1
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
2
|
Chen S, Lu H, Cheng C, Ye Z, Hua T. Rapidly repeated visual stimulation induces long-term potentiation of VEPs and increased content of membrane AMPA and NMDA receptors in the V1 cortex of cats. Front Neurosci 2024; 18:1386801. [PMID: 38831757 PMCID: PMC11144871 DOI: 10.3389/fnins.2024.1386801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Studies report that rapidly repeated sensory stimulation can evoke LTP-like improvement of neural response in the sensory cortex. Whether this neural response potentiation is similar to the classic LTP induced by presynaptic electrical stimulation remains unclear. This study examined the effects of repeated high-frequency (9 Hz) versus low-frequency (1 Hz) visual stimulation on visually-evoked field potentials (VEPs) and the membrane protein content of AMPA / NMDA receptors in the primary visual cortex (V1) of cats. The results showed that repeated high-frequency visual stimulation (HFS) caused a long-term improvement in peak-to-peak amplitude of V1-cortical VEPs in response to visual stimuli at HFS-stimulated orientation (SO: 90°) and non-stimulated orientation (NSO: 180°), but the effect exhibited variations depending on stimulus orientation: the amplitude increase of VEPs in response to visual stimuli at SO was larger, reached a maximum earlier and lasted longer than at NSO. By contrast, repeated low-frequency visual stimulation (LFS) had not significantly affected the amplitude of V1-cortical VEPs in response to visual stimuli at both SO and NSO. Furthermore, the membrane protein content of the key subunit GluA1 of AMPA receptors and main subunit NR1 of AMPA receptors in V1 cortex was significantly increased after HFS but not LFS when compared with that of control cats. Taken together, these results indicate that HFS can induce LTP-like improvement of VEPs and an increase in membrane protein of AMPA and NMDA receptors in the V1 cortex of cats, which is similar to but less specific to stimulus orientation than the classic LTP.
Collapse
Affiliation(s)
| | | | | | | | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
3
|
Watanabe Y, Dezawa S, Takei H, Nagasaka K, Takashima I. Hippocampal-prefrontal long-term potentiation-like plasticity with transcranial direct current stimulation in rats. Neurobiol Learn Mem 2023; 201:107750. [PMID: 37023973 DOI: 10.1016/j.nlm.2023.107750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Transcranial direct current stimulation (tDCS) has been explored as a new treatment method for improving cognitive and motor functions. However, the neuronal mechanisms of tDCS in modulating brain functions, especially cognitive and memory functions, are not well understood. In the present study, we assessed whether tDCS could promote neuronal plasticity between the hippocampus and prefrontal cortex in rats. This is important because the hippocampus-prefrontal pathway is a key pathway in cognitive and memory functions and is involved in various psychiatric and neurodegenerative disorders. Specifically, the effect of anodal or cathodal tDCS on the medial prefrontal cortex was investigated in rats by measuring the medial prefrontal cortex response to electrical stimulation applied to the CA1 region of the hippocampus. Following anodal tDCS, the evoked prefrontal response was potentiated compared to that in the pre-tDCS condition. However, the evoked prefrontal response did not show any significant changes following cathodal tDCS. Furthermore, the plastic change of the prefrontal response following anodal tDCS was only induced when hippocampal stimulation was continuously applied during tDCS. Anodal tDCS without hippocampal activation showed little or no changes. These results indicate that combining anodal tDCS of the prefrontal cortex with hippocampal activation induces long-term potentiation (LTP)-like plasticity in the hippocampus-prefrontal pathway. This LTP-like plasticity can facilitate smooth information transmission between the hippocampus and the prefrontal cortex and may lead to improvements in cognitive and memory function.
Collapse
Affiliation(s)
- Yumiko Watanabe
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan.
| | - Shinnosuke Dezawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan; Faculty of Medical and Health Sciences, Tsukuba International University, 6-8-33, Manabe, Tsuchiura 300-0051, Japan
| | - Hiroyuki Takei
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan; raduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-9577, Japan
| | - Kazuaki Nagasaka
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan; Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan; raduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-9577, Japan
| |
Collapse
|
4
|
Ferraris M, Cassel JC, Pereira de Vasconcelos A, Stephan A, Quilichini PP. The nucleus reuniens, a thalamic relay for cortico-hippocampal interaction in recent and remote memory consolidation. Neurosci Biobehav Rev 2021; 125:339-354. [PMID: 33631314 DOI: 10.1016/j.neubiorev.2021.02.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
The consolidation of declarative memories is believed to occur mostly during sleep and involves a dialogue between two brain regions, the hippocampus and the medial prefrontal cortex. The information encoded during experience by neuronal assemblies is replayed during sleep leading to the progressive strengthening and integration of the memory trace in the prefrontal cortex. The gradual transfer of information from the hippocampus to the medial prefrontal cortex for long-term storage requires the synchronization of cortico-hippocampal networks by different oscillations, like ripples, spindles, and slow oscillations. Recent studies suggest the involvement of a third partner, the nucleus reuniens, in memory consolidation. Its bidirectional connections with the hippocampus and medial prefrontal cortex place the reuniens in a key position to relay information between the two structures. Indeed, many topical works reveal the original role that the nucleus reuniens occupies in different recent and remote memories consolidation. This review aimed to examine these contributions, as well as its functional embedment in this complex memory network, and provide some insights on the possible mechanisms.
Collapse
Affiliation(s)
- Maëva Ferraris
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Jean-Christophe Cassel
- Laboratoire De Neurosciences Cognitives Et Adaptatives, Université De Strasbourg, F-67000, Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000, Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Laboratoire De Neurosciences Cognitives Et Adaptatives, Université De Strasbourg, F-67000, Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000, Strasbourg, France
| | - Aline Stephan
- Laboratoire De Neurosciences Cognitives Et Adaptatives, Université De Strasbourg, F-67000, Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000, Strasbourg, France
| | | |
Collapse
|
5
|
Roura-Martínez D, Díaz-Bejarano P, Ucha M, Paiva RR, Ambrosio E, Higuera-Matas A. Comparative analysis of the modulation of perineuronal nets in the prefrontal cortex of rats during protracted withdrawal from cocaine, heroin and sucrose self-administration. Neuropharmacology 2020; 180:108290. [PMID: 32888961 DOI: 10.1016/j.neuropharm.2020.108290] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Relapse into drug use is a significant problem for people recovering from addiction. The ability that conditioned cues have to reinstate and reinvigorate drug-seeking is potentiated over time (incubation of seeking), posing an additional difficulty for maintaining abstinence. While the prefrontal cortex has been involved in the incubation phenomenon and the extracellular matrix, perineuronal nets (PNNs) in particular, may play a vital role in brain plasticity associated to drug relapse, there are no comparative analyses between different drug classes and natural reinforcers. Here, we compare the effects of early (1 day) and protracted (30 days) withdrawal from to cocaine, heroin and sucrose self-administration on the total density and density per intensity range of PNNs of different territories of the prefrontal cortex of male Lewis rats. Our results show that cocaine self-administration increases the density of PNNs in the dorsal prelimbic, infralimbic and ventral orbitofrontal cortices, while protracted withdrawal reversesthis effect in the dorsal prelimbic cortex. Also, heroin self-administration increases the density of PNNs in the infralimbic cortex and ventral orbitofrontal cortices, but this effect is lost after 30 days of withdrawal in the infralimbic cortex. Finally, the self-administration of sucrose-sweetened water or the protracted withdrawal from this powerful reinforcer does not affect any of the PNN parameters analysed. Our results show that two different drugs of abuse (but not a natural reward) with specific pharmacological and physiological actions, differentially modulate PNNs in specific areas of the rodent prefrontal cortex with potential implications for the incubation of seeking phenomenon.
Collapse
Affiliation(s)
- David Roura-Martínez
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Paula Díaz-Bejarano
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Marcos Ucha
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Raquel R Paiva
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain.
| | - Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain.
| |
Collapse
|
6
|
Wu Y, Mitra R. Prefrontal-hippocampus plasticity reinstated by an enriched environment during stress. Neurosci Res 2020; 170:360-363. [PMID: 32710912 DOI: 10.1016/j.neures.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/14/2020] [Accepted: 07/09/2020] [Indexed: 01/17/2023]
Abstract
Chronic stress causes dendritic atrophy of neurons within the hippocampus and medial prefrontal cortex. In this report, we show that chronic stress leads to reduced long-term potentiation in the pathway from the hippocampus to the medial prefrontal cortex of rats; and that such reduction is rescued by enriched housing environment. Connectivity between the hippocampus and medial prefrontal cortex is proposed to be an essential substrate that is often compromised in several psychiatric disorders. Our observations suggest that a short period of complexity in the housing environment has the potential to protect the functional integrity of this important connection.
