1
|
Macrì S, Di-Poï N. Heterochronic Developmental Shifts Underlying Squamate Cerebellar Diversity Unveil the Key Features of Amniote Cerebellogenesis. Front Cell Dev Biol 2020; 8:593377. [PMID: 33195265 PMCID: PMC7642464 DOI: 10.3389/fcell.2020.593377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Despite a remarkable conservation of architecture and function, the cerebellum of vertebrates shows extensive variation in morphology, size, and foliation pattern. These features make this brain subdivision a powerful model to investigate the evolutionary developmental mechanisms underlying neuroanatomical complexity both within and between anamniote and amniote species. Here, we fill a major evolutionary gap by characterizing the developing cerebellum in two non-avian reptile species-bearded dragon lizard and African house snake-representative of extreme cerebellar morphologies and neuronal arrangement patterns found in squamates. Our data suggest that developmental strategies regarded as exclusive hallmark of birds and mammals, including transit amplification in an external granule layer (EGL) and Sonic hedgehog expression by underlying Purkinje cells (PCs), contribute to squamate cerebellogenesis independently from foliation pattern. Furthermore, direct comparison of our models suggests the key importance of spatiotemporal patterning and dynamic interaction between granule cells and PCs in defining cortical organization. Especially, the observed heterochronic shifts in early cerebellogenesis events, including upper rhombic lip progenitor activity and EGL maintenance, are strongly expected to affect the dynamics of molecular interaction between neuronal cell types in snakes. Altogether, these findings help clarifying some of the morphogenetic and molecular underpinnings of amniote cerebellar corticogenesis, but also suggest new potential molecular mechanisms underlying cerebellar complexity in squamates. Furthermore, squamate models analyzed here are revealed as key animal models to further understand mechanisms of brain organization.
Collapse
Affiliation(s)
- Simone Macrì
- Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nicolas Di-Poï
- Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 2014; 159:896-910. [PMID: 25417164 DOI: 10.1016/j.cell.2014.10.010] [Citation(s) in RCA: 1103] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/29/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
The visualization of molecularly labeled structures within large intact tissues in three dimensions is an area of intense focus. We describe a simple, rapid, and inexpensive method, iDISCO, that permits whole-mount immunolabeling with volume imaging of large cleared samples ranging from perinatal mouse embryos to adult organs, such as brains or kidneys. iDISCO is modeled on classical histology techniques, facilitating translation of section staining assays to intact tissues, as evidenced by compatibility with 28 antibodies to both endogenous antigens and transgenic reporters like GFP. When applied to degenerating neurons, iDISCO revealed unexpected variability in number of apoptotic neurons within individual sensory ganglia despite tight control of total number in all ganglia. It also permitted imaging of single degenerating axons in adult brain and the first visualization of cleaved Caspase-3 in degenerating embryonic sensory axons in vivo, even single axons. iDISCO enables facile volume imaging of immunolabeled structures in complex tissues. PAPERCLIP:
Collapse
Affiliation(s)
- Nicolas Renier
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Zhuhao Wu
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - David J Simon
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jing Yang
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Pablo Ariel
- Bio-Imaging Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
4
|
Janmaat S, Akwa Y, Doulazmi M, Bakouche J, Gautheron V, Liere P, Eychenne B, Pianos A, Luiten P, Groothuis T, Baulieu EE, Mariani J, Sherrard RM, Frédéric F. Age-related Purkinje cell death is steroid dependent: RORα haplo-insufficiency impairs plasma and cerebellar steroids and Purkinje cell survival. AGE (DORDRECHT, NETHERLANDS) 2011; 33:565-578. [PMID: 21222044 PMCID: PMC3220403 DOI: 10.1007/s11357-010-9203-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 12/16/2010] [Indexed: 05/30/2023]
Abstract
A major problem of ageing is progressive impairment of neuronal function and ultimately cell death. Since sex steroids are neuroprotective, their decrease with age may underlie age-related neuronal degeneration. To test this, we examined Purkinje cell numbers, plasma sex steroids and cerebellar neurosteroid concentrations during normal ageing (wild-type mice, WT), in our model of precocious ageing (Rora(+/sg), heterozygous staggerer mice in which expression of the neuroprotective factor RORα is disrupted) and after long-term hormone insufficiency (WT post-gonadectomy). During normal ageing (WT), circulating sex steroids declined prior to or in parallel with Purkinje cell loss, which began at 18 months of age. Although Purkinje cell death was advanced in WT long-term steroid deficiency, this premature neuronal loss did not begin until 9 months, indicating that vulnerability to sex steroid deficiency is a phenomenon of ageing Purkinje neurons. In precocious ageing (Rora(+/sg)), circulating sex steroids decreased prematurely, in conjunction with marked Purkinje cell death from 9 months. Although Rora(+/sg) Purkinje cells are vulnerable through their RORα haplo-insufficiency, it is only as they age (after 9 months) that sex steroid failure becomes critical. Finally, cerebellar neurosteroids did not decrease with age in either genotype or gender; but were profoundly reduced by 3 months in male Rora(+/sg) cerebella, which may contribute to the fragility of their Purkinje neurons. These data suggest that ageing Purkinje cells are maintained by circulating sex steroids, rather than local neurosteroids, and that in Rora(+/sg) their age-related death is advanced by premature sex steroid loss induced by RORα haplo-insufficiency.
