1
|
Zhou YS, Tao HB, Lv SS, Liang KQ, Shi WY, Liu KY, Li YY, Chen LY, Zhou L, Yin SJ, Zhao QR. Effects of Kv1.3 knockout on pyramidal neuron excitability and synaptic plasticity in piriform cortex of mice. Acta Pharmacol Sin 2024; 45:2045-2060. [PMID: 38862816 PMCID: PMC11420205 DOI: 10.1038/s41401-024-01275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/24/2024] [Indexed: 06/13/2024] Open
Abstract
Kv1.3 belongs to the voltage-gated potassium (Kv) channel family, which is widely expressed in the central nervous system and associated with a variety of neuropsychiatric disorders. Kv1.3 is highly expressed in the olfactory bulb and piriform cortex and involved in the process of odor perception and nutrient metabolism in animals. Previous studies have explored the function of Kv1.3 in olfactory bulb, while the role of Kv1.3 in piriform cortex was less known. In this study, we investigated the neuronal changes of piriform cortex and feeding behavior after smell stimulation, thus revealing a link between the olfactory sensation and body weight in Kv1.3 KO mice. Coronal slices including the anterior piriform cortex were prepared, whole-cell recording and Ca2+ imaging of pyramidal neurons were conducted. We showed that the firing frequency evoked by depolarization pulses and Ca2+ influx evoked by high K+ solution were significantly increased in pyramidal neurons of Kv1.3 knockout (KO) mice compared to WT mice. Western blotting and immunofluorescence analyses revealed that the downstream signaling molecules CaMKII and PKCα were activated in piriform cortex of Kv1.3 KO mice. Pyramidal neurons in Kv1.3 KO mice exhibited significantly reduced paired-pulse ratio and increased presynaptic Cav2.1 expression, proving that the presynaptic vesicle release might be elevated by Ca2+ influx. Using Golgi staining, we found significantly increased dendritic spine density of pyramidal neurons in Kv1.3 KO mice, supporting the stronger postsynaptic responses in these neurons. In olfactory recognition and feeding behavior tests, we showed that Kv1.3 conditional knockout or cannula injection of 5-(4-phenoxybutoxy) psoralen, a Kv1.3 channel blocker, in piriform cortex both elevated the olfactory recognition index and altered the feeding behavior in mice. In summary, Kv1.3 is a key molecule in regulating neuronal activity of the piriform cortex, which may lay a foundation for the treatment of diseases related to piriform cortex and olfactory detection.
Collapse
Affiliation(s)
- Yong-Sheng Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Hao-Bo Tao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Si-Si Lv
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ke-Qin Liang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wen-Yi Shi
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ke-Yi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yun-Yun Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Lv-Yi Chen
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ling Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Shi-Jin Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Qian-Ru Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
2
|
Soldovieri MV, Ambrosino P, Mosca I, Servettini I, Pietrunti F, Belperio G, Syrbe S, Taglialatela M, Lemke JR. De novo variants in KCNA3 cause developmental and epileptic encephalopathy. Ann Neurol 2024; 95:365-376. [PMID: 37964487 DOI: 10.1002/ana.26826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVE Variants in several potassium channel genes, including KCNA1 and KCNA2, cause Developmental and Epileptic Encephalopathies (DEEs). We investigated whether variants in KCNA3, another mammalian homologue of the Drosophila shaker family and encoding for Kv1.3 subunits, can cause DEE. METHODS Genetic analysis of study individuals was performed by routine exome or genome sequencing, usually of parent-offspring trios. Phenotyping was performed via a standard clinical questionnaire. Currents from wild-type and/or mutant Kv1.3 subunits were investigated by whole-cell patch-clamp upon their heterologous expression. RESULTS Fourteen individuals, each carrying a de novo heterozygous missense variant in KCNA3, were identified. Most (12/14; 86%) had DEE with marked speech delay with or without motor delay, intellectual disability, epilepsy, and autism spectrum disorder. Functional analysis of Kv1.3 channels carrying each variant revealed heterogeneous functional changes, ranging from "pure" loss-of-function (LoF) effects due to faster inactivation kinetics, depolarized voltage-dependence of activation, slower activation kinetics, increased current inactivation, reduced or absent currents with or without dominant-negative effects, to "mixed" loss- and gain-of-function (GoF) effects. Compared to controls, Kv1.3 currents in lymphoblasts from 1 of the proband displayed functional changes similar to those observed upon heterologous expression of channels carrying the same variant. The antidepressant drug fluoxetine inhibited with similar potency the currents from wild-type and 1 of the Kv1.3 GoF variant. INTERPRETATION We describe a novel association of de novo missense variants in KCNA3 with a human DEE, and provide evidence that fluoxetine might represent a potential targeted treatment for individuals carrying variants with significant GoF effects. ANN NEUROL 2024;95:365-376.
Collapse
Affiliation(s)
| | - Paolo Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Ilaria Mosca
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy
| | - Ilenio Servettini
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy
| | - Francesca Pietrunti
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giorgio Belperio
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Steffen Syrbe
- Center for Pediatrics and Adolescent Medicine, Division of Pediatric Epileptology, University Hospital Heidelberg, Heidelberg, Germany
| | - Maurizio Taglialatela
- Department of Neuroscience, Division of Pharmacology, University of Naples "Federico II", Naples, Italy
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
3
|
Domain and cell type-specific immunolocalisation of voltage-gated potassium channels in the mouse striatum. J Chem Neuroanat 2023; 128:102233. [PMID: 36640913 DOI: 10.1016/j.jchemneu.2023.102233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Diverse classes of voltage-gated potassium channels (Kv) are integral to the variety of electrical activity patterns that distinguish different classes of neurons in the brain. A feature of their heterogenous expression patterns is the highly precise manner in which specific cell types target their location within functionally specialised sub-cellular domains. Although Kv expression profiles in cortical brain regions are widely reported, their immunolocalisation in sub-cortical areas such as the striatum, and in associated diseases such as Parkinson's disease (PD), remain less well described. Therefore, the broad aims of this study were to provide a high resolution immunolocalisation analysis of various Kv subtypes within the mouse striatum and assess their potential plasticity in a model of PD. Immunohistochemistry and confocal microscopy revealed that immunoreactivity for Kv1.1, 1.2 and 1.4 overlapped to varying degrees with excitatory and inhibitory axonal marker proteins suggesting these Kv subtypes are targeted to axons innervating striatal medium spiny neurons (MSNs). Immunoreactivity for Kv1.3 strongly overlapped with signal for mitochondrial marker proteins in MSN somata and dendrites. Kv1.5 immunoreactivity was expressed in parvalbumin-immunopositive neurons whereas Kv1.6 was located in cells immunopositive for microglia. Signal for Kv2.1 was concentrated on the somatic and proximal dendritic plasma membrane of MSNs, whilst immunoreactivity for Kv4.2 was targeted to their distal dendritic regions. Finally, striatal Kv2.1 expression, at both the mRNA and protein levels, was decreased in alpha-synuclein overexpressing mice, yet increased in alpha-synuclein knockout mice, compared to wild-type counterparts. The data indicate a variety of Kv expression patterns that are distinctive to the striatum and susceptible to pathology that mirrors PD. Furthermore, these findings advance our understanding of the molecular diversity of various striatal cell types, and potentially have implications for the homeostatic changes of MSN excitability during associated medical conditions such as PD.
Collapse
|
4
|
Kolesnikova TO, Demin KA, Costa FV, Zabegalov KN, de Abreu MS, Gerasimova EV, Kalueff AV. Towards Zebrafish Models of CNS Channelopathies. Int J Mol Sci 2022; 23:ijms232213979. [PMID: 36430455 PMCID: PMC9693542 DOI: 10.3390/ijms232213979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Channelopathies are a large group of systemic disorders whose pathogenesis is associated with dysfunctional ion channels. Aberrant transmembrane transport of K+, Na+, Ca2+ and Cl- by these channels in the brain induces central nervous system (CNS) channelopathies, most commonly including epilepsy, but also migraine, as well as various movement and psychiatric disorders. Animal models are a useful tool for studying pathogenesis of a wide range of brain disorders, including channelopathies. Complementing multiple well-established rodent models, the zebrafish (Danio rerio) has become a popular translational model organism for neurobiology, psychopharmacology and toxicology research, and for probing mechanisms underlying CNS pathogenesis. Here, we discuss current prospects and challenges of developing genetic, pharmacological and other experimental models of major CNS channelopathies based on zebrafish.
Collapse
Affiliation(s)
| | - Konstantin A. Demin
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, 197341 St. Petersburg, Russia
| | - Fabiano V. Costa
- Neurobiology Program, Sirius University of Science and Technology, 354349 Sochi, Russia
| | | | - Murilo S. de Abreu
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
- Correspondence: (M.S.d.A.); (A.V.K.); Tel.: +55-54-99605-9807 (M.S.d.A.); +1-240-899-9571 (A.V.K.); Fax: +1-240-899-9571 (A.V.K.)
| | - Elena V. Gerasimova
- Neurobiology Program, Sirius University of Science and Technology, 354349 Sochi, Russia
| | - Allan V. Kalueff
- Neurobiology Program, Sirius University of Science and Technology, 354349 Sochi, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, 197341 St. Petersburg, Russia
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, 197758 St. Petersburg, Russia
- Ural Federal University, 620002 Yekaterinburg, Russia
- Scientific Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
- Correspondence: (M.S.d.A.); (A.V.K.); Tel.: +55-54-99605-9807 (M.S.d.A.); +1-240-899-9571 (A.V.K.); Fax: +1-240-899-9571 (A.V.K.)
| |
Collapse
|
5
|
Lebenheim L, Booker SA, Derst C, Weiss T, Wagner F, Gruber C, Vida I, Zahm DS, Veh RW. A novel giant non-cholinergic striatal interneuron restricted to the ventrolateral striatum coexpresses Kv3.3 potassium channel, parvalbumin, and the vesicular GABA transporter. Mol Psychiatry 2022; 27:2315-2328. [PMID: 33190145 PMCID: PMC9126804 DOI: 10.1038/s41380-020-00948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The striatum is the main input structure of the basal ganglia. Distinct striatal subfields are involved in voluntary movement generation and cognitive and emotional tasks, but little is known about the morphological and molecular differences of striatal subregions. The ventrolateral subfield of the striatum (VLS) is the orofacial projection field of the sensorimotor cortex and is involved in the development of orofacial dyskinesias, involuntary chewing-like movements that often accompany long-term neuroleptic treatment. The biological basis for this particular vulnerability of the VLS is not known. Potassium channels are known to be strategically localized within the striatum. In search of possible molecular correlates of the specific vulnerability of the VLS, we analyzed the expression of voltage-gated potassium channels in rodent and primate brains using qPCR, in situ hybridization, and immunocytochemical single and double staining. Here we describe a novel, giant, non-cholinergic interneuron within the VLS. This neuron coexpresses the vesicular GABA transporter, the calcium-binding protein parvalbumin (PV), and the Kv3.3 potassium channel subunit. This novel neuron is much larger than PV neurons in other striatal regions, displays characteristic electrophysiological properties, and, most importantly, is restricted to the VLS. Consequently, the giant striatal Kv3.3-expressing PV neuron may link compromised Kv3 channel function and VLS-based orofacial dyskinesias.
