1
|
Ohtsuka J, Oshima H, Ezawa I, Abe R, Oshima M, Ohki R. Functional loss of p53 cooperates with the in vivo microenvironment to promote malignant progression of gastric cancers. Sci Rep 2018; 8:2291. [PMID: 29396430 PMCID: PMC5797237 DOI: 10.1038/s41598-018-20572-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/22/2018] [Indexed: 12/25/2022] Open
Abstract
p53 mutations are frequently detected in malignant gastric cancers. However, the molecular mechanisms by which loss of p53 function promotes gastric cancer are not clear. We utilized Gan mice (K19-Wnt1/C2mE), which have functional p53 and develop intestinal-type gastric tumors, to investigate the role of p53 in gastric cancer progression by knocking out p53. We found that gastric epithelial cells acquire tumorigenicity in the subcutis of C57BL/6 mice as a result of Wnt activation, COX-2 activation and p53 deficiency. With repeated allograft transfers, these gastric epithelial cells gradually acquired the properties of malignant gastric cancer. Loss of p53 conferred cell stemness and induced epithelial to mesenchymal transition (EMT) in gastric epithelial cells, and these properties were further enhanced by the in vivo microenvironment, ultimately leading to gastric cancer formation and metastasis. We also found that the in vivo microenvironment enhanced activation of the COX-2 pathway, which further contributed to cancer progression. With this system, we have succeeded in recapitulating the development of malignant gastric cancer from gastric epithelial cells in a normal immune environment.
Collapse
Affiliation(s)
- Junko Ohtsuka
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan.,Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Issei Ezawa
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
2
|
Roy SAB, Allaire JM, Ouellet C, Maloum-Rami F, Pomerleau V, Lemieux É, Babeu JP, Rousseau J, Paquet M, Garde-Granger P, Boudreau F, Perreault N. Loss of mesenchymal bone morphogenetic protein signaling leads to development of reactive stroma and initiation of the gastric neoplastic cascade. Sci Rep 2016; 6:32759. [PMID: 27609464 PMCID: PMC5016723 DOI: 10.1038/srep32759] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
Bmps are morphogens involved in various gastric cellular functions. Studies in genetically-modified mice have shown that Bmp disruption in gastric epithelial and stromal cell compartments leads to the development of tumorigenesis. Our studies have demonstrated that abrogation of gastric epithelial Bmp signaling alone was not sufficient to recapitulate the neoplastic features associated with total gastric loss of Bmp signaling. Thus, epithelial Bmp signaling does not appear to be a key player in gastric tumorigenesis initiation. These observations suggest a greater role for stromal Bmp signaling in gastric polyposis initiation. In order to identify the specific roles played by mesenchymal Bmp signaling in gastric homeostasis, we generated a mouse model with abrogation of Bmp signaling exclusively in the gastro-intestinal mesenchyme (Bmpr1aΔMES). We were able to expose an unsuspected role for Bmp loss of signaling in leading normal gastric mesenchyme to adapt into reactive mesenchyme. An increase in the population of activated-fibroblasts, suggesting mesenchymal transdifferentiation, was observed in mutant stomach. Bmpr1aΔMES stomachs exhibited spontaneous benign polyps with presence of both intestinal metaplasia and spasmolytic-polypeptide-expressing metaplasia as early as 90 days postnatal. These results support the novel concept that loss of mesenchymal Bmp signaling cascade acts as a trigger in gastric polyposis initiation.
Collapse
Affiliation(s)
- Sébastien A B Roy
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joannie M Allaire
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Camille Ouellet
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Faiza Maloum-Rami
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Véronique Pomerleau
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Étienne Lemieux
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Babeu
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jasmin Rousseau
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marilène Paquet
- Département de pathologie et de microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Perrine Garde-Granger
- Département de Pathologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Boudreau
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nathalie Perreault
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
3
|
You LL, Cao DH, Jiang J, Hou Z, Suo YE, Wang SD, Cao XY. Transgenic mouse models of gastric cancer: Pathological characteristic and applications. Shijie Huaren Xiaohua Zazhi 2015; 23:2754-2760. [DOI: 10.11569/wcjd.v23.i17.2754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transgenic animal models of gastric cancer have high specificity and similar tumor characteristics to human gastric cancer. Current research and application of transgenic animal models of gastric cancer are wide, and several models have been developed. In transgenic animal models of gastric cancer, primary gastric carcinoma can develop spontaneously. These transgenic animal models have been widely used to study the mechanism of gastric cancer development, and have great significance for clinical diagnosis and treatment of gastric cancer. This paper systematically summarizes several different kinds of transgenic animal models and describes the molecular pathogenic mechanisms and pathological characteristics of gastric mucosal lesions in these models as well as their applications.
