1
|
Park SH, Tsuzuki S, Contino KF, Ollodart J, Eber MR, Yu Y, Steele LR, Inaba H, Kamata Y, Kimura T, Coleman I, Nelson PS, Muñoz-Islas E, Jiménez-Andrade JM, Martin TJ, Mackenzie KD, Stratton JR, Hsu FC, Peters CM, Shiozawa Y. Crosstalk between bone metastatic cancer cells and sensory nerves in bone metastatic progression. Life Sci Alliance 2024; 7:e202302041. [PMID: 39266299 PMCID: PMC11393574 DOI: 10.26508/lsa.202302041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
Although the role of peripheral nerves in cancer progression has been appreciated, little is known regarding cancer/sensory nerve crosstalk and its contribution to bone metastasis and associated pain. In this study, we revealed that the cancer/sensory nerve crosstalk plays a crucial role in bone metastatic progression. We found that (i) periosteal sensory nerves expressing calcitonin gene-related peptide (CGRP) are enriched in mice with bone metastasis; (ii) cancer patients with bone metastasis have elevated CGRP serum levels; (iii) bone metastatic patient tumor samples express elevated calcitonin receptor-like receptor (CRLR, a CGRP receptor component); (iv) higher CRLR levels in cancer patients are negatively correlated with recurrence-free survival; (v) CGRP induces cancer cell proliferation through the CRLR/p38/HSP27 pathway; and (vi) blocking sensory neuron-derived CGRP reduces cancer cell proliferation in vitro and bone metastatic progression in vivo. This suggests that CGRP-expressing sensory nerves are involved in bone metastatic progression and that the CGRP/CRLR axis may serve as a potential therapeutic target for bone metastasis.
Collapse
Affiliation(s)
- Sun H Park
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Shunsuke Tsuzuki
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Kelly F Contino
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jenna Ollodart
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Matthew R Eber
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yang Yu
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Laiton R Steele
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hiroyuki Inaba
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Yuko Kamata
- Department of Oncology, Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Enriqueta Muñoz-Islas
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, Mexico
| | | | - Thomas J Martin
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | - Fang-Chi Hsu
- Department of Biostatistics and Data Science Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Christopher M Peters
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
2
|
Zhu W, Sheng D, Shao Y, Zhang Q, Peng Y. Neuronal calcitonin gene-related peptide promotes prostate tumor growth in the bone microenvironment. Peptides 2021; 135:170423. [PMID: 33086087 DOI: 10.1016/j.peptides.2020.170423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 11/27/2022]
Abstract
Advanced stage of prostate cancer cells preferentially metastasizes to varying bones of prostate cancer patients, resulting in incurable disease with poor prognosis and limited therapeutical treatment options. Calcitonin gene-related peptide (CGRP), a neuropeptide produced by prostate gland, is known to play a pivotal role in facilitating tumor growth and metastasis of numerous human cancers. In this study, we aim to investigate the clinical relevance of CGRP in prostate cancer patients and the effects of CGRP and CGRP antagonists on prostate tumor growth in the mouse model. The prostate tumor-bearing mice were received either CGRP or CGRP antagonist treatment, and the tumor growth was monitored by quantification of luminescence intensities. We found that the CGRP+ nerve fiber density and serum CGRP levels were substantially upregulated in the bone or serum specimens from advanced prostate cancer patients as well as in prostate tumor-bearing mice. Administration of CGRP promoted, whereas treatment of CGRP antagonists inhibited prostate tumor growth in the femurs of mice. In addition, CGRP treatment activated extracellular signal-regulated kinases (ERKs)/ Signal transducer and activator of transcription 3 (STAT3) signaling in prostate cancer cells. Targeting CGRP may serve as a potential therapeutic strategy for advanced prostate cancer patients.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Dongya Sheng
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yiqun Shao
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Qiang Zhang
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yu Peng
- Department of Urology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
3
|
