1
|
Huang W, Wang L, Yang R, Hu R, Zheng Q, Zan X. Combined delivery of small molecule and protein drugs as synergistic therapeutics for treating corneal neovascularization by a one-pot coassembly strategy. Mater Today Bio 2022; 17:100456. [PMID: 36281304 PMCID: PMC9587374 DOI: 10.1016/j.mtbio.2022.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/24/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Combined drug administration is a potential strategy to increase efficacy through therapeutic synergy. Small molecule drugs and protein drugs are the two most popular kinds of drugs in medicine. However, efficiently encapsulating these two drugs still have key challenges due to their distinct properties (molecular weight, hydrophilicity, chemical groups, etc.), weak ability to penetrate through various biobarriers (cell membrane, endosome escape, tissue barriers dependent on the method of administration, etc.) and the easy deactivation of protein drugs during the construction of carrier and delivery process. Here, we utilize the hexahistidine-metal assembly (HmA), which can encapsulate a wide spectrum of drugs with high loading efficiency, to coencapsulate Dexp (a small molecule drug) and BVZ (protein drug) by a one-pot coassembly strategy. Our data demonstrated that Dexp and BVZ were coloaded into Dexp&BVZ@HmA with high efficiency, while the bioactivity of BVZ was well-maintained. Most importantly, when evaluating the therapeutic outcomes of drugs@HmA in a corneal neovascularization (CNV) model in vitro and in vivo, the combination group presented overwhelming efficacy compared to the monotherapy group. This strategy offers a platform to codeliver protein and small drugs and has the potential for treating anterior segment diseases as well as other diseases that need combination therapy.
Collapse
Affiliation(s)
- Wenjuan Huang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China,School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liwen Wang
- Huzhou Central Hospital, Affliated Central Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Ruhui Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ronggui Hu
- Department of Anesthesiology, Wenzhou Key Laboratory of Perioperative Medicine,the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Qinxiang Zheng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China,Corresponding author. The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China.
| | - Xingjie Zan
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China,School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, China,Department of Anesthesiology, Wenzhou Key Laboratory of Perioperative Medicine,the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou China,Corresponding author. Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China.
| |
Collapse
|
2
|
Bala R, Verma R, Budhwar S, Prakash N, Sachan S. Fetal hyperhomocysteinemia is associated with placental inflammation and early breakdown of maternal-fetal tolerance in Pre-term birth. Am J Reprod Immunol 2022; 88:e13589. [PMID: 35750632 DOI: 10.1111/aji.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
PROBLEM Hyperhomocysteinemia (hypHcy) due to impaired folate metabolism is shown to be a risk factor for preterm birth (PTB) and low birth weight (LBW) in mothers. However, the relationship of fetal hypHcy with adverse pregnancy outcomes is under-represented. The present study aims to investigate the association of fetal hypHcy with oxidative stress and placental inflammation that can contribute to an early breakdown of maternal-fetal tolerance in pre-term birth (PTB). METHODS Cord blood and placenta tissue were collected from PTB and term infant group. Levels of homocysteine, folic acid, vitamin B12 and oxidative stress markers (MDA, T-AOC, 8-OHdG) were measured in cord blood serum using ELISA and respective standard assay kits. Relative expression of candidate genes (TNF-α, IL-6, IL1-β, VEGF-A, MMP2 and MMP9) was also checked using RT-PCR and immunoblotting/immunohistochemistry. RESULTS PTB infants showed significantly higher levels of homocysteine (p = 0.02) and lower levels of vitamin B12 (p = 0.005) as compared to term infants. We also found that PTB infants with hypHcy had lower T-AOC (p = 0.003) and higher MDA (p = 0.04) levels as compared to term infants with normal homocysteine levels. The mRNA and protein levels of TNF-α, VEGF-A, MMP2 and MMP9 were significantly higher in hypHcy PTB infants. CONCLUSION Our results show that fetal hypHcy is associated with oxidative stress and an increase in inflammatory markers in the placenta. Thus, in conclusion, our study demonstrates that fetal hypHcy during pregnancy is a potential risk factor that may initiate an early breakdown of uterine quiescence due to activation of inflammatory processes leading to PTB. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Renu Bala
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Rachna Verma
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Snehil Budhwar
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Nikita Prakash
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Shikha Sachan
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
3
|
Long P, He M, Zhang X, Luo T, Shen Y, Liu H, Jiang W, Han F, Hu Y. Protective effect of aldehyde dehydrogenase 2 against rat corneal dysfunction caused by streptozotocin-induced type I diabetes. Exp Biol Med (Maywood) 2021; 246:1740-1749. [PMID: 33969723 PMCID: PMC8719039 DOI: 10.1177/15353702211013308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/09/2021] [Indexed: 11/15/2022] Open
Abstract