Collapse
|
4
|
Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT, Flatberg A, Johannessen H, Friedman RA, Renz BW, Sandvik AK, Beisvag V, Tomita H, Hara A, Quante M, Li Z, Gershon MD, Kaneko K, Fox JG, Wang TC, Chen D. Denervation suppresses gastric tumorigenesis. Sci Transl Med 2015; 6:250ra115. [PMID: 25143365 DOI: 10.1126/scitranslmed.3009569] [Citation(s) in RCA: 411] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nervous system plays an important role in the regulation of epithelial homeostasis and has also been postulated to play a role in tumorigenesis. We provide evidence that proper innervation is critical at all stages of gastric tumorigenesis. In three separate mouse models of gastric cancer, surgical or pharmacological denervation of the stomach (bilateral or unilateral truncal vagotomy, or local injection of botulinum toxin type A) markedly reduced tumor incidence and progression, but only in the denervated portion of the stomach. Vagotomy or botulinum toxin type A treatment also enhanced the therapeutic effects of systemic chemotherapy and prolonged survival. Denervation-induced suppression of tumorigenesis was associated with inhibition of Wnt signaling and suppression of stem cell expansion. In gastric organoid cultures, neurons stimulated growth in a Wnt-mediated fashion through cholinergic signaling. Furthermore, pharmacological inhibition or genetic knockout of the muscarinic acetylcholine M3 receptor suppressed gastric tumorigenesis. In gastric cancer patients, tumor stage correlated with neural density and activated Wnt signaling, whereas vagotomy reduced the risk of gastric cancer. Together, our findings suggest that vagal innervation contributes to gastric tumorigenesis via M3 receptor-mediated Wnt signaling in the stem cells, and that denervation might represent a feasible strategy for the control of gastric cancer.
Collapse
Affiliation(s)
- Chun-Mei Zhao
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Yoku Hayakawa
- Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY 10032-3802, USA
| | - Yosuke Kodama
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Christoph B Westphalen
- Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY 10032-3802, USA.,Medizinische Klinik III, Klinikum der Universität München, Campus Grobhadern, 81377 München, Germany
| | - Gøran T Andersen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Surgery, St. Olavs University Hospital, Trondheim 7006, Norway
| | - Arnar Flatberg
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Helene Johannessen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Bernhard W Renz
- Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY 10032-3802, USA
| | - Arne K Sandvik
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway.,Department of Gastrointestinal and Liver Diseases, St. Olavs University Hospital, Trondheim 7006, Norway
| | - Vidar Beisvag
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1112, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1112, Japan
| | - Michael Quante
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, München 81675, Germany
| | - Zhishan Li
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kazuhiro Kaneko
- Department of Gastroenterology and Endoscopy Division, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY 10032-3802, USA
| | - Duan Chen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
5
|
Chen Y, Liu H, Xu S, Wang T, Li W. Targeting microsomal prostaglandin E2synthase-1 (mPGES-1): the development of inhibitors as an alternative to non-steroidal anti-inflammatory drugs (NSAIDs). MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00278h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AA cascade and several key residues in the 3D structure of mPGES-1.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | | | - Shuang Xu
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Tianlin Wang
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| |
Collapse
|
6
|
Rugge M, Capelle LG, Fassan M. Individual risk stratification of gastric cancer: evolving concepts and their impact on clinical practice. Best Pract Res Clin Gastroenterol 2014; 28:1043-53. [PMID: 25439070 DOI: 10.1016/j.bpg.2014.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/02/2014] [Accepted: 09/15/2014] [Indexed: 01/31/2023]
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related death worldwide and it mostly develops in long-standing inflammatory conditions, and Helicobacter pylori-gastritis, in particular. Despite the increasing understanding of both the phenotypic alterations and the molecular mechanisms occurring during GC multi-step carcinogenesis, no reliable biomarker is available to be reliably implemented into GC secondary prevention strategies. Multidisciplinary diagnostic approaches integrating endoscopy, serology, histology and molecular profiling currently appears as the most appropriate approach for patients' stratification into different GC risk classes.
