1
|
Solignac J, Lacroix R, Arnaud L, Abdili E, Bouchouareb D, Burtey S, Brunet P, Dignat-George F, Robert T. Rheopheresis Performed in Hemodialysis Patients Targets Endothelium and Has an Acute Anti-Inflammatory Effect. J Clin Med 2022; 12:105. [PMID: 36614906 PMCID: PMC9821709 DOI: 10.3390/jcm12010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Rheopheresis is a double-filtration plasmapheresis that removes a defined spectrum of high-molecular-weight proteins to lower plasma viscosity and improves microcirculation disorders. This technique can be performed in hemodialysis (HD) patients with severe microischemia. Interestingly, some studies showed that rheopheresis sessions improve endothelial function. Methods: Our study evaluated the inflammatory and endothelial biomarker evolution in 23 HD patients treated or not with rheopheresis. A p value ≤ 0.001 was considered statistically significant. Results: Thirteen HD patients treated by rheopheresis either for a severe peripheral arterial disease (N = 8) or calciphylaxis (N = 5) were analyzed. Ten control HD patients were also included in order to avoid any misinterpretation of the rheopheresis effects in regard to the HD circuit. In the HD group without rheopheresis, the circulating endothelial adhesion molecules, cytokines, angiogenic factor concentrations, and circulating levels were not modified. In the HD group with rheopheresis, the circulating endothelial adhesion molecules (sVCAM-1, sP-selectin, and sE-selectin) experienced a significant reduction, except sICAM-1. Among the pro-inflammatory cytokines, TNF-α was significantly reduced by 32.6% [(−42.2)−(−22.5)] (p < 0.0001), while the anti-inflammatory cytokine IL-10 increased by 674% (306−1299) (p < 0.0001). Among the angiogenic factors, only sEndoglin experienced a significant reduction. The CEC level trended to increase from 13 (3−33) cells/mL to 43 (8−140) cells/mL (p = 0.002). We did not observe any difference on the pre-session values of the molecules of interest between the first rheopheresis session and the last rheopheresis session. Conclusion: Rheopheresis immediately modified the inflammation balance and the endothelial injury biomarkers. Further studies are needed to understand the mechanisms underlying these biological observations.
Collapse
Affiliation(s)
- Justine Solignac
- Centre de Néphrologie et de Transplantation Rénale, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille, 13005 Marseille, France
- Center for CardioVascular and Nutrition Research (C2VN), Faculty of Medical and Paramedical Sciences, Aix-Marseille University, National Institute of Health and Medical Research (INSERM), National Research Institute for Agriculture, Food and Environment (INRAE), 13005 Marseille, France
| | - Romaric Lacroix
- Center for CardioVascular and Nutrition Research (C2VN), Faculty of Medical and Paramedical Sciences, Aix-Marseille University, National Institute of Health and Medical Research (INSERM), National Research Institute for Agriculture, Food and Environment (INRAE), 13005 Marseille, France
- Laboratoire de Biologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, 13005 Marseille, France
| | - Laurent Arnaud
- Laboratoire de Biologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, 13005 Marseille, France
| | - Evelyne Abdili
- Laboratoire de Biologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, 13005 Marseille, France
| | - Dammar Bouchouareb
- Centre de Néphrologie et de Transplantation Rénale, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille, 13005 Marseille, France
| | - Stéphane Burtey
- Centre de Néphrologie et de Transplantation Rénale, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille, 13005 Marseille, France
- Center for CardioVascular and Nutrition Research (C2VN), Faculty of Medical and Paramedical Sciences, Aix-Marseille University, National Institute of Health and Medical Research (INSERM), National Research Institute for Agriculture, Food and Environment (INRAE), 13005 Marseille, France
| | - Philippe Brunet
- Centre de Néphrologie et de Transplantation Rénale, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille, 13005 Marseille, France
- Center for CardioVascular and Nutrition Research (C2VN), Faculty of Medical and Paramedical Sciences, Aix-Marseille University, National Institute of Health and Medical Research (INSERM), National Research Institute for Agriculture, Food and Environment (INRAE), 13005 Marseille, France
| | - Françoise Dignat-George
- Center for CardioVascular and Nutrition Research (C2VN), Faculty of Medical and Paramedical Sciences, Aix-Marseille University, National Institute of Health and Medical Research (INSERM), National Research Institute for Agriculture, Food and Environment (INRAE), 13005 Marseille, France