Aldehyde dehydrogenase 2 plays a pivotal role in detoxifying aldehydes, and our previous study revealed that aldehyde dehydrogenase 2 could alleviate diabetic retinopathy-associated damage. We aimed to characterize the potential role of aldehyde dehydrogenase 2 in diabetic keratopathy. Twenty-four rats with streptozotocin-induced (60 mg/kg, single intraperitoneal injection) type 1 diabetes mellitus (T1DM) were divided the T1DM group and the T1DM + Alda1 (an activator of aldehyde dehydrogenase 2) group (5 mg/kg/d, intraperitoneal injection, 1/2/3 months), while an additional 12 healthy rats served as the control group. Corneal morphology was examined in vivo and in vitro at one, two, and three months after T1DM induction. Additionally, serum inflammatory factors were measured by ELISA, and the expression of corneal vascular endothelial growth factor A (VEGF-A) and aldehyde dehydrogenase 2 was measured by immunofluorescence staining. Corneal cell death was evaluated by terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) staining. Slit lamp analysis showed that the area of corneal epithelial cell injury in the T1DM + Alda1 group was significantly smaller than that in the T1DM group at one and two months after T1DM induction (all P < 0.05). OCT analysis and HE staining showed that the central corneal thickness (indication of corneal edema) and the epithelial keratinization level in the T1DM + Alda1 group was evidently decreased compared with those in the T1DM group (all P < 0.05). The serum inflammatory factors interleukin-1 and interleukin-6 were significantly upregulated in the T1DM group compared with the T1DM + Alda1 group at three months after T1DM induction (all P < 0.05), while there were no differences in SOD or TNF-α levels among all groups. Furthermore, corneal VEGF-A expression and corneal cell death in the T1DM + Alda1 group were dramatically reduced compared to those in the T1DM group (all P < 0.05). In conclusion, the aldehyde dehydrogenase 2 agonist Alda1 attenuated rat corneal dysfunction induced by T1DM by alleviating corneal edema, decreasing corneal cell death, and downregulating corneal VEGF-A expression.
Collapse
Affiliation(s)
- Pan Long
- Department of Ophthalmology, General Hospital of Western Theater Command, Chengdu 610083, PR China
| | - Mengshan He
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Xi Zhang
- Department of Ophthalmology, General Hospital of Western Theater Command, Chengdu 610083, PR China
| | - Tao Luo
- Department of Ophthalmology, General Hospital of Western Theater Command, Chengdu 610083, PR China
| | - Yang Shen
- Department of Ophthalmology, General Hospital of Western Theater Command, Chengdu 610083, PR China
| | - Heng Liu
- Department of Ophthalmology, General Hospital of Western Theater Command, Chengdu 610083, PR China
| | - Wei Jiang
- Department of Ophthalmology, General Hospital of Western Theater Command, Chengdu 610083, PR China
| | - Fei Han
- Department of Ophthalmology, General Hospital of Western Theater Command, Chengdu 610083, PR China
| | - Yonghe Hu
- Traditional Chinese Medicine (TCM) Department, General Hospital of Western Theater Command, Chengdu 610083, PR China
| |
Collapse
|
4
|
Boldeanu L, Dijmărescu AL, Radu M, Siloşi CA, Popescu-Drigă MV, Poenariu IS, Siloşi I, Boldeanu MV, Novac MB, Novac LV. The role of mediating factors involved in angiogenesis during implantation. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:665-672. [PMID: 33817707 PMCID: PMC8112745 DOI: 10.47162/rjme.61.3.04] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis is a critical component of normal implantation and placentation and underlines the importance of vascularization in early pregnancy. Differentiated expression of angiogenesis factors in different decision tissues during different stages of implantation, indicates their involvement in the regulation of vascular remodeling and angiogenesis. Disorders in vascular development may play a role in the pathogenesis of recurrent abortions. The success of implantation, placentation and subsequent pregnancy evolution requires coordination of vascular development and adaptations at both sides of the maternal–fetal interface. The human implantation process is a continuous process, which begins with the apposition and attachment of the blastocyst to the apical surface of the luminal endometrial epithelium and continues throughout the first trimester of pregnancy until the extravillous trophoblast invades and remodels maternal vascularization. Numerous regulatory molecules play functional roles in many processes, including preparation of the endometrial stroma (decidualization), epithelium for implantation, control of trophoblastic adhesion and invasion. These regulatory molecules include cytokines, chemokines, and proteases, many of which are expressed by different cell types, having slightly different functions as the implant progresses
Collapse
Affiliation(s)
- Lidia Boldeanu
- Department of Immunology, Department of Anesthesiology and Intensive Care, University of Medicine and Pharmacy of Craiova, Romania; , ,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Roshandel D, Eslani M, Baradaran-Rafii A, Cheung AY, Kurji K, Jabbehdari S, Maiz A, Jalali S, Djalilian AR, Holland EJ. Current and emerging therapies for corneal neovascularization. Ocul Surf 2018; 16:398-414. [PMID: 29908870 DOI: 10.1016/j.jtos.2018.06.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 02/08/2023]
Abstract
The cornea is unique because of its complete avascularity. Corneal neovascularization (CNV) can result from a variety of etiologies including contact lens wear; corneal infections; and ocular surface diseases due to inflammation, chemical injury, and limbal stem cell deficiency. Management is focused primarily on the etiology and pathophysiology causing the CNV and involves medical and surgical options. Because inflammation is a key factor in the pathophysiology of CNV, corticosteroids and other anti-inflammatory medications remain the mainstay of treatment. Anti-VEGF therapies are gaining popularity to prevent CNV in a number of etiologies. Surgical options including vessel occlusion and ocular surface reconstruction are other options depending on etiology and response to medical therapy. Future therapies should provide more effective treatment options for the management of CNV.