Collapse
Affiliation(s)
- Massimo Rugge
- Department of Medicine, DIMED, Surgical Pathology and Cytopathology Unit, University of Padua, 35100 Padua, Italy.
| | - Lisette G Capelle
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, 3015 CE Rotterdam, The Netherlands
| | - Matteo Fassan
- Department of Medicine, DIMED, Surgical Pathology and Cytopathology Unit, University of Padua, 35100 Padua, Italy
| |
Collapse
|
7
|
Shimizu T, Marusawa H, Matsumoto Y, Inuzuka T, Ikeda A, Fujii Y, Minamiguchi S, Miyamoto S, Kou T, Sakai Y, Crabtree JE, Chiba T. Accumulation of somatic mutations in TP53 in gastric epithelium with Helicobacter pylori infection. Gastroenterology 2014; 147:407-17.e3. [PMID: 24786892 DOI: 10.1053/j.gastro.2014.04.036] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 04/18/2014] [Accepted: 04/20/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori infection is a risk factor for gastric cancer. To explore the genetic basis of gastric cancer that develops in inflamed gastric mucosa, we investigated genetic aberrations that latently accumulate in nontumorous gastric epithelium with H pylori infection. METHODS We performed whole-exome sequencing of gastric tumors, noncancerous tissues with gastritis, and peripheral lymphocytes from 5 patients. We performed additional deep-sequencing analyses of selected tumor-related genes using 34 gastritis mucosal samples from patients with or without gastric cancer. We also performed deep sequencing analyses of gastric mucosal tissues from mice that express transgenic human TP53 and constitutively express activation-induced cytidine deaminase (AICDA or AID) (human TP53 knock-in/AID-transgenic mice). RESULTS Whole-exome sequencing revealed that somatic mutations accumulated in various genes in inflamed gastric tissues. Additional deep-sequencing analyses of tissues from regions of gastritis confirmed nonsynonymous low-abundance mutations in TP53 in 15 cases (44.1%) and ARID1A in 5 cases (14.7%). The mutations that accumulated in gastric mucosal tissues with H pylori-induced gastritis, as well as gastric tumors, were predominantly C:G>T:A transitions in GpCpX motifs-a marker of cytidine deamination induced by AID. Constitutive expression of AID in the gastric mucosa of mice led to mutations in the human TP53, at amino acid coding positions identical to those detected in human gastric cancers. CONCLUSIONS Studies of gastric tumors and tissues from humans and mice indicate that somatic mutations accumulate in various genes in gastric mucosal tissues with H pylori infection. Increased cytidine deaminase activity in these tissues appears to promote the accumulation of these mutations and might promote gastric carcinogenesis in patients with H pylori infection.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Yuko Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Inuzuka
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsuyuki Ikeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosuke Fujii
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shin'ichi Miyamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadayuki Kou
- Digestive Disease Center, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Yoshiharu Sakai
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jean E Crabtree
- Leeds Institute Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Hanada K, Graham DY. Helicobacter pylori and the molecular pathogenesis of intestinal-type gastric carcinoma. Expert Rev Anticancer Ther 2014; 14:947-54. [PMID: 24802804 DOI: 10.1586/14737140.2014.911092] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gastric carcinoma is an inflammation-related cancer caused by long-term infection with the human bacterial pathogen, Helicobacter pylori. The pattern of acute-on-chronic inflammation causes progressive mucosal damage which may result in atrophy with metaplastic epithelia and eventually gastric cancer. Recently, it has been recognized that H. pylori can also cause genetic instability such as double-stranded DNA breaks and can produce gene activation and silencing via epigenetic pathways. As genetic instability is the hallmark of cancer, we highlight recent progress in understanding the gastric carcinogenesis in relation to H. pylori-related inflammation, H. pylori-induced double-stranded DNA breakage and aberrant gene expression as well as the mechanisms and role of H. pylori-associated epigenetic change in gene expression.