Collapse
Affiliation(s)
- You Wu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 63755 Singapore
| | - Rupshi Mitra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 63755 Singapore.
| |
Collapse
|
7
|
Mamiya T, Tanase S, Takeuchi S, Kato S, Ito A, Hiramatsu M, Nabeshima T. Galantamine improves enhanced impulsivity, impairments of attention and long-term potentiation induced by prenatal nicotine exposure to mice. Biochem Pharmacol 2020; 180:114139. [PMID: 32652142 DOI: 10.1016/j.bcp.2020.114139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Prenatal nicotine exposure (PNE) causes behavioral abnormalities in offspring, such as an enhancement of impulsivity and decrease in attention at adolescence. Here we examined the effects of galantamine (GAL) on the behavioral and electrophysiological changes induced by PNE in mice. Pregnant C57BL/6J mice were exposed to nicotine (0.2 mg/mL) dissolved in sweetened (2% saccharin) drinking water during gestational day 14 and perinatal day 0 (P0). At the ages of postnatal days 42-49 (P42-P49), female offspring displayed impulsivity in the cliff avoidance test and impairment of visual attention in the object-based attention test. Decrease of long-term potentiation (LTP) and extracellular glutamate levels were observed in the prefrontal cortex of PNE mice. Systemic treatment with GAL (1 mg/kg, s.c.), an allosteric potentiating ligand for the nicotinic acetylcholine receptor (nAChR) and a weak cholinesterase inhibitor, attenuated the enhancement of impulsivity and impairment of attention induced by PNE in mice. Further, GAL reversed the impairment of LTP induced by PNE in the prefrontal cortex of mice, although it failed to attenuate the decrease of extracellular glutamate levels. The effects of GAL were blocked by an α 7 nAChR antagonist, methyllycaconitine (1 mg/kg, i.p.). These results suggest that PNE during cortex development affects nicotinic cholinergic-dependent plasticity and formation of impulsivity and attention. Furthermore, GAL could be a useful drug for cognitive impairments-related to attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Takayoshi Mamiya
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan.
| | - Shota Tanase
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Shino Takeuchi
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Shunsuke Kato
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Ai Ito
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Masayuki Hiramatsu
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| |
Collapse
|
8
|
Lopes-Aguiar C, Ruggiero RN, Rossignoli MT, Esteves IDM, Peixoto-Santos JE, Romcy-Pereira RN, Leite JP. Long-term potentiation prevents ketamine-induced aberrant neurophysiological dynamics in the hippocampus-prefrontal cortex pathway in vivo. Sci Rep 2020; 10:7167. [PMID: 32346044 PMCID: PMC7188848 DOI: 10.1038/s41598-020-63979-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
N-methyl-D-aspartate receptor (NMDAr) antagonists such as ketamine (KET) produce psychotic-like behavior in both humans and animal models. NMDAr hypofunction affects normal oscillatory dynamics and synaptic plasticity in key brain regions related to schizophrenia, particularly in the hippocampus and the prefrontal cortex. It has been shown that prior long-term potentiation (LTP) occluded the increase of synaptic efficacy in the hippocampus-prefrontal cortex pathway induced by MK-801, a non-competitive NMDAr antagonist. However, it is not clear whether LTP could also modulate aberrant oscillations and short-term plasticity disruptions induced by NMDAr antagonists. Thus, we tested whether LTP could mitigate the electrophysiological changes promoted by KET. We recorded HPC-PFC local field potentials and evoked responses in urethane anesthetized rats, before and after KET administration, preceded or not by LTP induction. Our results show that KET promotes an aberrant delta-high-gamma cross-frequency coupling in the PFC and an enhancement in HPC-PFC evoked responses. LTP induction prior to KET attenuates changes in synaptic efficiency and prevents the increase in cortical gamma amplitude comodulation. These findings are consistent with evidence that increased efficiency of glutamatergic receptors attenuates cognitive impairment in animal models of psychosis. Therefore, high-frequency stimulation in HPC may be a useful tool to better understand how to prevent NMDAr hypofunction effects on synaptic plasticity and oscillatory coordination in cortico-limbic circuits.
Collapse
Affiliation(s)
- Cleiton Lopes-Aguiar
- Núcleo de Neurociências, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Rafael N Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil.
| | - Matheus T Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Ingrid de Miranda Esteves
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | | | | | - João P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| |
Collapse
|
9
|
Brain-wide resting-state connectivity regulation by the hippocampus and medial prefrontal cortex is associated with fluid intelligence. Brain Struct Funct 2020; 225:1587-1600. [PMID: 32333100 DOI: 10.1007/s00429-020-02077-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/18/2020] [Indexed: 10/24/2022]
Abstract
The connectivity hub property of the hippocampus (HIP) and the medial prefrontal cortex (MPFC) is essential for their widespread involvement in cognition; however, the cooperation mechanism between them is far from clear. Herein, using resting-state functional MRI and Gaussian Bayesian network to describe the directed organizing architecture of the HIP-MPFC pathway with regions in the brain, we demonstrated that the HIP and the MPFC have central roles as the driving hub and aggregating hub, respectively. The status of the HIP and the MPFC is dominant in communications between the HIP and the default-mode network, between the HIP and core neurocognitive networks, including the default-mode, frontoparietal, and salience networks, and between brain-wide representative regions, suggesting a strong and robust central position of the two regions in regulating the dynamics of large-scale brain activity. Furthermore, we found that the directed connectivity and flow from the right HIP to the MPFC is significantly linked to fluid intelligence. Together, these results clarify the different roles of the HIP and the MPFC that jointly contribute to network dynamics and cognitive ability from a data-driven insight via the use of the directed connectivity method.
Collapse
|
10
|
Ciuculete DM, Voisin S, Kular L, Welihinda N, Jonsson J, Jagodic M, Mwinyi J, Schiöth HB. Longitudinal DNA methylation changes at MET may alter HGF/c-MET signalling in adolescents at risk for depression. Epigenetics 2019; 15:646-663. [PMID: 31852353 PMCID: PMC7574381 DOI: 10.1080/15592294.2019.1700628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Unrecognized depression during adolescence can result in adult suicidal behaviour. The aim of this study was to identify, replicate and characterize DNA methylation (DNAm) shifts in depression aetiology, using a longitudinal, multi-tissue (blood and brain) and multi-layered (genetics, epigenetics, transcriptomics) approach. We measured genome-wide blood DNAm data at baseline and one-year follow-up, and imputed genetic variants, in 59 healthy adolescents comprising the discovery cohort. Depression and suicidal symptoms were determined using the Development and Well-Being Assessment (DAWBA) depression band, Montgomery-Åsberg Depression Rating Scale-Self (MADRS-S) and SUicide Assessment Scale (SUAS). DNAm levels at follow-up were regressed against depression scores, adjusting for sex, age and the DNAm residuals at baseline. Higher methylation levels of 5% and 13% at cg24627299 within the MET gene were associated with higher depression scores (praw<1e-4) and susceptibility for suicidal symptoms (padj.<0.005). The nearby rs39748 was discovered to be a methylation and expression quantitative trait locus in blood cells. mRNA levels of hepatocyte growth factor (HGF) expression, known to strongly interact with MET, were inversely associated with methylation levels at cg24627299, in an independent cohort of 1180 CD14+ samples. In an open-access dataset of brain tissue, lower methylation at cg24627299 was found in 45 adults diagnosed with major depressive disorder compared with matched controls (padj.<0.05). Furthermore, lower MET expression was identified in the hippocampus of depressed individuals compared with controls in a fourth, independent cohort. Our findings reveal methylation changes at MET in the pathology of depression, possibly involved in downregulation of HGF/c-MET signalling the hippocampal region.
Collapse
Affiliation(s)
- Diana M Ciuculete
- Department of Neuroscience, Functional Pharmacology, Uppsala University , Uppsala, Sweden
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University , Footscray, Australian
| | - Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Nipuni Welihinda
- Department of Neuroscience, Functional Pharmacology, Uppsala University , Uppsala, Sweden
| | - Jörgen Jonsson
- Department of Neuroscience, Functional Pharmacology, Uppsala University , Uppsala, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, Uppsala University , Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University , Uppsala, Sweden.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University , Moscow, Russia
| |
Collapse
|
11
|
Khazen T, Shrivastava K, Jada R, Hatoum OA, Maroun M. Different mechanisms underlie stress-induced changes in plasticity and metaplasticity in the prefrontal cortex of juvenile and adult animals. Neurobiol Learn Mem 2018; 154:5-11. [DOI: 10.1016/j.nlm.2018.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/01/2018] [Accepted: 02/09/2018] [Indexed: 12/15/2022]
|
12
|
Shikanai H, Oshima N, Kawashima H, Kimura SI, Hiraide S, Togashi H, Iizuka K, Ohkura K, Izumi T. N-methyl-d-aspartate receptor dysfunction in the prefrontal cortex of stroke-prone spontaneously hypertensive rat/Ezo as a rat model of attention deficit/hyperactivity disorder. Neuropsychopharmacol Rep 2018; 38:61-66. [PMID: 30106260 PMCID: PMC7292284 DOI: 10.1002/npr2.12007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 11/07/2022] Open
Abstract
AIM We previously reported that stroke-prone spontaneously hypertensive rat/Ezo (SHRSP/Ezo) has high validity as an attention deficit/hyperactivity disorder (AD/HD) animal model, based on its behavioral phenotypes, such as inattention, hyperactivity, and impulsivity. Fronto-cortical dysfunction is implicated in the pathogenesis of AD/HD. In this study, we investigated prefrontal cortex (PFC) function in SHRSP/Ezo rats by electrophysiological methods and radioreceptor assay. METHODS We recorded excitatory postsynaptic potential in layer V pyramidal neurons in the PFC by intracellular recording method to assess synaptic plasticity in the form of long-term potentiation (LTP). We also performed N-methyl-d-aspartate acid (NMDA) receptor binding assay in the PFC and hippocampus using radiolabeled NMDA receptor antagonist [3 H]MK-801. RESULTS Theta-burst stimulation induced LTP in the PFC of genetic control, WKY/Ezo, whereas failed to induce LTP in that of SHRSP/Ezo. The Kd value of [3 H]MK-801 binding for NMDA receptors in the PFC of SHRSP/Ezo was higher than in the WKY/Ezo. Neither the Bmax nor Kd of [3 H]MK-801 binding in the SHRSP/Ezo hippocampus was significantly different to WKY/Ezo. CONCLUSION These results suggest that the AD/HD animal model SHRSP/Ezo has NMDA receptor dysfunction in the PFC.
