1
|
Pei K, Georgi M, Hill D, Lam CFJ, Wei W, Cordeiro MF. Review: Neuroprotective Nanocarriers in Glaucoma. Pharmaceuticals (Basel) 2024; 17:1190. [PMID: 39338350 PMCID: PMC11435059 DOI: 10.3390/ph17091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma stands as a primary cause of irreversible blindness globally, characterized by the progressive dysfunction and loss of retinal ganglion cells (RGCs). While current treatments primarily focus on controlling intraocular pressure (IOP), many patients continue to experience vision loss. Therefore, the research focus has shifted to therapeutic targets aimed at preventing or delaying RGC death and optic nerve degeneration to slow or halt disease progression. Traditional ocular drug administration, such as eye drops or oral medications, face significant challenges due to the eye's unique structural and physiological barriers, which limit effective drug delivery. Invasive methods like intravitreal injections can cause side effects such as bleeding, inflammation, and infection, making non-invasive delivery methods with high bioavailability very desirable. Nanotechnology presents a promising approach to addressing these limitations in glaucoma treatment. This review summarizes current approaches involving neuroprotective drugs combined with nanocarriers, and their impact for future use.
Collapse
Affiliation(s)
- Kun Pei
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Maria Georgi
- St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
| | - Daniel Hill
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | - Wei Wei
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
| | - Maria Francesca Cordeiro
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
- Western Eye Hospital, London NW1 5QH, UK
| |
Collapse
|
2
|
Chaudhry S, Dunn H, Carnt N, White A. Nutritional supplementation in the prevention and treatment of Glaucoma. Surv Ophthalmol 2021; 67:1081-1098. [PMID: 34896192 DOI: 10.1016/j.survophthal.2021.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
Glaucoma is a chronic optic neuropathy that creates a significant burden on public health. Oxidative stress is hypothesised to play a role to glaucoma progression, and its reduction is being analysed as a therapeutic target. Dietary antioxidants play a crucial role in helping provide insight into this hypothesis. We reviewed 71 trials, interventional, I -vivo and I -vitro, including 11 randomised controlled trials, to determine if adjunctive nutritional supplementation could lead to a reduction in oxidative stress and prevent glaucomatous progression. Many laboratory findings show that vitamins and natural compounds contain an abundance of intrinsic antioxidative, neuroprotective and vasoprotective properties that show promise in the treatment and prevention of glaucoma. Although there is encouraging early evidence, most clincial findings are inconclusive. The group of B vitamins appear to have the greatest amount of evidence. Other compounds such as flavonoids, carotenoids, curcumin, saffron, CoQ10, Ggngko Biloba and Resveratrol however warrant further investigation in glaucoma patients. Studies of these antioxidants and other nutrients could create adjunctive or alternative preventative and treatment modalities for glaucoma to those currently available.
Collapse
Key Words
- AA, Ascorbic acid
- ARMD, Age Related Macular Degeneration
- CoQ10, Coenzyme Q10
- GON, Glaucomatous Optic Neuropathy
- Hcy, Homocysteine
- IOP, Intraocular pressure
- NO, Nitric Oxide
- NOS, Nitric Oxide Synthase
- NTG, Normal Tension Glaucoma
- POAG, Primary open angle Glaucoma;PEXG, Exfoliation Glaucoma
- PVD Primary vascular dysregulation
- RGC, Retinal Ganglion Cells
- ROS, Reactive Oxygen Species
- SC, Schlemm's Canal
- TM Trabecular Meshwork
- Vitamins, Nutrients, Glaucoma, Supplements, Reactive Oxygen Species, Open Angle Glaucoma, Trabecular Meshwork, Retinal Ganglion Cells, Oxidative Stress. Abbreviations
Collapse
Affiliation(s)
- Sarah Chaudhry
- Westmead Hospital, Westmead, Sydney, New South Wales, Australia.