Collapse
Affiliation(s)
- Lydia Lebenheim
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Philippstraße 12, D-10115, Berlin, Germany
| | - Sam A Booker
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Philippstraße 12, D-10115, Berlin, Germany.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Christian Derst
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Philippstraße 12, D-10115, Berlin, Germany
| | - Torsten Weiss
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Philippstraße 12, D-10115, Berlin, Germany
| | - Franziska Wagner
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Philippstraße 12, D-10115, Berlin, Germany.,Hans Berger Klinik für Neurologie, Universitätsklinikum Jena, An der Klinik 1, D-07747, Jena, Germany
| | - Clemens Gruber
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Philippstraße 12, D-10115, Berlin, Germany
| | - Imre Vida
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Philippstraße 12, D-10115, Berlin, Germany
| | - Daniel S Zahm
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| | - Rüdiger W Veh
- Institut für Zell- und Neurobiologie, Charité -Universitätsmedizin Berlin, Philippstraße 12, D-10115, Berlin, Germany.
| |
Collapse
|
6
|
Hedrich UBS, Lauxmann S, Wolff M, Synofzik M, Bast T, Binelli A, Serratosa JM, Martínez-Ulloa P, Allen NM, King MD, Gorman KM, Zeev BB, Tzadok M, Wong-Kisiel L, Marjanovic D, Rubboli G, Sisodiya SM, Lutz F, Ashraf HP, Torge K, Yan P, Bosselmann C, Schwarz N, Fudali M, Lerche H. 4-Aminopyridine is a promising treatment option for patients with gain-of-function KCNA2-encephalopathy. Sci Transl Med 2021; 13:eaaz4957. [PMID: 34516822 DOI: 10.1126/scitranslmed.aaz4957] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ulrike B S Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Stephan Lauxmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Markus Wolff
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, 72076 Tuebingen, Germany.,Department of Pediatric Neurology, Vivantes-Klinikum Neukölln, 12351 Berlin, Germany
| | - Matthis Synofzik
- Department of Neurology and Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Thomas Bast
- Epilepsy Center Kork, 77694 Kehl-Kork, Germany.,Medical Faculty of the University of Freiburg, 79110 Freiburg, Germany
| | - Adrian Binelli
- Department of Pediatric Neurology, Elizalde Children's Hospital, C1270 Buenos Aires, Argentina
| | - José M Serratosa
- Neurology Laboratory and Epilepsy Unit, Department of Neurology, IIS- Fundacio'n Jime'nez Dı'az, UAM, 28040 Madrid, Spain.,Centro de Investigacio'n Biome'dica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Pedro Martínez-Ulloa
- Neurology Laboratory and Epilepsy Unit, Department of Neurology, IIS- Fundacio'n Jime'nez Dı'az, UAM, 28040 Madrid, Spain
| | - Nicholas M Allen
- Department of Paediatrics, Clinical Sciences Institute, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Mary D King
- Department of Neurology and Neurophysiology, Children's Health Ireland at Temple Street, Dublin DO1 YC67, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin DO4 V1W8, Ireland
| | - Kathleen M Gorman
- Department of Neurology and Neurophysiology, Children's Health Ireland at Temple Street, Dublin DO1 YC67, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin DO4 V1W8, Ireland
| | - Bruria Ben Zeev
- Sackler School of Medicine Tel Aviv University, Tel Aviv 6997801, Israel.,Pediatric Neurology Unit, Edmond and Lilly Safra Pediatric Hospital, Sheba Medical Center, 5265601 Ramat Gan, Israel
| | - Michal Tzadok
- Sackler School of Medicine Tel Aviv University, Tel Aviv 6997801, Israel.,Pediatric Neurology Unit, Edmond and Lilly Safra Pediatric Hospital, Sheba Medical Center, 5265601 Ramat Gan, Israel
| | - Lily Wong-Kisiel
- Divisions of Child Neurology & Division of Epilepsy, Department of Neurology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | - Guido Rubboli
- Danish Epilepsy Center, Filadelfia, 4293 Dianalund, Denmark.,University of Copenhagen, 1165 Copenhagen, Denmark
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.,Chalfont Centre for Epilepsy, Bucks SL9 0RJ, UK
| | - Florian Lutz
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Harshad Pannikkaveettil Ashraf
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Kirsten Torge
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Pu Yan
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Christian Bosselmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Niklas Schwarz
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Monika Fudali
- Department of Neurosurgery, University of Tuebingen, 72076 Tuebingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
7
|
Lauxmann S, Sonnenberg L, Koch NA, Bosselmann C, Winter N, Schwarz N, Wuttke TV, Hedrich UBS, Liu Y, Lerche H, Benda J, Kegele J. Therapeutic Potential of Sodium Channel Blockers as a Targeted Therapy Approach in KCNA1-Associated Episodic Ataxia and a Comprehensive Review of the Literature. Front Neurol 2021; 12:703970. [PMID: 34566847 PMCID: PMC8459024 DOI: 10.3389/fneur.2021.703970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction: Among genetic paroxysmal movement disorders, variants in ion channel coding genes constitute a major subgroup. Loss-of-function (LOF) variants in KCNA1, the gene coding for KV1.1 channels, are associated with episodic ataxia type 1 (EA1), characterized by seconds to minutes-lasting attacks including gait incoordination, limb ataxia, truncal instability, dysarthria, nystagmus, tremor, and occasionally seizures, but also persistent neuromuscular symptoms like myokymia or neuromyotonia. Standard treatment has not yet been developed, and different treatment efforts need to be systematically evaluated. Objective and Methods: Personalized therapeutic regimens tailored to disease-causing pathophysiological mechanisms may offer the specificity required to overcome limitations in therapy. Toward this aim, we (i) reviewed all available clinical reports on treatment response and functional consequences of KCNA1 variants causing EA1, (ii) examined the potential effects on neuronal excitability of all variants using a single compartment conductance-based model and set out to assess the potential of two sodium channel blockers (SCBs: carbamazepine and riluzole) to restore the identified underlying pathophysiological effects of KV1.1 channels, and (iii) provide a comprehensive review of the literature considering all types of episodic ataxia. Results: Reviewing the treatment efforts of EA1 patients revealed moderate response to acetazolamide and exhibited the strength of SCBs, especially carbamazepine, in the treatment of EA1 patients. Biophysical dysfunction of KV1.1 channels is typically based on depolarizing shifts of steady-state activation, leading to an LOF of KCNA1 variant channels. Our model predicts a lowered rheobase and an increase of the firing rate on a neuronal level. The estimated concentration dependent effects of carbamazepine and riluzole could partially restore the altered gating properties of dysfunctional variant channels. Conclusion: These data strengthen the potential of SCBs to contribute to functional compensation of dysfunctional KV1.1 channels. We propose riluzole as a new drug repurposing candidate and highlight the role of personalized approaches to develop standard care for EA1 patients. These results could have implications for clinical practice in future and highlight the need for the development of individualized and targeted therapies for episodic ataxia and genetic paroxysmal disorders in general.
Collapse
Affiliation(s)
- Stephan Lauxmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Lukas Sonnenberg
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany
| | - Nils A. Koch
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany
| | - Christian Bosselmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Natalie Winter
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Niklas Schwarz
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Thomas V. Wuttke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Ulrike B. S. Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Yuanyuan Liu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jan Benda
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany
| | - Josua Kegele
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Johnston J. Pharmacology of A-Type K + Channels. Handb Exp Pharmacol 2021; 267:167-183. [PMID: 33907894 DOI: 10.1007/164_2021_456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Transient outward potassium currents were first described nearly 60 years ago, since then major strides have been made in understanding their molecular basis and physiological roles. From the large family of voltage-gated potassium channels members of 3 subfamilies can produce such fast-inactivating A-type potassium currents. Each subfamily gives rise to currents with distinct biophysical properties and pharmacological profiles and a simple workflow is provided to aid the identification of channels mediating A-type currents in native cells. Their unique properties and regulation enable A-type K+ channels to perform varied roles in excitable cells including repolarisation of the cardiac action potential, controlling spike and synaptic timing, regulating dendritic integration and long-term potentiation as well as being a locus of neural plasticity.
Collapse
Affiliation(s)
- Jamie Johnston
- Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
9
|
Stefano M, Cordella F, Loppini A, Filippi S, Zollo L. A Multiscale Approach to Axon and Nerve Stimulation Modeling: A Review. IEEE Trans Neural Syst Rehabil Eng 2021; 29:397-407. [PMID: 33497336 DOI: 10.1109/tnsre.2021.3054551] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Electrical nerve fiber stimulation is a technique widely used in prosthetics and rehabilitation, and its study from a computational point of view can be a useful instrument to support experimental tests. In the last years, there was an increasing interest in computational modeling of neural cells and numerical simulations on nerve fibers stimulation because of its usefulness in forecasting the effect of electrical current stimuli delivered to tissues through implanted electrodes, in the design of optimal stimulus waveforms based on the specific application (i.e., inducing limb movements, sensory feedback or physiological function restoring), and in the evaluation of the current stimuli properties according to the characteristics of the nerves surrounding tissue. Therefore, a review study on the main modeling and computational frameworks adopted to investigate peripheral nerve stimulation is an important instrument to support and drive future research works. To this aim, this paper deals with mathematical models of neural cells with a detailed description of ion channels and numerical simulations using finite element methods to describe the dynamics of electrical stimulation by implanted electrodes in peripheral nerve fibers. In particular, we evaluate different nerve cell models considering different ion channels present in neurons and provide a guideline on multiscale numerical simulations of electrical nerve fibers stimulation.
Collapse
|
10
|
Egger V, Diamond JS. A17 Amacrine Cells and Olfactory Granule Cells: Parallel Processors of Early Sensory Information. Front Cell Neurosci 2020; 14:600537. [PMID: 33250720 PMCID: PMC7674606 DOI: 10.3389/fncel.2020.600537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
Neurons typically receive synaptic input in their dendritic arbor, integrate inputs in their soma, and send output action potentials through their axon, following Cajal's law of dynamic polarization. Two notable exceptions are retinal amacrine cells and olfactory granule cells (GCs), which flout Cajal's edict by providing synaptic output from the same dendrites that collect synaptic input. Amacrine cells, a diverse cell class comprising >60 subtypes, employ various dendritic input/output strategies, but A17 amacrine cells (A17s) in particular share further interesting functional characteristics with GCs: both receive excitatory synaptic input from neurons in the primary glutamatergic pathway and return immediate, reciprocal feedback via GABAergic inhibitory synapses to the same synaptic terminals that provided input. Both neurons thereby process signals locally within their dendrites, shaping many parallels, signaling pathways independently. The similarities between A17s and GCs cast into relief striking differences that may indicate distinct processing roles within their respective circuits: First, they employ partially dissimilar molecular mechanisms to transform excitatory input into inhibitory output; second, GCs fire action potentials, whereas A17s do not. Third, GC signals may be influenced by cortical feedback, whereas the mammalian retina receives no such retrograde input. Finally, A17s constitute just one subtype within a diverse class that is specialized in a particular task, whereas the more homogeneous GCs may play more diverse signaling roles via multiple processing modes. Here, we review these analogies and distinctions between A17 amacrine cells and granule cells, hoping to gain further insight into the operating principles of these two sensory circuits.