Collapse
Affiliation(s)
- Danial Roshandel
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Alireza Baradaran-Rafii
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Albert Y Cheung
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Khaliq Kurji
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA
| | - Sayena Jabbehdari
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Alejandra Maiz
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Setareh Jalali
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Edward J Holland
- Cincinnati Eye Institute, Edgewood, KY/ University of Cincinnati, Department of Ophthalmology, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Inflammatory bowel disease and pregnancy: overlapping pathways. Transl Res 2012; 160:65-83. [PMID: 22687963 DOI: 10.1016/j.trsl.2011.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 02/07/2023]
Abstract
Several studies have reported on the association between inflammatory bowel disease (IBD) and adverse pregnancy outcomes, such as preterm birth. The exact mechanisms of action are unclear; however, several pathways and processes are involved in both IBD and pregnancy that may help explain this. In this review, we discuss the immune system's T helper cells and human leukocyte antigens, inflammation, its function, and the role of Toll-like receptors (TLRs), NOD-like receptors (NLRs), and prostaglandins in the inflammatory response. For each of these topics, we consider their involvement in IBD and pregnancy, and we speculate as to how they can lead to preterm birth. Finally, we review briefly corticosteroids, biologic therapies, and immunosuppressants for the treatment of IBD, as well as their safety in use during pregnancy, with special focus on preterm birth.
Collapse
|
7
|
Lee JG, Kay EP. NF-κB is the transcription factor for FGF-2 that causes endothelial mesenchymal transformation in cornea. Invest Ophthalmol Vis Sci 2012; 53:1530-8. [PMID: 22323467 DOI: 10.1167/iovs.11-9102] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the role of nuclear factor-κB (NF-κB) during FGF-2-mediated endothelial mesenchymal transformation (EMT) in response to interleukin (IL)-1β stimulation in corneal endothelial cells (CECs). METHODS Expression and/or activation of IL-1 receptor-associated protein kinase (IRAK), TNF receptor-associated factor 6 (TRAF6), phosphatidylinositol 3-kinase (PI 3-kinase), IκB kinase (IKK), IκB, NF-κB, and FGF-2 were analyzed by immunoblot analysis. Cell proliferation was measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. NF-κB activity was measured by NF-κB ELISA kit, while binding of NF-κB to the promoter region of FGF-2 gene was determined by chromatin immunoprecipitation. RESULTS Brief stimulation of CECs with IL-1β upregulated expression of IRAK and TRAF6 and activated PI 3-kinase; expression of IRAK and TRAF6 reached maximum within 60 minutes, after which the expression disappeared, while PI 3-kinase activity was observed up to 4 hours after IL-1β stimulation. Use of specific inhibitor to PI 3-kinase or IRAK demonstrated that IRAK activates PI 3-kinase, the signaling of which phosphorylates IKKα/β and degrades IκB, subsequently leading to activation of NF-κB. The induction of FGF-2 by IL-1β was completely blocked by inhibitors to NF-κB activation (sulfasalazine) or PI 3-kinase (LY294002), and both inhibitors greatly blocked cell proliferation of CECs. Chromatin immunoprecipitation further demonstrated that NF-κB is the transcription factor of FGF-2 as NF-κB binds the putative NF-κB binding site of the FGF-2 promoter. CONCLUSIONS These data suggest that IL-1β signaling combines the canonical pathway and the PI 3-kinase signaling to upregulate FGF-2 production through NF-κB, which plays a key role as a transcription factor of FGF-2 gene.
