar nuclei. A correlation analysis was performed between the volumetric data and the clinical behavioral scores derived from the standard questionnaires (hyperphagia, autism, obsession, and maladaptive index) for global intelligence assessment in paired subgroups. In individuals with PWS, TIV was significantly reduced compared with that of controls (p < 0.05, family-wise error corrected; mean [standard deviation], 1014.1 [93.0] mm3). Decreased relative lobular volume ratios were observed in posterior inferior lobules with age, sex, and TIV as covariates (Crus I, Crus II, lobules VIIb, VIIIa, VIIIb, and IX). However, increased ratios were found in the dentate nuclei bilaterally in individuals with PWS (p < 0.01); the mean (standard deviation) × 10−3 was as follows: left, 1.58 (0.26); right, 1.67 (0.30). The altered lobular volume ratios showed negative correlations with hyperphagic and autistic characteristics and positive correlations with obsessive and intellectual characteristics. This study provides the first objective evidence of topographic patterns of volume differences in cerebellar structures consistent with clinical behavioral characteristics in individuals with PWS and strongly suggests a cerebellar contribution to altered functional brain connectivity in PWS.
Collapse
Affiliation(s)
- Kenichi Yamada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1-757, Asahimachi, Chuo-ku, Niigata, 9518585, Japan.
| | - Masaki Watanabe
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1-757, Asahimachi, Chuo-ku, Niigata, 9518585, Japan
| | - Kiyotaka Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1-757, Asahimachi, Chuo-ku, Niigata, 9518585, Japan
| | - Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1-757, Asahimachi, Chuo-ku, Niigata, 9518585, Japan
| |
Collapse
|
6
|
Cataldi M, Arnaldi D, Tucci V, De Carli F, Patti G, Napoli F, Pace M, Maghnie M, Nobili L. Sleep disorders in Prader-Willi syndrome, evidence from animal models and humans. Sleep Med Rev 2021; 57:101432. [PMID: 33567377 DOI: 10.1016/j.smrv.2021.101432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Prader-Willi Syndrome (PWS) is a complex genetic disorder with multiple cognitive, behavioral and endocrine dysfunctions. Sleep alterations and sleep disorders such as Sleep-disordered breathing and Central disorders of hypersomnolence are frequently recognized (either isolated or in comorbidity). The aim of the review is to highlight the pathophysiology and the clinical features of sleep disorders in PWS, providing the basis for early diagnosis and management. We reviewed the genetic features of the syndrome and the possible relationship with sleep alterations in animal models, and we described sleep phenotypes, diagnostic tools and therapeutic approaches in humans. Moreover, we performed a meta-analysis of cerebrospinal fluid orexin levels in patients with PWS; significantly lower levels of orexin were detected in PWS with respect to control subjects (although significantly higher than the ones of narcoleptic patients). Sleep disorders in humans with PWS are multifaceted and are often the result of different mechanisms. Since hypothalamic dysfunction seems to partially influence metabolic, respiratory and sleep/wake characteristics of this syndrome, additional studies are required in this framework.
Collapse
Affiliation(s)
- Matteo Cataldi
- Unit of Child Neuropsychiatry, Department of Medical and Surgical Neuroscience and Rehabilitation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Dario Arnaldi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Valter Tucci
- Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Fabrizio De Carli
- Institute of Bioimaging and Molecular Physiology, National Research Council, Genoa, Italy
| | - Giuseppa Patti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; Department of Pediatrics, Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Flavia Napoli
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Marta Pace
- Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Mohamad Maghnie
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; Department of Pediatrics, Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Lino Nobili
- Unit of Child Neuropsychiatry, Department of Medical and Surgical Neuroscience and Rehabilitation, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.
| |
Collapse
|
7
|
Chung MS, Langouët M, Chamberlain SJ, Carmichael GG. Prader-Willi syndrome: reflections on seminal studies and future therapies. Open Biol 2020; 10:200195. [PMID: 32961075 PMCID: PMC7536080 DOI: 10.1098/rsob.200195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Prader-Willi syndrome (PWS) is caused by the loss of function of the paternally inherited 15q11-q13 locus. This region is governed by genomic imprinting, a phenomenon in which genes are expressed exclusively from one parental allele. The genomic imprinting of the 15q11-q13 locus is established in the germline and is largely controlled by a bipartite imprinting centre. One part, termed the Prader-Willi syndrome imprinting center (PWS-IC), comprises a CpG island that is unmethylated on the paternal allele and methylated on the maternal allele. The second part, termed the Angelman syndrome imprinting centre, is required to silence the PWS_IC in the maternal germline. The loss of the paternal contribution of the imprinted 15q11-q13 locus most frequently occurs owing to a large deletion of the entire imprinted region but can also occur through maternal uniparental disomy or an imprinting defect. While PWS is considered a contiguous gene syndrome based on large-deletion and uniparental disomy patients, the lack of expression of only non-coding RNA transcripts from the SNURF-SNRPN/SNHG14 may be the primary cause of PWS. Patients with small atypical deletions of the paternal SNORD116 cluster alone appear to have most of the PWS related clinical phenotypes. The loss of the maternal contribution of the 15q11-q13 locus causes a separate and distinct condition called Angelman syndrome. Importantly, while much has been learned about the regulation and expression of genes and transcripts deriving from the 15q11-q13 locus, there remains much to be learned about how these genes and transcripts contribute at the molecular level to the clinical traits and developmental aspects of PWS that have been observed.