Collapse
Affiliation(s)
- Hiroki Shikanai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Nobuhiro Oshima
- Department of Biophysical Sciences, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Hidekazu Kawashima
- Department of Biophysical Sciences, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Shin-Ichi Kimura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Sachiko Hiraide
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Hiroko Togashi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Kenji Iizuka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Kazue Ohkura
- Department of Biophysical Sciences, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Takeshi Izumi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| |
Collapse
|
13
|
A hippocampus to prefrontal cortex neural pathway inhibits food motivation through glucagon-like peptide-1 signaling. Mol Psychiatry 2018; 23:1555-1565. [PMID: 28461695 PMCID: PMC5668211 DOI: 10.1038/mp.2017.91] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/10/2017] [Accepted: 03/16/2017] [Indexed: 12/18/2022]
Abstract
The hippocampus and the medial prefrontal cortex (mPFC) are traditionally associated with regulating memory and executive function, respectively. The contribution of these brain regions to food intake control, however, is poorly understood. The present study identifies a novel neural pathway through which monosynaptic glutamatergic ventral hippocampal field CA1 (vCA1) to mPFC connectivity inhibits food-motivated behaviors through vCA1 glucagon-like peptide-1 receptor (GLP-1R). Results demonstrate that vCA1-targeted RNA interference-mediated GLP-1R knockdown increases motivated operant responding for palatable food. Chemogenetic disconnection of monosynaptic glutamatergic vCA1 to mPFC projections using designer receptors exclusively activated by designer drugs (DREADDs)-mediated synaptic silencing ablates the food intake and body weight reduction following vCA1 GLP-1R activation. Neuropharmacological experiments further reveal that vCA1 GLP-1R activation reduces food intake and inhibits impulsive operant responding for palatable food via downstream communication to mPFC NMDA receptors. Overall these findings identify a novel neural pathway regulating higher-order cognitive aspects of feeding behavior.
Collapse
|
14
|
Ruggiero RN, Rossignoli MT, Lopes-Aguiar C, Leite JP, Bueno-Junior LS, Romcy-Pereira RN. Lithium modulates the muscarinic facilitation of synaptic plasticity and theta-gamma coupling in the hippocampal-prefrontal pathway. Exp Neurol 2018; 304:90-101. [DOI: 10.1016/j.expneurol.2018.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/25/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
|
15
|
Spriggs MJ, Sumner RL, McMillan RL, Moran RJ, Kirk IJ, Muthukumaraswamy SD. Indexing sensory plasticity: Evidence for distinct Predictive Coding and Hebbian learning mechanisms in the cerebral cortex. Neuroimage 2018; 176:290-300. [PMID: 29715566 DOI: 10.1016/j.neuroimage.2018.04.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/13/2018] [Accepted: 04/25/2018] [Indexed: 11/17/2022] Open
Abstract
The Roving Mismatch Negativity (MMN), and Visual LTP paradigms are widely used as independent measures of sensory plasticity. However, the paradigms are built upon fundamentally different (and seemingly opposing) models of perceptual learning; namely, Predictive Coding (MMN) and Hebbian plasticity (LTP). The aim of the current study was to compare the generative mechanisms of the MMN and visual LTP, therefore assessing whether Predictive Coding and Hebbian mechanisms co-occur in the brain. Forty participants were presented with both paradigms during EEG recording. Consistent with Predictive Coding and Hebbian predictions, Dynamic Causal Modelling revealed that the generation of the MMN modulates forward and backward connections in the underlying network, while visual LTP only modulates forward connections. These results suggest that both Predictive Coding and Hebbian mechanisms are utilized by the brain under different task demands. This therefore indicates that both tasks provide unique insight into plasticity mechanisms, which has important implications for future studies of aberrant plasticity in clinical populations.
Collapse
Affiliation(s)
- M J Spriggs
- School of Psychology, The University of Auckland, New Zealand; Brain Research New Zealand, New Zealand.
| | - R L Sumner
- School of Psychology, The University of Auckland, New Zealand
| | - R L McMillan
- School of Pharmacy, The University of Auckland, New Zealand
| | - R J Moran
- Department Engineering Mathematics, University of Bristol, BS8 1TH, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - I J Kirk
- School of Psychology, The University of Auckland, New Zealand; Brain Research New Zealand, New Zealand
| | | |
Collapse
|
16
|
Shalini SM, Ho CFY, Ng YK, Tong JX, Ong ES, Herr DR, Dawe GS, Ong WY. Distribution of Alox15 in the Rat Brain and Its Role in Prefrontal Cortical Resolvin D1 Formation and Spatial Working Memory. Mol Neurobiol 2018; 55:1537-1550. [PMID: 28181190 PMCID: PMC5820376 DOI: 10.1007/s12035-017-0413-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/18/2017] [Indexed: 10/28/2022]
Abstract
Docosahexaenoic acid (DHA) is enriched in membrane phospholipids of the central nervous system (CNS) and has a role in aging and neuropsychiatric disorders. DHA is metabolized by the enzyme Alox15 to 17S-hydroxy-DHA, which is then converted to 7S-hydroperoxy,17S-hydroxy-DHA by a 5-lipoxygenase, and thence via epoxy intermediates to the anti-inflammatory molecule, resolvin D1 (RvD1 or 7S,8R,17S-trihydroxy-docosa-Z,9E,11E,13Z,15E,19Z-hexaenoic acid). In this study, we investigated the distribution and function of Alox15 in the CNS. RT-PCR of the CNS showed that the prefrontal cortex exhibits the highest Alox15 mRNA expression level, followed by the parietal association cortex and secondary auditory cortex, olfactory bulb, motor and somatosensory cortices, and the hippocampus. Western blot analysis was consistent with RT-PCR data, in that the prefrontal cortex, cerebral cortex, hippocampus, and olfactory bulb had high Alox15 protein expression. Immunohistochemistry showed moderate staining in the olfactory bulb, cerebral cortex, septum, striatum, cerebellar cortex, cochlear nuclei, spinal trigeminal nucleus, and dorsal horn of the spinal cord. Immuno-electron microscopy showed localization of Alox15 in dendrites, in the prefrontal cortex. Liquid chromatography mass spectrometry analysis showed significant decrease in resolvin D1 levels in the prefrontal cortex after inhibition or antisense knockdown of Alox15. Alox15 inhibition or antisense knockdown in the prefrontal cortex also blocked long-term potentiation of the hippocampo-prefrontal cortex pathway and increased errors in alternation, in the T-maze test. They indicate that Alox15 processing of DHA contributes to production of resolvin D1 and LTP at hippocampo-prefrontal cortical synapses and associated spatial working memory performance. Together, results provide evidence for a key role of anti-inflammatory molecules generated by Alox15 and DHA, such as resolvin D1, in memory. They suggest that neuroinflammatory brain disorders and chronic neurodegeneration may 'drain' anti-inflammatory molecules that are necessary for normal neuronal signaling, and compromise cognition.
Collapse
Affiliation(s)
- Suku-Maran Shalini
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore
| | - Christabel Fung-Yih Ho
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore
| | - Yee-Kong Ng
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - Jie-Xin Tong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore
| | - Eng-Shi Ong
- Department of Science, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Deron R Herr
- Department of Pharmacology, National University of Singapore, Singapore, 119260, Singapore
| | - Gavin S Dawe
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore.