| | - Hamish Dunn
- Westmead Hospital, Westmead, Sydney, New South Wales, Australia; Westmead and Central Clinical Schools, Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia; Save Sight Institute, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Nicole Carnt
- Westmead Hospital, Westmead, Sydney, New South Wales, Australia; Westmead Institute of Medical Research, Westmead, New South Wales, Australia; Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew White
- Westmead Hospital, Westmead, Sydney, New South Wales, Australia; Westmead and Central Clinical Schools, Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Westmead Institute of Medical Research, Westmead, New South Wales, Australia; Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia; Save Sight Institute, Sydney Medical School, University of Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Tawarayama H, Inoue-Yanagimachi M, Himori N, Nakazawa T. Glial cells modulate retinal cell survival in rotenone-induced neural degeneration. Sci Rep 2021; 11:11159. [PMID: 34045544 PMCID: PMC8159960 DOI: 10.1038/s41598-021-90604-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
Administration of the mitochondrial complex I inhibitor rotenone provides an excellent model to study the pathomechanism of oxidative stress-related neural degeneration diseases. In this study, we examined the glial roles in retinal cell survival and degeneration under the rotenone-induced oxidative stress condition. Mouse-derived Müller, microglial (BV-2), and dissociated retinal cells were used for in vitro experiments. Gene expression levels and cell viability were determined using quantitative reverse transcription-polymerase chain reaction and the alamarBlue assay, respectively. Conditioned media were prepared by stimulating glial cells with rotenone. Retinal ganglion cells (RGCs) and inner nuclear layer (INL) were visualized on rat retinal sections by immunohistochemistry and eosin/hematoxylin, respectively. Rotenone dose-dependently induced glial cell death. Treatment with rotenone or rotenone-stimulated glial cell-conditioned media altered gene expression of growth factors and inflammatory cytokines in glial cells. The viability of dissociated retinal cells significantly increased upon culturing in media conditioned with rotenone-stimulated or Müller cell-conditioned media-stimulated BV-2 cells. Furthermore, intravitreal neurotrophin-5 administration prevented the rotenone-induced reduction of RGC number and INL thickness in rats. Thus, glial cells exerted both positive and negative effects on retinal cell survival in rotenone-induced neural degeneration via altered expression of growth factors, especially upregulation of microglia-derived Ntf5, and proinflammatory cytokines.
Collapse
Affiliation(s)
- Hiroshi Tawarayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Maki Inoue-Yanagimachi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan. .,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan. .,Collaborative Program of Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan. .,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan. .,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| |
Collapse
|
4
|
Liu H, Prokosch V. Energy Metabolism in the Inner Retina in Health and Glaucoma. Int J Mol Sci 2021; 22:ijms22073689. [PMID: 33916246 PMCID: PMC8036449 DOI: 10.3390/ijms22073689] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Glaucoma, the leading cause of irreversible blindness, is a heterogeneous group of diseases characterized by progressive loss of retinal ganglion cells (RGCs) and their axons and leads to visual loss and blindness. Risk factors for the onset and progression of glaucoma include systemic and ocular factors such as older age, lower ocular perfusion pressure, and intraocular pressure (IOP). Early signs of RGC damage comprise impairment of axonal transport, downregulation of specific genes and metabolic changes. The brain is often cited to be the highest energy-demanding tissue of the human body. The retina is estimated to have equally high demands. RGCs are particularly active in metabolism and vulnerable to energy insufficiency. Understanding the energy metabolism of the inner retina, especially of the RGCs, is pivotal for understanding glaucoma’s pathophysiology. Here we review the key contributors to the high energy demands in the retina and the distinguishing features of energy metabolism of the inner retina. The major features of glaucoma include progressive cell death of retinal ganglions and optic nerve damage. Therefore, this review focuses on the energetic budget of the retinal ganglion cells, optic nerve and the relevant cells that surround them.
Collapse
|
5
|
Pang Y, Qin M, Hu P, Ji K, Xiao R, Sun N, Pan X, Zhang X. Resveratrol protects retinal ganglion cells against ischemia induced damage by increasing Opa1 expression. Int J Mol Med 2020; 46:1707-1720. [PMID: 32901846 PMCID: PMC7521588 DOI: 10.3892/ijmm.2020.4711] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Loss of idiopathic retinal ganglion cells (RGCs) leads to irreversible vision defects and is considered the primary characteristic of glaucoma. However, effective treatment strategies in terms of RGC neuroprotection remain elusive. In the present study, the protective effects of resveratrol on RGC apoptosis, and the mechanisms underlying its effects were investigated, with a particular emphasis on the function of optic atrophy 1 (Opa1). In an ischemia/reperfusion (I/R) injury model, the notable thinning of the retina, significant apoptosis of RGCs, reduction in Opa1 expression and long Opa1 isoform to short Opa1 isoform ratios (L-Opa1/S-Opa1 ratio) were observed, all of which were reversed by resveratrol administration. Serum deprivation resulted in reductions in R28 cell viability, superoxide dismutase (SOD) activity, Opa1 expression and induced apoptosis, which were also partially reversed by resveratrol treatment. To conclude, results from the present study suggest that resveratrol treatment significantly reduced retinal damage and RGC apoptosis in I/R injury and serum deprivation models. In addition, resveratrol reversed the downregulated expression of Opa1 and reduced SOD activity. Mechanistically, resveratrol influenced mitochondrial dynamics by regulating the L-Opa1/S-Opa1 ratio. Therefore, these observations suggest that resveratrol may exhibit potential as a therapeutic agent for RGC damage in the future.