Collapse
Affiliation(s)
- Katsuhiro Hanada
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | | |
Collapse
|
9
|
Hayashi S, Ueno N, Murase A, Takada J. Design, synthesis and structure-activity relationship studies of novel and diverse cyclooxygenase-2 inhibitors as anti-inflammatory drugs. J Enzyme Inhib Med Chem 2014; 29:846-67. [PMID: 24517373 DOI: 10.3109/14756366.2013.864650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Because of the pivotal role of cyclooxygenase (COX) in the inflammatory processes, non-steroidal anti-inflammatory drugs (NSAIDs) that suppress COX activities have been used clinically for the treatment of inflammatory diseases/syndromes; however, traditional NSAIDs exhibit serious side-effects such as gastrointestinal damage and hyper sensitivity owing to their COX-1 inhibition. Also, COX-2 inhibition-derived suppressive or preventive effects against initiation/proliferation/invasion/motility/recurrence/metastasis of various cancers/tumours such as colon, gastric, skin, lung, liver, pancreas, breast, prostate, cervical and ovarian cancers are significant. In this study, design, synthesis and structure-activity relationship (SAR) of various novel {2-[(2-, 3- and/or 4-substituted)-benzoyl, (bicyclic heterocycloalkanophenyl)carbonyl or cycloalkanecarbonyl]-(5- or 6-substituted)-1H-indol-3-yl}acetic acid analogues were investigated to seek and identify various chemotypes of potent and selective COX-2 inhibitors for the treatment of inflammatory diseases, resulting in the discovery of orally potent agents in the peripheral-inflammation model rats. The SARs and physicochemical properties for the analogues are described as significant findings. For graphical abstract: see Supplementary Material. ( www.informahealthcare.com/enz ).
Collapse
Affiliation(s)
- Shigeo Hayashi
- Pfizer Global Research & Development, Nagoya Laboratories, Pfizer Japan Inc. , Taketoyo, Aichi , Japan
| | | | | | | |
Collapse
|
10
|
Mihi B, Van Meulder F, Rinaldi M, Van Coppernolle S, Chiers K, Van den Broeck W, Goddeeris B, Vercruysse J, Claerebout E, Geldhof P. Analysis of cell hyperplasia and parietal cell dysfunction induced by Ostertagia ostertagi infection. Vet Res 2013; 44:121. [PMID: 24330735 PMCID: PMC3878833 DOI: 10.1186/1297-9716-44-121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/29/2013] [Indexed: 02/07/2023] Open
Abstract
Infections in cattle with the gastric nematode Ostertagia ostertagi are associated with decreased acid secretion and profound physio-morphological changes of the gastric mucosa. The purpose of the current study was to investigate the mechanisms triggering these pathophysiological changes. O. ostertagi infection resulted in a marked cellular hyperplasia, which can be explained by increased transcriptional levels of signaling molecules related to the homeostasis of gastric epithelial cells such as HES1, WNT5A, FGF10, HB-EGF, AREG, ADAM10 and ADAM17. Intriguingly, histological analysis indicated that the rapid rise in the gastric pH, observed following the emergence of adult worms, cannot be explained by a loss of parietal cells, as a decrease in the number of parietal cells was only observed following a long term infection of several weeks, but is likely to be caused by an inhibition of parietal cell activity. To investigate whether this inhibition is caused by a direct effect of the parasites, parietal cells were co-cultured with parasite Excretory/Secretory products (ESP) and subsequently analyzed for acid production. The results indicate that adult ESP inhibited acid secretion, whereas ESP from the L4 larval stages did not alter parietal cell function. In addition, our data show that the inhibition of parietal cell activity could be mediated by a marked upregulation of inflammatory factors, which are partly induced by adult ESP in abomasal epithelial cells. In conclusion, this study shows that the emergence of adult O. ostertagi worms is associated with marked cellular changes that can be partly triggered by the worm’s Excretory/secretory antigens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peter Geldhof
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| |
Collapse
|
11
|