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
17
|
Saha R, Shrivastava K, Jing L, Schayek R, Maroun M, Kriebel M, Volkmer H, Richter-Levin G. Perturbation of GABAergic Synapses at the Axon Initial Segment of Basolateral Amygdala Induces Trans-regional Metaplasticity at the Medial Prefrontal Cortex. Cereb Cortex 2017; 28:395-410. [DOI: 10.1093/cercor/bhx300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Rinki Saha
- Sagol Department of Neurobiology, University of Haifa, Haifa 31905, Israel
| | | | - Liang Jing
- The Institute for the Study of Affective Neuroscience, University of Haif, Haifa 31905, Israel
| | - Rachel Schayek
- Sagol Department of Neurobiology, University of Haifa, Haifa 31905, Israel
| | - Mouna Maroun
- Sagol Department of Neurobiology, University of Haifa, Haifa 31905, Israel
| | - Martin Kriebel
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | - Hansjürgen Volkmer
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa 31905, Israel
- Department of Psychology, University of Haifa, Haifa 31905, Israel
- The Institute for the Study of Affective Neuroscience, University of Haif, Haifa 31905, Israel
| |
Collapse
|
18
|
Wu YJ, Lin CC, Yeh CM, Chien ME, Tsao MC, Tseng P, Huang CW, Hsu KS. Repeated transcranial direct current stimulation improves cognitive dysfunction and synaptic plasticity deficit in the prefrontal cortex of streptozotocin-induced diabetic rats. Brain Stimul 2017; 10:1079-1087. [PMID: 28870510 DOI: 10.1016/j.brs.2017.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/22/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cognitive dysfunction is commonly observed in diabetic patients. We have previously reported that anodal transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex can facilitate visuospatial working memory in diabetic patients with concomitant diabetic peripheral neuropathy and mild cognitive impairment, but the underlying mechanisms remain unclear. OBJECTIVE We investigated the cellular mechanisms underlying the effect of tDCS on cognitive decline in streptozotocin (STZ)-induced diabetic rats. METHODS STZ-induced diabetic rats were subjected to either repeated anodal tDCS or sham stimulation over the medial prefrontal cortex (mPFC). Spatial working memory performance in delayed nonmatch-to-place T maze task (DNMT), the induction of long-term potentiation (LTP) in the mPFC, and dendritic morphology of Golgi-stained pyramidal neurons in the mPFC were assessed. RESULTS Repeated applications of prefrontal anodal tDCS improved spatial working memory performance in DNMT and restored the impaired mPFC LTP of diabetic rats. The mPFC of tDCS-treated diabetic rats exhibited higher levels of brain-derived neurotrophic factor (BDNF) protein and N-Methyl-d-aspartate receptor (NMDAR) subunit mRNA and protein compared to sham stimulation group. Furthermore, anodal tDCS significantly increased dendritic spine density on the apical dendrites of mPFC layer V pyramidal cells in diabetic rats, whereas the complexity of basal and apical dendritic trees was unaltered. CONCLUSIONS Our findings suggest that repeated anodal tDCS may improve spatial working memory performance in streptozotocin-induced diabetic rats through augmentation of synaptic plasticity that requires BDNF secretion and transcription/translation of NMDARs in the mPFC, and support the therapeutic potential of tDCS for cognitive decline in diabetes mellitus patients.
Collapse
Affiliation(s)
- Yi-Jen Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chou-Ching Lin
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Che-Ming Yeh
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Miao-Er Chien
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Chung Tsao
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Philip Tseng
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Brain and Consciousness, Taipei Medical University, Taipei, Taiwan; Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
19
|
Rame M, Caudal D, Schenker E, Svenningsson P, Spedding M, Jay TM, Godsil BP. Clozapine counteracts a ketamine-induced depression of hippocampal-prefrontal neuroplasticity and alters signaling pathway phosphorylation. PLoS One 2017; 12:e0177036. [PMID: 28472198 PMCID: PMC5417651 DOI: 10.1371/journal.pone.0177036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/20/2017] [Indexed: 01/01/2023] Open
Abstract
Single sub-anesthetic doses of ketamine can exacerbate the symptoms of patients diagnosed with schizophrenia, yet similar ketamine treatments rapidly reduce depressive symptoms in major depression. Acute doses of the atypical antipsychotic drug clozapine have also been shown to counteract ketamine-induced psychotic effects. In the interest of understanding whether these drug effects could be modeled with alterations in neuroplasticity, we examined the impact of acutely-administered ketamine and clozapine on in vivo long-term potentiation (LTP) in the rat’s hippocampus-to-prefrontal cortex (H-PFC) pathway. We found that a low dose of ketamine depressed H-PFC LTP, whereas animals that were co-administrated the two drugs displayed LTP that was similar to a saline-treated control. To address which signaling molecules might mediate such effects, we also examined phosphorylation and total protein levels of GSK3β, GluA1, TrkB, ERK, and mTOR in prefrontal and hippocampal sub-regions. Among the statistically significant effects that were detected (a) both ketamine and clozapine increased the phosphorylation of Ser9-GSK3β throughout the prefrontal cortex and of Ser2481-mTOR in the dorsal hippocampus (DH), (b) clozapine increased the phosphorylation of Ser831-GluA1 throughout the prefrontal cortex and of Ser845-GluA1 in the ventral hippocampus, (c) ketamine treatment increased the phosphorylation of Thr202/Tyr204-ERK in the medial PFC (mPFC), and (d) clozapine treatment was associated with decreases in the phosphorylation of Tyr705-TrkB in the DH and of Try816-TrkB in the mPFC. Further analyses involving phosphorylation effect sizes also suggested Ser831-GluA1 in the PFC displayed the highest degree of clozapine-responsivity relative to ketamine. These results provide evidence for how ketamine and clozapine treatments affect neuroplasticity and signaling pathways in the stress-sensitive H-PFC network. They also demonstrate the potential relevance of H-PFC pathway neuroplasticity for modeling ketamine-clozapine interactions in regards to psychosis.
Collapse
Affiliation(s)
- Marion Rame
- Laboratoire de Physiopathologie des Maladies Psychiatriques, UMR_S894 Inserm, Centre de Psychiatrie et Neurosciences, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Dorian Caudal
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Per Svenningsson
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Michael Spedding
- Institut de Recherches Servier, Croissy-sur-Seine, France
- Spedding Research Solutions SAS, Le Vesinet, France
| | - Thérèse M. Jay
- Laboratoire de Physiopathologie des Maladies Psychiatriques, UMR_S894 Inserm, Centre de Psychiatrie et Neurosciences, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bill P. Godsil
- Laboratoire de Physiopathologie des Maladies Psychiatriques, UMR_S894 Inserm, Centre de Psychiatrie et Neurosciences, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
20
|
Chen W, Wang Y, Wang X, Li H. Neural circuits involved in the renewal of extinguished fear. IUBMB Life 2017; 69:470-478. [PMID: 28464461 DOI: 10.1002/iub.1636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
The last 10 years have witnessed a substantial progress in understanding the neural mechanisms for the renewal of the extinguished fear memory. Based on the theory of fear extinction, exposure therapy has been developed as a typical cognitive behavioral therapy for posttraumatic stress disorder. Although the fear memory can be extinguished by repeated presentation of conditioned stimulus without unconditioned stimulus, the fear memory is not erased and tends to relapse outside of extinction context, which is referred to as renewal. Therefore, the renewal is regarded as a great obstruction interfering with the effect of exposure therapy. In recent years, there has been a great deal of studies in understanding the neurobiological underpinnings of fear renewal. These offer a foundation upon which novel therapeutic interventions for the renewal may be built. This review focuses on behavioral, anatomical and electrophysiological studies that interpret roles of the hippocampus, prelimbic cortex and amygdala as well as the connections between them for the renewal of the extinguished fear. Additionally, this review suggests the possible pathways for the renewal: (1) the prelimbic cortex may integrate contextual information from hippocampal inputs and project to the basolateral amygdala to mediate the renewal of extinguished fear memory; the ventral hippocampus may innervate the activities of the basolateral amygdala or the central amygdala directly for the renewal. © 2017 IUBMB Life, 69(7):470-478, 2017.
