1
|
Postnatal development of inner lamina II interneurons of the rat medullary dorsal horn. Pain 2021; 163:984-998. [PMID: 34433770 DOI: 10.1097/j.pain.0000000000002459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Pain processing in young mammals is immature. Despite the central role of the medullary dorsal horn (MDH) in processing orofacial sensory information, the maturation of the neurons within the MDH has been largely overlooked. Combining in vitro electrophysiological recordings and 3D morphological analysis over the first postnatal month in rats, we investigated the age-dependent development of the neurons within the inner lamina II (IIi) of the MDH. We show the lamina IIi neuronal population transition into a more hyperpolarized state, with modification of the action potential waveform, and a shift from single spiking, at early postnatal ages, to tonic firing and initial bursting at later stages. These physiological changes are associated with a strong structural remodelling of the neuronal morphology with most of the modifications occurring after the third postnatal week. Among the lamina IIi neuronal population, the subpopulation of interneurons expressing the γ isoform of the protein kinase C (PKCγ+) are key elements for the circuits underlying facial mechanical allodynia. How do they develop from the rest of the lamina IIi constitute an important question that remained to be addressed. Here, we show that PKCγ+ interneurons display electrophysiological changes over time comparable with the PKCγ- population. However, they show a distinctive increase of the soma volume and primary branches length, as opposed to the PKCγ- population. Together, our data demonstrate a novel pattern of late postnatal maturation of lamina IIi interneurons, with a spotlight on PKCγ+ interneurons, that may be relevant for the development of orofacial sensitivity.
Collapse
|
2
|
Serotonergic modulation of sacral dorsal root stimulation-induced locomotor output in newborn rat. Neuropharmacology 2019; 170:107815. [PMID: 31634501 DOI: 10.1016/j.neuropharm.2019.107815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
Abstract
Descending neuromodulators from the brainstem play a major role in the development and regulation of spinal sensorimotor functions. Here, the contribution of serotonergic signaling in the lumbar spinal cord was investigated in the context of the generation of locomotor activity. Experiments were performed on in vitro spinal cord preparations from newborn rats (0-5 days). Rhythmic locomotor episodes (fictive locomotion) triggered by tonic electrical stimulations (2Hz, 30s) of a single sacral dorsal root were recorded from bilateral flexor-dominated (L2) and extensor-dominated (L5) ventral roots. We found that the activity pattern induced by sacral stimulation evolves over the 5 post-natal (P) day period. Although alternating rhythmic flexor-like motor bursts were expressed at all ages, the locomotor pattern of extensor-like bursting was progressively lost from P1 to P5. At later stages, serotonin (5-HT) and quipazine (5-HT2A receptor agonist) at concentrations sub-threshold for direct locomotor network activation promoted sacral stimulation-induced fictive locomotion. The 5-HT2A receptor antagonist ketanserin could reverse the agonist's action but was ineffective when fictive locomotion was already expressed in the absence of 5-HT (mainly before P2). Although inhibiting 5-HT7 receptors with SB266990 did not affect locomotor pattern organization, activating 5-HT1A receptors with 8-OH-DPAT specifically deteriorated extensor phase motor burst activity. We conclude that during the first 5 post-natal days in rat, serotonergic signaling in the lumbar cord becomes increasingly critical for the expression of fictive locomotion. Our findings therefore further underline the importance of both descending serotonergic and sensory afferent pathways in shaping locomotor activity during postnatal development. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
|
3
|
Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and Disease. Neural Plast 2015; 2016:3423267. [PMID: 26843990 PMCID: PMC4710938 DOI: 10.1155/2016/3423267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/10/2015] [Accepted: 09/21/2015] [Indexed: 01/16/2023] Open
Abstract
Motoneurons develop extensive dendritic trees for receiving excitatory and inhibitory synaptic inputs to perform a variety of complex motor tasks. At birth, the somatodendritic domains of mouse hypoglossal and lumbar motoneurons have dense filopodia and spines. Consistent with Vaughn's synaptotropic hypothesis, we propose a developmental unified-hybrid model implicating filopodia in motoneuron spinogenesis/synaptogenesis and dendritic growth and branching critical for circuit formation and synaptic plasticity at embryonic/prenatal/neonatal period. Filopodia density decreases and spine density initially increases until postnatal day 15 (P15) and then decreases by P30. Spine distribution shifts towards the distal dendrites, and spines become shorter (stubby), coinciding with decreases in frequency and increases in amplitude of excitatory postsynaptic currents with maturation. In transgenic mice, either overexpressing the mutated human Cu/Zn-superoxide dismutase (hSOD1G93A) gene or deficient in GABAergic/glycinergic synaptic transmission (gephyrin, GAD-67, or VGAT gene knockout), hypoglossal motoneurons develop excitatory glutamatergic synaptic hyperactivity. Functional synaptic hyperactivity is associated with increased dendritic growth, branching, and increased spine and filopodia density, involving actin-based cytoskeletal and structural remodelling. Energy-dependent ionic pumps that maintain intracellular sodium/calcium homeostasis are chronically challenged by activity and selectively overwhelmed by hyperactivity which eventually causes sustained membrane depolarization leading to excitotoxicity, activating microglia to phagocytose degenerating neurons under neuropathological conditions.