Collapse
Affiliation(s)
- Veronica Egger
- Department of Neurophysiology, Institute of Zoology, Universität Regensburg, Regensburg, Germany
| | - Jeffrey S. Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Koźmiński W, Pera J. Involvement of the Peripheral Nervous System in Episodic Ataxias. Biomedicines 2020; 8:biomedicines8110448. [PMID: 33105744 PMCID: PMC7690566 DOI: 10.3390/biomedicines8110448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/04/2022] Open
Abstract
Episodic ataxias comprise a group of inherited disorders, which have a common hallmark—transient attacks of ataxia. The genetic background is heterogeneous and the causative genes are not always identified. Furthermore, the clinical presentation, including intraictal and interictal symptoms, as well as the retention and progression of neurological deficits, is heterogeneous. Spells of ataxia can be accompanied by other symptoms—mostly from the central nervous system. However, in some of episodic ataxias involvement of peripheral nervous system is a part of typical clinical picture. This review intends to provide an insight into involvement of peripheral nervous system in episodic ataxias.
Collapse
Affiliation(s)
- Wojciech Koźmiński
- Department of Neurology, University Hospital, ul. Jakubowskiego 2, 30-688 Krakow, Poland;
| | - Joanna Pera
- Department of Neurology, Jagiellonian University Medical College, ul. Botaniczna 3, 31-503 Krakow, Poland
- Correspondence:
| |
Collapse
|
12
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|
13
|
Cecchetto C, Maschietto M, Boccaccio P, Vassanelli S. Electromagnetic field affects the voltage-dependent potassium channel Kv1.3. Electromagn Biol Med 2020; 39:316-322. [DOI: 10.1080/15368378.2020.1799386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- C. Cecchetto
- Department of Biomedical Sciences, University of Padova, Italy, Padova, Italy
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - M. Maschietto
- Department of Biomedical Sciences, University of Padova, Italy, Padova, Italy
| | - P. Boccaccio
- Laboratori Nazionali di Legnaro, Legnaro, Istituto Nazionale di Fisica Nucleare, Padova, Italy
| | - S. Vassanelli
- Department of Biomedical Sciences, University of Padova, Italy, Padova, Italy
| |
Collapse
|
14
|
Tajti G, Wai DCC, Panyi G, Norton RS. The voltage-gated potassium channel K V1.3 as a therapeutic target for venom-derived peptides. Biochem Pharmacol 2020; 181:114146. [PMID: 32653588 DOI: 10.1016/j.bcp.2020.114146] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
The voltage-gated potassium channel KV1.3 is a well-established therapeutic target for a range of autoimmune diseases, in addition to being the site of action of many venom-derived peptides. Numerous studies have documented the efficacy of venom peptides that target KV1.3, in particular from sea anemones and scorpions, in animal models of autoimmune diseases such as rheumatoid arthritis, psoriasis and multiple sclerosis. Moreover, an analogue of the sea anemone peptide ShK (known as dalazatide) has successfully completed Phase 1 clinical trials in mild-to-moderate plaque psoriasis. In this article we consider other potential therapeutic applications of inhibitors of KV1.3, including in inflammatory bowel disease and neuroinflammatory conditions such as Alzheimer's and Parkinson's diseases, as well as fibrotic diseases. We also summarise strategies for facilitating the entry of peptides to the central nervous system, given that this will be a pre-requisite for the treatment of most neuroinflammatory diseases. Venom-derived peptides that have been reported recently to target KV1.3 are also described. The increasing number of autoimmune and other conditions in which KV1.3 is upregulated and is therefore a potential therapeutic target, combined with the fact that many venom-derived peptides are potent inhibitors of KV1.3, suggests that venoms are likely to continue to serve as a rich source of new pharmacological tools and therapeutic leads targeting this channel.
Collapse
Affiliation(s)
- Gabor Tajti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
15
|
Kirschstein T, Sadkiewicz E, Hund-Göschel G, Becker J, Guli X, Müller S, Rohde M, Hübner DC, Brehme H, Kolbaske S, Porath K, Sellmann T, Großmann A, Wittstock M, Syrbe S, Storch A, Köhling R. Stereotactically Injected Kv1.2 and CASPR2 Antisera Cause Differential Effects on CA1 Synaptic and Cellular Excitability, but Both Enhance the Vulnerability to Pro-epileptic Conditions. Front Synaptic Neurosci 2020; 12:13. [PMID: 32269520 PMCID: PMC7110982 DOI: 10.3389/fnsyn.2020.00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE We present a case of voltage-gated potassium channel (VGKC) complex antibody-positive limbic encephalitis (LE) harboring autoantibodies against Kv1.2. Since the patient responded well to immunotherapy, the autoantibodies were regarded as pathogenic. We aimed to characterize the pathophysiological role of this antibody in comparison to an antibody against the VGKC-associated protein contactin-associated protein-2 (CASPR2). METHODS Stereotactic injection of patient sera (anti-Kv1.2-associated LE or anti-CASPR2 encephalopathy) and a control subject was performed into the hippocampus of the anesthetized rat in vivo, and hippocampal slices were prepared for electrophysiological purposes. Using extra- and intracellular techniques, synaptic transmission, long-term potentiation (LTP) and vulnerability to pro-epileptic conditions were analyzed. RESULTS We observed that the slope of the field excitatory postsynaptic potential (fEPSP) was significantly increased at Schaffer collateral-CA1 synapses in anti-Kv1.2-treated and anti-CASPR2-treated rats, but not at medial perforant path-dentate gyrus synapses. The increase of the fEPSP slope in CA1 was accompanied by a decrease of the paired-pulse ratio in anti-Kv1.2, but not in anti-CASPR2 tissue, indicating presynaptic site of anti-Kv1.2. In addition, anti-Kv1.2 tissue showed enhanced LTP in CA1, but dentate gyrus LTP remained unaltered. Importantly, LTP in slices from anti-CASPR2-treated animals did not differ from control values. Intracellular recordings from CA1 neurons revealed that the resting membrane potential and a single action potential were not different between anti-Kv1.2 and control tissue. However, when the depolarization was prolonged, the number of action potentials elicited was reduced in anti-Kv1.2-treated tissue compared to both control and anti-CASPR2 tissue. In contrast, polyspike discharges induced by removal of Mg2+ occurred earlier and more frequently in both patient sera compared to control. CONCLUSION Patient serum containing anti-Kv1.2 facilitates presynaptic transmitter release as well as postsynaptic depolarization at the Schaffer-collateral-CA1 synapse, but not in the dentate gyrus. As a consequence, both synaptic transmission and LTP in CA1 are facilitated and action potential firing is altered. In contrast, anti-CASPR2 leads to increased postsynaptic potentials, but without changing LTP or firing properties suggesting that anti-Kv1.2 and anti-CASPR2 differ in their cellular effects. Both patient sera alter susceptibility to epileptic conditions, but presumably by different mechanisms.
Collapse
Affiliation(s)
- Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
- Department of Neurology, University of Rostock, Rostock, Germany
- Center of Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Erika Sadkiewicz
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Gerda Hund-Göschel
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Juliane Becker
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Xiati Guli
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Steffen Müller
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Marco Rohde
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | | | - Hannes Brehme
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Stephan Kolbaske
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Katrin Porath
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Tina Sellmann
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Annette Großmann
- Institute of Diagnostic and Intervention Radiology, University of Rostock, Rostock, Germany
| | | | - Steffen Syrbe
- Clinik for Pediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany
- Center of Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
- Center of Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| |
Collapse
|
16
|
Noh W, Pak S, Choi G, Yang S, Yang S. Transient Potassium Channels: Therapeutic Targets for Brain Disorders. Front Cell Neurosci 2019; 13:265. [PMID: 31263403 PMCID: PMC6585177 DOI: 10.3389/fncel.2019.00265] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/28/2019] [Indexed: 01/04/2023] Open
Abstract
Transient potassium current channels (IA channels), which are expressed in most brain areas, have a central role in modulating feedforward and feedback inhibition along the dendroaxonic axis. Loss of the modulatory channels is tightly associated with a number of brain diseases such as Alzheimer’s disease, epilepsy, fragile X syndrome (FXS), Parkinson’s disease, chronic pain, tinnitus, and ataxia. However, the functional significance of IA channels in these diseases has so far been underestimated. In this review, we discuss the distribution and function of IA channels. Particularly, we posit that downregulation of IA channels results in neuronal (mostly dendritic) hyperexcitability accompanied by the imbalanced excitation and inhibition ratio in the brain’s networks, eventually causing the brain diseases. Finally, we propose a potential therapeutic target: the enhanced action of IA channels to counteract Ca2+-permeable channels including NMDA receptors could be harnessed to restore dendritic excitability, leading to a balanced neuronal state.
Collapse
Affiliation(s)
- Wonjun Noh
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Sojeong Pak
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Geunho Choi
- Department of Computer Science and Engineering, Incheon National University, Incheon, South Korea
| | - Sungchil Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sunggu Yang
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| |
Collapse
|
17
|
Dendritic potassium channel dysfunction may contribute to dendrite degeneration in spinocerebellar ataxia type 1. PLoS One 2018; 13:e0198040. [PMID: 29847609 PMCID: PMC5976172 DOI: 10.1371/journal.pone.0198040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
Purkinje neuron dendritic degeneration precedes cell loss in cerebellar ataxia, but the basis for dendritic vulnerability in ataxia remains poorly understood. Recent work has suggested that potassium (K+) channel dysfunction and consequent spiking abnormalities contribute to Purkinje neuron degeneration, but little attention has been paid to how K+ channel dysfunction impacts dendritic excitability and the role this may play in the degenerative process. We examined the relationship between K+ channel dysfunction, dendritic excitability and dendritic degeneration in spinocerebellar ataxia type 1 (SCA1). Examination of published RNA sequencing data from SCA1 mice revealed reduced expression of several K+ channels that are important regulators of excitability in Purkinje neuron dendrites. Patch clamp recordings in Purkinje neurons from SCA1 mice identified increased dendritic excitability in the form of enhanced back-propagation of action potentials and an increased propensity to produce dendritic calcium spikes. Dendritic excitability could be rescued by restoring expression of large-conductance calcium-activated potassium (BK) channels and activating other K+ channels with baclofen. Importantly, this treatment combination improves motor performance and mitigates dendritic degeneration in SCA1 mice. These results suggest that reduced expression of K+ channels results in persistently increased dendritic excitability at all stages of disease in SCA1, which in turn may contribute to the dendritic degeneration that precedes cell loss.