Collapse
Affiliation(s)
- Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Mengqi Qin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Piaopiao Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Kaibao Ji
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Ruihan Xiao
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Nan Sun
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Xinghui Pan
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
6
|
Retinal energy metabolism in health and glaucoma. Prog Retin Eye Res 2020; 81:100881. [PMID: 32712136 DOI: 10.1016/j.preteyeres.2020.100881] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 01/17/2023]
Abstract
Energy metabolism refers to the processes by which life transfers energy to do cellular work. The retina's relatively large energy demands make it vulnerable to energy insufficiency. In addition, evolutionary pressures to optimize human vision have been traded against retinal ganglion cell bioenergetic fragility. Details of the metabolic profiles of the different retinal cells remain poorly understood and are challenging to resolve. Detailed immunohistochemical mapping of the energy pathway enzymes and substrate transporters has provided some insights and highlighted interspecies differences. The different spatial metabolic patterns between the vascular and avascular retinas can account for some inconsistent data in the literature. There is a consilience of evidence that at least some individuals with glaucoma have impaired RGC energy metabolism, either due to impaired nutrient supply or intrinsic metabolic perturbations. Bioenergetic-based therapy for glaucoma has a compelling pathophysiological foundation and is supported by recent successes in animal models. Recent demonstrations of visual and electrophysiological neurorecovery in humans with glaucoma is highly encouraging and motivates longer duration trials investigating bioenergetic neuroprotection.
Collapse
|
7
|
Naik S, Pandey A, Lewis SA, Rao BSS, Mutalik S. Neuroprotection: A versatile approach to combat glaucoma. Eur J Pharmacol 2020; 881:173208. [PMID: 32464192 DOI: 10.1016/j.ejphar.2020.173208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022]
Abstract
In most retinal diseases, neuronal loss is the main cause of vision loss. Neuroprotection is the alteration of neurons and/or their environment to encourage the survival and function of the neurons, especially in environments that are deleterious to the neuronal health. The area of neuroprotection progresses with a therapeutically-based hope of improving vision and clinical outcomes for patients through the developments in neurotrophic therapy, antioxidative therapy, anti-excitotoxic, anti-ischemic, anti-inflammatory, and anti-apoptotic care. In this review, we summarize the various neuroprotection strategies for the treatment of glaucoma, genetics of glaucoma and the role of various nanoplatforms in the treatment of glaucoma.
Collapse
Affiliation(s)
- Santoshi Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Bola Sadashiva Satish Rao
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India.
| |
Collapse
|
8
|
Lambert WS, Pasini S, Collyer JW, Formichella CR, Ghose P, Carlson BJ, Calkins DJ. Of Mice and Monkeys: Neuroprotective Efficacy of the p38 Inhibitor BIRB 796 Depends on Model Duration in Experimental Glaucoma. Sci Rep 2020; 10:8535. [PMID: 32444682 PMCID: PMC7244559 DOI: 10.1038/s41598-020-65374-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/04/2020] [Indexed: 01/23/2023] Open
Abstract
Glaucoma is a group of optic neuropathies associated with aging and sensitivity to intraocular pressure (IOP). Early progression involves retinal ganglion cell (RGC) axon dysfunction that precedes frank degeneration. Previously we demonstrated that p38 MAPK inhibition abates axonal dysfunction and slows degeneration in the inducible microbead occlusion model of glaucoma in rat. Here, we assessed the neuroprotective effect of topical eye delivery of the p38 MAPK inhibitor BIRB 796 in three models of glaucoma (microbead occlusion in rat and squirrel monkey and the genetic DBA/2 J mouse model) with distinct durations of IOP elevation. While BIRB 796 did not influence IOP, treatment over four weeks in rats prevented degradation of anterograde axonal transport to the superior colliculus and degeneration in the optic nerve. Treatment over months in the chronic DBA/2 J model and in the squirrel monkey model reduced expression and activation of p38 downstream targets in the retina and brain but did not rescue RGC axon transport or degeneration, suggesting the efficacy of BIRB 796 in preventing associated degeneration of the RGC projection depends on the duration of the experimental model. These results emphasize the importance of evaluating potential therapeutic compounds for neuroprotection in multiple models using elongated treatment paradigms for an accurate assessment of efficacy.