Collapse
|
4
|
Mentis GZ, Díaz E, Moran LB, Navarrete R. Early alterations in the electrophysiological properties of rat spinal motoneurones following neonatal axotomy. J Physiol 2007; 582:1141-61. [PMID: 17510183 PMCID: PMC2075252 DOI: 10.1113/jphysiol.2007.133488] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/27/2007] [Accepted: 05/17/2007] [Indexed: 12/15/2022] Open
Abstract
Early in development, motoneurones are critically dependent on their target muscles for survival and differentiation. Previous studies have shown that neonatal axotomy causes massive motoneurone death and abnormal function in the surviving motoneurones. We have investigated the electrophysiological and morphological properties of motoneurones innervating the flexor tibialis anterior (TA) muscle during the first week after a neonatal axotomy, at a time when the motoneurones would be either in the process of degeneration or attempting to reinnervate their target muscles. We found that a large number ( approximately 75%) of TA motoneurones died within 3 weeks after neonatal axotomy. Intracellular recordings revealed a marked increase in motoneurone excitability, as indicated by changes in passive and active membrane electrical properties. These changes were associated with a shift in the motoneurone firing pattern from a predominantly phasic pattern to a tonic pattern. Morphologically, the dendritic tree of the physiologically characterized axotomized cells was significantly reduced compared with age-matched normal motoneurones. These data demonstrate that motoneurone electrical properties are profoundly altered shortly after neonatal axotomy. In a subpopulation of the axotomized cells, abnormally high motoneurone excitability (input resistance significantly higher compared with control cells) was associated with a severe truncation of the dendritic arbor, suggesting that this excitability may represent an early electrophysiological correlate of motoneurone degeneration.
Collapse
Affiliation(s)
- George Z Mentis
- Division of Neuroscience and Mental Health, Department of Cellular & Molecular Neuroscience, Imperial College London, Fulham Palace Road, London W6 8RF, UK.
| | | | | | | |
Collapse
|
5
|
Sedlacek M, Horak M, Vyklický L. Morphology and physiology of lamina I neurons of the caudal part of the trigeminal nucleus. Neuroscience 2007; 147:325-33. [PMID: 17543462 DOI: 10.1016/j.neuroscience.2007.04.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 04/03/2007] [Accepted: 04/09/2007] [Indexed: 11/19/2022]
Abstract
It has been suggested that in mammals, trigeminal lamina I neurons play a role in the processing and transmission of sensory information from the orofacial region. We investigated the physiological and morphological properties of trigeminal subnucleus caudalis (Sp5C) lamina I neurons in slices prepared from the medulla oblongata of 13- to 15-day-old postnatal rats using patch-clamp recordings and subsequent biocytin-streptavidin-Alexa labeling. Twenty-five neurons were recorded and immunohistochemically stained. The Sp5C lamina I consisted of several types of neurons which, on the basis of their responses to somatic current injection, can be classified into four groups: tonic neurons, which fired throughout the depolarizing pulse; phasic neurons, which expressed an initial burst of action potentials; delayed onset neurons, which showed a significant delay of the first action potential; and single spike neurons, characterized by only one to five action potentials at the very beginning of the depolarizing pulse even at high levels of stimulation intensity. Electrical stimulation of the spinal trigeminal tract evoked AMPA receptor-mediated excitatory postsynaptic currents (EPSC) exhibiting a strong polysynaptic component. AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSC) were characterized by a 10-90% rise time of 0.50+/-0.06 ms and a decay time constant of 2.5+/-0.5 ms. The kinetic properties of NMDA receptor-mediated EPSCs were measured at +40 mV. The 10-90% rise time was 8+/-2 ms and the deactivation time constants were 94+/-31 and 339+/-72 ms, respectively. Intracellular staining and morphological analysis revealed three groups of neurons: fusiform, pyramidal, and multipolar. Statistical analysis indicated that the electrophysiological properties and morphological characteristics are correlated. Tonic and phasic neurons were fusiform or pyramidal and delayed onset and single spike neurons were multipolar. Our results show that both the physiological and morphological properties of Sp5C lamina I neurons exhibit significant differences, indicating their specific integration in the processing and transmission of sensory information from the orofacial region.
Collapse
Affiliation(s)
- M Sedlacek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142, 20 Prague 4, Czech Republic
| | | | | |
Collapse
|
6
|
A new stochastic tridimensional model of neonatal rat spinal motoneuron for investigating compartmentalization of neuronal conductances and their influence on firing. J Neurosci Methods 2007; 163:362-72. [PMID: 17449105 DOI: 10.1016/j.jneumeth.2007.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 01/31/2007] [Accepted: 03/07/2007] [Indexed: 11/27/2022]
Abstract
During postnatal development spinal motoneurons play a major role in expressing basic behaviours like reflex reactions and in allowing the onset of the locomotor programme. For this purpose it is useful to clarify how various inputs are integrated at the level of the motoneuron soma to generate phasic or rhythmic firing. Although existing models of motoneurons have indicated the distributed role of certain conductances in regulating firing, it is unclear how the spatial distribution of certain currents is ultimately shaping motoneuron output. Thus, it would be helpful to build a bridge between histological and electrophysiological data. The present report is based on the construction of a 3D motoneuron model based on available parameters applicable to the neonatal spinal cord. The presented algorithm allows building up a complex, variable dendrogram which, together with the somatic and axonic compartments, enables strategic location of certain voltage or ligand gated conductances and simulation of resulting electrical behaviour. One application of the present model has been exploring the functional location of the recently reported cystic fibrosis transmembrane conductance regulator (CFTR) which controls Cl(-) homeostasis of postnatal motoneurons. The 3D model is made available for free, user friendly use via the dedicated web site http://www.mn-morphology.org.