- Laboratoire de Biologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, 13005 Marseille, France
| | - Thomas Robert
- Centre de Néphrologie et de Transplantation Rénale, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille, 13005 Marseille, France
- Center for CardioVascular and Nutrition Research (C2VN), Faculty of Medical and Paramedical Sciences, Aix-Marseille University, National Institute of Health and Medical Research (INSERM), National Research Institute for Agriculture, Food and Environment (INRAE), 13005 Marseille, France
| |
Collapse
|
2
|
Yang J, Fang P, Yu D, Zhang L, Zhang D, Jiang X, Yang WY, Bottiglieri T, Kunapuli SP, Yu J, Choi ET, Ji Y, Yang X, Wang H. Chronic Kidney Disease Induces Inflammatory CD40+ Monocyte Differentiation via Homocysteine Elevation and DNA Hypomethylation. Circ Res 2017; 119:1226-1241. [PMID: 27992360 DOI: 10.1161/circresaha.116.308750] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/26/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022]
Abstract
RATIONALE Patients with chronic kidney disease (CKD) develop hyperhomocysteinemia and have a higher cardiovascular mortality than those without hyperhomocysteinemia by 10-fold. OBJECTIVE We investigated monocyte differentiation in human CKD and cardiovascular disease (CVD). METHODS AND RESULTS We identified CD40 as a CKD-related monocyte activation gene using CKD-monocyte -mRNA array analysis and classified CD40 monocyte (CD40+CD14+) as a stronger inflammatory subset than the intermediate monocyte (CD14++CD16+) subset. We recruited 27 patients with CVD/CKD and 14 healthy subjects and found that CD40/CD40 classical/CD40 intermediate monocyte (CD40+CD14+/CD40+CD14++CD16-/CD40+CD14++CD16+), plasma homocysteine, S-adenosylhomocysteine, and S-adenosylmethionine levels were higher in CVD and further elevated in CVD+CKD. CD40 and CD40 intermediate subsets were positively correlated with plasma/cellular homocysteine levels, S-adenosylhomocysteine and S-adenosylmethionine but negatively correlated with estimated glomerular filtration rate. Hyperhomocysteinemia was established as a likely mediator for CKD-induced CD40 intermediate monocyte, and reduced S-adenosylhomocysteine/S-adenosylmethionine was established for CKD-induced CD40/CD40 intermediate monocyte. Soluble CD40 ligand, tumor necrosis factor (TNF)-α/interleukin (IL)-6/interferon (IFN)-γ levels were elevated in CVD/CKD. CKD serum/homocysteine/CD40L/increased TNF-α/IL-6/IFN-γ-induced CD40/CD40 intermediate monocyte in peripheral blood monocyte. Homocysteine and CKD serum-induced CD40 monocyte were prevented by neutralizing antibodies against CD40L/TNF-α/IL-6. DNA hypomethylation was found on nuclear factor-κB consensus element in CD40 promoter in white blood cells from patients with CKD with lower S-adenosylmethionine / S-adenosylhomocysteine ratios. Finally, homocysteine inhibited DNA methyltransferase-1 activity and promoted CD40 intermediate monocyte differentiation, which was reversed by folic acid in peripheral blood monocyte. CONCLUSIONS CD40 monocyte is a novel inflammatory monocyte subset that appears to be a biomarker for CKD severity. Hyperhomocysteinemia mediates CD40 monocyte differentiation via soluble CD40 ligand induction and CD40 DNA hypomethylation in CKD.
Collapse
Affiliation(s)
- Jiyeon Yang
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Pu Fang
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Daohai Yu
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Lixiao Zhang
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Daqing Zhang
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Xiaohua Jiang
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - William Y Yang
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Teodoro Bottiglieri
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Satya P Kunapuli
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Jun Yu
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Eric T Choi
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Yong Ji
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.).
| | - Xiaofeng Yang
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.)
| | - Hong Wang
- From the Centers for Metabolic Disease Research (J.Y.Y., P.F., L.Z., X.J., W.Y.Y., J.Y., X.Y., H.W.), Cardiovascular Research (J.Y.Y., D.Y., X.Y., H.W.), Department of Clinical Sciences, and Sol Sherry Thrombosis Research (J.Y.Y., S.P.K., X.Y., H.W.), Departments of Pharmacology, Physiology and Surgery (J.Y., E.T.C., H.W.), Temple University School of Medicine, Philadelphia, PA; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China (Y.J.); Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Liaoning, P. R. China (D.Z.); and Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX (T.B.).
| |
Collapse
|