Collapse
Affiliation(s)
- Wendi S Lambert
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA
| | - Silvia Pasini
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA
| | - John W Collyer
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA
| | - Cathryn R Formichella
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA
| | - Purnima Ghose
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA
| | - Brian J Carlson
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA
| | - David J Calkins
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA.
| |
Collapse
|
9
|
Sia PI, Wood JPM, Chidlow G, Casson R. Creatine is Neuroprotective to Retinal Neurons In Vitro But Not In Vivo. Invest Ophthalmol Vis Sci 2020; 60:4360-4377. [PMID: 31634394 DOI: 10.1167/iovs.18-25858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the neuroprotective properties of creatine in the retina using in vitro and in vivo models of injury. Methods Two different rat retinal culture systems (one containing retinal ganglion cells [RGC] and one not) were subjected to either metabolic stress, via treatments with the mitochondrial complex IV inhibitor sodium azide, or excitotoxic stress, via treatment with N-methyl-D-aspartate for 24 hours, in the presence or absence of creatine (0.5, 1.0, and 5.0 mM). Neuronal survival was assessed by immunolabeling for cell-specific antigens. Putative mechanisms of creatine action were investigated in vitro. Expression of creatine kinase (CK) isoenzymes in the rat retina was examined using Western blotting and immunohistochemistry. The effect of oral creatine supplementation (2%, wt/wt) on retinal and blood creatine levels was determined as well as RGC survival in rats treated with N-methyl-D-aspartate (NMDA; 10 nmol) or high IOP-induced ischemia reperfusion. Results Creatine significantly prevented neuronal death induced by sodium azide and NMDA in both culture systems. Creatine administration did not alter cellular adenosine triphosphate (ATP). Inhibition of CK blocked the protective effect of creatine. Retinal neurons, including RGCs, expressed predominantly mitochondrial CK isoforms, while glial cells expressed exclusively cytoplasmic CKs. In vivo, NMDA and ischemia reperfusion caused substantial loss of RGCs. Creatine supplementation led to elevated blood and retinal levels of this compound but did not significantly augment RGC survival in either model. Conclusions Creatine increased neuronal survival in retinal cultures; however, no significant protection of RGCs was evident in vivo, despite elevated levels of this compound being present in the retina after oral supplementation.
Collapse
Affiliation(s)
- Paul Ikgan Sia
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - John P M Wood
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Glyn Chidlow
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert Casson
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Lambert WS, Carlson BJ, Formichella CR, Sappington RM, Ahlem C, Calkins DJ. Oral Delivery of a Synthetic Sterol Reduces Axonopathy and Inflammation in a Rodent Model of Glaucoma. Front Neurosci 2017; 11:45. [PMID: 28223915 PMCID: PMC5293777 DOI: 10.3389/fnins.2017.00045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/20/2017] [Indexed: 12/12/2022] Open
Abstract
Glaucoma is a group of optic neuropathies associated with aging and sensitivity to intraocular pressure (IOP). The disease is the leading cause of irreversible blindness worldwide. Early progression in glaucoma involves dysfunction of retinal ganglion cell (RGC) axons, which comprise the optic nerve. Deficits in anterograde transport along RGC axons to central visual structures precede outright degeneration, and preventing these deficits is efficacious at abating subsequent progression. HE3286 is a synthetic sterol derivative that has shown therapeutic promise in models of inflammatory disease and neurodegenerative disease. We examined the efficacy of HE3286 oral delivery in preventing loss of anterograde transport in an inducible model of glaucoma (microbead occlusion). Adult rats received HE3286 (20 or 100 mg/kg) or vehicle daily via oral gavage for 4 weeks. Microbead occlusion elevated IOP ~30% in all treatment groups, and elevation was not affected by HE3286 treatment. In the vehicle group, elevated IOP reduced anterograde axonal transport to the superior colliculus, the most distal site in the optic projection, by 43% (p = 0.003); HE3286 (100 mg/kg) prevented this reduction (p = 0.025). HE3286 increased brain-derived neurotrophic factor (BDNF) in the optic nerve head and retina, while decreasing inflammatory and pathogenic proteins associated with elevated IOP compared to vehicle treatment. Treatment with HE3286 also increased nuclear localization of the transcription factor NFκB in collicular and retinal neurons, but decreased NFκB in glial nuclei in the optic nerve head. Thus, HE3286 may have a neuroprotective influence in glaucoma, as well as other chronic neurodegenerations.