Collapse
|
7
|
Benítez-Temiño B, de la Cruz RR, Pastor AM. Grafting of a new target prevents synapse loss in abducens internuclear neurons induced by axotomy. Neuroscience 2003; 118:611-26. [PMID: 12710971 DOI: 10.1016/s0306-4522(03)00003-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The loss of afferent synaptic boutons is a prominent alteration induced by axotomy on adult central neurons. In this work we attempted to prove whether synapse loss could be reverted by reconnection with a new target. We severed the medial longitudinal fascicle of adult cats and then transplanted embryonic cerebellar primordia at the lesion site immediately after lesion. As previously shown, the transected axons from abducens internuclear neurons penetrate and reinnervate the graft [J Comp Neurol 444 (2002) 324]. By immunocytochemistry and electron microscopy we studied the synaptology of abducens internuclear neurons under three conditions: control, axotomy and transplant (2 months of survival time). Semithin sections of the abducens nucleus were immunostained against calretinin, to identify abducens internuclear neurons, and either synaptophysin (SF), to label synaptic terminals, or glial fibrillary acidic protein (GFAP) to detect the astrocytic reaction. Optical and linear density of SF and GFAP immunostaining were measured. Data revealed a significant decrease in the density of SF-labeled terminals with a parallel increase in GFAP-immunoreactive elements after axotomy. On the contrary, in the transplant group, the density of SF-labeled terminals was found similar to control, and the astrocytic reaction induced by lesion was significantly reduced. At the ultrastructural level, synaptic coverage and linear density of boutons were measured around the somata of abducens internuclear neurons. Whereas a significant reduction in both parameters was found after axotomy, cells of the transplant group received a normal density of synaptic endings. The ratio between F- and S-type boutons was found similar in the three groups. Therefore, these findings indicate that the grafting of a new target can prevent the loss of afferent synaptic boutons produced by the axotomy.
Collapse
Affiliation(s)
- B Benítez-Temiño
- Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | | | | |
Collapse
|
8
|
Pastor AM, Mentis GZ, De La Cruz RR, Díaz E, Navarrete R. Increased electrotonic coupling in spinal motoneurons after transient botulinum neurotoxin paralysis in the neonatal rat. J Neurophysiol 2003; 89:793-805. [PMID: 12574457 DOI: 10.1152/jn.00498.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The effect of early postnatal blockade of neuromuscular transmission using botulinum neurotoxin (BoNT) type A on motoneuron gap junctional coupling was studied by means of intracellular recordings and biocytin labeling using the in vitro hemisected spinal cord preparation of neonatal rats. The somata of tibialis anterior (TA) motoneurons were retrogradely labeled at birth (P0) by intramuscular injection of fluorescent tracers. Two days later, BoNT was injected unilaterally into the TA muscle. The toxin blocked neuromuscular transmission for the period studied (P4-P7) as shown by tension recordings of the TA muscle. Retrograde horseradish peroxidase tracing in animals reared to adulthood demonstrated no significant cell death or changes in the soma size of BoNT-treated TA motoneurons. Intracellular recordings were carried out in prelabeled control and BoNT-treated TA motoneurons from P4 to P7. Graded stimulation of the ventral root at subthreshold intensities elicited short-latency depolarizing (SLD) potentials that consisted of several discrete components reflecting electrotonic coupling between two or more motoneurons. BoNT treatment produced a significant increase (67%) in the maximum amplitude of the SLD and in the number of SLD components as compared with control (3.1 +/- 1.7 vs. 1.4 +/- 0.7; means +/- SD). The morphological correlates of electrotonic coupling were investigated at the light microscope level by studying the transfer of biocytin to other motoneurons and the putative sites of gap junctional interaction. The dye-coupled neurons clustered around the injected cell with close somato-somatic, dendro-somatic and -dendritic appositions that might represent the sites of electrotonic coupling. The size of the motoneuron cluster was, on average, 2.2 times larger after BoNT treatment. Our findings demonstrate that a short-lasting functional disconnection of motoneurons from their target muscle delays motoneuron maturation by halting the elimination of gap junctional coupling that normally occurs during early postnatal development.
Collapse
Affiliation(s)
- Angel M Pastor
- Departamento de Fisiología y Zoología, Facultad de Biología, 41012-Sevilla, Spain.
| | | | | | | | | |
Collapse
|
9
|
Postural modifications and neuronal excitability changes induced by a short-term serotonin depletion during neonatal development in the rat. J Neurosci 2002. [PMID: 12077206 DOI: 10.1523/jneurosci.22-12-05108.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Serotonin (5-HT) plays an important role both in the development and in the recovery of locomotion after spinalization in vertebrates. We investigated the contribution of the serotonergic system to the maturation of the lumbar motoneurons and networks in the neonatal rat. A 5-HT synthesis inhibitor, p-chlorophenylalanine (PCPA), was administered daily from the first postnatal day (P0) onward. This protocol depleted serotonin in the spinal cord within 3-4 d, as demonstrated by immunohistochemistry. PCPA-treated rats exhibited postural changes characterized by lesser flexion at the knee and ankle levels and lesser extension of the hip. Posture was asymmetric, suggesting possible deficits in the interlimb coordination. Intracellular recordings were made at P3-5 from motoneurons innervating different hindlimb muscles, using the in vitro brainstem-spinal cord-nerve-attached preparation. In PCPA-treated rats, the conduction velocity of motoneurons was increased, and their excitability was decreased (because of higher rehobase and input conductance) compared with sham animals. In accordance with postural observations, changes were more pronounced in hip extensor/knee flexor than in ankle extensor motoneurons. The maturation of repetitive firing properties was stopped by PCPA treatment, although PCPA, applied in vitro, had no effect on membrane properties. The spontaneous endogenously generated activity, which is a characteristic of immature networks, was increased in PCPA-treated rats, suggesting that developing lumbar networks are sensitive to 5-HT levels. Serotonin may play a critical role during development in regulating the balance between the excitability of motoneurons and that of interneurons. Interneuronal excitability is crucial for the activity-dependent development of spinal cord networks.