Collapse
Affiliation(s)
| | | | | | - Gordon G. Carmichael
- Department of Genetics and Genome Sciences, UCONN Health, 400 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
8
|
Akinola OB, Gabriel MO. Neuroanatomical and molecular correlates of cognitive and behavioural outcomes in hypogonadal males. Metab Brain Dis 2018; 33:491-505. [PMID: 29230619 DOI: 10.1007/s11011-017-0163-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Robust epidemiological, clinical and laboratory evidence supports emerging roles for the sex steroids in such domains as neurodevelopment, behaviour, learning and cognition. Regions of the mammalian brain that are involved in cognitive development and memory do not only express the classical nuclear androgen receptor, but also the non-genomic membrane receptor, which is a G protein-coupled receptor that mediates some rapid effects of the androgens on neurogenesis and synaptic plasticity. Under physiological conditions, hippocampal neurons do express the enzyme aromatase, and therefore actively aromatize testosterone to oestradiol. Although glial expression of the aromatase enzyme is minimal, increased expression following injury suggests a role for sex steroids in neuroprotection. It is therefore plausible to deduce that low levels of circulating androgens in males would perturb neuronal functions in relation to cognition and memory, as well as neural repair following injury. The present review is an overview of some roles of the sex steroids on cognitive function in males, and the neuroanatomical and molecular underpinnings of some behavioural and cognitive deficits characteristic of such genetic disorders noted for low androgen levels, including Klinefelter syndrome, Bardet-Biedl syndrome, Kallman syndrome and Prader-Willi syndrome. Recent literature in relation to some behavioural and cognitive changes secondary to surgical and pharmacological castration are also appraised.
Collapse
Affiliation(s)
- O B Akinola
- Division of Endocrinology, Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.
| | - M O Gabriel
- Division of Endocrinology, Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
9
|
Omokawa M, Ayabe T, Nagai T, Imanishi A, Omokawa A, Nishino S, Sagawa Y, Shimizu T, Kanbayashi T. Decline of CSF orexin (hypocretin) levels in Prader-Willi syndrome. Am J Med Genet A 2016; 170A:1181-6. [DOI: 10.1002/ajmg.a.37542] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/21/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Mayu Omokawa
- Department of Neuropsychiatry; Akita University Graduate School of Medicine; Akita Japan
| | - Tadayuki Ayabe
- Department of Pediatrics; Dokkyo Medical University Koshigaya Hospital; Koshigaya Japan
| | - Toshiro Nagai
- Department of Pediatrics; Dokkyo Medical University Koshigaya Hospital; Koshigaya Japan
| | - Aya Imanishi
- Department of Neuropsychiatry; Akita University Graduate School of Medicine; Akita Japan
| | - Ayumi Omokawa
- Department of General Internal Medicine and Clinical Laboratory Medicine; Akita University Graduate School of Medicine; Akita Japan
| | - Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory; Stanford University School of Medicine; Palo Alto California
| | - Yohei Sagawa
- Department of Neuropsychiatry; Akita University Graduate School of Medicine; Akita Japan
| | - Tetsuo Shimizu
- Department of Neuropsychiatry; Akita University Graduate School of Medicine; Akita Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS); University of Tsukuba; Tsukuba Japan
| | - Takashi Kanbayashi
- Department of Neuropsychiatry; Akita University Graduate School of Medicine; Akita Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS); University of Tsukuba; Tsukuba Japan
| |
Collapse
|
10
|
Puzzle Pieces: Neural Structure and Function in Prader-Willi Syndrome. Diseases 2015; 3:382-415. [PMID: 28943631 PMCID: PMC5548261 DOI: 10.3390/diseases3040382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 11/17/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a behavioural phenotype encompassing hyperphagia, intellectual disability, social and behavioural difficulties, and propensity to psychiatric illness. Research has tended to focus on the cognitive and behavioural investigation of these features, and, with the exception of eating behaviour, the neural physiology is currently less well understood. A systematic review was undertaken to explore findings relating to neural structure and function in PWS, using search terms designed to encompass all published articles concerning both in vivo and post-mortem studies of neural structure and function in PWS. This supported the general paucity of research in this area, with many articles reporting case studies and qualitative descriptions or focusing solely on the overeating behaviour, although a number of systematic investigations were also identified. Research to date implicates a combination of subcortical and higher order structures in PWS, including those involved in processing reward, motivation, affect and higher order cognitive functions, with both anatomical and functional investigations indicating abnormalities. It appears likely that PWS involves aberrant activity across distributed neural networks. The characterisation of neural structure and function warrants both replication and further systematic study.