Collapse
Affiliation(s)
- Wendi S Lambert
- Vanderbilt University Medical Center, The Vanderbilt Eye Institute Nashville, TN, USA
| | - Brian J Carlson
- Vanderbilt University Medical Center, The Vanderbilt Eye Institute Nashville, TN, USA
| | - Cathryn R Formichella
- Vanderbilt University Medical Center, The Vanderbilt Eye Institute Nashville, TN, USA
| | - Rebecca M Sappington
- Vanderbilt University Medical Center, The Vanderbilt Eye Institute Nashville, TN, USA
| | | | - David J Calkins
- Vanderbilt University Medical Center, The Vanderbilt Eye Institute Nashville, TN, USA
| |
Collapse
|
11
|
Funke S, Perumal N, Beck S, Gabel-Scheurich S, Schmelter C, Teister J, Gerbig C, Gramlich OW, Pfeiffer N, Grus FH. Glaucoma related Proteomic Alterations in Human Retina Samples. Sci Rep 2016; 6:29759. [PMID: 27425789 PMCID: PMC4947915 DOI: 10.1038/srep29759] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/24/2016] [Indexed: 01/23/2023] Open
Abstract
Glaucoma related proteomic changes have been documented in cell and animal models. However, proteomic studies investigating on human retina samples are still rare. In the present work, retina samples of glaucoma and non-glaucoma control donors have been examined by a state-of-the-art mass spectrometry (MS) workflow to uncover glaucoma related proteomic changes. More than 600 proteins could be identified with high confidence (FDR < 1%) in human retina samples. Distinct proteomic changes have been observed in 10% of proteins encircling mitochondrial and nucleus species. Numerous proteins showed a significant glaucoma related level change (p < 0.05) or distinct tendency of alteration (p < 0.1). Candidates were documented to be involved in cellular development, stress and cell death. Increase of stress related proteins and decrease of new glaucoma related candidates, ADP/ATP translocase 3 (ANT3), PC4 and SRFS1-interacting protein 1 (DFS70) and methyl-CpG-binding protein 2 (MeCp2) could be documented by MS. Moreover, candidates could be validated by Accurate Inclusion Mass Screening (AIMS) and immunostaining and supported for the retinal ganglion cell layer (GCL) by laser capture microdissection (LCM) in porcine and human eye cryosections. The workflow allowed a detailed view into the human retina proteome highlighting new molecular players ANT3, DFS70 and MeCp2 associated to glaucoma.
Collapse
Affiliation(s)
- Sebastian Funke
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Natarajan Perumal
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Sabine Beck
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Silke Gabel-Scheurich
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Carsten Schmelter
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Julia Teister
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Claudia Gerbig
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Oliver W Gramlich
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa, USA
| | - Norbert Pfeiffer
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Franz H Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
12
|
Osborne NN, Álvarez CN, del Olmo Aguado S. Targeting mitochondrial dysfunction as in aging and glaucoma. Drug Discov Today 2014; 19:1613-22. [DOI: 10.1016/j.drudis.2014.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/16/2014] [Accepted: 05/20/2014] [Indexed: 12/21/2022]
|
13
|
Sia PI, Luiten AN, Stace TM, Wood JPM, Casson RJ. Quantum biology of the retina. Clin Exp Ophthalmol 2014; 42:582-9. [DOI: 10.1111/ceo.12373] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/10/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Paul Ikgan Sia
- South Australian Institute of Ophthalmology; Hanson Institute; University of Adelaide; Adelaide South Australia Australia
| | - André N Luiten
- Institute for Photonics and Advanced Sensing (IPAS); School of Chemistry and Physics; University of Adelaide; Adelaide South Australia Australia
| | - Thomas M Stace
- School of Mathematics and Physics; University of Queensland; Brisbane Queensland Australia
| | - John PM Wood
- South Australian Institute of Ophthalmology; Hanson Institute; University of Adelaide; Adelaide South Australia Australia
| | - Robert J Casson
- South Australian Institute of Ophthalmology; Hanson Institute; University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
14
|
Glaucoma – Diabetes of the brain: A radical hypothesis about its nature and pathogenesis. Med Hypotheses 2014; 82:535-46. [DOI: 10.1016/j.mehy.2014.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 12/12/2022]
|
15
|
Dynamic mobilization of PGC-1α mediates mitochondrial biogenesis for the protection of RGC-5 cells by resveratrol during serum deprivation. Apoptosis 2013; 18:786-99. [PMID: 23525928 DOI: 10.1007/s10495-013-0837-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction contributing to the pathogenesis of glaucomatous neurodegeneration has stimulated considerable interest recently. In this study, we explored the role of peroxisome proliferator activated receptor-γ co-activator 1α (PGC-1α) in resveratrol-triggered mitochondrial biogenesis for preventing apoptosis in a retinal ganglion cell line RGC-5. Our results showed that serum deprivation induced cell apoptosis in a time-dependent manner. Applying resveratrol maintained the normal mitochondrial membrane potential, decreased the levels of both total and cleaved caspase-3, and inhibited the release of cytochrome c, which subsequently enhanced cell survival. Moreover, resveratrol stimulated mitochondrial biogenesis by increasing the absolute quantity of mitochondria as well as their DNA copies. Treatment with resveratrol promoted the protein expression of SIRT1, but not PGC-1α; instead, resveratrol facilitated PGC-1α translocation from the cytoplasm to the nucleus and up-regulated NRF1 and TFAM, which were blocked by nicotinamide. Collectively, we demonstrate that the SIRT1-dependent PGC-1α subcellular translocation following resveratrol application potentially attenuates serum deprivation-elicited RGC-5 cell death, thereby raising the possibility of mitigating glaucomatous retinopathy by enhancement of mitochondrial biogenesis.