Collapse
Affiliation(s)
- Sonja Janmaat
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
- Molecular Imaging and Electron Microscopy, University Medical Centre, Groningen, 9700 AD The Netherlands
- Department of Molecular Neurobiology and Biological Psychiatry, University of Groningen, 9750 AA Haren, The Netherlands
| | - Yvette Akwa
- INSERM U788 and Université Paris-Sud, Faculté de Médecine, UMR-S788, Le Kremlin-Bicêtre, 94276 France
| | - Mohamed Doulazmi
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
| | - Joëlle Bakouche
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
| | - Vanessa Gautheron
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
| | - Philippe Liere
- INSERM U788 and Université Paris-Sud, Faculté de Médecine, UMR-S788, Le Kremlin-Bicêtre, 94276 France
| | - Bernard Eychenne
- INSERM U788 and Université Paris-Sud, Faculté de Médecine, UMR-S788, Le Kremlin-Bicêtre, 94276 France
| | - Antoine Pianos
- INSERM U788 and Université Paris-Sud, Faculté de Médecine, UMR-S788, Le Kremlin-Bicêtre, 94276 France
| | - Paul Luiten
- Department of Molecular Neurobiology and Biological Psychiatry, University of Groningen, 9750 AA Haren, The Netherlands
| | - Ton Groothuis
- Department of Molecular Neurobiology and Biological Psychiatry, University of Groningen, 9750 AA Haren, The Netherlands
| | - Etienne-Emile Baulieu
- INSERM U788 and Université Paris-Sud, Faculté de Médecine, UMR-S788, Le Kremlin-Bicêtre, 94276 France
| | - Jean Mariani
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
- AP-HP, Hôpital Charles Foix, UEF, 94200 Ivry-sur-Seine, France
| | - Rachel M. Sherrard
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
| | - Florence Frédéric
- UMR7102 Neurobiologie des Processus Adaptatifs, UPMC Univ Paris 6, 75005 Paris, France
- UMR7102 Neurobiologie des Processus Adaptatifs, CNRS, 75005 Paris, France
| |
Collapse
|
5
|
Doulazmi M, Frédéric F, Capone F, Becker-André M, Delhaye-Bouchaud N, Mariani J. A comparative study of Purkinje cells in two RORalpha gene mutant mice: staggerer and RORalpha(-/-). BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 127:165-74. [PMID: 11335003 DOI: 10.1016/s0165-3806(01)00131-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The staggerer (Rora(sg/sg)) mutation is a deletion in the RORalpha gene, one member of a family of nuclear receptor genes related to the retinoic acid receptor. Recently Steinmayr et al. (Proc. Natl. Acad. Sci. USA 95 (1998) 3960) generated a RORalpha null-mutant mouse (Rora(-/-)) by using a targeting vector in which a beta-Gal gene replaces the second finger of the DNA-binding domain of RORalpha. The Rora(-/-) cerebellum is qualitatively a phenocopy of the Rora(sg/sg) one, but the two strains differ slightly in their motor skills. To address the question whether the morphological defects in the Rora(-/-) cerebellum are identical to the Rora(sg/sg) one, we compared number and size of Purkinje cells in both staggerer and RORalpha null-mutant mice, using calbindin (CaBP) immunohistochemistry and revelation of beta-Gal activity. Compared to control cerebella the Rora(sg/sg) cerebellum has 82% fewer CaBP-positive cells. In Rora(-/-) mouse, all the the beta-Gal-positive Purkinje cells also expressed CaBP, but the cerebellum contained 78% less CaBP-positive cells than control, a deficit not different from the one observed in Rora(sg/sg). We show similar mediolateral compartments in Purkinje cell number and cytological abnormality in Rora(sg/sg) and Rora(-/-) mice. These results provide quantitative support for the hypothesis that the cerebellar phenotype in the homozygous Rora(sg/sg) is due to the lack of function of the RORalpha gene.
Collapse
Affiliation(s)
- M Doulazmi
- Laboratoire Développement et Vieillissement du Système Nerveux, Institut des Neurosciences UMR 7624 CNRS, Université P. and M. Curie, 75005, Paris, France.
| | | | | | | | | | | |
Collapse
|
8
|
Bakalian A, Delhaye-Bouchaud N, Mariani J. Quantitative analysis of the Purkinje cell and the granule cell populations in the cerebellum of nude mice. J Neurogenet 1995; 9:207-18. [PMID: 7760211 DOI: 10.3109/01677069509084157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the nude mutant, a well-known model of athymia in mouse, abnormalities have been reported in the cerebellum, including a 45% reduction in cerebellar size and neuronal loss (Henderson et al., 1981). The present work was aimed at reappraising the claimed anomalies by using quantitative cytological techniques. We counted the Purkinje and the granule cells, on serial sagittal sections stained with thionin, in the cerebella of nude mice (nu/nu) compared with their Balb/c controls (+/+). The latero-lateral extent of the cerebellar cortex was statistically different (mean +/- standard deviation) between the nude (7.05 +/- 0.45 mm, n = 3) and the control mice (8.05 +/- 0.35 mm, n = 3) (Student's t-test, p < 0.05). The number of Purkinje cells was not statistically different (p = 0.98) between the nude mice (159,880 +/- 5,225, n = 3) and the control ones (160,060 +/- 12,300, n = 3). The number of granule cells (x 10(6)) did not differ significantly (p = 0.40) in nude mice (m = 12.1 +/- 1.8, n = 3) from the controls (m = 13.2 +/- 0.8, n = 3). Immunohistochemistry with a specific marker of Purkinje cells, calbindin protein, did not reveal any qualitative difference between the nude and the control Purkinje cells. The only slight but significant difference concerned the mean cross-sectional area of the Purkinje cell somas: 188.2 microns 2 (n = 149) in the control animals and 176.3 microns 2 (n = 150) in the nude mice, (p < 0.01). In conclusion, our data indicate only a mild effect, if any, of the nude mutation upon the cerebellar neuronal population.
Collapse
Affiliation(s)
- A Bakalian
- Laboratoire de Neurobiologie du Développement, (URA C.N.R.S. 1488), Université Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|