Bussiere JL, Davies R, Dean C, Xu C, Kim KH, Vargas HM, Chellman GJ, Balasubramanian G, Rubio-Beltran E, MaassenVanDenBrink A, Monticello TM. Nonclinical safety evaluation of erenumab, a CGRP receptor inhibitor for the prevention of migraine. Regul Toxicol Pharmacol 2019; 106:224-238. [PMID: 31085251 DOI: 10.1016/j.yrtph.2019.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
Calcitonin gene-related peptide (CGRP) and its receptor have been implicated as a key mediator in the pathophysiology of migraine. Thus, erenumab, a monoclonal antibody antagonist of the CGRP receptor, administered as a once monthly dose of 70 or 140 mg has been approved for the preventive treatment of migraine in adults. Due to the species specificity of erenumab, the cynomolgus monkey was used in the pharmacology, pharmacokinetics, and toxicology studies to support the clinical program. There were no effects of erenumab on platelets in vitro (by binding, activation or phagocytosis assays). Specific staining of human tissues with erenumab did not indicated any off-target binding. There were no erenumab-related findings in a cardiovascular safety pharmacology study in cynomolgus monkeys or in vitro in human isolated coronary arteries. Repeat-dose toxicology studies conducted in cynomolgus monkeys at dose levels up to 225 mg/kg (1 month) or up to 150 mg/kg (up to 6 months) with twice weekly subcutaneous (SC) doses showed no evidence of erenumab-mediated adverse toxicity. There were no effects on pregnancy, embryo-fetal or postnatal growth and development in an enhanced pre-postnatal development study in the cynomolgus monkey. There was evidence of placental transfer of erenumab based on measurable serum concentrations in the infants up to 3 months post birth. The maternal and developmental no-observed-effect level (NOEL) was the highest dose tested (50 mg/kg SC Q2W). These nonclinical data in total indicate no safety signal of concern to date and provide adequate margins of exposure between the observed safe doses in animals and clinical dose levels.
Collapse
Affiliation(s)
| | - Rhian Davies
- Amgen Research, 1120 Veterans Blvd., South San Francisco, CA, 94080, USA
| | - Charles Dean
- Amgen Research, One Amgen Center Dr., Thousand Oaks, CA, 91320, USA
| | - Cen Xu
- Amgen Research, One Amgen Center Dr., Thousand Oaks, CA, 91320, USA
| | - Kyung Hoon Kim
- Amgen Research, 1120 Veterans Blvd., South San Francisco, CA, 94080, USA
| | - Hugo M Vargas
- Amgen Research, One Amgen Center Dr., Thousand Oaks, CA, 91320, USA
| | - Gary J Chellman
- Charles River Laboratories Inc., 6995 Longley Lane, Reno, NV, 89511, USA
| | | | | | | | | |
Collapse
|
4
|
Logan M, Anderson PD, Saab ST, Hameed O, Abdulkadir SA. RAMP1 is a direct NKX3.1 target gene up-regulated in prostate cancer that promotes tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:951-63. [PMID: 23867798 DOI: 10.1016/j.ajpath.2013.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/26/2013] [Accepted: 05/29/2013] [Indexed: 11/28/2022]
Abstract
The homeodomain-containing transcription factor, NKX3.1, plays an important role in the suppression of prostate tumorigenesis. Herein, we identify the receptor activity-modifying protein 1 (RAMP1) as a direct NKX3.1 target gene through analysis of chromatin immunoprecipitation coupled to massively parallel sequencing and gene expression data. RAMP1 is a coreceptor for certain G-protein-coupled receptors, such as the calcitonin gene-related peptide receptor, to the plasma membrane. We found that RAMP1 expression is specifically elevated in human prostate cancer relative to other tumor types. Furthermore, RAMP1 mRNA and protein levels are significantly higher in human prostate cancer compared with benign glands. We identified multiple NKX3.1 binding sites in the RAMP1 locus in human prostate cancer cells and in the normal mouse prostate. Analyses of Nkx3.1 knockout mice and human prostate cancer cell lines indicate that NKX3.1 represses RAMP1 expression. Knockdown of RAMP1 by shRNA decreased prostate cancer cell proliferation and tumorigenicity in vitro and in vivo. By using gene expression profiling and pathway analyses, we identified several cancer-related pathways that are significantly altered in RAMP1 knockdown cells, including the mitogen-activated protein kinase signaling pathway. Further experiments confirmed a reduction in MAP2KI (MEK1) expression and phosphorylated-extracellular signal-regulated kinase 1/2 levels in RAMP1 knockdown cells. These data provide novel insights into the role of RAMP1 in promoting prostate tumorigenesis and support the potential of RAMP1 as a novel biomarker and possible therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Monica Logan
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|