Collapse
|
11
|
Okoshi Y, Tanuma N, Miyata R, Hayashi M. Melatonin alterations and brain acetylcholine lesions in sleep disorders in Cockayne syndrome. Brain Dev 2014; 36:907-13. [PMID: 24503446 DOI: 10.1016/j.braindev.2014.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/01/2014] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Cockayne syndrome (CS) is a genetic disorder caused by deficient nucleotide excision repair. Patients with CS exhibit progeroid features, developmental delay, and various neurological disorders; they are also known to suffer from sleep problems, which have never been investigated in detail. OBJECTIVE The aim of this study is to investigate the pathogenesis of sleep disorders in patients with CS. METHODS We performed a questionnaire survey of the families of patients with CS, enzyme-linked immunosorbent analyses of the melatonin metabolite, 6-sulphatoxymelatonin (6-SM), in the patients' urine, and immunohistochemistry in the hypothalamus, the basal nucleus of Meynert (NbM), and the pedunculopontine tegmental nucleus (PPN) in four autopsy cases. RESULTS Sleep-wakefulness rhythms were disturbed in patients with CS, and these disturbances seemed to be related to a reduced urinary excretion of 6-SM. In addition, although the hypothalamic nuclei were comparatively preserved, acetylcholine neurons (AchNs) were severely decreased in the NbM and PPN. CONCLUSIONS AchNs modulate both arousal and rapid eye movement sleep, and selective lesions of AchNs in the PPN and/or NbM in combination with disturbed melatonin metabolism might be involved in the sleep disorders in CS.
Collapse
Affiliation(s)
- Yumi Okoshi
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Pediatrics, Hokkaido University Graduate School of Medicine, Hokkaido, Japan; Department of Pediatrics, Tokyo Metropolitan Fuchu Medical Center for the Disabled, Tokyo, Japan
| | - Naoyuki Tanuma
- Department of Pediatrics, Tokyo Metropolitan Fuchu Medical Center for the Disabled, Tokyo, Japan
| | - Rie Miyata
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masaharu Hayashi
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
12
|
Okumura A, Hayashi M, Tsurui H, Yamakawa Y, Abe S, Kudo T, Suzuki R, Shimizu T, Shimojima K, Yamamoto T. Lissencephaly with marked ventricular dilation, agenesis of corpus callosum, and cerebellar hypoplasia caused by TUBA1A mutation. Brain Dev 2013; 35:274-9. [PMID: 22633752 DOI: 10.1016/j.braindev.2012.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 04/28/2012] [Accepted: 05/04/2012] [Indexed: 12/01/2022]
Abstract
We described the clinical course and pathological findings in a child with TUBA1A mutation. MRI revealed marked ventricular dilation with thin cortex, poorly differentiated basal ganglia, agenesis of corpus callosum, cerebellar hypoplasia with preserved vermis at 2 months of age. No gain of developmental milestones was observed until she died with respiratory failure at 23 months of age. A de novo missense mutation of c.1096G>A (G366R) was identified in TUBA1A gene. Pathological findings included a lack in lamination in the cerebral cortex, absent corpus callosum without Probst bundle, blurred demarcation among the striatum, internal capsule and globus pallidus in association with irregular running of myelinated fibers, cerebellar hypoplasia with irregular undulation in the dentate nucleus and inferior olivary nucleus, absent olfactory bulbs and tracts, and pyramidal tract hypoplasia. These findings are consistent with previous reports and will be a clue to diagnosis of TUBA1A mutation.