Collapse
|
18
|
Bozic I, Tesovic K, Laketa D, Adzic M, Jakovljevic M, Bjelobaba I, Savic D, Nedeljkovic N, Pekovic S, Lavrnja I. Voltage Gated Potassium Channel Kv1.3 Is Upregulated on Activated Astrocytes in Experimental Autoimmune Encephalomyelitis. Neurochem Res 2018; 43:1020-1034. [PMID: 29574670 DOI: 10.1007/s11064-018-2509-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 12/13/2022]
Abstract
Kv1.3 is a voltage gated potassium channel that has been implicated in pathophysiology of multiple sclerosis (MS). In the present study we investigated temporal and cellular expression pattern of this channel in the lumbar part of spinal cords of animals with experimental autoimmune encephalomyelitis (EAE), animal model of MS. EAE was actively induced in female Dark Agouti rats. Expression of Kv1.3 was analyzed at different time points of disease progression, at the onset, peak and end of EAE. We here show that Kv1.3 increased by several folds at the peak of EAE at both gene and protein level. Double immunofluorescence analyses demonstrated localization of Kv1.3 on activated microglia, macrophages, and reactive astrocytes around inflammatory lesions. In vitro experiments showed that pharmacological block of Kv1.3 in activated astrocytes suppresses the expression of proinflammatory mediators, suggesting a role of this channel in inflammation. Our results support the hypothesis that Kv1.3 may be a therapeutic target of interest for MS and add astrocytes to the list of cells whose activation would be suppressed by inhibiting Kv1.3 in inflammatory conditions.
Collapse
Affiliation(s)
- Iva Bozic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia.
| | - Katarina Tesovic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia
| | - Danijela Laketa
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Adzic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Jakovljevic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia
| | - Ivana Bjelobaba
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia
| | - Danijela Savic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Sanja Pekovic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia
| | - Irena Lavrnja
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia
| |
Collapse
|
19
|
Blakemore LJ, Trombley PQ. Zinc as a Neuromodulator in the Central Nervous System with a Focus on the Olfactory Bulb. Front Cell Neurosci 2017; 11:297. [PMID: 29033788 PMCID: PMC5627021 DOI: 10.3389/fncel.2017.00297] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
The olfactory bulb (OB) is central to the sense of smell, as it is the site of the first synaptic relay involved in the processing of odor information. Odor sensations are first transduced by olfactory sensory neurons (OSNs) before being transmitted, by way of the OB, to higher olfactory centers that mediate olfactory discrimination and perception. Zinc is a common trace element, and it is highly concentrated in the synaptic vesicles of subsets of glutamatergic neurons in some brain regions including the hippocampus and OB. In addition, zinc is contained in the synaptic vesicles of some glycinergic and GABAergic neurons. Thus, zinc released from synaptic vesicles is available to modulate synaptic transmission mediated by excitatory (e.g., N-methyl-D aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)) and inhibitory (e.g., gamma-aminobutyric acid (GABA), glycine) amino acid receptors. Furthermore, extracellular zinc can alter the excitability of neurons through effects on a variety of voltage-gated ion channels. Consistent with the notion that zinc acts as a regulator of neuronal activity, we and others have shown zinc modulation (inhibition and/or potentiation) of amino acid receptors and voltage-gated ion channels expressed by OB neurons. This review summarizes the locations and release of vesicular zinc in the central nervous system (CNS), including in the OB. It also summarizes the effects of zinc on various amino acid receptors and ion channels involved in regulating synaptic transmission and neuronal excitability, with a special emphasis on the actions of zinc as a neuromodulator in the OB. An understanding of how neuroactive substances such as zinc modulate receptors and ion channels expressed by OB neurons will increase our understanding of the roles that synaptic circuits in the OB play in odor information processing and transmission.
Collapse
Affiliation(s)
- Laura J Blakemore
- Program in Neuroscience, Florida State UniversityTallahassee, FL, United States.,Department of Biological Science, Florida State UniversityTallahassee, FL, United States
| | - Paul Q Trombley
- Program in Neuroscience, Florida State UniversityTallahassee, FL, United States.,Department of Biological Science, Florida State UniversityTallahassee, FL, United States
| |
Collapse
|
20
|
Pérez-García MT, Cidad P, López-López JR. The secret life of ion channels: Kv1.3 potassium channels and proliferation. Am J Physiol Cell Physiol 2017; 314:C27-C42. [PMID: 28931540 DOI: 10.1152/ajpcell.00136.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kv1.3 channels are involved in the switch to proliferation of normally quiescent cells, being implicated in the control of cell cycle in many different cell types and in many different ways. They modulate membrane potential controlling K+ fluxes, sense changes in potential, and interact with many signaling molecules through their intracellular domains. From a mechanistic point of view, we can describe the role of Kv1.3 channels in proliferation with at least three different models. In the "membrane potential model," membrane hyperpolarization resulting from Kv1.3 activation provides the driving force for Ca2+ influx required to activate Ca2+-dependent transcription. This model explains most of the data obtained from several cells from the immune system. In the "voltage sensor model," Kv1.3 channels serve mainly as sensors that transduce electrical signals into biochemical cascades, independently of their effect on membrane potential. Kv1.3-dependent proliferation of vascular smooth muscle cells (VSMCs) could fit this model. Finally, in the "channelosome balance model," the master switch determining proliferation may be related to the control of the Kv1.3 to Kv1.5 ratio, as described in glial cells and also in VSMCs. Since the three mechanisms cannot function independently, these models are obviously not exclusive. Nevertheless, they could be exploited differentially in different cells and tissues. This large functional flexibility of Kv1.3 channels surely gives a new perspective on their functions beyond their elementary role as ion channels, although a conclusive picture of the mechanisms involved in Kv1.3 signaling to proliferation is yet to be reached.
Collapse
Affiliation(s)
- M Teresa Pérez-García
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas , Valladolid , Spain
| | - Pilar Cidad
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas , Valladolid , Spain
| | - José R López-López
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas , Valladolid , Spain
| |
Collapse
|
21
|
Owen B, Reddy R, Grover LM. Nonspecific block of voltage-gated potassium channels has greater effect on distal schaffer collaterals than proximal schaffer collaterals during periods of high activity. Physiol Rep 2017; 5:5/14/e13354. [PMID: 28747510 PMCID: PMC5532488 DOI: 10.14814/phy2.13354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 02/05/2023] Open
Abstract
Previous studies established different responses between proximal and distal portions of Schaffer collateral axons during high‐frequency and burst stimulation, with distal axons demonstrating biphasic changes in excitability (hyperexcitability followed by depression), but proximal axons showing only monophasic depression. Voltage‐dependent potassium (KV) channels are important determinants of axonal excitability, and block of KV channels can promote axon hyperexcitability. We therefore hypothesized that block of KV channels should lead to biphasic response changes in proximal Schaffer collaterals, like those seen in distal Schaffer collaterals. To test this hypothesis, we made extracellular recordings of distal Schaffer collateral responses in stratum radiatum of hippocampal area CA1 and proximal Schaffer collateral responses in stratum pyramidale of area CA3 during high‐frequency stimulation (HFS) at 100 Hz and burst stimulation at 200 msec intervals (5 Hz or theta frequency). We then applied a nonselective KV channel blocker, tetraethlylammonium (TEA, 10 mmol/L) or 4‐aminopyridine (4‐AP, 100 μmol/L), and assessed effects on Schaffer collateral responses. Surprisingly, block of KV channels had little or no effect on proximal Schaffer collateral responses during high‐frequency or burst stimulation. In contrast, KV channel blockade caused more rapid depression of distal Schaffer collateral responses during both high‐frequency and burst stimulation. These findings indicate that KV channels are important for maintaining distal, but not proximal, Schaffer collateral excitability during period of sustained high activity. Differential sensitivity of distal versus proximal Schaffer collaterals to KV channel block may reflect differences in channel density, diversity, or subcellular localization.
Collapse
Affiliation(s)
- Benjamin Owen
- Department of Biomedical Sciences, Marshall University School of Medicine, Huntington, West Virginia, 25755
| | - Rishi Reddy
- Department of Biomedical Sciences, Marshall University School of Medicine, Huntington, West Virginia, 25755
| | - Lawrence M Grover
- Department of Biomedical Sciences, Marshall University School of Medicine, Huntington, West Virginia, 25755
| |
Collapse
|
22
|
Fuchs JR, Darlington SW, Green JT, Morielli AD. Cerebellar learning modulates surface expression of a voltage-gated ion channel in cerebellar cortex. Neurobiol Learn Mem 2017; 142:252-262. [PMID: 28512010 DOI: 10.1016/j.nlm.2017.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/05/2017] [Accepted: 05/12/2017] [Indexed: 11/30/2022]
Abstract
Numerous experiments using ex vivo electrophysiology suggest that mammalian learning and memory involves regulation of voltage-gated ion channels in terms of changes in function. Yet, little is known about learning-related regulation of voltage-gated ion channels in terms of changes in expression. In two experiments, we examined changes in cell surface expression of the voltage-gated potassium channel alpha-subunit Kv1.2 in a discrete region of cerebellar cortex after eyeblink conditioning (EBC), a well-studied form of cerebellar-dependent learning. Kv1.2 in cerebellar cortex is expressed almost entirely in basket cells, primarily in the axon terminal pinceaux (PCX) region, and Purkinje cells, primarily in dendrites. Cell surface expression of Kv1.2 was measured using both multiphoton microscopy, which allowed measurement confined to the PCX region, and biotinylation/western blot, which measured total cell surface expression. In the first experiment, rats underwent three sessions of EBC, explicitly unpaired stimulus exposure, or context-only exposure and the results revealed a decrease in Kv1.2 cell surface expression in the unpaired group as measured with microscopy but no change as measured with western blot. In the second experiment, the same three training groups underwent only one half of a session of training, and the results revealed an increase in Kv1.2 cell surface expression in the unpaired group as measured with western blot but no change as measured with microscopy. In addition, rats in the EBC group that did not express conditioned responses (CRs) exhibited the same increase in Kv1.2 cell surface expression as the unpaired group. The overall pattern of results suggests that cell surface expression of Kv1.2 is changed with exposure to EBC stimuli in the absence, or prior to the emergence, of CRs.
Collapse
Affiliation(s)
- Jason R Fuchs
- Department of Psychological Science, University of Vermont, Burlington, VT 05405, United States
| | - Shelby W Darlington
- Department of Psychological Science, University of Vermont, Burlington, VT 05405, United States
| | - John T Green
- Department of Psychological Science, University of Vermont, Burlington, VT 05405, United States
| | - Anthony D Morielli
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
23
|
Kv1.1 channelopathy abolishes presynaptic spike width modulation by subthreshold somatic depolarization. Proc Natl Acad Sci U S A 2017; 114:2395-2400. [PMID: 28193892 PMCID: PMC5338558 DOI: 10.1073/pnas.1608763114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although action potentials propagate along axons in an all-or-none manner, subthreshold membrane potential fluctuations at the soma affect neurotransmitter release from synaptic boutons. An important mechanism underlying analog-digital modulation is depolarization-mediated inactivation of presynaptic Kv1-family potassium channels, leading to action potential broadening and increased calcium influx. Previous studies have relied heavily on recordings from blebs formed after axon transection, which may exaggerate the passive propagation of somatic depolarization. We recorded instead from small boutons supplied by intact axons identified with scanning ion conductance microscopy in primary hippocampal cultures and asked how distinct potassium channels interact in determining the basal spike width and its modulation by subthreshold somatic depolarization. Pharmacological or genetic deletion of Kv1.1 broadened presynaptic spikes without preventing further prolongation by brief depolarizing somatic prepulses. A heterozygous mouse model of episodic ataxia type 1 harboring a dominant Kv1.1 mutation had a similar broadening effect on basal spike shape as deletion of Kv1.1; however, spike modulation by somatic prepulses was abolished. These results argue that the Kv1.1 subunit is not necessary for subthreshold modulation of spike width. However, a disease-associated mutant subunit prevents the interplay of analog and digital transmission, possibly by disrupting the normal stoichiometry of presynaptic potassium channels.