Collapse
Affiliation(s)
- Weihai Chen
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China
| | - Yan Wang
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China
| | - Xiaqing Wang
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China
| | - Hong Li
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China
| |
Collapse
|
21
|
Activation of beta- and alpha-2-adrenoceptors in the basolateral amygdala has opposing effects on hippocampal-prefrontal long-term potentiation. Neurobiol Learn Mem 2017; 137:163-170. [DOI: 10.1016/j.nlm.2016.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/11/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022]
|
22
|
Overexpression of Protein Kinase Mζ in the Hippocampus Enhances Long-Term Potentiation and Long-Term Contextual But Not Cued Fear Memory in Rats. J Neurosci 2016; 36:4313-24. [PMID: 27076427 DOI: 10.1523/jneurosci.3600-15.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/17/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The persistently active protein kinase Mζ (PKMζ) has been found to be involved in the formation and maintenance of long-term memory. Most of the studies investigating PKMζ, however, have used either putatively unselective inhibitors or conventional knock-out animal models in which compensatory mechanisms may occur. Here, we overexpressed an active form of PKMζ in rat hippocampus, a structure highly involved in memory formation, and embedded in several neural networks. We investigated PKMζ's influence on synaptic plasticity using electrophysiological recordings of basal transmission, paired pulse facilitation, and LTP and combined this with behavioral cognitive experiments addressing formation and retention of both contextual memory during aversive conditioning and spatial memory during spontaneous exploration. We demonstrate that hippocampal slices overexpressing PKMζ show enhanced basal transmission, suggesting a potential role of PKMζ in postsynaptic AMPAR trafficking. Moreover, the PKMζ-overexpressing slices augmented LTP and this effect was not abolished by protein-synthesis blockers, indicating that PKMζ induces enhanced LTP formation in a protein-synthesis-independent manner. In addition, we found selectively enhanced long-term memory for contextual but not cued fear memory, underlining the theory of the hippocampus' involvement in the contextual aspect of aversive reinforced tasks. Memory for spatial orientation during spontaneous exploration remained unaltered, suggesting that PKMζ may not affect the neural circuits underlying spontaneous tasks that are different from aversive tasks. In this study, using an overexpression strategy as opposed to an inhibitor-based approach, we demonstrate an important modulatory role of PKMζ in synaptic plasticity and selective memory processing. SIGNIFICANCE STATEMENT Most of the literature investigating protein kinase Mζ (PKMζ) used inhibitors with selectivity that has been called into question or conventional knock-out animal models in which compensatory mechanisms may occur. To avoid these issues, some studies have been done using viral overexpression of PKMζ in different brain structures to show cognitive enhancement. However, electrophysiological experiments were exclusively done in knock-out models or inhibitory studies to show depletion of LTP. There was no study showing the effect of PKMζ overexpression in the hippocampus on behavior and LTP experiments. To our knowledge, this is the first study to combine these aspects with the result of enhanced memory for contextual fear memory and to show enhanced LTP in hippocampal slices overexpressing PKMζ.
Collapse
|
23
|
Gelinas JN, Khodagholy D, Thesen T, Devinsky O, Buzsáki G. Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy. Nat Med 2016; 22:641-8. [PMID: 27111281 PMCID: PMC4899094 DOI: 10.1038/nm.4084] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/14/2016] [Indexed: 12/15/2022]
Abstract
Interactions between the hippocampus and cortex are critical for memory. Interictal epileptiform discharges (IEDs) identify epileptic brain regions and can impair memory, but how they interact with physiological patterns of network activity is mostly undefined. We show in a rat model of temporal lobe epilepsy that spontaneous hippocampal IEDs correlate with impaired memory consolidation and are precisely coordinated with spindle oscillations in the prefrontal cortex during NREM sleep. This coordination surpasses the normal physiological ripple-spindle coupling and is accompanied by decreased ripple occurrence. IEDs also induce spindles during REM sleep and wakefulness, behavioral states that do not naturally express these oscillations, by generating a cortical ‘DOWN’ state. We confirm a similar correlation of temporofrontal IEDs with spindles over anatomically restricted cortical regions in a pilot clinical examination of four subjects with focal epilepsy. These findings imply that IEDs may impair memory via misappropriation of physiological mechanisms for hippocampal-cortical coupling, suggesting a target to treat memory impairment in epilepsy.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- The Neuroscience Institute, New York University, School of Medicine, New York, New York, USA
| | - Dion Khodagholy
- The Neuroscience Institute, New York University, School of Medicine, New York, New York, USA
| | - Thomas Thesen
- Department of Neurology, Comprehensive Epilepsy Center, New York University, School of Medicine, New York, New York, USA
| | - Orrin Devinsky
- Department of Neurology, Comprehensive Epilepsy Center, New York University, School of Medicine, New York, New York, USA
| | - György Buzsáki
- The Neuroscience Institute, New York University, School of Medicine, New York, New York, USA.,Center for Neural Science, New York University, School of Medicine, New York, New York, USA
| |
Collapse
|
24
|
Effects of Dopamine and Serotonin Systems on Modulating Neural Oscillations in Hippocampus-Prefrontal Cortex Pathway in Rats. Brain Topogr 2016; 29:539-51. [PMID: 26969669 DOI: 10.1007/s10548-016-0485-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
Theta and gamma oscillations are believed to play an important role in cognition and memory, and their phase coupling facilitates the information transmission in hippocampal-cortex network. In a rat model of chronic stress, the phase coupling of both theta and gamma oscillations between ventral hippocampal CA1 (vCA1) and medial prefrontal cortex (mPFC) was found to be disrupted, which was associated with the impaired synaptic plasticity in the pathway. However, little was known about the mechanisms underlying the process. In order to address this issue, both dopamine and serotonin as monoaminergic neurotransmitters were involved in this study, since they were crucial factors in pathological basis of depressive disorder. Local field potentials (LFPs) were recorded simultaneously at both vCA1 and mPFC regions under anesthesia, before and after the injection of dopamine D1 receptor antagonist and 5-HT1A receptor agonist, respectively. The results showed that the blockage of D1 receptor could lead to depression-like decrement on theta phase coupling. In addition, the activation of 5-HT1A receptor enhanced vCA1-mPFC coupling on gamma oscillations, and attenuated CA1 theta-fast gamma cross frequency coupling. These data suggest that the theta phase coupling between vCA1 and mPFC may be modulated by dopamine system that is an underlying mechanism of the cognitive dysfunction in depression. Besides, the serotonergic system is probably involved in the regulation of gamma oscillations coupling in vCA1-mPFC network.
Collapse
|
25
|
Andrzejewski ME, Ryals C. Dissociable hippocampal and amygdalar D1-like receptor contribution to discriminated Pavlovian conditioned approach learning. Behav Brain Res 2016; 299:111-21. [PMID: 26632336 PMCID: PMC4866504 DOI: 10.1016/j.bbr.2015.11.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 11/28/2022]
Abstract
Pavlovian conditioning is an elementary form of reward-related behavioral adaptation. The mesolimbic dopamine system is widely considered to mediate critical aspects of reward-related learning. For example, initial acquisition of positively-reinforced operant behavior requires dopamine (DA) D1 receptor (D1R) activation in the basolateral amygdala (BLA), central nucleus of the amygdala (CeA), and the ventral subiculum (vSUB). However, the role of D1R activation in these areas on appetitive, non-drug-related, Pavlovian learning is not currently known. In separate experiments, microinfusions of the D1-like receptor antagonist SCH-23390 (3.0 nmol/0.5 μL per side) into the amygdala and subiculum preceded discriminated Pavlovian conditioned approach (dPCA) training sessions. D1-like antagonism in all three structures impaired the acquisition of discriminated approach, but had no effect on performance after conditioning was asymptotic. Moreover, dissociable effects of D1-like antagonism in the three structures on components of discriminated responding were obtained. Lastly, the lack of latent inhibition in drug-treated groups may elucidate the role of D1-like in reward-related Pavlovian conditioning. The present data suggest a role for the D1 receptors in the amygdala and hippocampus in learning the significance of conditional stimuli, but not in the expression of conditional responses.
Collapse
Affiliation(s)
- Matthew E Andrzejewski
- Department of Psychology, University of Wisconsin-Whitewater, 800 N. Main St., Whitewater, WI 53719, United States.