Collapse
|
16
|
Affiliation(s)
- Robert J Casson
- SA Institute of Ophthalmology and Royal Adelaide Hospital; Adelaide; South Australia; Australia
| |
Collapse
|
17
|
Osborne NN, del Olmo-Aguado S. Maintenance of retinal ganglion cell mitochondrial functions as a neuroprotective strategy in glaucoma. Curr Opin Pharmacol 2012; 13:16-22. [PMID: 22999653 DOI: 10.1016/j.coph.2012.09.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/03/2012] [Accepted: 09/03/2012] [Indexed: 12/26/2022]
Abstract
Loss of vision in glaucoma occurs because retinal ganglion cells (RGCs) die. RGCs have probably more mitochondria than any other neurone in the CNS. It is proposed that stress to mitochondria of individual RGCs is a major trigger of the disease and also provides an explanation why different RGCs die at different times. Pharmacological agents that can maintain mitochondrial functions, in particular to attenuate oxidative stress and to sustain energy production, might therefore provide a novel way of slowing down RGC death and help in the treatment of glaucoma.
Collapse
Affiliation(s)
- Neville N Osborne
- Fundación de Investigación Oftalmológica, Avda. Doctores Fernández-Vega 34, E-33012 Oviedo, Asturias, Spain.
| | | |
Collapse
|
18
|
Pascale A, Drago F, Govoni S. Protecting the retinal neurons from glaucoma: lowering ocular pressure is not enough. Pharmacol Res 2012; 66:19-32. [PMID: 22433276 DOI: 10.1016/j.phrs.2012.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 01/01/2023]
Abstract
The retina is theater of a number of biochemical reactions allowing, within its layers, the conversion of light impulses into electrical signals. The axons of the last neuronal elements, the ganglion cells, form the optic nerve and transfer the signals to the brain. Therefore, an appropriate cellular communication, not only within the different retinal cells, but also between the retina itself and the other brain structures, is fundamental. One of the most diffuse pathologies affecting retinal function and communication, which thus reverberates in the whole visual system, is glaucoma. This insidious disease is characterized by a progressive optic nerve degeneration and sight loss which may finally lead to irreversible blindness. Nevertheless, the progressive nature of this pathology offers an opportunity for therapeutic intervention. To better understand the cellular processes implicated in the development of glaucoma useful to envision a targeted pharmacological strategy, this manuscript first examines the complex cellular and functional organization of the retina and subsequently identifies the targets sensitive to neurodegeneration. Within this context, high ocular pressure represents a key risk factor. However, recent literature findings highlight the concept that lowering ocular pressure is not enough to prevent/slow down glaucomatous damage, suggesting the importance of combining the hypotensive treatment with other pharmacological approaches, such as the use of neuroprotectants. Therefore, this important and more novel aspect is extensively considered in this review, also emphasizing the idea that the neuroprotective strategy should be extended to the entire visual system and not restricted to the retina.