Collapse
Affiliation(s)
- Jeong Goo Lee
- Doheny Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
8
|
Ma DHK, Chen HCJ, Lai JY, Sun CC, Wang SF, Lin KK, Chen JK. Matrix revolution: molecular mechanism for inflammatory corneal neovascularization and restoration of corneal avascularity by epithelial stem cell transplantation. Ocul Surf 2011; 7:128-44. [PMID: 19635246 DOI: 10.1016/s1542-0124(12)70308-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Corneal neovascularization (CNV) associated with severe limbal stem cell (LSC) deficiency remains a challenging ocular surface disease in that corneal inflammation may persist and progress, and the condition will not improve without LSC transplantation. A prominent feature after successful LSC transplantation is the suppression of corneal inflammation and CNV, which is generally attributed to the endogenous anti-angiogenic/anti-inflammatory factors secreted by corneal epithelial cells. In addition, corneal epithelial basement membrane (EBM) plays a unique role in the regulation of angiogenesis; several potent anti-angiogenic factors are derived from the matrix component of EBM, such as endostatin (from collagen XVIII) and restin (from collagen XV). Also, angio-inhibitory thrombospondin and tissue inhibitor of metalloproteinase-3 are deposited in EBM. Moreover, the heparan sulphate proteoglycan in EBM can bind and sequester VEGF and FGF-2 from activation. Recently, cultivated corneal epithelial transplantation (CCET) and cultivated oral mucosal epithelial transplantation (COMET) have emerged as promising techniques for the treatment of LSC deficiency. When human limbo-corneal epithelial (HLE) cells are cultivated on cryopreserved amniotic membrane, production of endostatin, restin, and IL-1ra is enhanced. This highlights the significance of delicate epithelial-matrix interactions in the generation of anti-angiogenic/anti-inflammatory factors by HLE cells, and this may, in part, explain the rapid restoration of corneal avascularity following CCET. In addition, whether epithelial stem cells can persist after transplantation is the key for CCET and COMET. Emerging evidence of long-term survival of cultivated epithelial cells after transplantation suggest that epithelial stem cells can be isolated and cultivated in vitro, and can re-establish the epithelial phenotype in vivo. Taken together, the merits of enhanced anti-angiogenic activity and the preservation of corneal epithelial stem cells encourage further application of this tissue engineering technique for ocular surface reconstruction.
Collapse
Affiliation(s)
- David Hui-Kang Ma
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Kemp MW, Saito M, Newnham JP, Nitsos I, Okamura K, Kallapur SG. Preterm birth, infection, and inflammation advances from the study of animal models. Reprod Sci 2011; 17:619-28. [PMID: 20581349 DOI: 10.1177/1933719110373148] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inflammation is a protective response mediated by both innate and adaptive arms of the immune system following exposure to a range of harmful stimuli. Although inflammation is an essential mechanism in response to challenges including tissue injury and microbiological insult, inappropriate or excessive induction of the inflammatory response is itself a well-characterized cause of morbidity and mortality in adult populations. There is currently a growing appreciation of the potential for inflammation to play an adverse role in fetal health. The expression of cytokines (notably interleukin 1beta [IL-1beta], IL-6, IL-8, and tumor necrosis factor alpha [TNF-alpha]) by either the fetal or maternal tissues has been demonstrated to upregulate the activity of a number of uterine and cervical factors (eg, prostaglandin hormones and their receptors, matrix metalloproteinases, vascular endothelial growth factor [VEGF]), leading to premature initiation of the parturition process. Herein, we review important developments in our understanding of the link between preterm birth and fetal inflammation subsequent to infection, gained from studies undertaken in animal models.
Collapse
Affiliation(s)
- Matthew W Kemp
- School of Women's and Infants' Health, The University of Western Australia, Perth, Australia.
| | | | | | | | | | | |
Collapse
|
10
|
Hadfield KA, McCracken SA, Ashton AW, Nguyen TG, Morris JM. Regulated suppression of NF-κB throughout pregnancy maintains a favourable cytokine environment necessary for pregnancy success. J Reprod Immunol 2011; 89:1-9. [PMID: 21411157 DOI: 10.1016/j.jri.2010.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/08/2010] [Accepted: 11/24/2010] [Indexed: 11/29/2022]
Abstract
Th1 immune responses are suppressed in pregnancy, but the temporal regulation and the mechanism(s) underlying this immune alteration are unknown. We assessed the expression of Th1 cytokines IFNγ, IL-2 and TNFα in response to stimulation in isolated T-cells from pregnant women throughout gestation. Using flow cytometry we demonstrated an early and sustained reduction in IFNγ and IL-2 production in CD3+ T-cells, but TNFα levels are not reduced until the third trimester. We assessed the expression of NF-κB and T-bet, transcription factors that play a central role in Th1 immune responses, throughout pregnancy. In isolated T-cells levels of available p65 were suppressed early in pregnancy, but T-bet expression was suppressed only in the third trimester. In contrast to p65, T-bet expression was transcriptionally regulated, with diminished T-bet mRNA in third-trimester samples. Re-expression of p65 in T-cells from third-trimester pregnant women resulted in an induction of T-bet expression in response to PMA stimulation and a concomitant increase in the production of IL-2 and IFNγ. The suppressive effect of pregnancy was ameliorated as early as 72h post-partum when p65 levels returned to normal as did the level of inducible IFNγ and IL-2. TNFα levels in post-partum women were significantly increased relative to non-pregnant controls. The pregnancy-specific suppression of p65 and subsequent loss of cytokine production suggest that this transcription factor acts specifically to regulate the cytokine environment that is required for pregnancy success.