Collapse
|
24
|
Mukunda CL, Narayanan R. Degeneracy in the regulation of short-term plasticity and synaptic filtering by presynaptic mechanisms. J Physiol 2017; 595:2611-2637. [PMID: 28026868 DOI: 10.1113/jp273482] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS We develop a new biophysically rooted, physiologically constrained conductance-based synaptic model to mechanistically account for short-term facilitation and depression, respectively through residual calcium and transmitter depletion kinetics. We address the specific question of how presynaptic components (including voltage-gated ion channels, pumps, buffers and release-handling mechanisms) and interactions among them define synaptic filtering and short-term plasticity profiles. Employing global sensitivity analyses (GSAs), we show that near-identical synaptic filters and short-term plasticity profiles could emerge from disparate presynaptic parametric combinations with weak pairwise correlations. Using virtual knockout models, a technique to address the question of channel-specific contributions within the GSA framework, we unveil the differential and variable impact of each ion channel on synaptic physiology. Our conclusions strengthen the argument that parametric and interactional complexity in biological systems should not be viewed from the limited curse-of-dimensionality standpoint, but from the evolutionarily advantageous perspective of providing functional robustness through degeneracy. ABSTRACT Information processing in neurons is known to emerge as a gestalt of pre- and post-synaptic filtering. However, the impact of presynaptic mechanisms on synaptic filters has not been quantitatively assessed. Here, we developed a biophysically rooted, conductance-based model synapse that was endowed with six different voltage-gated ion channels, calcium pumps, calcium buffer and neurotransmitter-replenishment mechanisms in the presynaptic terminal. We tuned our model to match the short-term plasticity profile and band-pass structure of Schaffer collateral synapses, and performed sensitivity analyses to demonstrate that presynaptic voltage-gated ion channels regulated synaptic filters through changes in excitability and associated calcium influx. These sensitivity analyses also revealed that calcium- and release-control mechanisms were effective regulators of synaptic filters, but accomplished this without changes in terminal excitability or calcium influx. Next, to perform global sensitivity analysis, we generated 7000 randomized models spanning 15 presynaptic parameters, and computed eight different physiological measurements in each of these models. We validated these models by applying experimentally obtained bounds on their measurements, and found 104 (∼1.5%) models to match the validation criteria for all eight measurements. Analysing these valid models, we demonstrate that analogous synaptic filters emerge from disparate combinations of presynaptic parameters exhibiting weak pairwise correlations. Finally, using virtual knockout models, we establish the variable and differential impact of different presynaptic channels on synaptic filters, underlining the critical importance of interactions among different presynaptic components in defining synaptic physiology. Our results have significant implications for protein-localization strategies required for physiological robustness and for degeneracy in long-term synaptic plasticity profiles.
Collapse
Affiliation(s)
- Chinmayee L Mukunda
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
25
|
KV1 and KV3 Potassium Channels Identified at Presynaptic Terminals of the Corticostriatal Synapses in Rat. Neural Plast 2016; 2016:8782518. [PMID: 27379187 PMCID: PMC4917754 DOI: 10.1155/2016/8782518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/12/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022] Open
Abstract
In the last years it has been increasingly clear that KV-channel activity modulates neurotransmitter release. The subcellular localization and composition of potassium channels are crucial to understanding its influence on neurotransmitter release. To investigate the role of KV in corticostriatal synapses modulation, we combined extracellular recording of population-spike and pharmacological blockage with specific and nonspecific blockers to identify several families of KV channels. We induced paired-pulse facilitation (PPF) and studied the changes in paired-pulse ratio (PPR) before and after the addition of specific KV blockers to determine whether particular KV subtypes were located pre- or postsynaptically. Initially, the presence of KV channels was tested by exposing brain slices to tetraethylammonium or 4-aminopyridine; in both cases we observed a decrease in PPR that was dose dependent. Further experiments with tityustoxin, margatoxin, hongotoxin, agitoxin, dendrotoxin, and BDS-I toxins all rendered a reduction in PPR. In contrast heteropodatoxin and phrixotoxin had no effect. Our results reveal that corticostriatal presynaptic KV channels have a complex stoichiometry, including heterologous combinations KV1.1, KV1.2, KV1.3, and KV1.6 isoforms, as well as KV3.4, but not KV4 channels. The variety of KV channels offers a wide spectrum of possibilities to regulate neurotransmitter release, providing fine-tuning mechanisms to modulate synaptic strength.
Collapse
|
26
|
Abstract
UNLABELLED The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca(2+)-activated K(+) channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. SIGNIFICANCE STATEMENT Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main compartments: dendritic, somatic, and axonal. How the neurons receive information, process it, and pass on new information depends upon how these three compartments operate. While it has long been assumed that axons are simply for conducting information from the cell body to the synapses, here we demonstrate that the axons of different types of interneurons, the inhibitory cells, possess differing electrophysiological properties. This result implies that differing types of interneurons perform different tasks in the cortex, not only through their anatomical connections, but also through how their axons operate.
Collapse
|
27
|
Caveolin interaction governs Kv1.3 lipid raft targeting. Sci Rep 2016; 6:22453. [PMID: 26931497 PMCID: PMC4773814 DOI: 10.1038/srep22453] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/15/2016] [Indexed: 12/22/2022] Open
Abstract
The spatial localization of ion channels at the cell surface is crucial for their functional role. Many channels localize in lipid raft microdomains, which are enriched in cholesterol and sphingolipids. Caveolae, specific lipid rafts which concentrate caveolins, harbor signaling molecules and their targets becoming signaling platforms crucial in cell physiology. However, the molecular mechanisms involved in such spatial localization are under debate. Kv1.3 localizes in lipid rafts and participates in the immunological response. We sought to elucidate the mechanisms of Kv1.3 surface targeting, which govern leukocyte physiology. Kv1 channels share a putative caveolin-binding domain located at the intracellular N-terminal of the channel. This motif, lying close to the S1 transmembrane segment, is situated near the T1 tetramerization domain and the determinants involved in the Kvβ subunit association. The highly hydrophobic domain (FQRQVWLLF) interacts with caveolin 1 targeting Kv1.3 to caveolar rafts. However, subtle variations of this cluster, putative ancillary associations and different structural conformations can impair the caveolin recognition, thereby altering channel’s spatial localization. Our results identify a caveolin-binding domain in Kv1 channels and highlight the mechanisms that govern the regulation of channel surface localization during cellular processes.
Collapse
|
28
|
Ovsepian SV, LeBerre M, Steuber V, O'Leary VB, Leibold C, Oliver Dolly J. Distinctive role of KV1.1 subunit in the biology and functions of low threshold K+ channels with implications for neurological disease. Pharmacol Ther 2016; 159:93-101. [DOI: 10.1016/j.pharmthera.2016.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Pérez-Verdaguer M, Capera J, Serrano-Novillo C, Estadella I, Sastre D, Felipe A. The voltage-gated potassium channel Kv1.3 is a promising multitherapeutic target against human pathologies. Expert Opin Ther Targets 2015; 20:577-91. [DOI: 10.1517/14728222.2016.1112792] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Rangaraju S, Gearing M, Jin LW, Levey A. Potassium channel Kv1.3 is highly expressed by microglia in human Alzheimer's disease. J Alzheimers Dis 2015; 44:797-808. [PMID: 25362031 DOI: 10.3233/jad-141704] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent genetic studies suggest a central role for innate immunity in Alzheimer's disease (AD) pathogenesis, wherein microglia orchestrate neuroinflammation. Kv1.3, a voltage-gated potassium channel of therapeutic relevance in autoimmunity, is upregulated by activated microglia and mediates amyloid-mediated microglial priming and reactive oxygen species production in vitro. We hypothesized that Kv1.3 channel expression is increased in human AD brain tissue. In a blinded postmortem immunohistochemical semi-quantitative analysis performed on ten AD patients and ten non-disease controls, we observed a significantly higher Kv1.3 staining intensity (p = 0.03) and Kv1.3-positive cell density (p = 0.03) in the frontal cortex of AD brains, compared to controls. This paralleled an increased number of Iba1-positive microglia in AD brains. Kv1.3-positive cells had microglial morphology and were associated with amyloid-β plaques. In immunofluorescence studies, Kv1.3 channels co-localized primarily with Iba1 but not with astrocyte marker GFAP, confirming that elevated Kv1.3 expression is limited to microglia. Higher Kv1.3 expression in AD brains was also confirmed by western blot analysis. Our findings support that Kv1.3 channels are biologically relevant and microglia-specific targets in human AD.
Collapse
Affiliation(s)
| | - Marla Gearing
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, Alzheimer's Disease Center, University of California Davis, CA, USA
| | - Allan Levey
- Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
31
|
Cheng CF, Wang WC, Huang CY, Du PH, Yang JH, Tsaur ML. Coexpression of auxiliary subunits KChIP and DPPL in potassium channel Kv4-positive nociceptors and pain-modulating spinal interneurons. J Comp Neurol 2015; 524:846-73. [PMID: 26239200 DOI: 10.1002/cne.23876] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022]
Abstract
Subthreshold A-type K(+) currents (ISA s) have been recorded from the somata of nociceptors and spinal lamina II excitatory interneurons, which sense and modulate pain, respectively. Kv4 channels are responsible for the somatodendritic ISA s. Accumulative evidence suggests that neuronal Kv4 channels are ternary complexes including pore-forming Kv4 subunits and two types of auxiliary subunits: K(+) channel-interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPPLs). Previous reports have shown Kv4.3 in a subset of nonpeptidergic nociceptors and Kv4.2/Kv4.3 in certain spinal lamina II excitatory interneurons. However, whether and which KChIP and DPPL are coexpressed with Kv4 in these ISA -expressing pain-related neurons is unknown. In this study we mapped the protein distribution of KChIP1, KChIP2, KChIP3, DPP6, and DPP10 in adult rat dorsal root ganglion (DRG) and spinal cord by immunohistochemistry. In the DRG, we found colocalization of KChIP1, KChIP2, and DPP10 in the somatic surface and cytoplasm of Kv4.3(+) nociceptors. KChIP3 appears in most Aβ and Aδ sensory neurons as well as a small population of peptidergic nociceptors, whereas DPP6 is absent in sensory neurons. In the spinal cord, KChIP1 is coexpressed with Kv4.3 in the cell bodies of a subset of lamina II excitatory interneurons, while KChIP1, KChIP2, and DPP6 are colocalized with Kv4.2 and Kv4.3 in their dendrites. Within the dorsal horn, besides KChIP3 in the inner lamina II and lamina III, we detected DPP10 in most projection neurons, which transmit pain signal to brain. The results suggest the existence of Kv4/KChIP/DPPL ternary complexes in ISA -expressing nociceptors and pain-modulating spinal interneurons.