Oshima H, Oshima M. The role of PGE2-associated inflammatory responses in gastric cancer development. Semin Immunopathol 2012; 35:139-50. [PMID: 23053397 DOI: 10.1007/s00281-012-0353-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 09/30/2012] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that inflammation plays a critical role in cancer development. Cyclooxygenase-2 (COX-2) is a rate-limiting enzyme for prostanoid biosynthesis, including prostaglandin E(2) (PGE(2)), and plays a key role in both inflammation and cancer. It has been demonstrated that inhibition of COX-2 and PGE(2) receptor signaling results in the suppression of tumor development in a variety of animal models. However, the molecular mechanisms underlying COX-2/PGE(2)-associated inflammation in carcinogenesis have not yet been fully elucidated. In order to study the role of PGE(2)-associated inflammatory responses in tumorigenesis, it is important to use in vivo mouse models that recapitulate human cancer development from molecular mechanisms with construction of tumor microenvironment. We have developed a gastritis model (K19-C2mE mice) in which an inflammatory microenvironment is constructed in the stomach via induction of the COX-2/PGE(2) pathway. We also developed a gastric cancer mouse model (Gan mice) in which the mice develop inflammation-associated gastric tumors via activation of both the COX-2/PGE(2) pathway and Wnt signaling. Expression analyses using these in vivo models have revealed novel mechanisms of the inflammatory responses underlying gastric cancer development. PGE(2)-associated inflammatory responses activate epidermal growth factor receptor (EGFR) signaling through the induction of EGFR ligands and ADAMs that release EGFR ligands from the cell membrane. In Gan mice, a combination treatment with EGFR and COX-2 inhibitors significantly suppresses gastric tumorigenesis. Moreover, PGE(2)-associated inflammation downregulates tumor suppressor microRNA, miR-7, in gastric cancer cells, which suppresses epithelial differentiation. These results indicate that PGE(2)-associated inflammatory responses promote in vivo gastric tumorigenesis via several different molecular mechanisms.
Collapse
Affiliation(s)
- Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | |
Collapse
|
12
|
Oshima H, Oshima M. The role of PGE2-associated inflammatory responses in gastric cancer development. Semin Immunopathol 2012. [PMID: 23053397 DOI: 10.1007/s00281- 012-0353-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Accumulating evidence indicates that inflammation plays a critical role in cancer development. Cyclooxygenase-2 (COX-2) is a rate-limiting enzyme for prostanoid biosynthesis, including prostaglandin E(2) (PGE(2)), and plays a key role in both inflammation and cancer. It has been demonstrated that inhibition of COX-2 and PGE(2) receptor signaling results in the suppression of tumor development in a variety of animal models. However, the molecular mechanisms underlying COX-2/PGE(2)-associated inflammation in carcinogenesis have not yet been fully elucidated. In order to study the role of PGE(2)-associated inflammatory responses in tumorigenesis, it is important to use in vivo mouse models that recapitulate human cancer development from molecular mechanisms with construction of tumor microenvironment. We have developed a gastritis model (K19-C2mE mice) in which an inflammatory microenvironment is constructed in the stomach via induction of the COX-2/PGE(2) pathway. We also developed a gastric cancer mouse model (Gan mice) in which the mice develop inflammation-associated gastric tumors via activation of both the COX-2/PGE(2) pathway and Wnt signaling. Expression analyses using these in vivo models have revealed novel mechanisms of the inflammatory responses underlying gastric cancer development. PGE(2)-associated inflammatory responses activate epidermal growth factor receptor (EGFR) signaling through the induction of EGFR ligands and ADAMs that release EGFR ligands from the cell membrane. In Gan mice, a combination treatment with EGFR and COX-2 inhibitors significantly suppresses gastric tumorigenesis. Moreover, PGE(2)-associated inflammation downregulates tumor suppressor microRNA, miR-7, in gastric cancer cells, which suppresses epithelial differentiation. These results indicate that PGE(2)-associated inflammatory responses promote in vivo gastric tumorigenesis via several different molecular mechanisms.