Collapse
|
10
|
Anderson RL, Jobling P, Gibbins IL. Development of electrophysiological and morphological diversity in autonomic neurons. J Neurophysiol 2001; 86:1237-51. [PMID: 11535673 DOI: 10.1152/jn.2001.86.3.1237] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The generation of neuronal diversity requires the coordinated development of differential patterns of ion channel expression along with characteristic differences in dendritic geometry, but the relations between these phenotypic features are not well known. We have used a combination of intracellular recordings, morphological analysis of dye-filled neurons, and stereological analysis of immunohistochemically labeled sections to investigate the development of characteristic electrical and morphological properties of functionally distinct populations of sympathetic neurons that project from the celiac ganglion to the splanchnic vasculature or the gastrointestinal tract of guinea pigs. At early fetal stages, neurons were significantly more depolarized at rest compared with neurons at later stages, and they generally fired only a single action potential. By mid fetal stages, rapidly and slowly adapting neurons could be distinguished with a topographic distribution matching that found in adult ganglia. Most rapidly adapting neurons (phasic neurons) at this age had a long afterhyperpolarization (LAH) characteristic of mature vasomotor neurons and were preferentially located in the lateral poles of the ganglion, where most neurons contained neuropeptide Y. Most early and mid fetal neurons showed a weak M current, which was later expressed only by rapidly-adapting and LAH neurons. Two different A currents were present in a subset of early fetal neurons and may indicate neurons destined to develop a slowly adapting phenotype (tonic neurons). The size of neuronal cell bodies increased at a similar rate throughout development regardless of their electrical or neurochemical phenotype or their topographical location. In contrast, the rate of dendritic growth of neurons in medial regions of the ganglion was significantly higher than that of neurons in lateral regions. The apparent cell capacitance was highly correlated with the surface area of the soma but not the dendritic tree of the developing neurons. These results demonstrate that the well-defined functional populations of neurons in the celiac ganglion develop their characteristic electrophysiological and morphological properties during early fetal stages of development. This is after the neuronal populations can be recognized by their neurochemical and topographical characteristics but long before the neurons have finished growing. Our data provide strong circumstantial evidence that the development of the full phenotype of different functional classes of autonomic final motor neurons is a multi-step process likely to involve a regulated sequence of trophic interactions.
Collapse
Affiliation(s)
- R L Anderson
- Centre for Neuroscience, Department of Anatomy and Histology, Flinders University, Adelaide, SA 5001, Australia.
| | | | | |
Collapse
|
11
|
Vinay L, Brocard F, Clarac F. Differential maturation of motoneurons innervating ankle flexor and extensor muscles in the neonatal rat. Eur J Neurosci 2000; 12:4562-6. [PMID: 11122369 DOI: 10.1046/j.0953-816x.2000.01321.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The first postnatal week is a critical period for the development of posture in the rat. The use of ankle extensor muscles in postural reactions increases during this period. Changes in excitability of motoneurons are probably an important factor underlying this maturation. The aim of this study was to identify whether variations in the maturation exist between motor pools innervating antagonistic muscles. Intracellular recordings in the in vitro brain stem-spinal cord preparation of neonatal rats (from postnatal day 0-5) were used to examine the developmental changes in excitability of motoneurons innervating the ankle flexors (F-MNs) and the antigravity ankle extensors (E-MNs). No significant difference in resting potential, action potential threshold, input resistance or rheobase was observed at birth. The age-related increase in rheobase was more pronounced for F-MNs than for E-MNs. The development of discharge properties of E-MNs lagged behind that of F-MNs. More F-MNs than E-MNs were able to fire repetitively in response to current injection at birth. F-MNs discharged at a higher frequency than E-MNs at all ages. Differences in the duration of action potential afterhyperpolarization accounted, at least partly, for the differences in discharge frequency between E-MNs and F-MNs at birth, and for the age-related increase in firing rate. These results suggest that E-MNs are more immature at birth than F-MNs and that there is a differential development of motoneurons innervating antagonistic muscles. This may be a critical factor in the development of posture and locomotion.
Collapse
Affiliation(s)
- L Vinay
- CNRS, UniversitA d'Aix-Marseille II Dévelopement et Pathologie du Mouvement, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | |
Collapse
|
12
|
Vinay L, Brocard F, Pflieger JF, Simeoni-Alias J, Clarac F. Perinatal development of lumbar motoneurons and their inputs in the rat. Brain Res Bull 2000; 53:635-47. [PMID: 11165799 DOI: 10.1016/s0361-9230(00)00397-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rat is quite immature at birth and a rapid maturation of motor behavior takes place during the first 2 postnatal weeks. Lumbar motoneurons undergo a rapid development during this period. The last week before birth represents the initial stages of motoneuron differentiation, including regulation of the number of cells and the arrival of segmental and first supraspinal afferents. At birth, motoneurons are electrically coupled and receive both appropriate and inappropriate connections from the periphery; the control from supraspinal structures is weak and exerted mainly through polysynaptic connections. During the 1st postnatal week, inappropriate sensori-motor contacts and electrical coupling disappear, the supraspinal control increases gradually and myelin formation is responsible for an increased conduction velocity in both descending and motor axons. Both N-methyl-D-aspartate (NMDA) and non-NMDA receptors are transiently overexpressed in the neonatal spinal cord. The contribution of non-NMDA receptors to excitatory amino acid transmission increases with age. Activation of gamma-aminobutyric acid(A) and glycine receptors leads to membrane depolarization in embryonic motoneurons but to hyperpolarization in older motoneurons. The firing properties of motoneurons change with development: they are capable of more repetitive firing at the end of the 1st postnatal week than before birth. However, maturation does not proceed simultaneously in the motor pools innervating antagonistic muscles; for instance, the development of repetitive firing of ankle extensor motoneurons lags behind that of flexor motoneurons. The spontaneous embryonic and neonatal network-driven activity, detected at the levels of motoneurons and primary afferent terminals, may play a role in neuronal maturation and in the formation and refinement of sensorimotor connections.