Collapse
Affiliation(s)
- Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|
19
|
Song Z, Gao H, Liu H, Sun X. Metabolomics of Rabbit Aqueous Humor after Administration of Glucocorticosteroid. Curr Eye Res 2011; 36:563-70. [DOI: 10.3109/02713683.2011.566410] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Abstract
PURPOSE OF REVIEW The concept of neuroprotective therapy for glaucoma is that damage to retinal ganglion cells (RGCs) may be prevented by intervening in neuronal death pathways. This review focuses on strategies for neuroprotection and summarizes preclinical studies that have investigated potential agents over the last 2 years. RECENT FINDINGS Part of the challenge of studies in neuroprotection has been the utilization of an animal model that resembles human glaucoma. Several models have been utilized including acute and chronic intraocular pressure elevation, the DBA/2J mouse, optic nerve axotomy and crush. NMDA inhibitors continued to be explored however with limited success in human trials. Memantine failed to demonstrate neuroprotection in phase III clinical trials. Although its mechanism of neuroprotection has not been fully elaborated, topical brimonidine has shown some neuroprotective benefits. Exogeneous neurotrophins delay, but do not prevent, RGC death. Bioenergetic neuroprotection that is enhancing the energy supply to RGC has been explored with benefits in animal models. Other strategies include TNF-α, modulation of the immune system and inflammation, and blocking apoptotic signals and stem cells. SUMMARY Animal models of glaucoma and neuroprotective strategies continue to be refined. Establishing consensus guidelines for the execution and design of translational research in neuroprotection may optimize the facilitation of neuroprotection research.
Collapse
|
21
|
Abstract
Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells and their axons. Recent evidence suggests that intraocular pressure (IOP) is only one of the many risk factors for this disease. Current treatment options for this disease have been limited to the reduction of IOP; however, it is clear now that the disease progression continues in many patients despite effective lowering of IOP. In the search for newer modalities in treating this disease, much data have emerged from experimental research the world over, suggesting various pathological processes involved in this disease and newer possible strategies to treat it. This review article looks into the current understanding of the pathophysiology of glaucoma, the importance of neuroprotection, the various possible pharmacological approaches for neuroprotection and evidence of current available medications.
Collapse
Affiliation(s)
- Sushil K Vasudevan
- Centre for Eye Research Australia, University of Melbourne and Glaucoma Unit, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia.
| | | | | |
Collapse
|
22
|
Current World Literature. Curr Opin Ophthalmol 2011; 22:141-6. [DOI: 10.1097/icu.0b013e32834483fc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Lambert WS, Ruiz L, Crish SD, Wheeler LA, Calkins DJ. Brimonidine prevents axonal and somatic degeneration of retinal ganglion cell neurons. Mol Neurodegener 2011; 6:4. [PMID: 21232114 PMCID: PMC3035592 DOI: 10.1186/1750-1326-6-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/13/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brimonidine is a common drug for lowering ocular pressure and may directly protect retinal ganglion cells in glaucoma. The disease involves early loss of retinal ganglion cell transport to brain targets followed by axonal and somatic degeneration. We examined whether brimonidine preserves ganglion cell axonal transport and abates degeneration in rats with elevated ocular pressure induced by laser cauterization of the episcleral veins. RESULTS Ocular pressure was elevated unilaterally by 90% for a period of 8 weeks post- cauterization. During this time, brimonidine (1mg/kg/day) or vehicle (phosphate-buffered saline) was delivered systemically and continuously via subcutaneous pump. Animals received bilateral intravitreal injections of fluorescent cholera toxin subunit β (CTB) two days before sacrifice to assess anterograde transport. In retinas from the vehicle group, elevated pressure induced a 44% decrease in the fraction of ganglion cells with intact uptake of CTB and a 14-42% reduction in the number of immuno-labelled ganglion cell bodies, with the worst loss occurring nasally. Elevated pressure also caused a 33% loss of ganglion cell axons in vehicle optic nerves and a 70% decrease in CTB transport to the superior colliculus. Each of these components of ganglion cell degeneration was either prevented or significantly reduced in the brimonidine treatment group. CONCLUSIONS Continuous and systemic treatment with brimonidine by subcutaneous injection significantly improved retinal ganglion cell survival with exposure to elevated ocular pressure. This effect was most striking in the nasal region of the retina. Brimonidine treatment also preserved ganglion cell axon morphology, sampling density and total number in the optic nerve with elevated pressure. Consistent with improved outcome in the optic projection, brimonidine also significantly reduced the deficits in axonal transport to the superior colliculus associated with elevated ocular pressure. As transport deficits to and from retinal ganglion cell projection targets in the brain are relevant to the progression of glaucoma, the ability of brimonidine to preserve optic nerve axons and active transport suggests its neuroprotective effects are relevant not only at the cell body, but throughout the entire optic projection.