Collapse
Affiliation(s)
- Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | |
Collapse
|
13
|
Oshima H, Oshima M. The role of PGE2-associated inflammatory responses in gastric cancer development. Semin Immunopathol 2012. [PMID: 23053397 DOI: 10.1007/s00281-] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Accumulating evidence indicates that inflammation plays a critical role in cancer development. Cyclooxygenase-2 (COX-2) is a rate-limiting enzyme for prostanoid biosynthesis, including prostaglandin E(2) (PGE(2)), and plays a key role in both inflammation and cancer. It has been demonstrated that inhibition of COX-2 and PGE(2) receptor signaling results in the suppression of tumor development in a variety of animal models. However, the molecular mechanisms underlying COX-2/PGE(2)-associated inflammation in carcinogenesis have not yet been fully elucidated. In order to study the role of PGE(2)-associated inflammatory responses in tumorigenesis, it is important to use in vivo mouse models that recapitulate human cancer development from molecular mechanisms with construction of tumor microenvironment. We have developed a gastritis model (K19-C2mE mice) in which an inflammatory microenvironment is constructed in the stomach via induction of the COX-2/PGE(2) pathway. We also developed a gastric cancer mouse model (Gan mice) in which the mice develop inflammation-associated gastric tumors via activation of both the COX-2/PGE(2) pathway and Wnt signaling. Expression analyses using these in vivo models have revealed novel mechanisms of the inflammatory responses underlying gastric cancer development. PGE(2)-associated inflammatory responses activate epidermal growth factor receptor (EGFR) signaling through the induction of EGFR ligands and ADAMs that release EGFR ligands from the cell membrane. In Gan mice, a combination treatment with EGFR and COX-2 inhibitors significantly suppresses gastric tumorigenesis. Moreover, PGE(2)-associated inflammation downregulates tumor suppressor microRNA, miR-7, in gastric cancer cells, which suppresses epithelial differentiation. These results indicate that PGE(2)-associated inflammatory responses promote in vivo gastric tumorigenesis via several different molecular mechanisms.
Collapse
Affiliation(s)
- Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | |
Collapse
|
14
|
Syu LJ, El-Zaatari M, Eaton KA, Liu Z, Tetarbe M, Keeley TM, Pero J, Ferris J, Wilbert D, Kaatz A, Zheng X, Qiao X, Grachtchouk M, Gumucio DL, Merchant JL, Samuelson LC, Dlugosz AA. Transgenic expression of interferon-γ in mouse stomach leads to inflammation, metaplasia, and dysplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2114-25. [PMID: 23036899 DOI: 10.1016/j.ajpath.2012.08.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 08/24/2012] [Accepted: 08/30/2012] [Indexed: 02/08/2023]
Abstract
Gastric adenocarcinoma is one of the leading causes of cancer mortality worldwide. It arises through a stepwise process that includes prominent inflammation with expression of interferon-γ (IFN-γ) and multiple other pro-inflammatory cytokines. We engineered mice expressing IFN-γ under the control of the stomach-specific H(+)/K(+) ATPase β promoter to test the potential role of this cytokine in gastric tumorigenesis. Stomachs of H/K-IFN-γ transgenic mice exhibited inflammation, expansion of myofibroblasts, loss of parietal and chief cells, spasmolytic polypeptide expressing metaplasia, and dysplasia. Proliferation was elevated in undifferentiated and metaplastic epithelial cells in H/K-IFN-γ transgenic mice, and there was increased apoptosis. H/K-IFN-γ mice had elevated levels of mRNA for IFN-γ target genes and the pro-inflammatory cytokines IL-6, IL-1β, and tumor necrosis factor-α. Intracellular mediators of IFN-γ and IL-6 signaling, pSTAT1 and pSTAT3, respectively, were detected in multiple cell types within stomach. H/K-IFN-γ mice developed dysplasia as early as 3 months of age, and 4 of 39 mice over 1 year of age developed antral polyps or tumors, including one adenoma and one adenocarcinoma, which expressed high levels of nuclear β-catenin. Our data identified IFN-γ as a pivotal secreted factor that orchestrates complex changes in inflammatory, epithelial, and mesenchymal cell populations to drive pre-neoplastic progression in stomach; however, additional alterations appear to be required for malignant conversion.