Collapse
Affiliation(s)
- Katrina A Hadfield
- Kolling Institute of Medical Research, Sydney University, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | | | | | | | | |
Collapse
|
11
|
Hecht JL, Fichorova RN, Tang VF, Allred EN, McElrath TF, Leviton A. Relationship Between Neonatal Blood Protein Concentrations and Placenta Histologic Characteristics in Extremely Low GA Newborns. Pediatr Res 2011; 69:68-73. [PMID: 20921924 PMCID: PMC3066075 DOI: 10.1203/pdr.0b013e3181fed334] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Amniotic fluid infection with chorioamnionitis is associated with increased risks of morbidity and mortality in children born prematurely. These risks depend on the presence of a fetal inflammatory response. We measured the concentrations of 25 proteins in the blood of 871 infants born before the 28th wk of gestation and examined their placentas for acute inflammation. Newborns who had inflammatory lesions of the placenta were much more likely than their peers (p < 0.01) to have elevated blood concentrations of cytokines (IL-1β, IL-6, and TNF-α), chemokines (IL-8, MIP-1β, RANTES, and I-TAC), adhesion molecules (ICAM-1, ICAM-3, and E-selectin), matrix metalloproteinases (MMP-1 and MMP-9), the angiogenic inflammatory factor VEGF and its receptor VEGF-R2, and acute phase proteins (SAA and CRP) during the first 3 d after birth. In contrast, newborns with poor placental perfusion had lower levels of inflammatory proteins (p < 0.01; IL-6, RANTES, ICAM-1, ICAM-3, VCAM-1, E-selectin, MMP-1, MMP-9, MPO, and VEGF). An inverse pattern was found between newborn levels of VEGF and its competitive inhibitor VEGF-R1 in both the inflamed and poorly perfused placenta categories. These results confirm the predictive value of placental histology for the presence or absence of elevated inflammatory response in newborns.
Collapse
Affiliation(s)
- Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Ganguly K, Upadhyay S, Irmler M, Takenaka S, Pukelsheim K, Beckers J, Hamelmann E, Schulz H, Stoeger T. Pathway focused protein profiling indicates differential function for IL-1B, -18 and VEGF during initiation and resolution of lung inflammation evoked by carbon nanoparticle exposure in mice. Part Fibre Toxicol 2009; 6:31. [PMID: 19954533 PMCID: PMC2809500 DOI: 10.1186/1743-8977-6-31] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 12/02/2009] [Indexed: 01/17/2023] Open
Abstract
Background Carbonaceous nanoparticles possess an emerging source of human exposure due to the massive release of combustion products and the ongoing revolution in nanotechnology. Pulmonary inflammation caused by deposited nanoparticles is central for their adverse health effects. Epidemiological studies suggest that individuals with favourable lung physiology are at lower risk for particulate matter associated respiratory diseases probably due to efficient control of inflammation and repair process. Therefore we selected a mouse strain C3H/HeJ (C3) with robust lung physiology and exposed it to moderately toxic carbon nanoparticles (CNP) to study the elicited pulmonary inflammation and its resolution. Methods 5 μg, 20 μg and 50 μg CNP were intratracheally (i.t.) instilled in C3 mice to identify the optimal dose for subsequent time course studies. Pulmonary inflammation was assessed using histology, bronchoalveolar lavage (BAL) analysis and by a panel of 62 protein markers. Results 1 day after instillation of CNP, C3 mice exhibited a typical dose response, with the lowest dose (5 μg) representing the 'no effect level' as reflected by polymorphonuclear leucocyte (PMN), and BAL/lung concentrations of pro-inflammatory proteins. Histological analysis and BAL-protein concentration did not reveal any evidence of tissue injury in 20 μg CNP instilled animals. Accordingly time course assessment of the inflammatory response was performed after 3 and 7 days with this dose (20 μg). Compared to day 1, BAL PMN counts were significantly decreased at day 3 and completely returned to normal by day 7. We have identified protein markers related to the acute response and also to the time dependent response in lung and BAL. After complete resolution of PMN influx on day 7, we detected elevated concentrations of 20 markers that included IL1B, IL18, FGF2, EDN1, and VEGF in lung and/or BAL. Biological pathway analysis revealed these factors to be involved in a closely regulated molecular cascade with IL1B/IL18 as upstream and FGF2/EDN1/VEGF as downstream molecules. Conclusion Considering the role of VEGF, FGF2 and EDN1 in lung development and morphogenesis together with the lack of any evident tissue damage we suggest a protective/homeostatic machinery to be associated in lungs of stable organisms to counter the CNP challenge as a precautionary measure.
