1
|
Varda L, Ekart R, Lainscak M, Maver U, Bevc S. Clinical Properties and Non-Clinical Testing of Mineralocorticoid Receptor Antagonists in In Vitro Cell Models. Int J Mol Sci 2024; 25:9088. [PMID: 39201774 PMCID: PMC11354261 DOI: 10.3390/ijms25169088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Mineralocorticoid receptor antagonists (MRAs) are one of the renin-angiotensin-aldosterone system inhibitors widely used in clinical practice. While spironolactone and eplerenone have a long-standing profile in clinical medicine, finerenone is a novel agent within the MRA class. It has a higher specificity for mineralocorticoid receptors, eliciting less pronounced adverse effects. Although approved for clinical use in patients with chronic kidney disease and heart failure, intensive non-clinical research aims to further elucidate its mechanism of action, including dose-related selectivity. Within the field, animal models remain the gold standard for non-clinical testing of drug pharmacological and toxicological properties. Their role, however, has been challenged by recent advances in in vitro models, mainly through sophisticated analytical tools and developments in data analysis. Currently, in vitro models are gaining momentum as possible platforms for advanced pharmacological and pathophysiological studies. This article focuses on past, current, and possibly future in vitro cell models research with clinically relevant MRAs.
Collapse
Affiliation(s)
- Luka Varda
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia; (L.V.); (R.E.)
| | - Robert Ekart
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia; (L.V.); (R.E.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 5, 2000 Maribor, Slovenia;
| | - Mitja Lainscak
- Division of Cardiology, Murska Sobota General Hospital, Ulica Dr. Vrbnjaka 6, 9000 Murska Sobota, Slovenia;
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Uroš Maver
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 5, 2000 Maribor, Slovenia;
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Sebastjan Bevc
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 5, 2000 Maribor, Slovenia;
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
2
|
Expression of XBP1s in peritoneal mesothelial cells is critical for inflammation-induced peritoneal fibrosis. Sci Rep 2019; 9:19043. [PMID: 31836774 PMCID: PMC6911080 DOI: 10.1038/s41598-019-55557-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Intraperitoneal inflammation is the most important determinant of peritoneal fibrosis in patients with long-term peritoneal dialysis (PD). Spliced x-box binding protein-1 (XBP1s), a major proximal effector of unfolded protein response (UPR) signaling, plays an indispensable role in inflammation. Our study demonstrated that the inflammatory factor interleukin-1β (IL-1β) dose- and time-dependently induced XBP1s upregulation and interleukin-6 (IL-6) secretion, as well as the expression of the fibrotic marker fibronectin. However, these effects were prevented by the IRE1 endonuclease inhibitor STF083010 since it time-dependently reduced IL-1β-induced Xbp1 mRNA splicing, XBP1s protein expression, inflammatory factor IL-6 secretion and the expression of the fibrotic marker fibronectin in human peritoneal mesothelial cells (HPMCs). The overexpression and knockdown of XBP1s in HPMCs had a similar effect on fibronectin expression. In a rat model of peritoneal inflammation, STF083010 significantly attenuated chlorhexidine digluconate-induced XBP1s and α-smooth muscle actin expression, as well as fibrotic tissue proliferation, in the peritoneum. Our results suggest that XBP1s is a strong pathogenic factor that mediates inflammation-induced peritoneal fibrosis in peritoneal dialysis.
Collapse
|
3
|
Acupuncture Alleviates Colorectal Hypersensitivity and Correlates with the Regulatory Mechanism of TrpV1 and p-ERK. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:483123. [PMID: 23097675 PMCID: PMC3477568 DOI: 10.1155/2012/483123] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/16/2012] [Accepted: 09/12/2012] [Indexed: 02/08/2023]
Abstract
Here we used a mouse model of zymosan-induced colorectal hypersensitivity, a similar model of IBS in our previous work, to evaluate the effectiveness of the different number of times of acupuncture and elucidate its potential mechanism of EA treatment. Colorectal distension (CRD) tests show that intracolonic zymosan injection does, while saline injection does not, induce a typical colorectal hypersensitivity. EA treatment at classical acupoints Zusanli (ST36) and Shangjuxu (ST37) in both hind limbs for 15 min slightly attenuated and significantly blunted the hypersensitive responses after first and fifth acupunctures, respectively, to colorectal distention in zymosan treatment mice, but not in saline treatment mice. Western blot results indicated that ion channel and TrpV1 expression in colorectum as well as ERK1/2 MAPK pathway activation in peripheral and central nerve system might be involved in this process. Hence, we conclude that EA is a potential therapeutic tool in the treatment and alleviation of chronic abdominal pain, and the effectiveness of acupuncture analgesia is accumulative with increased number of times of acupuncture when compared to that of a single time of acupuncture.