Collapse
Affiliation(s)
- L Vinay
- CNRS, Développement et Pathologie du Mouvement, Marseille, France.
| | | | | | | | | |
Collapse
|
13
|
Abdrachmanova G, Vlachová V, Vyklický L. Axotomy-induced change in the properties of (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor channels in rat motoneurons. Neuroscience 2000; 99:119-31. [PMID: 10924957 DOI: 10.1016/s0306-4522(00)00181-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Properties of (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor channels were studied in fluorescence-labelled control and axotomized motoneurons in spinal cord slices using a patch-clamp technique. Axotomy performed on the third postnatal day resulted in motoneuron death. Application of AMPA or kainate induced large whole-cell currents, but outside-out patches isolated from control motoneurons were either unresponsive or displayed only single-channel activity in response to rapid application of AMPA. Measurement of AMPA receptor channel openings in outside-out patches revealed multiple single-channel conductance levels: 12.2+/-1.0, 21. 9+/-1.5 and 32.6+/-3.2pS. In control motoneurons dialysed with spermine, the current-voltage relationship of responses induced by activation of AMPA receptor channels exhibited various degrees of inward rectification. The rectification index, the ratio of responses at +40 and -60mV, was used to compare the degree of inward rectification. The mean values of rectification index of responses to focal application of AMPA and AMPA receptor-mediated excitatory postsynaptic currents induced by focal electric stimulation were 0. 64+/-0.17 and 0.50+/-0.27, respectively. In axotomized motoneurons, the degree of rectification was significantly less for both responses induced by application of AMPA and for excitatory postsynaptic currents (0.91+/-0.09 and 0.95+/-0.12, respectively). Deactivation of AMPA receptors assessed from motoneuron excitatory postsynaptic currents at -70 mV was independent of postnatal age, with tau(fast)=0.88+/-0.35ms (A(fast)=78.2+/-11.8%) and tau(slow)=6. 3+/-3.2ms. In axotomized motoneurons, the decay time constants of excitatory postsynaptic currents were similar, tau(fast)=0.91+/-0. 42ms (A(fast)=85.8+/-12.6%) and tau(slow)=5.9+/-3.4ms. However, the mean amplitude of excitatory postsynaptic currents was only 43% of the amplitude recorded in control motoneurons. The results show that the current induced by activation of AMPA receptors in neonatal motoneurons is mediated by opening of both Ca(2+)-permeable and Ca(2+)-impermeable channels. As a result of axotomy, an experimental model of neurodegeneration, AMPA receptor channels in injured motoneurons destined to die become predominantly Ca(2+) impermeable. These findings suggest phenotypic control of AMPA receptor channel properties, presumably by affecting their subunit composition.
Collapse
Affiliation(s)
- G Abdrachmanova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 4, Prague, Czech Republic
| | | | | |
Collapse
|
14
|
Virgo L, Dekkers J, Mentis GZ, Navarrete R, de Belleroche J. Changes in expression of NMDA receptor subunits in the rat lumbar spinal cord following neonatal nerve injury. Neuropathol Appl Neurobiol 2000; 26:258-72. [PMID: 10886684 DOI: 10.1046/j.1365-2990.2000.00244.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vulnerability of motoneurones to glutamate has been implicated in neurological disorders such as amyotrophic lateral sclerosis but it is not known whether specific receptor subtypes mediate this effect. In order to investigate this further, the expression of N-methyl-D-aspartate (NMDA) receptor subunits was studied during the first three post-natal weeks when motoneurones are differentially vulnerable to injury following neonatal nerve crush compared to the adult. Unilateral nerve crush was carried out at day 2 after birth (P2) which causes a decrease of 66% in motoneurone number by 14 days (P14). To study receptor expression in identified motoneurones, serial section analysis was carried out on retrogradely labelled common peroneal (CP) motoneurones by combined immunocytochemistry and in situ hybridization (ISH). mRNA levels were also quantified in homogenates from lumbar spinal cords in which the side ipsilateral to the crush was separated from the contralateral side. The NR1 subunit of the NMDA receptor was widely distributed in the spinal cord being expressed most strongly in motoneurone somata particularly during the neonatal period (P3-P7). The NR2 subunits were also expressed at higher levels in the somata and dendrites of neonatal motoneurones compared to older animals. NR2B mRNA was expressed at low to moderate levels throughout the studied period whereas NR2A mRNA levels were low until P21. Following unilateral nerve crush, an initial decrease in NR1 mRNA occurred at one day after nerve crush (P3) in labelled CP motoneurones ipsilateral to the crush which was followed by a significant increase in NR1 subunit expression at 5 days post-injury. This increase was bilateral although reaching greater significance ipsilateral to the crush compared with sham-operated animals. A significant increase in NR1 and NR2B mRNA post injury was also detected in spinal cord homogenates. In addition, the changes in levels of NR1 and NR2B mRNA were reflected by comparable bilateral changes at P7 in receptor protein determined by quantitative immunocytochemical analysis of NR1 and NR2 subunit expression in identified CP motoneurones indicating a co-ordinated regulation of receptor subunits in response to injury.