Collapse
Affiliation(s)
- Koustav Ganguly
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg/Munich, D85764, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Song JS, Lee JG, Kay EP. Induction of FGF-2 synthesis by IL-1beta in aqueous humor through P13-kinase and p38 in rabbit corneal endothelium. Invest Ophthalmol Vis Sci 2009; 51:822-9. [PMID: 19797202 DOI: 10.1167/iovs.09-4240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether the elevated level of interleukin (IL)-1beta in aqueous humor after transcorneal freezing upregulates FGF-2 synthesis in rabbit corneal endothelium through PI3-kinase and p38 pathways. METHODS Transcorneal freezing was performed in New Zealand White rabbits to induce an injury-mediated inflammation. The concentration of IL-1beta was measured, and the expression of FGF-2, p38, and Akt underwent Western blot analysis. Intracellular location of FGF-2 and actin cytoskeleton was determined by immunofluorescence staining. RESULTS Massive infiltration of polymorphonuclear leukocytes (PMNs) to the corneal endothelium was observed after freezing, and IL-1beta concentration in the aqueous humor was elevated in a time-dependent manner after freezing. Similarly, FGF-2 expression was increased in a time-dependent manner. When corneal endothelium was stained with anti-FGF-2 antibody, the nuclear location of FGF-2 was observed primarily in the cornea after cryotreatment, whereas FGF-2 in normal corneal endothelium was localized at the plasma membrane. Treatment of the ex vivo corneal tissue with IL-1beta upregulated FGF-2 and facilitated its nuclear location in corneal endothelium. Transcorneal freezing disrupted the actin cytoskeleton at the cortex, and cell shapes were altered from cobblestone morphology to irregular shape. Topical treatment with LY294002 and SB203580 on the cornea after cryotreatment blocked the phosphorylation of Akt and p38, respectively, in the corneal endothelium. These inhibitors also reduced FGF-2 levels and partially blocked morphologic changes after freezing. CONCLUSIONS These data suggest that after transcorneal freezing, IL-1beta released by PMNs into the aqueous humor stimulates FGF-2 synthesis in corneal endothelium via PI3-kinase and p38.
Collapse
Affiliation(s)
- Jong-Suk Song
- Doheny Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
14
|
Lee JG, Kay EP. Common and distinct pathways for cellular activities in FGF-2 signaling induced by IL-1beta in corneal endothelial cells. Invest Ophthalmol Vis Sci 2009; 50:2067-76. [PMID: 19136710 DOI: 10.1167/iovs.08-3135] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the mechanism by which IL-1beta induces FGF-2 and to elucidate the signaling pathways of IL-1beta-induced FGF-2 in corneal endothelial cells (CECs). METHODS Expression and/or activation of FGF-2, p38, ERK1/2, and Akt was analyzed by immunoblot analysis. Cell proliferation was measured by MTT assay. Pharmacologic inhibitors were used to block PI 3-kinase, p38, or ERK1/2. RESULTS Brief stimulation of CECs with IL-1beta activated PI 3-kinase and p38 in a biphasic fashion. The first wave of activation, triggered by IL-1beta, involves the inductive activity of IL-1beta on FGF-2 production; the second wave of activation, triggered by the induced FGF-2, involves the promotion of cellular activities. In both pathways, p38 acts downstream to PI 3-kinase. The inductive activity of IL-1beta on FGF-2 is further evidenced by the conditioned medium, which contains a large amount of FGF-2. Stimulation of CECs with IL-1beta also activated ERK1/2 in a delayed fashion. The IL-1beta-induced FGF-2 exerted cellular activities using distinct pathways: the second wave of activation of PI 3-kinase and p38 was involved in cell migration, whereas cell proliferation was simultaneously stimulated by ERK1/2 and the second wave of PI 3-kinase. Likewise, the conditioned medium demonstrated cellular activities and pathways identical with those observed in cells treated with IL-1beta. CONCLUSIONS These data suggest that CECs produce FGF-2 by IL-1beta stimulation through PI 3-kinase and p38. The IL-1beta-induced FGF-2 facilitates cell migration via PI 3-kinase and p38, whereas it stimulates cell proliferation using PI 3-kinase and ERK1/2 in parallel pathways.