Collapse
Affiliation(s)
- Li-Jyun Syu
- Department of Dermatology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tamura A, Yamazaki Y, Hayashi D, Suzuki K, Sentani K, Yasui W, Tsukita S. Claudin-based paracellular proton barrier in the stomach. Ann N Y Acad Sci 2012; 1258:108-14. [PMID: 22731723 DOI: 10.1111/j.1749-6632.2012.06570.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The claudins comprise a multigene family that consists of at least 27 members. Claudins are responsible for establishing the paracellular barrier--which has permselectivity--at the tight junctions in epithelial cells, and the specific patterns of claudin expression in the epithelial cell sheets that cover the internal and external surfaces of organs contribute to the formation of microenvironments and organs' biological functions. Data on the detailed characterization of individual claudins and their roles in different microenvironments are accumulating. A study on the stomach-specific claudin-18-knockout mouse, which has gastritis, recently revealed that the stomach-type claudin-18 specifically forms the proton barrier in the stomach, consistent with previously reported circumstantial evidence. Combined with previous studies on the specific ionic homeostasis by different types of claudins, our findings support the idea that claudins may regulate ion-specific homeostasis in vivo.
Collapse
Affiliation(s)
- Atsushi Tamura
- Laboratory of Biological Science, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Nagini S. Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J Gastrointest Oncol 2012; 4:156-69. [PMID: 22844547 PMCID: PMC3406280 DOI: 10.4251/wjgo.v4.i7.156] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 06/04/2012] [Accepted: 06/12/2012] [Indexed: 02/05/2023] Open
Abstract
Carcinoma of the stomach is still the second most common cause of cancer death worldwide, although the incidence and mortality have fallen dramatically over the last 50 years in many regions. The incidence of gastric cancer varies in different parts of the world and among various ethnic groups. Despite advances in diagnosis and treatment, the 5-year survival rate of stomach cancer is only 20 per cent. Stomach cancer can be classified into intestinal and diffuse types based on epidemiological and clinicopathological features. The etiology of gastric cancer is multifactorial and includes both dietary and nondietary factors. The major diet-related risk factors implicated in stomach cancer development include high content of nitrates and high salt intake. Accumulating evidence has implicated the role of Helicobacter pylori (H. pylori) infection in the pathogenesis of gastric cancer. The development of gastric cancer is a complex, multistep process involving multiple genetic and epigenetic alterations of oncogenes, tumor suppressor genes, DNA repair genes, cell cycle regulators, and signaling molecules. A plausible program for gastric cancer prevention involves intake of a balanced diet containing fruits and vegetables, improved sanitation and hygiene, screening and treatment of H. pylori infection, and follow-up of precancerous lesions. The fact that diet plays an important role in the etiology of gastric cancer offers scope for nutritional chemoprevention. Animal models have been extensively used to analyze the stepwise evolution of gastric carcinogenesis and to test dietary chemopreventive agents. Development of multitargeted preventive and therapeutic strategies for gastric cancer is a major challenge for the future.
Collapse
Affiliation(s)
- Siddavaram Nagini
- Siddavaram Nagini, Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608 002, Tamil Nadu, India
| |
Collapse
|
17
|
Guang W, Twaddell WS, Lillehoj EP. Molecular Interactions between MUC1 Epithelial Mucin, β-Catenin, and CagA Proteins. Front Immunol 2012; 3:105. [PMID: 22566976 PMCID: PMC3345449 DOI: 10.3389/fimmu.2012.00105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/16/2012] [Indexed: 12/24/2022] Open
Abstract
Interleukin (IL)-8-driven neutrophil infiltration of the gastric mucosa is pathognomonic of persistent Helicobacter pylori infection. Our prior study showed that ectopic over-expression of MUC1 in human AGS gastric epithelial cells reduced H. pylori-stimulated IL-8 production compared with cells expressing MUC1 endogenously. Conversely, Muc1 knockout (Muc1(-/-)) mice displayed an increased level of transcripts encoding the keratinocyte chemoattractant (KC), the murine equivalent of human IL-8, in gastric mucosa compared with Muc1(+/+) mice during experimental H. pylori infection. The current study tested the hypothesis that a decreased IL-8 level observed following MUC1 over-expression is mediated through the ability of MUC1 to associate with β-catenin, thereby inhibiting H. pylori-induced β-catenin nuclear translocation. Increased neutrophil infiltration of the gastric mucosa of H. pylori-infected Muc1(-/-) mice was observed compared with Muc1(+/+) wild type littermates, thus defining the functional consequences of increased KC expression in the Muc1-null animals. Protein co-immunoprecipitation (co-IP) studies using lysates of untreated or H. pylori-treated AGS cells demonstrated that (a) MUC1 formed a co-IP complex with β-catenin and CagA, (b) MUC1 over-expression reduced CagA/β-catenin co-IP, and (c) in the absence of MUC1 over-expression, H. pylori infection increased the nuclear level of β-catenin, (d) whereas MUC1 over-expression decreased bacteria-driven β-catenin nuclear localization. These results suggest that manipulation of MUC1 expression in gastric epithelia may be an effective therapeutic strategy to inhibit H. pylori-dependent IL-8 production, neutrophil infiltration, and stomach inflammation.