| | - Curtis Ryals
- Department of Psychology, University of Wisconsin-Madison, United States
| |
Collapse
|
26
|
Ghasemzadeh Z, Rezayof A. Role of hippocampal and prefrontal cortical signaling pathways in dextromethorphan effect on morphine-induced memory impairment in rats. Neurobiol Learn Mem 2016; 128:23-32. [DOI: 10.1016/j.nlm.2015.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/22/2015] [Accepted: 11/28/2015] [Indexed: 11/29/2022]
|
27
|
Negrón-Oyarzo I, Aboitiz F, Fuentealba P. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders. Neural Plast 2016; 2016:7539065. [PMID: 26904302 PMCID: PMC4745936 DOI: 10.1155/2016/7539065] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/25/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022] Open
Abstract
Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Avenida Marcoleta No. 391, 8320000 Santiago, Chile
| | - Francisco Aboitiz
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Avenida Marcoleta No. 391, 8320000 Santiago, Chile
| | - Pablo Fuentealba
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Avenida Marcoleta No. 391, 8320000 Santiago, Chile
| |
Collapse
|
28
|
Induction of Anti-Hebbian LTP in CA1 Stratum Oriens Interneurons: Interactions between Group I Metabotropic Glutamate Receptors and M1 Muscarinic Receptors. J Neurosci 2016; 35:13542-54. [PMID: 26446209 DOI: 10.1523/jneurosci.0956-15.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED An anti-Hebbian form of LTP is observed at excitatory synapses made with some hippocampal interneurons. LTP induction is facilitated when postsynaptic interneurons are hyperpolarized, presumably because Ca(2+) entry through Ca(2+)-permeable glutamate receptors is enhanced. The contribution of modulatory transmitters to anti-Hebbian LTP induction remains to be established. Activation of group I metabotropic receptors (mGluRs) is required for anti-Hebbian LTP induction in interneurons with cell bodies in the CA1 stratum oriens. This region receives a strong cholinergic innervation from the septum, and muscarinic acetylcholine receptors (mAChRs) share some signaling pathways and cooperate with mGluRs in the control of neuronal excitability.We therefore examined possible interactions between group I mGluRs and mAChRs in anti-Hebbian LTP at synapses which excite oriens interneurons in rat brain slices. We found that blockade of either group I mGluRs or M1 mAChRs prevented the induction of anti-Hebbian LTP by pairing presynaptic activity with postsynaptic hyperpolarization. Blocking either receptor also suppressed long-term effects of activation of the other G-protein coupled receptor on interneuron membrane potential. However, no crossed blockade was detected for mGluR or mAchR effects on interneuron after-burst potentials or on the frequency of miniature EPSPs. Paired recordings between pyramidal neurons and oriens interneurons were obtained to determine whether LTP could be induced without concurrent stimulation of cholinergic axons. Exogenous activation of mAChRs led to LTP, with changes in EPSP amplitude distributions consistent with a presynaptic locus of expression. LTP, however, required noninvasive presynaptic and postsynaptic recordings. SIGNIFICANCE STATEMENT In the hippocampus, a form of NMDA receptor-independent long-term potentiation (LTP) occurs at excitatory synapses made on some inhibitory neurons. This is preferentially induced when postsynaptic interneurons are hyperpolarized, depends on Ca(2+) entry through Ca(2+)-permeable AMPA receptors, and has been labeled anti-Hebbian LTP. Here we show that this form of LTP also depends on activation of both group I mGluR and M1 mAChRs. We demonstrate that these G-protein coupled receptors (GPCRs) interact, because the blockade of one receptor suppresses long-term effects of activation of the other GPCR on both LTP and interneuron membrane potential. This LTP was also detected in paired recordings, although only when both presynaptic and postsynaptic recordings did not perturb the intracellular medium. Changes in EPSP amplitude distributions in dual recordings were consistent with a presynaptic locus of expression.
Collapse
|
29
|
Jin J, Maren S. Prefrontal-Hippocampal Interactions in Memory and Emotion. Front Syst Neurosci 2015; 9:170. [PMID: 26696844 PMCID: PMC4678200 DOI: 10.3389/fnsys.2015.00170] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/23/2015] [Indexed: 11/22/2022] Open
Abstract
The hippocampal formation (HPC) and medial prefrontal cortex (mPFC) have well-established roles in memory encoding and retrieval. However, the mechanisms underlying interactions between the HPC and mPFC in achieving these functions is not fully understood. Considerable research supports the idea that a direct pathway from the HPC and subiculum to the mPFC is critically involved in cognitive and emotional regulation of mnemonic processes. More recently, evidence has emerged that an indirect pathway from the HPC to the mPFC via midline thalamic nucleus reuniens (RE) may plays a role in spatial and emotional memory processing. Here we will consider how bidirectional interactions between the HPC and mPFC are involved in working memory, episodic memory and emotional memory in animals and humans. We will also consider how dysfunction in bidirectional HPC-mPFC pathways contributes to psychiatric disorders.
Collapse
Affiliation(s)
- Jingji Jin
- Department of Psychology and Institute for Neuroscience, Texas A&M University College Station, TX, USA
| | - Stephen Maren
- Department of Psychology and Institute for Neuroscience, Texas A&M University College Station, TX, USA
| |
Collapse
|
30
|
Schayek R, Maroun M. Differences in stress-induced changes in extinction and prefrontal plasticity in postweanling and adult animals. Biol Psychiatry 2015; 78:159-66. [PMID: 25434484 DOI: 10.1016/j.biopsych.2014.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/10/2014] [Accepted: 10/07/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND Postweaning is a critical developmental stage during which the medial prefrontal cortex (mPFC) undergoes major changes and the brain is vulnerable to the effects of stress. Surprisingly, the engagement of the mPFC in extinction of fear was reported to be identical in postweanling (PW) and adult animals. Here, we examined whether the effect of stress on extinction and mPFC plasticity would be similar in PW and adult animals. METHODS PW and adult animals were fear conditioned and exposed to the elevated platform stress paradigm, and extinction and long-term potentiation were examined. The dependency of stress-induced modulation of extinction and plasticity on N-methyl-D-aspartate receptors was examined as well. RESULTS We show that exposure to stress is associated with reduction of fear and enhanced induction of long-term potentiation (LTP) in PW pups, in contrast to its effects in adult animals. Furthermore, we report opposite effects in the occlusion of LTP following the enhanced or impaired extinction in the two age groups and that the reversal of the effects of stress is independent of N-methyl-D-aspartate receptor activation in PW animals. CONCLUSIONS Our results show that qualitatively different mechanisms control the modulatory effects of stress on extinction and plasticity in postweanling pups compared with adult rats. Our results point to significant differences between young and adult brains, which may have potential implications for the treatment of anxiety and stress disorders across development.
Collapse
Affiliation(s)
- Rachel Schayek
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa Israel
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa Israel..
| |
Collapse
|
31
|
Werlen E, Jones MW. Modulating the map: dopaminergic tuning of hippocampal spatial coding and interactions. PROGRESS IN BRAIN RESEARCH 2015; 219:187-216. [PMID: 26072240 DOI: 10.1016/bs.pbr.2015.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Salient events activate the midbrain dopaminergic system and have important impacts on various aspects of mnemonic function, including the stability of hippocampus-dependent memories. Dopamine is also central to modulation of neocortical memory processing, particularly during prefrontal cortex-dependent working memory. Here, we review the current state of the circuitry and physiology underlying dopamine's actions, suggesting that--alongside local effects within hippocampus and prefrontal cortex--dopamine released from the midbrain ventral tegmental area is well positioned to dynamically tune interactions between limbic-cortical circuits through modulation of rhythmic network activity.
Collapse
Affiliation(s)
- Emilie Werlen
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, UK.
| | - Matthew W Jones
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, UK
| |
Collapse
|
32
|
Holmes GL, Tian C, Hernan AE, Flynn S, Camp D, Barry J. Alterations in sociability and functional brain connectivity caused by early-life seizures are prevented by bumetanide. Neurobiol Dis 2015; 77:204-19. [PMID: 25766676 PMCID: PMC4682568 DOI: 10.1016/j.nbd.2015.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/29/2014] [Accepted: 02/13/2015] [Indexed: 01/02/2023] Open
Abstract
There is a well-described association between infantile epilepsy and pervasive cognitive and behavioral deficits, including a high incidence of autism spectrum disorders. Despite the robustness of the relationship between early-life seizures and the development of autism, the pathophysiological mechanism by which this occurs has not been explored. As a result of increasing evidence that autism is a disorder of brain connectivity we hypothesized that early-life seizures would interrupt normal brain connectivity during brain maturation and result in an autistic phenotype. Normal rat pups underwent recurrent flurothyl-induced seizures from postnatal (P)days 5-14 and then tested, along with controls, for developmental alterations of development brain oscillatory activity from P18-P25. Specifically we wished to understand how normal changes in rhythmicity in and between brain regions change as a function of age and if this rhythmicity is altered or interrupted by early life seizures. In rat pups with early-life seizures, field recordings from dorsal and ventral hippocampus and prefrontal cortex demonstrated marked increase in coherence as well as a decrease in voltage correlation at all bandwidths compared to controls while there were minimal differences in total power and relative power spectral densities. Rats with early-life seizures had resulting impairment in the sociability and social novelty tests but demonstrated no evidence of increased activity or generalized anxiety as measured in the open field. In addition, rats with early-life seizures had lower seizure thresholds than controls, indicating long-standing alterations in the excitatory/inhibition balance. Bumetanide, a pharmacological agent that blocks the activity of NKCC1 and induces a significant shift of ECl toward more hyperpolarized values, administration at the time of the seizures precluded the subsequent abnormalities in coherence and voltage correlation and resulted in normal sociability and seizure threshold. Taken together these findings indicate that early-life seizures alter the development of oscillations and result in autistic-like behaviors. The altered communication between these brain regions could reflect the physiological underpinnings underlying social cognitive deficits seen in autism spectrum disorders.