Collapse
Affiliation(s)
- Jeong Goo Lee
- Doheny Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | | |
Collapse
|
15
|
Inflammatory processes in preterm and term parturition. J Reprod Immunol 2008; 79:50-7. [PMID: 18550178 DOI: 10.1016/j.jri.2008.04.002] [Citation(s) in RCA: 364] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/20/2008] [Accepted: 04/15/2008] [Indexed: 11/22/2022]
Abstract
A role for the pro-inflammatory cytokines interleukin (IL)-1beta, IL-6, IL-8 and tumor necrosis factor alpha (TNF-alpha) is evident in term and preterm delivery, and this is independent of the presence of infection. All uterine tissues progress through a staged transformation near the end of pregnancy that leads from relative uterine quiescence and maintenance of pregnancy to the activation of the uterus that prepares it for the work of labour and production of stimulatory molecules that trigger the onset of labour and delivery. The uterus is activated by pro-inflammatory cytokines through stimulation of the expression and production of uterine activation proteins (UAPs). One of these actions is the stimulation of prostaglandin (PG) synthesis. Particularly important for labour is PGF(2alpha) and its receptor, PTGFR. In addition, pro-inflammatory cytokines are able to increase the synthesis of matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF) and the progesterone receptor C isoform, which leads to decreased tissue progesterone responsiveness. Some of these effects are replicated by PGF(2alpha), suggesting that it may act via its receptor to amplify the direct actions of cytokines. In turn, VEGF may enhance leukocyte recruitment to the uterus, and MMP-9 may promote activation of inactive pro-form cytokines. Pro-inflammatory cytokines also decrease the activity of 11beta-hydroxysteroid dehydrogenase, which likely increases intrauterine cortisol concentrations. In turn, cortisol may drive PG synthesis. Together these feed-forward mechanisms activate the uterus, trigger the production of uterine contractile stimulants and lead to labour and delivery.
Collapse
|
16
|
Roberto da Costa RP, Costa AS, Korzekwa AJ, Platek R, Siemieniuch M, Galvão A, Redmer DA, Silva JR, Skarzynski DJ, Ferreira-Dias G. Actions of a nitric oxide donor on prostaglandin production and angiogenic activity in the equine endometrium. Reprod Fertil Dev 2008; 20:674-83. [DOI: 10.1071/rd08015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 04/21/2008] [Indexed: 01/22/2023] Open
Abstract
Nitric oxide (NO) plays an important role in prostaglandin secretion and angiogenesis in the reproductive system. In the present study, the roles of the NO donor spermine NONOate and tumour necrosis factor-α (TNF; as a positive control) in prostaglandin production and angiogenic activity of equine endometria during the oestrous cycle were evaluated. In addition, the correlation between NO production and the expression of key prostaglandin synthase proteins was determined. The protein expression of prostaglandin F synthase (PGFS) increased in early and mid-luteal stages, whereas that of prostaglandin E synthase (PGES) was increased in the early luteal stage. The in vitro release of NO was highest after ovulation. There was a high correlation between NO production and PGES expression, as well as NO release and PGFS expression. There were no differences detected in prostaglandin H synthase 2 (PTGS-2) throughout the oestrous cycle and there was no correlation between PTGS-2 expression and NO. In TNF- or spermine-treated endometria, the expression of prostaglandin (PG) E2 increased in the early and mid-luteal phases, whereas that of PGF2α increased in the follicular and late luteal phases. Bovine aortic endothelial cell (BAEC) proliferation was stimulated in TNF-treated follicular-phase endometria. However, in spermine-treated endometria, NO delivered from its donor had no effect, or even an inhibitory effect, on BAEC proliferation. In conclusion, despite no change in PTGS-2 expression throughout the oestrous cycle in equine endometrial tissue, there were changes observed in the expression of PGES and PGFS, as well as in the production of PGE2 and PGF2α. In the mare, NO is involved in the secretory function of the endometrium, modulating PGE2 and PGF2α production. Even though TNF caused an increase in the production of angiogenic factors and prostaglandins, its complex action in mare uterus should be elucidated.