Collapse
|
4
|
Abstract
Dietary salt intake is the most important factor contributing to hypertension, but the salt susceptibility of blood pressure (BP) is different in individual subjects. Although the pathogenesis of salt-sensitive hypertension is heterogeneous, it is mainly attributable to an impaired renal capacity to excrete sodium (Na(+) ). We recently identified two novel mechanisms that impair renal Na(+) -excreting function and result in an increase in BP. First, mineralocorticoid receptor (MR) activation in the kidney, which facilitates distal Na(+) reabsorption through epithelial Na(+) channel activation, causes salt-sensitive hypertension. This mechanism exists not only in models of high-aldosterone hypertension as seen in conditions of obesity or metabolic syndrome, but also in normal- or low-aldosterone type of salt-sensitive hypertension. In the latter, Rac1 activation by salt excess causes MR stimulation. Second, renospecific sympathoactivation may cause an increase in BP under conditions of salt excess. Renal beta2 adrenoceptor stimulation in the kidney leads to decreased transcription of the gene encoding WNK4, a negative regulator of Na(+) reabsorption through Na(+) -Cl (-) cotransporter in the distal convoluted tubules, resulting in salt-dependent hypertension. Abnormalities identified in these two pathways of Na(+) reabsorption in the distal nephron may present therapeutic targets for the treatment of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Katsuyuki Ando
- Department of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
5
|
Giron-Michel J, Azzi S, Khawam K, Mortier E, Caignard A, Devocelle A, Ferrini S, Croce M, François H, Lecru L, Charpentier B, Chouaib S, Azzarone B, Eid P. Interleukin-15 plays a central role in human kidney physiology and cancer through the γc signaling pathway. PLoS One 2012; 7:e31624. [PMID: 22363690 PMCID: PMC3283658 DOI: 10.1371/journal.pone.0031624] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 01/16/2012] [Indexed: 12/16/2022] Open
Abstract
The ability of Interleukin-15 (IL-15) to activate many immune antitumor mechanisms renders the cytokine a good candidate for the therapy of solid tumors, particularly renal cell carcinoma. Although IL-15 is being currently used in clinical trials, the function of the cytokine on kidney's components has not been extensively studied; we thus investigated the role of IL-15 on normal and tumor renal epithelial cells. Herein, we analyzed the expression and the biological functions of IL-15 in normal renal proximal tubuli (RPTEC) and in their neoplastic counterparts, the renal clear cell carcinomas (RCC). This study shows that RPTEC express a functional heterotrimeric IL-15Rαβγc complex whose stimulation with physiologic concentrations of rhIL-15 is sufficient to inhibit epithelial mesenchymal transition (EMT) commitment preserving E-cadherin expression. Indeed, IL-15 is not only a survival factor for epithelial cells, but it can also preserve the renal epithelial phenotype through the γc-signaling pathway, demonstrating that the cytokine possess a wide range of action in epithelial homeostasis. In contrast, in RCC in vitro and in vivo studies reveal a defect in the expression of γc-receptor and JAK3 associated kinase, which strongly impacts IL-15 signaling. Indeed, in the absence of the γc/JAK3 couple we demonstrate the assembly of an unprecedented functional high affinity IL-15Rαβ heterodimer, that in response to physiologic concentrations of IL-15, triggers an unbalanced signal causing the down-regulation of the tumor suppressor gene E-cadherin, favoring RCC EMT process. Remarkably, the rescue of IL-15/γc-dependent signaling (STAT5), by co-transfecting γc and JAK3 in RCC, inhibits EMT reversion. In conclusion, these data highlight the central role of IL-15 and γc-receptor signaling in renal homeostasis through the control of E-cadherin expression and preservation of epithelial phenotype both in RPTEC (up-regulation) and RCC (down-regulation).