Collapse
Affiliation(s)
- Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT05405, USA.
| | - Chengju Tian
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT05405, USA
| | - Amanda E Hernan
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT05405, USA
| | - Sean Flynn
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT05405, USA
| | - Devon Camp
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT05405, USA
| | - Jeremy Barry
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT05405, USA
| |
Collapse
|
33
|
Hippocampal-prefrontal circuit and disrupted functional connectivity in psychiatric and neurodegenerative disorders. BIOMED RESEARCH INTERNATIONAL 2015; 2015:810548. [PMID: 25918722 PMCID: PMC4396015 DOI: 10.1155/2015/810548] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/09/2015] [Accepted: 03/19/2015] [Indexed: 11/17/2022]
Abstract
In rodents, the hippocampus has been studied extensively as part of a brain system responsible for learning and memory, and the prefrontal cortex (PFC) participates in numerous cognitive functions including working memory, flexibility, decision making, and rewarding learning. The neuronal projections from the hippocampus, either directly or indirectly, to the PFC, referred to as the hippocampal-prefrontal cortex (Hip-PFC) circuit, play a critical role in cognitive and emotional regulation and memory consolidation. Although in certain psychiatric and neurodegenerative diseases, structural connectivity viewed by imaging techniques has been consistently found to be associated with clinical phenotype and disease severity, the focus has moved towards the investigation of connectivity correlates of molecular pathology and coupling of oscillation. Moreover, functional and structural connectivity measures have been emerging as potential intermediate biomarkers for neuronal disorders. In this review, we summarize progress on the anatomic, molecular, and electrophysiological characters of the Hip-PFC circuit in cognition and emotion processes with an emphasis on oscillation and functional connectivity, revealing a disrupted Hip-PFC connectivity and electrical activity in psychiatric and neurodegenerative disorders as a promising candidate of neural marker for neuronal disorders.
Collapse
|
34
|
Ghoshal A, Conn PJ. The hippocampo-prefrontal pathway: a possible therapeutic target for negative and cognitive symptoms of schizophrenia. FUTURE NEUROLOGY 2015; 10:115-128. [PMID: 25825588 DOI: 10.2217/fnl.14.63] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The hippocampo-prefrontal (H-PFC) pathway has been linked to cognitive and emotional disturbances in several psychiatric disorders including schizophrenia. Preclinical evidence from the NMDA receptor antagonism rodent model of schizophrenia shows severe pathology selective to the H-PFC pathway. It is speculated that there is an increased excitatory drive from the hippocampus to the prefrontal cortex due to dysfunctions in the H-PFC plasticity, which may serve as the basis for the behavioral consequences observed in this rodent model. Thus, the H-PFC pathway is currently emerging as a promising therapeutic target for the negative and cognitive symptom clusters of schizophrenia. Here, we have reviewed the physiological, pharmacological and functional characteristics of the H-PFC pathway and we propose that allosteric activation of glutamatergic and cholinergic neurotransmission can serve as a plausible therapeutic approach.
Collapse
Affiliation(s)
- Ayan Ghoshal
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232 0697, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232 0697, USA
| |
Collapse
|
35
|
Colle R, Chupin M, Cury C, Vandendrie C, Gressier F, Hardy P, Falissard B, Colliot O, Ducreux D, Corruble E. Depressed suicide attempters have smaller hippocampus than depressed patients without suicide attempts. J Psychiatr Res 2015; 61:13-8. [PMID: 25555305 DOI: 10.1016/j.jpsychires.2014.12.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Despite known relationship between hippocampal volumes and major depressive episodes (MDE) and the increased suicidality in MDE, the links between hippocampal volumes and suicidality remain unclear in major depressive disorders (MDD). If the hippocampus could be a biomarker of suicide attempts in depression, it could be useful for prevention matters. This study assessed the association between hippocampal volumes and suicide attempts in MDD. METHODS Hippocampal volumes assessed with automatic segmentation were compared in 63 patients with MDD, with (n = 24) or without (n = 39) suicide attempts. Acute (<one month) and past (>one month) suicide attempts were studied. RESULTS Although not different in terms of socio-demographic, MDD and MDE clinical features, suicide attempters had lower total hippocampus volumes than non-attempters (4.61 (± 1.15) cm(3) vs 5.22 (± 0.99) cm(3); w = 625.5; p = 0.03), especially for acute suicide attempts (4.19 (± 0.81) cm(3) vs 5.22 (± 0.99) cm(3); w = 334; p = 0.005), even after adjustment on brain volumes, sex, age, Hamilton Depression Rating Scale (HDRS) scores and MDD duration. A ROC analysis showed that a total hippocampal volume threshold of 5.00 cm(3) had a 98.2% negative predictive value for acute suicide attempts. CONCLUSION Depressed suicide attempters have smaller hippocampus than depressed patients without suicide attempts, independently from socio-demographics and MDD characteristics. This difference is related to acute suicide attempts but neither to past suicide attempts nor to duration since the first suicide attempt, suggesting that hippocampal volume could be a suicidal state marker in MDE. Further studies are required to better understand this association.
Collapse
Affiliation(s)
- Romain Colle
- INSERM UMR 1178, Team "Depression and Antidepressants", Univ Paris Sud, Service de Psychiatrie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, 94275 Le Kremlin Bicêtre, France.
| | - Marie Chupin
- INSERM, U1127, F-75013 Paris, France; CNRS, UMR 7225 ICM, 75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Inria, Aramis Team, Centre de Recherche Paris, Rocquencourt, France
| | - Claire Cury
- INSERM, U1127, F-75013 Paris, France; CNRS, UMR 7225 ICM, 75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Inria, Aramis Team, Centre de Recherche Paris, Rocquencourt, France
| | - Christophe Vandendrie
- CNRS IR4M, UMR 8081, Neuroradiology Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, 94275 Le Kremlin Bicêtre, France
| | - Florence Gressier
- INSERM UMR 1178, Team "Depression and Antidepressants", Univ Paris Sud, Service de Psychiatrie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, 94275 Le Kremlin Bicêtre, France
| | - Patrick Hardy
- INSERM UMR 1178, Team "Depression and Antidepressants", Univ Paris Sud, Service de Psychiatrie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, 94275 Le Kremlin Bicêtre, France
| | - Bruno Falissard
- INSERM UMR 1178, Département de Biostatistiques, Univ Paris Sud, Hôpital Paul Brousse, Assistance Publique Hôpitaux de Paris, 94400 Villejuif, France
| | - Olivier Colliot
- INSERM, U1127, F-75013 Paris, France; CNRS, UMR 7225 ICM, 75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Inria, Aramis Team, Centre de Recherche Paris, Rocquencourt, France
| | - Denis Ducreux
- CNRS IR4M, UMR 8081, Neuroradiology Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, 94275 Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- INSERM UMR 1178, Team "Depression and Antidepressants", Univ Paris Sud, Service de Psychiatrie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, 94275 Le Kremlin Bicêtre, France
| |
Collapse
|
36
|
Blot K, Kimura SI, Bai J, Kemp A, Manahan-Vaughan D, Giros B, Tzavara E, Otani S. Modulation of Hippocampus-Prefrontal Cortex Synaptic Transmission and Disruption of Executive Cognitive Functions by MK-801. Cereb Cortex 2013; 25:1348-61. [DOI: 10.1093/cercor/bht329] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
37
|
Godsil BP, Kiss JP, Spedding M, Jay TM. The hippocampal-prefrontal pathway: the weak link in psychiatric disorders? Eur Neuropsychopharmacol 2013; 23:1165-81. [PMID: 23332457 DOI: 10.1016/j.euroneuro.2012.10.018] [Citation(s) in RCA: 311] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/13/2012] [Accepted: 10/18/2012] [Indexed: 12/27/2022]
Abstract
While the hippocampal formation and the prefrontal cortex each have a well-established role in cognitive and mnemonic processes, the extent and manner in which these structures interact to achieve these functions has not been fully delineated. Recent research in rodents compellingly supports the idea that the projection of neurons extending from the CA1 region of the hippocampus and from the subiculum to the prefrontal cortex, referred to here as the H-PFC pathway, is critically involved in aspects of cognition related to executive function and to emotional regulation. Concurrently, it is becoming evident that persons suffering from schizophrenia, depression, and post-traumatic stress disorder display structural anomalies and aberrant functional coupling within the hippocampal-prefrontal circuit. Considering that these disorders involve varying degrees of cognitive impairment and emotional dysregulation, dysfunction in the H-PFC pathway might therefore be the common element of their pathophysiology. This overlap might also be intertwined with the pathway's evident susceptibility to stress and with its relationship to the amygdala. In consequence, the H-PFC pathway is a potentially crucial element of the pathophysiology of several psychiatric diseases, and it offers a specific target for therapeutic intervention, which is consistent with the recent emphasis on reframing psychiatric diseases in terms of brain circuits.