Collapse
Affiliation(s)
- Akihisa Okumura
- Department of Pediatrics, Juntendo University Faculty of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hayashi M, Nakajima K, Miyata R, Tanuma N, Kodama T. Lesions of acetylcholine neurons in refractory epilepsy. ISRN NEUROLOGY 2012; 2012:404263. [PMID: 22934193 PMCID: PMC3425792 DOI: 10.5402/2012/404263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/08/2012] [Indexed: 11/23/2022]
Abstract
We have examined brainstem lesions in patients with refractory epilepsy disorders, including West syndrome (WS), Lennox-Gastaut syndrome (LGS), and dentatorubral-pallidoluysian atrophy (DRPLA). Acetylcholinergic neurons (AchNs) in the pedunculopontine tegmental nucleus (PPN) are involved in mental development, and disruption of neuronal nicotinic acetylcholine receptors can lead to epilepsy. In order to investigate the involvement of lesions of AchNs in refractory epilepsy, we performed immunohistochemical analyses of AchNs in the PPN in autopsy cases who had a past history of WS and/or LGS and in DRPLA cases who showed progressive myoclonic epilepsy. In addition, we performed a preliminary quantification of the levels of acetylcholine, neuropeptides, and monoamine metabolites in the cerebrospinal fluid (CSF) of patients with WS and benign convulsions associated with mild gastroenteritis (CwG). In the PPN analysis, the total number of neurons and the number of AchNs were reduced in WS/LGS and WS cases, while DRPLA cases showed a decrease in the number and percentage of AchNs. In the CSF analysis, WS patients demonstrated a reduction in the levels of inhibitory neuropeptides, while CwG patients showed increased levels of acetylcholine and decreased levels of serotonin metabolites. These data suggest the possible involvement of lesions of AchNs in WS and DRPLA.
Collapse
Affiliation(s)
- Masaharu Hayashi
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | | | | | | |
Collapse
|
14
|
Hayashi M, Ohto T, Shioda K, Fukatsu R. Lesions of cortical GABAergic interneurons and acetylcholine neurons in xeroderma pigmentosum group A. Brain Dev 2012; 34:287-92. [PMID: 21782366 DOI: 10.1016/j.braindev.2011.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 06/28/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
Xeroderma pigmentosum (XP) is a rare genetic disorder caused by inherited disturbances in the nucleotide excision repair system; patients with XP groups A (XP-A), B, D, and G were shown to have progressive neurological disturbances. Particularly, XP-A patients, which account for approximately half of Japanese XP patients, show severe neurological disorders, including mental retardation and epilepsy. Herein, we performed an immunohistochemical analysis of the number of GABAergic interneurons (GABAis), including calbindin-D28K, parvalbumin, and calretinin, in the cerebral cortex and acetylcholinergic neurons (AchNs) in the nucleus basalis of Meynert (NM) and in the pedunculopontine tegmental nucleus (PPN) in six autopsy cases of XP-A in order to investigate the relationships between mental dysfunction and GABAis and AchNs. The density and percentages of neurons that were immunoreactive for calbindin-D28K and parvalbumin were significantly reduced in the frontal and temporal cortices in XP-A cases, although the density of neurons that were immunoreactive for MAP2 did not differ from that in controls. Additionally, XP-A cases showed reduced AchNs in both the NM and the PPN. The observed reductions of cortical GABAis and AchNs may be involved in the mental disturbances, the higher occurrence of epilepsy, and/or the abnormalities in rapid eye movement sleep in patients with XP-A.
Collapse
Affiliation(s)
- Masaharu Hayashi
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | | | | | | |
Collapse
|
15
|
Abstract
Prader-Willi syndrome is characterized by severe infantile hypotonia with poor suck and failure to thrive; hypogonadism causing genital hypoplasia and pubertal insufficiency; characteristic facial features; early-childhood onset obesity and hyperphagia; developmental delay/mild intellectual disability; short stature; and a distinctive behavioral phenotype. Sleep abnormalities and scoliosis are common. Growth hormone insufficiency is frequent, and replacement therapy provides improvement in growth, body composition, and physical attributes. Management is otherwise largely supportive. Consensus clinical diagnostic criteria exist, but diagnosis should be confirmed through genetic testing. Prader-Willi syndrome is due to absence of paternally expressed imprinted genes at 15q11.2-q13 through paternal deletion of this region (65-75% of individuals), maternal uniparental disomy 15 (20-30%), or an imprinting defect (1-3%). Parent-specific DNA methylation analysis will detect >99% of individuals. However, additional genetic studies are necessary to identify the molecular class. There are multiple imprinted genes in this region, the loss of which contribute to the complete phenotype of Prader-Willi syndrome. However, absence of a small nucleolar organizing RNA gene, SNORD116, seems to reproduce many of the clinical features. Sibling recurrence risk is typically <1%, but higher risks may pertain in certain cases. Prenatal diagnosis is available.
Collapse
|