Collapse
Affiliation(s)
- Julien Giron-Michel
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Sud P11, Paris, France
| | - Sandy Azzi
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Sud P11, Paris, France
| | - Krystel Khawam
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Sud P11, Paris, France
| | - Erwan Mortier
- INSERM UMRS 892, Institut de Recherche Thérapeutique de l'Université de Nantes (IRT UN), Nantes, France
| | - Anne Caignard
- Institut Cochin, Université Paris Descartes, INSERM U1016, Paris, France
| | - Aurore Devocelle
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Sud P11, Paris, France
| | - Silvano Ferrini
- Laboratory of Immunotherapy, Instituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Michela Croce
- Laboratory of Immunotherapy, Instituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Hélène François
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Sud P11, Paris, France
| | - Lola Lecru
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Sud P11, Paris, France
| | - Bernard Charpentier
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Sud P11, Paris, France
| | - Salem Chouaib
- INSERM UMR 753, Université de Paris-Sud, Institut Gustave Roussy (IGR), Villejuif, France
| | - Bruno Azzarone
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Sud P11, Paris, France
- * E-mail: (BA); (PE)
| | - Pierre Eid
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Sud P11, Paris, France
- * E-mail: (BA); (PE)
| |
Collapse
|
6
|
Whaley-Connell AT, Habibi J, Nistala R, DeMarco VG, Pulakat L, Hayden MR, Joginpally T, Ferrario CM, Parrish AR, Sowers JR. Mineralocorticoid receptor-dependent proximal tubule injury is mediated by a redox-sensitive mTOR/S6K1 pathway. Am J Nephrol 2011; 35:90-100. [PMID: 22205374 DOI: 10.1159/000335079] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/12/2011] [Indexed: 01/15/2023]
Abstract
BACKGROUND/AIMS The mammalian target of rapamycin (mTOR) is a serine kinase that regulates phosphorylation (p) of its target ribosomal S6 kinase (S6K1), whose activation can lead to glomerular and proximal tubular cell (PTC) injury and associated proteinuria. Increased mTOR/S6K1 signaling regulates signaling pathways that target fibrosis through adherens junctions. Recent data indicate aldosterone signaling through the mineralocorticoid receptor (MR) can activate the mTOR pathway. Further, antagonism of the MR has beneficial effects on proteinuria that occur independent of hemodynamics. METHODS Accordingly, hypertensive transgenic TG(mRen2)27 (Ren2) rats, with elevated serum aldosterone and proteinuria, and age-matched Sprague-Dawley rats were treated with either a low dose (1 mg/kg/day) or a conventional dose (30 mg/kg/day) of spironolactone (MR antagonist) or placebo for 3 weeks. RESULTS Ren2 rats displayed increases in urine levels of the PTC brush border lysosomal enzyme N-acetyl-β-aminoglycosidase (β-NAG) in conjunction with reductions in PTC megalin, the apical membrane adherens protein T-cadherin and basolateral α-(E)-catenin, and fibrosis. In concert with these abnormalities, Ren2 renal cortical tissue also displayed increased Ser2448 (p)/activation of mTOR and Thr389 (p)-S6K1 and increased 3-nitrotyrosine (3-NT) content, a marker for peroxynitrite. Low-dose spironolactone had no effect on blood pressure but decreased proteinuria and β-NAG comparable to a conventional dose of this MR antagonist. Both doses of spironolactone attenuated ultrastructural maladaptive alterations and led to comparable reductions in (p)-mTOR/(p)-S6K1, 3-NT, fibrosis, and increased expression of α-(E)-catenin, T- and N-cadherin. CONCLUSIONS Thereby, MR antagonism improves proximal tubule integrity by targeting mTOR/S6K1 signaling and redox status independent of changes in blood pressure.