Collapse
Affiliation(s)
- L Virgo
- Division of Neuroscience & Psychological Medicine, Department of Neuromuscular Diseases, Imperial College School of Medicine, Charing Cross Hospital, London, UK
| | | | | | | | | |
Collapse
|
15
|
Abdrachmanova G, Teisinger J, Vlachová V, Vyklický L. Molecular and functional properties of synaptically activated NMDA receptors in neonatal motoneurons in rat spinal cord slices. Eur J Neurosci 2000; 12:955-63. [PMID: 10762325 DOI: 10.1046/j.1460-9568.2000.00989.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The functional properties of N-methyl-D-aspartate (NMDA) receptor-mediated excitatory postsynaptic currents (EPSC) were studied in fluorescence-labelled motoneurons in thin spinal cord slices. The deactivation of NMDA receptor EPSCs in motoneurons voltage-clamped at +40 mV was independent of intensity or location of stimulation and of postnatal age [taufast = 28.5 +/- 4.6 ms (63.6 +/- 8.8%) and tauslow = 165.6 +/- 49.6 ms]. In the presence of 1 mM Mg2+ the amplitude of NMDA receptor EPSCs was voltage-dependent. Boltzmann analysis of the relationship between peak NMDA receptor EPSC amplitude and membrane potential suggested an apparent Kd of Mg2+ (at 0 mV) of 0.87 mM. Nonstationary variance analysis of NMDA receptor EPSCs gave an estimated single-channel conductance of 59 +/- 14 pS. Direct measurement of the NMDA receptor channel openings in outside-out patches isolated from motoneurons indicated the presence of single-channel conductance levels of 21.8 +/- 2.8 pS, 37. 1 +/- 3.2 pS, 49.6 +/- 5.1 pS and 69.6 +/- 4.2 pS. Single-cell RT-PCR analysis of mRNA revealed that NR1, NR2A-D and NR3A transcripts were expressed in motoneurons. These results suggest that specific assembly of NMDA receptor subunits in motoneurons determines the functional and pharmacological properties of the receptors in these cells.
Collapse
Affiliation(s)
- G Abdrachmanova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Víde&nbreve;ská 1083, 142 20 Prague 4, Czech Republic
| | | | | | | |
Collapse
|
16
|
Palecek JI, Abdrachmanova G, Vlachová V, Vyklick L. Properties of NMDA receptors in rat spinal cord motoneurons. Eur J Neurosci 1999; 11:827-36. [PMID: 10103076 DOI: 10.1046/j.1460-9568.1999.00489.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Postnatal development and properties of N-methyl-d-aspartate (NMDA) receptors were studied with whole-cell and outside-out patch-clamp techniques in interneurons and fluorescence-labelled motoneurons in rat spinal cord slices. Both the absolute amplitude of NMDA-induced currents and currents normalized with respect to the motoneuron capacitance increased significantly at postnatal days 10-13 when compared to the responses evoked at postnatal days 2-3. The mean amplitude of the responses to kainate also increased in motoneurons of postnatal days 10-13. Single-channel currents induced by low concentrations of glutamate, exhibited four distinct amplitude levels corresponding to 19.2 +/- 2.4 pS, 38.4 +/- 3.5 pS, 56.3 +/- 2. 4 pS and 69.6 +/- 3.7 pS. In contrast, the conductance of single channels, recorded under identical conditions, in rat spinal cord interneurons was less, 15.3 +/- 3.2 pS, 29.9 +/- 5.4 pS, 46.7 +/- 4. 8 pS and 62.4 +/- 3.9 pS. The high (56/70 pS) conductance single-channel openings in motoneuron patches were sensitive to NMDA receptor inhibitors D-2-amino-5-phosphonovalerate, 7-chlorokynurenic acid and ifenprodil. Whole-cell NMDA-evoked currents were blocked in a voltage-dependent manner by extracellular Mg2+ with an apparent dissociation constant for Mg2+ binding at 0 mV of 1.8 +/- 0.5 mm. The conductance and relative distribution of NMDA receptor channel openings induced by 1 micrometer glutamate in patches isolated from the motoneurons were independent of age from postnatal day 4 to 14. The results suggest that the properties of NMDA receptor channels in motoneurons differ from those in spinal cord interneurons and cells transfected with NR1/NR2 subunits.
Collapse
Affiliation(s)
- J I Palecek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic
| | | | | | | |
Collapse
|
17
|
Berthele A, Boxall SJ, Urban A, Anneser JM, Zieglgänsberger W, Urban L, Tölle TR. Distribution and developmental changes in metabotropic glutamate receptor messenger RNA expression in the rat lumbar spinal cord. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 112:39-53. [PMID: 9974158 DOI: 10.1016/s0165-3806(98)00156-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using in situ hybridisation, the regional distribution of primary transcripts and splice variants of all metabotropic glutamate receptor subtypes (mGluR) currently known to be expressed in the spinal cord have been studied in the lumbar enlargement of the rat spinal cord. In adult animals, the messenger RNA of the mGluR subtypes 1, 5, 3, 4 and 7 were differentially expressed. The transcripts of mGluR1 and 5 were most abundant with mGluR5 messenger RNA being concentrated in the superficial dorsal horn. In contrast, the mGluR2 transcript was not detectable with the sensitivity of the method. Secondly, age related changes (postnatal days 1, 7, 12, 21) in the postnatal expression of mGluR1-5 and 7 transcripts have been investigated. mGluR1 and 7 messenger RNA showed a general decrease in spinal expression from postnatal day 1 to day 21. Quantitative densitometry showed high mGluR3 and 5 messenger RNA levels especially in the superficial dorsal horn at birth, however these levels decreased with age. In addition to changes in density, the regional distribution of mGluR3 messenger RNA was altered with postnatal development. Up to postnatal day 12, mGluR3 messenger RNA expression was almost exclusively restricted to the spinal grey matter, but with postnatal day 21 a strong additional expression in the white matter occurred. Distribution of mGluR4 messenger RNA showed little change in the dorsal horn, however motoneuronal expression emerged during development. These changes may suggest different roles for mGluRs in the maturation of spinal transmission of the rat nervous system.