Collapse
Affiliation(s)
- Wei Guang
- Department of Pediatrics, University of Maryland School of Medicine Baltimore, MD, USA
| | | | | |
Collapse
|
18
|
The inflammatory network in the gastrointestinal tumor microenvironment: lessons from mouse models. J Gastroenterol 2012; 47:97-106. [PMID: 22218775 DOI: 10.1007/s00535-011-0523-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 12/05/2011] [Indexed: 02/04/2023]
Abstract
Accumulating evidence has indicated that inflammatory responses are important for cancer development. Epidemiological studies have shown that regular use of non-steroidal anti-inflammatory drugs (NSAIDs) reduces the risk of colon cancer development. Subsequently, mouse genetic studies have shown that cyclooxygenase (COX)-2, one of the target molecules of NSAIDs, and its downstream product, prostaglandin E(2) (PGE(2)), play an important role in gastrointestinal tumorigenesis. Bacterial infection stimulates the Toll-like receptor (TLR)/MyD88 pathway in tumor tissues, which leads to the induction of COX-2 in stromal cells, including macrophages. Induction of the COX-2/PGE(2) pathway in tumor stroma is important for the development and maintenance of an inflammatory microenvironment in gastrointestinal tumors. In such a microenvironment, tumor-associated macrophages express proinflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-6, and these cytokines, respectively, activate the nuclear factor (NF)-κB and Stat3 transcription factors in epithelial cells, as well as in stromal cells. Recent mouse studies have uncovered the role of such an inflammatory network in the promotion of gastrointestinal tumor development. Genetically engineered and chemically induced mouse tumor models which mimic sporadic or inflammation-associated tumorigenesis were used in these studies. In this review article, we focus on mouse genetic studies using these tumor models, which have contributed to the elucidation of the molecular mechanisms associated with the inflammatory network in gastrointestinal tumors, and we also discuss the role of each pathway in cancer development. The involvement of immune cells such as macrophages, mast cells, and regulatory T cells in tumor promotion is also discussed.
Collapse
|
19
|
Abstract
Laboratory mice have become one of the best animal species for mechanistic studies in gastrointestinal research. Their abundant genetic information, the way of causing carcinogenesis easily by transgenic and gene knockout techniques, limited effort in time and costs, and their practicability provide advantages over other animal models. Meanwhile, several murine practical models have been established for the investigation of the initiation, expansion, and progression of gastritis and gastric carcinoma, for assessing the effects of bacterial, genetic and environmental factors, and for evaluating therapeutic and preventive strategies in gastric diseases. This article gives a review of murine models of gastritis and gastric cancer, placing emphasis on the models associated with Helicobacter pylori infection and techniques used in our laboratory. We discuss matters of murine gastric anatomy, as well as techniques of infection, tissue preparation, and histology.
Collapse
|
20
|
Abstract
Gastric cancer is the second most common cause of cancer-related mortality (9.7% of the total) worldwide. Gastric carcinogenesis is a multiple-step process that involves multiple factors, such as bacteria, immune response and host factors. Animal models play a crucial role in the research of the biological behavior, diagnosis and treatment of gastric cancer. In this article we will review current advances in the development of animal models of gastric cancer in terms of microorganism-induced models, chemical carcinogen-induced models, tumor cell implantation, genetically modified models and in silico models.
Collapse
|