Collapse
Affiliation(s)
- Chau-Fu Cheng
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Chen Wang
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Yi Huang
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hau Du
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jung-Hui Yang
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Meei-Ling Tsaur
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
32
|
Trimmer JS. Subcellular localization of K+ channels in mammalian brain neurons: remarkable precision in the midst of extraordinary complexity. Neuron 2015; 85:238-56. [PMID: 25611506 DOI: 10.1016/j.neuron.2014.12.042] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Potassium channels (KChs) are the most diverse ion channels, in part due to extensive combinatorial assembly of a large number of principal and auxiliary subunits into an assortment of KCh complexes. Their structural and functional diversity allows KChs to play diverse roles in neuronal function. Localization of KChs within specialized neuronal compartments defines their physiological role and also fundamentally impacts their activity, due to localized exposure to diverse cellular determinants of channel function. Recent studies in mammalian brain reveal an exquisite refinement of KCh subcellular localization. This includes axonal KChs at the initial segment, and near/within nodes of Ranvier and presynaptic terminals, dendritic KChs found at sites reflecting specific synaptic input, and KChs defining novel neuronal compartments. Painting the remarkable diversity of KChs onto the complex architecture of mammalian neurons creates an elegant picture of electrical signal processing underlying the sophisticated function of individual neuronal compartments, and ultimately neurotransmission and behavior.
Collapse
Affiliation(s)
- James S Trimmer
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA; Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
33
|
Bywalez WG, Patirniche D, Rupprecht V, Stemmler M, Herz AVM, Pálfi D, Rózsa B, Egger V. Local postsynaptic voltage-gated sodium channel activation in dendritic spines of olfactory bulb granule cells. Neuron 2015; 85:590-601. [PMID: 25619656 DOI: 10.1016/j.neuron.2014.12.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/07/2014] [Accepted: 12/15/2014] [Indexed: 01/16/2023]
Abstract
Neuronal dendritic spines have been speculated to function as independent computational units, yet evidence for active electrical computation in spines is scarce. Here we show that strictly local voltage-gated sodium channel (Nav) activation can occur during excitatory postsynaptic potentials in the spines of olfactory bulb granule cells, which we mimic and detect via combined two-photon uncaging of glutamate and calcium imaging in conjunction with whole-cell recordings. We find that local Nav activation boosts calcium entry into spines through high-voltage-activated calcium channels and accelerates postsynaptic somatic depolarization, without affecting NMDA receptor-mediated signaling. Hence, Nav-mediated boosting promotes rapid output from the reciprocal granule cell spine onto the lateral mitral cell dendrite and thus can speed up recurrent inhibition. This striking example of electrical compartmentalization both adds to the understanding of olfactory network processing and broadens the general view of spine function.
Collapse
Affiliation(s)
- Wolfgang G Bywalez
- Systems Neurobiology, Department II of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; Neurophysiology, Institute of Zoology, Universität Regensburg, 93040 Regensburg, Germany
| | - Dinu Patirniche
- Computational Neuroscience, Department II of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Vanessa Rupprecht
- Neurophysiology, Institute of Zoology, Universität Regensburg, 93040 Regensburg, Germany
| | - Martin Stemmler
- Computational Neuroscience, Department II of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Andreas V M Herz
- Computational Neuroscience, Department II of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Dénes Pálfi
- Two-Photon Imaging Center, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1039 Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| | - Balázs Rózsa
- Two-Photon Imaging Center, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1039 Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| | - Veronica Egger
- Neurophysiology, Institute of Zoology, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
34
|
Wang† WC, Cheng† CF, Tsaur ML. Immunohistochemical localization of DPP10 in rat brain supports the existence of a Kv4/KChIP/DPPL ternary complex in neurons. J Comp Neurol 2014; 523:608-28. [DOI: 10.1002/cne.23698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Wan-Chen Wang†
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University; Taipei 112 Taiwan
| | - Chau-Fu Cheng†
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University; Taipei 112 Taiwan
| | - Meei-Ling Tsaur
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University; Taipei 112 Taiwan
| |
Collapse
|
35
|
Al Koborssy D, Palouzier-Paulignan B, Salem R, Thevenet M, Romestaing C, Julliard AK. Cellular and molecular cues of glucose sensing in the rat olfactory bulb. Front Neurosci 2014; 8:333. [PMID: 25400540 PMCID: PMC4212682 DOI: 10.3389/fnins.2014.00333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 10/03/2014] [Indexed: 11/13/2022] Open
Abstract
In the brain, glucose homeostasis of extracellular fluid is crucial to the point that systems specifically dedicated to glucose sensing are found in areas involved in energy regulation and feeding behavior. Olfaction is a major sensory modality regulating food consumption. Nutritional status in turn modulates olfactory detection. Recently it has been proposed that some olfactory bulb (OB) neurons respond to glucose similarly to hypothalamic neurons. However, the precise molecular cues governing glucose sensing in the OB are largely unknown. To decrypt these molecular mechanisms, we first used immunostaining to demonstrate a strong expression of two neuronal markers of glucose-sensitivity, insulin-dependent glucose transporter type 4 (GLUT4), and sodium glucose co-transporter type 1 (SGLT1) in specific OB layers. We showed that expression and mapping of GLUT4 but not SGLT1 were feeding state-dependent. In order to investigate the impact of metabolic status on the delivery of blood-borne glucose to the OB, we measured extracellular fluid glucose concentration using glucose biosensors simultaneously in the OB and cortex of anesthetized rats. We showed that glucose concentration in the OB is higher than in the cortex, that metabolic steady-state glucose concentration is independent of feeding state in the two brain areas, and that acute changes in glycemic conditions affect bulbar glucose concentration alone. These data provide new evidence of a direct relationship between the OB and peripheral metabolism, and emphasize the importance of glucose for the OB network, providing strong arguments toward establishing the OB as a glucose-sensing organ.
Collapse
Affiliation(s)
- Dolly Al Koborssy
- Team "Olfaction: From Coding to Memory," Lyon Neuroscience Center, INSERM U1028-CNRS, University Lyon 1 Lyon, France
| | - Brigitte Palouzier-Paulignan
- Team "Olfaction: From Coding to Memory," Lyon Neuroscience Center, INSERM U1028-CNRS, University Lyon 1 Lyon, France
| | - Rita Salem
- Team "Olfaction: From Coding to Memory," Lyon Neuroscience Center, INSERM U1028-CNRS, University Lyon 1 Lyon, France
| | - Marc Thevenet
- Team "Olfaction: From Coding to Memory," Lyon Neuroscience Center, INSERM U1028-CNRS, University Lyon 1 Lyon, France
| | - Caroline Romestaing
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés CNRS 5023, University Lyon 1, Bâtiments Darwin C and Forel Villeurbanne, France
| | - A Karyn Julliard
- Team "Olfaction: From Coding to Memory," Lyon Neuroscience Center, INSERM U1028-CNRS, University Lyon 1 Lyon, France
| |
Collapse
|
36
|
Henley JM, Craig TJ, Wilkinson KA. Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Physiol Rev 2014; 94:1249-85. [PMID: 25287864 PMCID: PMC4187031 DOI: 10.1152/physrev.00008.2014] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein SUMOylation is a critically important posttranslational protein modification that participates in nearly all aspects of cellular physiology. In the nearly 20 years since its discovery, SUMOylation has emerged as a major regulator of nuclear function, and more recently, it has become clear that SUMOylation has key roles in the regulation of protein trafficking and function outside of the nucleus. In neurons, SUMOylation participates in cellular processes ranging from neuronal differentiation and control of synapse formation to regulation of synaptic transmission and cell survival. It is a highly dynamic and usually transient modification that enhances or hinders interactions between proteins, and its consequences are extremely diverse. Hundreds of different proteins are SUMO substrates, and dysfunction of protein SUMOylation is implicated in a many different diseases. Here we briefly outline core aspects of the SUMO system and provide a detailed overview of the current understanding of the roles of SUMOylation in healthy and diseased neurons.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Tim J Craig
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Kevin A Wilkinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
37
|
Streit AK, Matschke LA, Dolga AM, Rinné S, Decher N. RNA editing in the central cavity as a mechanism to regulate surface expression of the voltage-gated potassium channel Kv1.1. J Biol Chem 2014; 289:26762-26771. [PMID: 25100718 DOI: 10.1074/jbc.m113.545731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Voltage-gated potassium (Kv) 1.1 channels undergo a specific enzymatic RNA deamination, generating a channel with a single amino acid exchange located in the inner pore cavity (Kv1.1(I400V)). We studied I400V-edited Kv1.1 channels in more detail and found that Kv1.1(I400V) gave rise to much smaller whole-cell currents than Kv1.1. To elucidate the mechanism behind this current reduction, we conducted electrophysiological recordings on single-channel level and did not find any differences. Next we examined channel surface expression in Xenopus oocytes and HeLa cells using a chemiluminescence assay and found the edited channels to be less readily expressed at the surface membrane. This reduction in surface expression was verified by fluorescence imaging experiments. Western blot analysis for comparison of protein abundances and glycosylation patterns did not show any difference between Kv1.1 and Kv1.1(I400V), further indicating that changed trafficking of Kv1.1(I400V) is causing the current reduction. Block of endocytosis by dynasore or AP180C did not abolish the differences in current amplitudes between Kv1.1 and Kv1.1(I400V), suggesting that backward trafficking is not affected. Therefore, our data suggest that I400V RNA editing of Kv1.1 leads to a reduced current size by a decreased forward trafficking of the channel to the surface membrane. This effect is specific for Kv1.1 because coexpression of Kv1.4 channel subunits with Kv1.1(I400V) abolishes these trafficking effects. Taken together, we identified RNA editing as a novel mechanism to regulate homomeric Kv1.1 channel trafficking. Fine-tuning of Kv1.1 surface expression by RNA editing might contribute to the complexity of neuronal Kv channel regulation.
Collapse
Affiliation(s)
- Anne K Streit
- Institut für Physiologie und Pathophysiologie, Fachbereich Medizin, and Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Lina A Matschke
- Institut für Physiologie und Pathophysiologie, Fachbereich Medizin, and Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Amalia M Dolga
- Institut für Pharmakologie und Klinische Pharmazie, Fachbereich Pharmazie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Susanne Rinné
- Institut für Physiologie und Pathophysiologie, Fachbereich Medizin, and Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Niels Decher
- Institut für Physiologie und Pathophysiologie, Fachbereich Medizin, and Philipps-Universität Marburg, 35037 Marburg, Germany.
| |
Collapse
|
38
|
Distinct Kv channel subtypes contribute to differences in spike signaling properties in the axon initial segment and presynaptic boutons of cerebellar interneurons. J Neurosci 2014; 34:6611-23. [PMID: 24806686 DOI: 10.1523/jneurosci.4208-13.2014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The discrete arrangement of voltage-gated K(+) (Kv) channels in axons may impart functional advantages in action potential (AP) signaling yet, in compact cell types, the organization of Kv channels is poorly understood. We find that in cerebellar stellate cell interneurons of mice, the composition and influence of Kv channels populating the axon is diverse and depends on location allowing axonal compartments to differentially control APs in a local manner. Kv1 channels determine AP repolarization at the spike initiation site but not at more distal sites, limiting the expression of use-dependent spike broadening to the most proximal axon region, likely a key attribute informing spiking phenotype. Local control of AP repolarization at presynaptic boutons depends on Kv3 channels keeping APs brief, thus limiting Ca(2+) influx and synaptic strength. These observations suggest that AP repolarization is tuned by the local influence of distinct Kv channel types, and this organization enhances the functional segregation of axonal compartments.