Collapse
Affiliation(s)
- A Berthele
- Department of Neurology, Technical University Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Lawson SJ, Lowrie MB. The role of apoptosis and excitotoxicity in the death of spinal motoneurons and interneurons after neonatal nerve injury. Neuroscience 1998; 87:337-48. [PMID: 9740396 DOI: 10.1016/s0306-4522(98)00120-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is evidence that motoneurons which die following neonatal nerve injury in rats do so through an excitotoxic mechanism. In this study, we have investigated whether this excitotoxicity induces motoneuron death by apoptosis. Sciatic motoneurons were prelabelled at birth with the retrograde tracing agent, Fast Blue, and the sciatic nerve was crushed in one leg two days later. At intervals up to 12 days, sections of the lumbar enlargement were analysed for apoptosis using propidium iodide and terminal deoxynucleotidyl transferase biotin-14-UTP nick end labelling techniques. A significant concentration of Fast Blue-labelled apoptotic motoneurons was seen in the area of the sciatic motor pool ipsilateral to the nerve injury, with the majority occurring in the first three days. Comparison of estimates of the time-course of apoptosis with that of motoneuron survival suggest that all motoneuron death induced during the first 12 days occurs by apoptosis and that the process is only recognizable for 2 h. Treatment with the N-methyl-D-aspartate receptor antagonist, dizocilpine maleate, reduced the level of apoptosis by 60%. Taken together, these data show that motoneurons which have been affected by an excitotoxic mechanism die by apoptosis. The apoptotic study also provides evidence, for the first time, that unilateral nerve injury induces motoneuron death in the contralateral sciatic motor pool. Apoptotic interneurons were also seen on both sides of the spinal cord as a result of nerve injury.
Collapse
Affiliation(s)
- S J Lawson
- Division of Biomedical Sciences, Imperial College, School of Medicine, London, UK
| | | |
Collapse
|
19
|
MacLean JN, Schmidt BJ, Hochman S. NMDA receptor activation triggers voltage oscillations, plateau potentials and bursting in neonatal rat lumbar motoneurons in vitro. Eur J Neurosci 1997; 9:2702-11. [PMID: 9517475 DOI: 10.1111/j.1460-9568.1997.tb01699.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Whole-cell recordings of lumbar motoneurons in the intact neonatal rat spinal cord in vitro were undertaken to examine the effects of N-methyl-D-aspartate (NMDA) receptor activation on membrane behaviour. Bath application of NMDA induced rhythmic voltage oscillations of 5.9+/-2.1 mV (SD) at a frequency of 4.4+/-1.5 Hz. Amplitude, but not frequency, of the voltage oscillations was membrane potential-dependent. Voltage oscillations could recruit action potentials and/or plateau potentials with or without superimposed bursting. Blockade of synaptic transmission with tetrodotoxin (TTX) sometimes resulted in a loss of oscillatory activity which could then be restored by increasing the NMDA concentration. After application of TTX, the trajectory of NMDA-induced oscillations was similar to the trajectory induced in the presence of intact synaptic networks, although the mean oscillation duration was longer and the oscillation frequency was slower (1.8+/-1.1 Hz). Current ramps delivered after bath application of NMDA demonstrated bistable membrane properties which may underlie the plateau potentials. Injection of intracellular current pulses could initiate, entrain and terminate individual plateau potentials. The results suggest that membrane depolarization produced by oscillations may activate other intrinsic conductances which generate plateau potentials, thereby providing the neuron with enhanced voltage sensitivity, compared to that produced by NMDA receptor activation alone. These oscillatory events may have a role in the regulation of motor output in a variety of rhythmic behaviours including locomotion.
Collapse
Affiliation(s)
- J N MacLean
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
20
|
Pastor AM, Moreno-López B, De La Cruz RR, Delgado-García JM. Effects of botulinum neurotoxin type A on abducens motoneurons in the cat: ultrastructural and synaptic alterations. Neuroscience 1997; 81:457-78. [PMID: 9300434 DOI: 10.1016/s0306-4522(97)00200-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The synaptic alterations induced in abducens motoneurons by the injection of 3 ng/kg of botulinum neurotoxin type A into the lateral rectus muscle were studied using ultrastructural and electrophysiological techniques. Motoneurons identified by the retrograde transport of horseradish peroxidase showed a progressive synaptic stripping already noticeable by four days post-injection which increased over the study period. By 35 days post-injection, the normal coverage of motoneurons by synaptic boutons (66.4 +/- 4.0%) significantly decreased to 27.2 +/- 4.0%. Synaptic boutons detached by a widening of the subsynaptic space but remained apposed by synaptic contacts and desmosomes to the motoneuron. Detachment did not affect equally flat and round vesicle-containing boutons. The control motoneuron had almost equal numbers of both types of boutons, but after 35 days post-injection the ratio of round to flat vesicle-containing boutons was 1.20 +/- 0.01. Synaptic boutons impinging on motoneurons showed signs of alterations in membrane turnover, as indicated by an increase in the number of synaptic vesicles and a decrease in the number of coated vesicles and synaptic vesicles near the active zone. Abducens motoneurons had a transient increase in soma size by 15 days that returned to normal at 35 days, but no signs of chromatolysis or organelle degeneration were seen. Accompanying the swelling of motoneurons, a 15-fold increase in the number of spines, very infrequent in controls, was observed. Spines located in the soma and proximal dendritic trunk received synaptic contacts from both flat and round vesicle-containing boutons that could be either partly detached or completely attached to the motoneuron. An increased turnover of the plasmatic membrane of the motoneuron was observed, as indicated by a four-fold increase in the number of somatic coated vesicles. Animals were implanted with bipolar electrodes in the ampulla of both horizontal semicircular canals for evoking contralateral excitatory and ipsilateral inhibitory postsynaptic potentials. Motoneurons were antidromically identified from the lateral rectus muscle. Synaptic potentials of vestibular origin were recorded in abducens motoneurons. In the period between two and six days post-injection, a complete abolition of inhibitory synaptic potentials was observed. By contrast, excitatory synaptic potentials remained, but were reduced by 82%. The imbalance between excitatory and inhibitory inputs to motoneurons induced a progressive increase of firing frequency within a few stimuli applied to the contralateral canal. Between 7 and 15 days post-injection, both excitatory and inhibitory postsynaptic potentials were virtually abolished and remained so up to the longest time checked (105 days). Some motoneurons recorded beyond 60 days post-injection showed signs of recovery of excitatory postsynaptic potentials. During the whole time-span studied, presynaptic wavelets were present, indicating no affecting of the conduction of afferent volleys to the abducens nucleus. Taken together, these data indicate that botulinum neurotoxin at high doses causes profound synaptic alterations in motoneurons responsible for the effects seen in the behavior of motoneurons recorded in alert animals.