Collapse
|
17
|
Torry DS, Leavenworth J, Chang M, Maheshwari V, Groesch K, Ball ER, Torry RJ. Angiogenesis in implantation. J Assist Reprod Genet 2007; 24:303-15. [PMID: 17616801 PMCID: PMC3455012 DOI: 10.1007/s10815-007-9152-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PROBLEM Implantation failure and early pregnancy loss are common following natural conceptions and they are particularly important clinical hurdles to overcome following assisted reproduction attempts. The importance of adequate vascular development and maintenance during implantation has recently become a major focus of investigation. MATERIALS AND METHODS Review of current published literature was undertaken to summerize the cells and cell products that regulate tissue vascularity during implantation. RESULTS Vascular development at the maternal fetal interface can be regulated by a number of different cell types; two principal candidates are trophoblast and natural killer cells. A wide range of soluble factors, some with well established angiogenic functions as well as other more novel factors, can contribute to vascular development and maintenance at the maternal-fetal interface. CONCLUSIONS Robust vascular development occurs during implantation and early placentation of normal pregnancies. Studies to define the extent and mechanisms by which defects in vascularity contribute to human implantation failure and early miscarriage need to be undertaken.
Collapse
Affiliation(s)
- Donald S Torry
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, P.O. Box 19626, Springfield, IL 62794-9626, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Jarvenpaa J, Vuoristo JT, Savolainen ER, Ukkola O, Vaskivuo T, Ryynanen M. Altered expression of angiogenesis-related placental genes in pre-eclampsia associated with intrauterine growth restriction. Gynecol Endocrinol 2007; 23:351-5. [PMID: 17616861 DOI: 10.1080/09513590701350291] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
AIM The normal endovascular invasion of trophoblast cells and spiral artery remodeling are impaired in pre-eclampsia. Neither the circulating factor secreted by the placenta nor the cause of the widespread endothelial dysfunction in pre-eclampsia has yet been identified. In an attempt to identify novel factors, we performed a gene expression profiling study of placental tissue from women with and without pre-eclampsia. MATERIAL AND METHODS The study group comprised two pre-eclamptic patients with intrauterine growth restriction while the control group comprised three healthy women with uncomplicated pregnancies. Gene expression was studied using Affymetrix Human Genome U133 Plus 2 micro arrays. We focused on genes associated with angiogenesis. Some of the micro array analysis results were verified using real-time reverse transcription polymerase chain reaction (RT-PCR). RESULTS Gene expression profiling revealed that the expression level of nine genes--ECGF1, JAG1, Palladin, COL18A1, TNFSF12, VEGF, ANPEP, PDGFRA and SERPIN12 - was downregulated whereas the level of four genes--EPAS1, FLT1, SIGLE10 and ANG4--was upregulated in the study group compared with the control group. The real-time RT-PCR results from JAG1, COL18A1 and FLT1 genes were in accordance with the gene expression results. CONCLUSION Our results show new targets for research to understand the mechanisms leading to pre-eclampsia.
Collapse
Affiliation(s)
- Jouko Jarvenpaa
- Department of Obstetrics and Gynecology, Oulu University Hospital, Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
19
|
Leroy MJ, Dallot E, Czerkiewicz I, Schmitz T, Breuiller-Fouché M. Inflammation of choriodecidua induces tumor necrosis factor alpha-mediated apoptosis of human myometrial cells. Biol Reprod 2007; 76:769-76. [PMID: 17215489 DOI: 10.1095/biolreprod.106.058057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The present study investigated the ability of human choriodecidua to induce myometrial cell apoptosis through the secretion of tumor necrosis factor alpha (TNF). The secretion of TNF was evaluated in the culture supernatants of amnion and choriodecidua explants that were exposed to the bacterial endotoxin lipopolysaccharide (LPS) to mimic inflammation. The choriodecidua explants produced more TNF than the amnion explants in response to LPS stimulation, despite the fact that the choriodecidua had lower levels of TLR4 expression. Moreover, conditioned medium obtained from LPS-treated choriodecidua explants, but not that from amnion explants, decreased the number of viable cultured myometrial cells and induced cell apoptosis by inducing the overexpression of the proapoptotic protein BAX and by decreasing the expression of the anti-apoptotic protein BCL2. Neutralization of TNF in the choriodecidua-conditioned medium reversed this effect. Exogenous TNF mimicked LPS-treated choriodecidua-conditioned medium in that it induced myometrial cell apoptosis, reduced BCL2 expression, and increased BAX expression. Using neutralizing antibodies against both subtypes of TNF receptors, we found that only TNFRSF1A participates in TNF-induced myometrial cell apoptosis. Our in vitro model of LPS-induced inflammation of human fetal membrane explants suggests a mechanism by which TNF secreted by choriodecidua governs human myometrial cell apoptosis at the end of pregnancy. These data support the hypothesis that TNF participates in the complex network of signaling processes associated with uterine involution.
Collapse
Affiliation(s)
- Marie-Josèphe Leroy
- INSERM, U767, Faculté des Sciences Pharmaceutiques et Biologiques, Université René Descartes, 75006 Paris, France
| | | | | | | | | |
Collapse
|