Collapse
|
39
|
Kirizs T, Kerti-Szigeti K, Lorincz A, Nusser Z. Distinct axo-somato-dendritic distributions of three potassium channels in CA1 hippocampal pyramidal cells. Eur J Neurosci 2014; 39:1771-83. [PMID: 24606584 PMCID: PMC4150533 DOI: 10.1111/ejn.12526] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/21/2022]
Abstract
Potassium channels comprise the most diverse family of ion channels and play critical roles in a large variety of physiological and pathological processes. In addition to their molecular diversity, variations in their distributions and densities on the axo-somato-dendritic surface of neurons are key parameters in determining their functional impact. Despite extensive electrophysiological and anatomical investigations, the exact location and densities of most K+ channels in small subcellular compartments are still unknown. Here we aimed at providing a quantitative surface map of two delayed-rectifier (Kv1.1 and Kv2.1) and one G-protein-gated inwardly rectifying (Kir3.2) K+ channel subunits on hippocampal CA1 pyramidal cells (PCs). Freeze-fracture replica immunogold labelling was employed to determine the relative densities of these K+ channel subunits in 18 axo-somato-dendritic compartments. Significant densities of the Kv1.1 subunit were detected on axon initial segments (AISs) and axon terminals, with an approximately eight-fold lower density in the latter compartment. The Kv2.1 subunit was found in somatic, proximal dendritic and AIS plasma membranes at approximately the same densities. This subunit has a non-uniform plasma membrane distribution; Kv2.1 clusters are frequently adjacent to, but never overlap with, GABAergic synapses. A quasi-linear increase in the Kir3.2 subunit density along the dendrites of PCs was detected, showing no significant difference between apical dendritic shafts, oblique dendrites or dendritic spines at the same distance from the soma. Our results demonstrate that each subunit has a unique cell-surface distribution pattern, and predict their differential involvement in synaptic integration and output generation at distinct subcellular compartments.
Collapse
Affiliation(s)
- Tekla Kirizs
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony Street 43, Budapest, Hungary
| | | | | | | |
Collapse
|
40
|
Marinc C, Derst C, Prüss H, Veh RW. Immunocytochemical localization of TASK-3 protein (K2P9.1) in the rat brain. Cell Mol Neurobiol 2014; 34:61-70. [PMID: 24077856 DOI: 10.1007/s10571-013-9987-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 09/13/2013] [Indexed: 01/06/2023]
Abstract
Among all K2P channels, TASK-3 shows the most widespread expression in rat brain, regulating neuronal excitability and transmitter release. Using a recently purified and characterized polyclonal monospecific antibody against TASK-3, the entire rat brain was immunocytochemically analyzed for expression of TASK-3 protein. Besides its well-known strong expression in motoneurons and monoaminergic and cholinergic neurons, TASK-3 expression was found in most neurons throughout the brain. However, it was not detected in certain neuronal populations, and neuropil staining was restricted to few areas. Also, it was absent in adult glial cells. In hypothalamic areas, TASK-3 was particularly strongly expressed in the supraoptic and suprachiasmatic nuclei, whereas other hypothalamic nuclei showed lower protein levels. Immunostaining of hippocampal CA1 and CA3 pyramidal neurons showed strongest expression, together with clear staining of CA3 mossy fibers and marked staining also in the dentate gyrus granule cells. In neocortical areas, most neurons expressed TASK-3 with a somatodendritic localization, most obvious in layer V pyramidal neurons. In the cerebellum, TASK-3 protein was found mainly in neurons and neuropil of the granular cell layer, whereas Purkinje cells were only faintly positive. Particularly weak expression was demonstrated in the forebrain. This report provides a comprehensive overview of TASK-3 protein expression in the rat brain.
Collapse
|
41
|
Kirchheim F, Tinnes S, Haas CA, Stegen M, Wolfart J. Regulation of action potential delays via voltage-gated potassium Kv1.1 channels in dentate granule cells during hippocampal epilepsy. Front Cell Neurosci 2013; 7:248. [PMID: 24367293 PMCID: PMC3852106 DOI: 10.3389/fncel.2013.00248] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/20/2013] [Indexed: 11/13/2022] Open
Abstract
Action potential (AP) responses of dentate gyrus granule (DG) cells have to be tightly regulated to maintain hippocampal function. However, which ion channels control the response delay of DG cells is not known. In some neuron types, spike latency is influenced by a dendrotoxin (DTX)-sensitive delay current (ID) mediated by unidentified combinations of voltage-gated K(+) (Kv) channels of the Kv1 family Kv1.1-6. In DG cells, the ID has not been characterized and its molecular basis is unknown. The response phenotype of mature DG cells is usually considered homogenous but intrinsic plasticity likely occurs in particular in conditions of hyperexcitability, for example during temporal lobe epilepsy (TLE). In this study, we examined response delays of DG cells and underlying ion channel molecules by employing a combination of gramicidin-perforated patch-clamp recordings in acute brain slices and single-cell reverse transcriptase quantitative polymerase chain reaction (SC RT-qPCR) experiments. An in vivo mouse model of TLE consisting of intrahippocampal kainate (KA) injection was used to examine epilepsy-related plasticity. Response delays of DG cells were DTX-sensitive and strongly increased in KA-injected hippocampi; Kv1.1 mRNA was elevated 10-fold, and the response delays correlated with Kv1.1 mRNA abundance on the single cell level. Other Kv1 subunits did not show overt changes in mRNA levels. Kv1.1 immunolabeling was enhanced in KA DG cells. The biophysical properties of ID and a delay heterogeneity within the DG cell population was characterized. Using organotypic hippocampal slice cultures (OHCs), where KA incubation also induced ID upregulation, the homeostatic reversibility and neuroprotective potential for DG cells were tested. In summary, the AP timing of DG cells is effectively controlled via scaling of Kv1.1 subunit transcription. With this antiepileptic mechanism, DG cells delay their responses during hyperexcitation.
Collapse
Affiliation(s)
- Florian Kirchheim
- Cellular Neurophysiology, Department of Neurosurgery, University Medical Center Freiburg Freiburg, Germany ; Faculty of Biology, University of Freiburg Freiburg, Germany
| | - Stefanie Tinnes
- Experimental Epilepsy Research, Department of Neurosurgery, University Medical Center Freiburg Freiburg, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, University Medical Center Freiburg Freiburg, Germany
| | - Michael Stegen
- Cellular Neurophysiology, Department of Neurosurgery, University Medical Center Freiburg Freiburg, Germany ; Department of Biomedicine, Institute of Physiology, University of Basel Basel, Switzerland
| | - Jakob Wolfart
- Cellular Neurophysiology, Department of Neurosurgery, University Medical Center Freiburg Freiburg, Germany ; Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| |
Collapse
|
42
|
Veys K, Snyders D, De Schutter E. Kv3.3b expression defines the shape of the complex spike in the Purkinje cell. Front Cell Neurosci 2013; 7:205. [PMID: 24312005 PMCID: PMC3826534 DOI: 10.3389/fncel.2013.00205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 10/18/2013] [Indexed: 12/03/2022] Open
Abstract
The complex spike (CS) in cerebellar Purkinje Cells (PC) is not an all-or-nothing phenomena as originally proposed, but shows variability depending on the spiking behavior of the Inferior Olive and intrinsic variability in the number and shape of spikelets. The potassium channel Kv3.3b, which has been proposed to undergo developmental changes during the postnatal PC maturation, has been shown to be crucial for the repolarization of the spikelets in the CS. We address here the regulation of the intrinsic CS variability by the expression of inactivating Kv3.3 channels in PCs by combining patch-clamp recordings and single-cell PCR methods on the same neurons, using a technique that we recently optimized to correlate single cell transcription levels with membrane ion channel electrophysiology. We show that while the inactivating TEA sensitive Kv3.3 current peak intensity increases with postnatal age, the channel density does not, arguing against postnatal developmental changes of Kv3.3b expression. Real time PCR of Kv3.3b showed a high variability from cell to cell, correlated with the Kv3.3 current density, and suggesting that there are no mechanisms regulating these currents beyond the mRNA pool. We show a significant correlation between normalized quantity of Kv3.3b mRNA and both the number of CS spikelets and their rate of voltage fluctuation, linking the intrinsic CS shape directly to the Kv3.3b mRNA pool. Comparing the observed cell-to-cell variance with studies on transcriptional noise suggests that fluctuations of the Kv3.3b mRNA pool are possibly not regulated but represent merely transcriptional noise, resulting in intrinsic variability of the CS.
Collapse
Affiliation(s)
- Ken Veys
- Theoretical Neurobiology, University of Antwerp Antwerpen, Belgium
| | | | | |
Collapse
|
43
|
Comes N, Bielanska J, Vallejo-Gracia A, Serrano-Albarrás A, Marruecos L, Gómez D, Soler C, Condom E, Ramón Y Cajal S, Hernández-Losa J, Ferreres JC, Felipe A. The voltage-dependent K(+) channels Kv1.3 and Kv1.5 in human cancer. Front Physiol 2013; 4:283. [PMID: 24133455 PMCID: PMC3794381 DOI: 10.3389/fphys.2013.00283] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/18/2013] [Indexed: 11/20/2022] Open
Abstract
Voltage-dependent K+ channels (Kv) are involved in a number of physiological processes, including immunomodulation, cell volume regulation, apoptosis as well as differentiation. Some Kv channels participate in the proliferation and migration of normal and tumor cells, contributing to metastasis. Altered expression of Kv1.3 and Kv1.5 channels has been found in several types of tumors and cancer cells. In general, while the expression of Kv1.3 apparently exhibits no clear pattern, Kv1.5 is induced in many of the analyzed metastatic tissues. Interestingly, evidence indicates that Kv1.5 channel shows inversed correlation with malignancy in some gliomas and non-Hodgkin's lymphomas. However, Kv1.3 and Kv1.5 are similarly remodeled in some cancers. For instance, expression of Kv1.3 and Kv1.5 correlates with a certain grade of tumorigenicity in muscle sarcomas. Differential remodeling of Kv1.3 and Kv1.5 expression in human cancers may indicate their role in tumor growth and their importance as potential tumor markers. However, despite of this increasing body of information, which considers Kv1.3 and Kv1.5 as emerging tumoral markers, further research must be performed to reach any conclusion. In this review, we summarize what it has been lately documented about Kv1.3 and Kv1.5 channels in human cancer.