Collapse
Affiliation(s)
- A M Pastor
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | | | |
Collapse
|
21
|
Hayashi T, Mendelson B, Phelan KD, Skinner RD, Garcia-Rill E. Developmental changes in serotonergic receptor-mediated modulation of embryonic chick motoneurons in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 102:21-33. [PMID: 9298231 DOI: 10.1016/s0165-3806(97)00073-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Intracellular recordings were obtained from antidromically identified motoneurons in an embryonic chick spinal cord slice preparation at two developmental stages (embryonic days 12 and 18, E12 and E18) which bracket a critical period in spinal cord growth. The resting membrane potential of chick motoneurons did not change significantly between E12 and E18, but there was a significant decrease in neuronal input resistance. A small inward rectification was present in cells of both ages, although a lower proportion of E12 motoneurons exhibited inward rectification compared to E18 motoneurons. Injection of depolarizing current pulses revealed that most E12 motoneurons exhibited spike adaptation, while the majority of E18 motoneurons showed high frequency tonic firing. Bath application of serotonin (5-HT) and its agonists 5-carboxamido-tryptamine (5-CT, a 5-HT1 agonist) and alpha-methyl 5-HT (a 5-HT2 agonist) produced hyperpolarizing responses accompanied by decreased input resistance in all E12 motoneurons studied. The same three agonists produced depolarizing responses and increased input resistance in all E18 motoneurons studied. The effects of serotonergic agonists on motoneuronal excitability were tested using depolarizing current pulses. In most cases, serotonergic agonists caused a decrease in firing frequency during the hyperpolarizing response in E12 neurons. At E18, bath application of 5-HT, 5-CT or alpha-methyl 5-HT produced an increase in firing frequency in all motoneurons during the depolarizing response. Our results indicate that both 5-HT1 and 5-HT2 receptor subtypes contribute to modulation of chick motoneuron excitability and appear to reverse the polarity of their effects on membrane potential after a critical period in development of the spinal cord.
Collapse
Affiliation(s)
- T Hayashi
- Department of Anatomy, University of Arkansas for Medical Sciences, Little Rock 72205-7199, USA
| | | | | | | | | |
Collapse
|
22
|
Casanovas A, Ribera J, Hukkanen M, Riveros-Moreno V, Esquerda JE. Prevention by lamotrigine, MK-801 and N omega-nitro-L-arginine methyl ester of motoneuron cell death after neonatal axotomy. Neuroscience 1996; 71:313-25. [PMID: 9053787 DOI: 10.1016/0306-4522(95)00461-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Motoneuron cell death was analysed in the rat facial motor nucleus after neonatal facial nerve transection. In situ DNA fragmentation labelling showed that axotomized motoneurons die by an apoptotic mechanism. In order to investigate the existence of excitotoxic mechanisms in this type of neuronal death, rats were treated with several agents known to possess neuroprotective action through a variety of mechanisms. The Na+ channel inhibitor lamotrigine and the antagonist for the N-methyl-D-aspartate-type glutamate receptor, dizocilpine maleate (MK-801) were found to be able to rescue motoneurons from cell death induced by axotomy. The nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester was also able to protect motoneurons from death, but to a lesser extent. The distribution of constitutive and inducible isoforms of nitric oxide synthase was investigated by immunocytochemistry in the facial motor nucleus. No changes were detected in constitutive nitric oxide synthase immunoreactivity in the facial motor nucleus after axotomy. However, in the axotomized facial motor nucleus, inducible nitric oxide synthase showed a positive immunolabelling specifically located in activated astrocytes, but not in microglia. Nitric oxide derived from activated astrocytes may have a role in promoting excitotoxic mechanisms in axotomized motoneurons. We conclude that excitotoxic mechanisms involving apoptotic cell death are present when immature motoneurons die as a consequence of target disconnection.
Collapse
Affiliation(s)
- A Casanovas
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Catalonia, Spain
| | | | | | | | | |
Collapse
|
23
|
Kerai B, Greensmith L, Vrbová G, Navarrete R. Effect of transient neonatal muscle paralysis on the growth of soleus motoneurones in the rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 85:89-95. [PMID: 7781172 DOI: 10.1016/0165-3806(94)00198-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The postnatal growth of soleus motoneurones was studied during normal development and following transient paralysis of the soleus muscle in neonatal rats. Paralysis was achieved by implanting a silicon strip containing alpha-bungarotoxin alongside the soleus muscle in rat pups within 3-6 h of birth. The soleus muscle was completely paralysed for at least 24 h, and by 9 days neuromuscular transmission was fully restored. The soma size of normal and target-deprived soleus motoneurones was compared at intervals during the first 3 postnatal weeks and in adults, using the retrograde horseradish peroxidase technique. There was a four-fold increase in the soma area of normal motoneurons during the first 3 postnatal weeks, with the greater part of the increase occurring between 7 and 14 days. At 3 days, the distribution of soma areas was unimodal and became bimodal by 21 days. Paralysis during the first postnatal week did not significantly affect the developmental changes in motoneurone soma area or their distribution up to 3 weeks of age. Thus, motoneurones deprived of functional neuromuscular contact appear to grow normally during the early postnatal period, although previous results show that at later stages (2-3 months of age), many of these motoneurones die and the remaining cells are smaller than normal.
Collapse
Affiliation(s)
- B Kerai
- Department of Anatomy, Charing Cross and Westminster Medical School, London, UK
| | | | | | | |
Collapse
|