Collapse
Affiliation(s)
- Wendi S Lambert
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37205, USA.
| | | | | | | | | |
Collapse
|
24
|
Abstract
The visual system is one of the most energetically demanding systems in the brain. The currency of energy is ATP, which is generated most efficiently from oxidative metabolism in the mitochondria. ATP supports multiple neuronal functions. Foremost is repolarization of the membrane potential after depolarization. Neuronal activity, ATP generation, blood flow, oxygen consumption, glucose utilization, and mitochondrial oxidative metabolism are all interrelated. In the retina, phototransduction, neurotransmitter utilization, and protein/organelle transport are energy-dependent, yet repolarization-after-depolarization consumes the bulk of the energy. Repolarization in photoreceptor inner segments maintains the dark current. Repolarization by all neurons along the visual pathway following depolarizing excitatory glutamatergic neurotransmission preserves cellular integrity and permits reactivation. The higher metabolic activity in the magno- versus the parvo-cellular pathway, the ON- versus the OFF-pathway in some (and the reverse in other) species, and in specialized functional representations in the visual cortex all reflect a greater emphasis on the processing of specific visual attributes. Neuronal activity and energy metabolism are tightly coupled processes at the cellular and even at the molecular levels. Deficiencies in energy metabolism, such as in diabetes, mitochondrial DNA mutation, mitochondrial protein malfunction, and oxidative stress can lead to retinopathy, visual deficits, neuronal degeneration, and eventual blindness.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
25
|
Abstract
Glaucoma is a group of heterogeneous optic neuropathies with complex genetic basis. Among the three principle subtypes of glaucoma, primary open angle glaucoma (POAG) occurs most frequently. Till date, 25 loci have been found to be linked to POAG. However, only three underlying genes (Myocilin, Optineurin and WDR36) have been identified. In addition, at least 30 other genes have been reported to be associated with POAG. Despite strong genetic influence in POAG pathogenesis, only a small part of the disease can be explained in terms of genetic aberration. Current concepts of glaucoma pathogenesis suggest it to be a neurodegenerative disorder which is triggered by different factors including mechanical stress due to intra-ocular pressure, reduced blood flow to retina, reperfusion injury, oxidative stress, glutamate excitotoxicity, and aberrant immune response. Here we present a mechanistic overview of potential pathways and crosstalk between them operating in POAG pathogenesis.
Collapse
Affiliation(s)
- Kunal Ray
- Molecular and Human Genetic Division, Indian Institute of Chemical Biology (a unit of CSIR), Kolkata, India.
| | | |
Collapse
|
26
|
Cartwright VA, Savino PJ. Ophthalmology journals and the ether: considering Journal Impact Factor and citation analysis in context. Clin Exp Ophthalmol 2010; 37:833-5. [PMID: 20092590 DOI: 10.1111/j.1442-9071.2009.02199.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
S-adenosyl-L-methionine restores photoreceptor function following acute retinal ischemia. Vis Neurosci 2009; 26:429-41. [PMID: 19919727 DOI: 10.1017/s0952523809990241] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The survival and function of retinal neurons is dependent on mitochondrial energy generation and its intracellular distribution by creatine kinase. Post ischemic disruption of retinal creatine synthesis, creatine kinase activity, or transport of creatine into neurons may impair retinal function. S-adenosyl-L-methionine (SAMe) is required for creatine synthesis, phosphatidylcholine and glutathione synthesis, and transducin methylation. These reactions are essential for photoreceptor function but may be downregulated after ischemia due to a reduction in SAMe. Our aim was to determine whether administration of SAMe after ischemia could improve retinal function. Unilateral retinal ischemia was induced in adult rats by increasing the intraocular pressure to 110 mm Hg for 60 min. Immediately after the ischemic insult, SAMe was injected into the vitreous (100 microM), followed by oral administration (69 mg/kg/day) for 5 or 10 days. Retinal function (electroretinography), histology, and creatine transporter (CRT-1) expression were analyzed. Photoreceptoral responses (R(mP3), S), rod and cone bipolar cell responses (PII), and oscillatory potentials were reduced by the ischemia/reperfusion insult. Although SAMe treatment ameliorated the ischemia-induced histological damage by day 5, there was no improvement in retinal function and the intensity of CRT-1 labeling in ischemic retinas was markedly reduced. However, 10 days after ischemia, a recovery in CRT-1 immunolabeling was evident and SAMe supplementation significantly restored photoreceptor function and rod PII responses. In conclusion, these data suggest that creatine transport and methylation reactions, such as creatine synthesis, may be compromised by an ischemic insult contributing to retinal dysfunction and injury. Oral SAMe supplementation after retinal ischemia may provide an effective, safe, and accessible neuroprotective strategy.
Collapse
|