Collapse
Affiliation(s)
- Núria Comes
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Duque A, Gazula VR, Kaczmarek LK. Expression of Kv1.3 potassium channels regulates density of cortical interneurons. Dev Neurobiol 2013; 73:841-55. [PMID: 23821603 DOI: 10.1002/dneu.22105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 01/27/2023]
Abstract
The Kv1.3 protein is a member of the large family of voltage-dependent K+ subunits (Kv channels), which assemble to form tetrameric membrane-spanning channels that provide a selective pore for the conductance of K+ across the cell membrane. Kv1.3 differs from most other Kv channels in that deletion of Kv1.3 gene produces very striking changes in development and structure of the olfactory bulb, where Kv1.3 is expressed at high levels, resulting in a lower threshold for detection of odors, an increased number of synaptic glomeruli and alterations in the levels of a variety of neuronal signaling molecules. Because Kv1.3 is also expressed in the cerebral cortex, we have now examined the effects of deletion of the Kv1.3 gene on the expression of interneuron populations of the cerebral cortex. Using unbiased stereology we found an increase in the number of parvalbumin (PV) cells in whole cerebral cortex of Kv1.3-/- mice relative to that in wild-type mice, and a decrease in the number of calbindin (CB), calretinin (CR), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), and somatostatin (SOM) interneurons. These changes are accompanied by a decrease in the cortical volume such that the cell density of PV interneurons is significantly increased and that of SOM neurons is decreased in Kv1.3-/- animals. Our studies suggest that, as in the olfactory bulb, Kv1.3 plays a unique role in neuronal differentiation and/or survival of interneuron populations and that expression of Kv1.3 is required for normal cortical function.
Collapse
Affiliation(s)
- Alvaro Duque
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, 06520
| | | | | |
Collapse
|
45
|
Arginase and Arginine Decarboxylase - Where Do the Putative Gate Keepers of Polyamine Synthesis Reside in Rat Brain? PLoS One 2013; 8:e66735. [PMID: 23840524 PMCID: PMC3686689 DOI: 10.1371/journal.pone.0066735] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/09/2013] [Indexed: 12/17/2022] Open
Abstract
Polyamines are important regulators of basal cellular functions but also subserve highly specific tasks in the mammalian brain. With this respect, polyamines and the synthesizing and degrading enzymes are clearly differentially distributed in neurons versus glial cells and also in different brain areas. The synthesis of the diamine putrescine may be driven via two different pathways. In the “classical” pathway urea and carbon dioxide are removed from arginine by arginase and ornithine decarboxylase. The alternative pathway, first removing carbon dioxide by arginine decarboxlyase and then urea by agmatinase, may serve the same purpose. Furthermore, the intermediate product of the alternative pathway, agmatine, is an endogenous ligand for imidazoline receptors and may serve as a neurotransmitter. In order to evaluate and compare the expression patterns of the two gate keeper enzymes arginase and arginine decarboxylase, we generated polyclonal, monospecific antibodies against arginase-1 and arginine decarboxylase. Using these tools, we immunocytochemically screened the rat brain and compared the expression patterns of both enzymes in several brain areas on the regional, cellular and subcellular level. In contrast to other enzymes of the polyamine pathway, arginine decarboxylase and arginase are both constitutively and widely expressed in rat brain neurons. In cerebral cortex and hippocampus, principal neurons and putative interneurons were clearly labeled for both enzymes. Labeling, however, was strikingly different in these neurons with respect to the subcellular localization of the enzymes. While with antibodies against arginine decarboxylase the immunosignal was distributed throughout the cytoplasm, arginase-like immunoreactivity was preferentially localized to Golgi stacks. Given the apparent congruence of arginase and arginine decarboxylase distribution with respect to certain cell populations, it seems likely that the synthesis of agmatine rather than putrescine may be the main purpose of the alternative pathway of polyamine synthesis, while the classical pathway supplies putrescine and spermidine/spermine in these neurons.
Collapse
|
46
|
5-HT2 receptors-mediated modulation of voltage-gated K+ channels and neurophysiopathological correlates. Exp Brain Res 2013; 230:453-62. [PMID: 23702970 DOI: 10.1007/s00221-013-3555-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
Abstract
The activity of voltage-gated K(+) channels (Kv) can be dynamically modulated by several events, including neurotransmitter stimulated biochemical cascades mediated by G protein-coupled receptors such as 5-HT2 receptors (5-HT2Rs). Activation of 5-HT2A/CR inhibits the Shaker-like K(+) channels Kv1.1 and Kv1.2, and this modulation involves the dual coordination of both RPTPα and distinct tyrosine kinases coupled to this receptor; 5-HT2Rs-mediated modulation of Kv channels controls glutamate release onto prefrontal cortex neurons that might play critical roles in neurophysiological, neurological, and psychiatric conditions. Noticeably, hallucinogens modulate Kv channel activity, acting at 5-HT2R. Hence, comprehensive knowledge of 5-HT2R signaling through modulation of distinct K(+) channels is a pivotal step in the direction that will enable scientists to discover novel 5-HT functions and dysfunctions in the brain and to identify original therapeutic targets.
Collapse
|
47
|
Tucker K, Cho S, Thiebaud N, Henderson MX, Fadool DA. Glucose sensitivity of mouse olfactory bulb neurons is conveyed by a voltage-gated potassium channel. J Physiol 2013; 591:2541-61. [PMID: 23478133 DOI: 10.1113/jphysiol.2013.254086] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The olfactory bulb has recently been proposed to serve as a metabolic sensor of internal chemistry, particularly that modified by metabolism. Because the voltage-dependent potassium channel Kv1.3 regulates a large proportion of the outward current in olfactory bulb neurons and gene-targeted deletion of the protein produces a phenotype of resistance to diet-induced obesity in mice, we hypothesized that this channel may play a role in translating energy availability into a metabolic signal. Here we explored the ability of extracellular glucose concentration to modify evoked excitability of the mitral neurons that principally regulate olfactory coding and processing of olfactory information. Using voltage-clamp electrophysiology of heterologously expressed Kv1.3 channels in HEK 293 cells, we found that Kv1.3 macroscopic currents responded to metabolically active (d-) rather than inactive (l-) glucose with a response profile that followed a bell-shaped curve. Olfactory bulb slices stimulated with varying glucose concentrations showed glucose-dependent mitral cell excitability as evaluated by current-clamp electrophysiology. While glucose could be either excitatory or inhibitory, the majority of the sampled neurons displayed a decreased firing frequency in response to elevated glucose concentration that was linked to increased latency to first spike and decreased action potential cluster length. Unlike modulation attributed to phosphorylation, glucose modulation of mitral cells was rapid, less than one minute, and was reversible within the time course of a patch recording. Moreover, we report that modulation targets properties of spike firing rather than action potential shape, involves synaptic activity of glutamate or GABA signalling circuits, and is dependent upon Kv1.3 expression. Given the rising incidence of metabolic disorders attributed to weight gain, changes in neuronal excitability in brain regions regulating sensory perception of food are of consequence.
Collapse
Affiliation(s)
- Kristal Tucker
- Florida State University, 319 Stadium Drive, 3008 King Life Sciences, Tallahassee, FL 32306, USA
| | | | | | | | | |
Collapse
|
48
|
DiFranco M, Quinonez M, Vergara JL. The delayed rectifier potassium conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers. ACTA ACUST UNITED AC 2012; 140:109-37. [PMID: 22851675 PMCID: PMC3409102 DOI: 10.1085/jgp.201210802] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A two-microelectrode voltage clamp and optical measurements of membrane potential changes at the transverse tubular system (TTS) were used to characterize delayed rectifier K currents (IK(V)) in murine muscle fibers stained with the potentiometric dye di-8-ANEPPS. In intact fibers, IK(V) displays the canonical hallmarks of K(V) channels: voltage-dependent delayed activation and decay in time. The voltage dependence of the peak conductance (gK(V)) was only accounted for by double Boltzmann fits, suggesting at least two channel contributions to IK(V). Osmotically treated fibers showed significant disconnection of the TTS and displayed smaller IK(V), but with similar voltage dependence and time decays to intact fibers. This suggests that inactivation may be responsible for most of the decay in IK(V) records. A two-channel model that faithfully simulates IK(V) records in osmotically treated fibers comprises a low threshold and steeply voltage-dependent channel (channel A), which contributes ∼31% of gK(V), and a more abundant high threshold channel (channel B), with shallower voltage dependence. Significant expression of the IK(V)1.4 and IK(V)3.4 channels was demonstrated by immunoblotting. Rectangular depolarizing pulses elicited step-like di-8-ANEPPS transients in intact fibers rendered electrically passive. In contrast, activation of IK(V) resulted in time- and voltage-dependent attenuations in optical transients that coincided in time with the peaks of IK(V) records. Normalized peak attenuations showed the same voltage dependence as peak IK(V) plots. A radial cable model including channels A and B and K diffusion in the TTS was used to simulate IK(V) and average TTS voltage changes. Model predictions and experimental data were compared to determine what fraction of gK(V) in the TTS accounted simultaneously for the electrical and optical data. Best predictions suggest that K(V) channels are approximately equally distributed in the sarcolemma and TTS membranes; under these conditions, >70% of IK(V) arises from the TTS.
Collapse
Affiliation(s)
- Marino DiFranco
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
49
|
Nakamura K, Shimizu T, Tanaka K, Taniuchi K, Yokotani K. Involvement of presynaptic voltage-dependent Kv3 channel in endothelin-1-induced inhibition of noradrenaline release from rat gastric sympathetic nerves. Eur J Pharmacol 2012; 694:98-103. [PMID: 22964465 DOI: 10.1016/j.ejphar.2012.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/20/2012] [Accepted: 08/20/2012] [Indexed: 11/26/2022]
Abstract
We previously reported that two types of K(+) channels, the BK type Ca(2+)-activated K(+) channel coupled with phospholipase C (PLC) and the voltage-dependent K(+) channel (Kv channel), are, respectively, involved in the prostanoid TP receptor- and muscarinic M(2) receptor-mediated inhibition of noradrenaline (NA) release from rat gastric sympathetic nerves. In the present study, therefore, we examined whether these K(+) channels are involved in endothelin-1-induced inhibition of NA release, using an isolated, vascularly perfused rat stomach. The gastric sympathetic postganglionic nerves around the left gastric artery were electrically stimulated twice at 2.5 Hz for 1 min, and endothelin-1 was added during the second stimulation. Endothelin-1 (1, 2 and 10 nM) dose-dependently inhibited gastric NA release. Endothelin-1 (2 nM)-induced inhibition of NA release was neither attenuated by PLC inhibitors [U-73122 (3 μM) and ET-18-OCH(3) (3 μM)] nor by Ca(2+)-activated K(+) channel blockers [charybdotoxin (0.1 μM) (a blocker of BK type K(+) channel) and apamin (0.3 μM) (a blocker of SK type K(+) channel)]. The endothelin-1-induced inhibitory response was also not attenuated by α-dendrotoxin (0.1 μM) (a selective inhibitor of Kv1 channel), but abolished by 4-aminopyridine (20 μM) (a selectively inhibitory dose for Kv3 channel). These results suggest the involvement of a voltage-dependent Kv3 channel in the endothelin-1-induced inhibition of NA release from the gastric sympathetic nerves in rats.
Collapse
Affiliation(s)
- Kumiko Nakamura
- Department of Pharmacology, School of Medicine, Kochi University, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | |
Collapse
|
50
|
Huang CY, Chu D, Hwang WC, Tsaur ML. Coexpression of high-voltage-activated ion channels Kv3.4 and Cav1.2 in pioneer axons during pathfinding in the developing rat forebrain. J Comp Neurol 2012; 520:3650-72. [DOI: 10.1002/cne.23119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|