Collapse
|
7
|
Miess C, Glashauser A, Denk L, deVries U, Minuth WW. The interface between generating renal tubules and a polyester fleece in comparison to the interstitium of the developing kidney. Ann Biomed Eng 2010; 38:2197-209. [PMID: 20309733 DOI: 10.1007/s10439-010-0006-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/09/2010] [Indexed: 01/08/2023]
Abstract
An increasing number of investigations is dealing with the repair of acute and chronic renal failure by the application of stem/progenitor cells. However, accurate data concerning the cell biological mechanisms controlling the process of regeneration are scarce. For that reason new implantation techniques, advanced biomaterials and morphogens supporting regeneration of renal parenchyma are under research. Special focus is directed to structural and functional features of the interface between generating tubules and the surrounding interstitial space. The aim of the present experiments was to investigate structural features of the interstitium during generation of tubules. Stem/progenitor cells were isolated from neonatal rabbit kidney and mounted between layers of a polyester fleece to create an artificial interstitium. Perfusion culture was performed for 13 days in chemically defined Iscove's Modified Dulbecco's Medium containing aldosterone (1 x 10(-7) M) as tubulogenic factor. Recordings of the artificial interstitium in comparison to the developing kidney were performed by morphometric analysis, scanning and transmission electron microscopy. The degree of differentiation was registered by immunohistochemistry. The data reveal that generated tubules are embedded in a complex network of fibers consisting of newly synthesized extracellular matrix proteins. Morphometric analysis further shows that the majority of tubules within the artificial interstitium develops in a surprisingly close distance between 5 and 25 mum to each other. The abundance of synthesized extracellular matrix acts obviously as a spacer keeping generated tubules in distance. For comparison, the same principle of construction is found in the developing parenchyma of the neonatal kidney. Most astonishingly, scanning electron microscopy reveals that the composition of interstitial matrix is not homogeneous but differs along a cortico-medullary axis of proceeding tubule development.
Collapse
Affiliation(s)
- C Miess
- Department of Molecular and Cellular Anatomy, University of Regensburg, University Street 31, D-93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|
8
|
D’Elia JA, Roshan B, Maski M, Weinrauch LA. Manifestation of renal disease in obesity: pathophysiology of obesity-related dysfunction of the kidney. Int J Nephrol Renovasc Dis 2009; 2:39-49. [PMID: 21694920 PMCID: PMC3108758 DOI: 10.2147/ijnrd.s7999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Indexed: 11/23/2022] Open
Abstract
Albuminuria in individuals whose body mass index exceeds 40 kg/m(2) is associated with the presence of large glomeruli, thickened basement membrane and epithelial cellular (podocyte) distortion. Obstructive sleep apnea magnifies glomerular injury as well, probably through a vasoconstrictive mechanism. Insulin resistance from excess fatty acids is exacerbated by decreased secretion of high molecular weight adiponectin from adipose cells in the obese state. Adiponectin potentiates insulin in its post-receptor signaling resulting in glucose oxidation in mitochondria. Recent studies of podocyte physiology have concentrated on the structural and functional requirements that prevent glomerular albumin leakage. The architecture of the podocyte involves nephrin and podocin, proteins that cooperate to keep slit pores between foot processes competent to retain albumin. Insulin and adiponectin are necessary for high-energy phosphate generation. When fatty acids bind to albumin, the toxicity to proximal renal tubules is magnified. Albumin and fatty acids are elevated in urine of individuals with obesity related nephrotic syndrome. Fatty acid accumulation and resistin inhibit insulin and adiponectin. Study of cytokines produced by adipose tissue (adiponectin and leptin) and macrophages (resistin) has led to a better understanding of the relationship between weight and hypertension. Leptin, is presumably secreted after food intake to inhibit the midbrain/hypothalamic appetite centers. Resistance to leptin results in excess signaling to hypothalamic sympathetics leading to hypertension. Demonstration of the existence of a cerebral receptor mutation provide evidence for a role in hypertension of a central nervous reflex arc in humans. Further understanding of obesity-related renal dysfunction has been accomplished recently using experimental models. Rapid weight loss following bariatric surgery may reverse renal pathology of obesity with restoration of normal blood pressure.
Collapse
Affiliation(s)
- John A D’Elia
- Joslin Diabetes Center, Renal Unit, Beth Israel Deaconess Medical Center, Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Boston and Cambridge, Massachusetts
| | - Bijan Roshan
- Joslin Diabetes Center, Renal Unit, Beth Israel Deaconess Medical Center, Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Boston and Cambridge, Massachusetts
| | - Manish Maski
- Joslin Diabetes Center, Renal Unit, Beth Israel Deaconess Medical Center, Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Boston and Cambridge, Massachusetts
| | - Larry A Weinrauch
- Joslin Diabetes Center, Renal Unit, Beth Israel Deaconess Medical Center, Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Boston and Cambridge, Massachusetts
| |
Collapse
|