Collapse
Affiliation(s)
- Bill P Godsil
- INSERM, Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, CPN U894, Paris, France; Université Paris, Descartes, Sorbonne Paris Cité , Faculté de Médecine Paris Descartes, Paris, France.
| | | | | | | |
Collapse
|
38
|
Banks PJ, Bashir ZI, Brown MW. Recognition memory and synaptic plasticity in the perirhinal and prefrontal cortices. Hippocampus 2013; 22:2012-31. [PMID: 22987679 DOI: 10.1002/hipo.22067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Work is reviewed that relates recognition memory to studies of synaptic plasticity mechanisms in perirhinal and prefrontal cortices. The aim is to consider evidence that perirhinal cortex and medial prefrontal cortex store rather than merely transmit information necessary for recognition memory and, if so, to consider what mechanisms are potentially available within these cortices for producing such storage through synaptic change. Interventions with known actions on plasticity mechanisms are reviewed in relation to their effects on recognition memory processes. These interventions importantly include those involving antagonism of glutamatergic and cholinergic receptors but also inhibition of plasticity consolidation and expression mechanisms. It is concluded that there is strong evidence that perirhinal cortex is involved in information storage necessary for object recognition memory and, moreover, that such storage involves synaptic weakening mechanisms including the removal of AMPA glutamate receptors from synapses. There is good evidence that medial prefrontal cortex is necessary for associative and temporal order recognition memory and that this cortex expresses plasticity mechanisms that potentially allow the storage of information. However, the case for medial prefrontal cortex acting as a store requires further support.
Collapse
|
39
|
Warburton EC, Barker GRI, Brown MW. Investigations into the involvement of NMDA mechanisms in recognition memory. Neuropharmacology 2013; 74:41-7. [PMID: 23665343 PMCID: PMC3895175 DOI: 10.1016/j.neuropharm.2013.04.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 12/02/2022]
Abstract
This review will focus on evidence showing that NMDA receptor neurotransmission is critical for synaptic plasticity processes within brain regions known to be necessary for the formation of object recognition memories. The aim will be to provide evidence concerning NMDA mechanisms related to recognition memory processes and show that recognition memory for objects, places or associations between objects and places depends on NMDA neurotransmission within the perirhinal cortex, temporal association cortex medial prefrontal cortex and hippocampus. Administration of the NMDA antagonist AP5, selectively into each of these brain regions has revealed that the extent of the involvement NMDA receptors appears dependent on the type of information required to solve the recognition memory task; thus NMDA receptors in the perirhinal cortex are crucial for the encoding of long-term recognition memory for objects, and object-in-place associations, but not for short-term recognition memory or for retrieval. In contrast the hippocampus and medial prefrontal cortex are required for both long-term and short-term recognition memory for places or associations between objects and places, or for recognition memory tasks that have a temporal component. Such studies have therefore confirmed that the multiple brain regions make distinct contributions to recognition memory but in addition that more than one synaptic plasticity process must be involved. This article is part of the Special Issue entitled ‘Glutamate Receptor-Dependent Synaptic Plasticity’. NMDAR blockade in PRH, mPFC and HPC produces different patterns of memory deficits. NMDARs within these brain regions make distinct contributions to recognition memory. NMDARs are also critical for synaptic plasticity in the same brain regions. More than one synaptic plasticity process must be involved in recognition memory.
Collapse
Affiliation(s)
- E Clea Warburton
- School of Physiology and Pharmacology, MRC Centre for Synapric Plasticity, University of Bristol, Bristol BS1 3NY, United Kingdom.
| | | | | |
Collapse
|
40
|
Abstract
Previous work shows that medial prefrontal cortex (mPFC) cells exhibit spatio-selective activity at a goal location when rats are trained in a goal-oriented navigation task. Damaging the ventral and intermediate hippocampal regions severely disrupts both mPFC goal firing and behavioral performance in the same task. Additionally, hippocampal place cells tend to develop a secondary place field at the goal location, suggesting that goal locations can be encoded by local changes in firing rate, within an otherwise stable spatial representation. Therefore, it has been suggested that the coordinated activity of a large fraction of hippocampal cells at the goal location may interact with the mPFC to compute accurate planning trajectories, relying on both precise location-specific firing of place cells and the coarse-coded, goal-trajectory planning function of the prefrontal cortex. To test this hypothesis, we inactivated the mPFC and recorded hippocampal place cell activity while animals were performing the navigation task. The results show that post-training inactivation of the prefrontal cortex does not affect behavioral performance, suggesting that this structure is no longer required when animals are overtrained. The goal-related activity of place cells was not affected at either single unit or local field potential level. Conversely, profound modifications of place cell firing variability (overdispersion) were observed after suppression of prefrontal input, suggesting a possible mechanism underlying behavioral flexibility.
Collapse
|
41
|
Blot K, Bai J, Otani S. The effect of non-competitive NMDA receptor antagonist MK-801 on neuronal activity in rodent prefrontal cortex: an animal model for cognitive symptoms of schizophrenia. ACTA ACUST UNITED AC 2013; 107:448-51. [PMID: 23603055 DOI: 10.1016/j.jphysparis.2013.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 11/29/2022]
Abstract
Schizophrenia affects about 1% of the world population and is a major socio-economical problem in ours societies. Cognitive symptoms are particularly resistant to current treatments and are believed to be closely related to an altered function of prefrontal cortex (PFC). Particularly, abnormalities in the plasticity processes in the PFC are a candidate mechanism underlying cognitive symptoms, and the recent evidences in patients are in line with this hypothesis. Animal pharmacological models of cognitive symptoms, notably with non-competitive NMDA receptor antagonists such as MK-801, are commonly used to investigate the underlying cellular and molecular mechanisms of schizophrenia. However, it is still unknown whether in these animal models, impairments in plasticity of PFC neurons are present. In this article, we briefly summarize the current knowledge on the effect of non-competitive NMDA receptor antagonist MK-801 on medial PFC (mPFC) neuronal activity and then introduce a form of plasticity found after acute exposure to MK-801, which was accompanied by cognitive deficits. These observations suggest a potential correlation between cognitive deficits and the aberrant plasticity in the mPFC in the animal model of schizophrenia.
Collapse
Affiliation(s)
- Kevin Blot
- INSERM U952/CNRS UMR 7224, Université Pierre et Marie Curie, 9 quai Saint Bernard, 75252 Paris cedex 05, France.
| | | | | |
Collapse
|
42
|
Zhou HC, Sun YY, Cai W, He XT, Yi F, Li BM, Zhang XH. Activation of β2-adrenoceptor enhances synaptic potentiation and behavioral memory via cAMP-PKA signaling in the medial prefrontal cortex of rats. Learn Mem 2013; 20:274-84. [PMID: 23596314 DOI: 10.1101/lm.030411.113] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The prefrontal cortex (PFC) plays a critical role in cognitive functions, including working memory, attention regulation, behavioral inhibition, as well as memory storage. The functions of PFC are very sensitive to norepinephrine (NE), and even low levels of endogenously released NE exert a dramatic influence on the functioning of the PFC. Activation of β-adrenoceptors (β-ARs) facilitates synaptic potentiation and enhances memory in the hippocampus. However, little is known regarding these processes in the PFC. In the present study, we investigate the role of β2-AR in synaptic plasticity and behavioral memory. Our results show that β2-AR selective agonist clenbuterol facilitates spike-timing-dependent long-term potentiation (tLTP) under the physiological conditions with intact GABAergic inhibition, and such facilitation is prevented by co-application with the cAMP inhibitor Rp-cAMPS. Loading postsynaptic pyramidal cells with Rp-cAMPS, the PKA inhibitor PKI(5-24), or the G protein inhibitor GDP-β-S significantly decreases, but does not eliminate, the effect of clenbuterol. Clenbuterol suppresses the GABAergic transmission, while blocking GABAergic transmission by the GABA(A) receptor blocker partially mimics the effect of clenbuterol. In behavioral tests, a post-training infusion of clenbuterol into mPFC enhances 24-h trace fear memory. In summary, we observed that prefrontal cortical β2-AR activation by clenbuterol facilitates tLTP and enhances trace fear memory. The mechanism underlying tLTP facilitation involves stimulating postsynaptic cAMP-PKA signaling cascades and suppressing GABAergic circuit activities.
Collapse
Affiliation(s)
- Hou-Cheng Zhou
- Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Blanquat PDS, Hok V, Save E, Poucet B, Chaillan FA. Differential role of the dorsal hippocampus, ventro-intermediate hippocampus, and medial prefrontal cortex in updating the value of a spatial goal. Hippocampus 2013; 23:342-51. [DOI: 10.1002/hipo.22094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2013] [Indexed: 11/12/2022]
|
44
|
Kamida T, Kong S, Eshima N, Fujiki M. Cathodal transcranial direct current stimulation affects seizures and cognition in fully amygdala-kindled rats. Neurol Res 2013; 35:602-7. [PMID: 23562065 DOI: 10.1179/1743132813y.0000000170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
This study evaluated the effects of weak transcranial direct current stimulation (tDCS), a new non-invasive brain stimulation technique, on amygdala-kindled rats. The seizure severity, i.e. seizure stage, afterdischarge duration (ADD), and AD threshold (ADT) in the animals were measured one day after the last cathodal tDCS session, comparing with those of pre-treatment controls. Furthermore, the effects of cathodal tDCS on cognitive function were also studied by a water maze test (WMT) two days after the last tDCS session. Cathodal tDCS treatment significantly improved the seizure stage and decreased ADD together with elevated ADT one day after the last tDCS session. The treatment also showed significant improvement in the performance of WMT. The findings suggest that cathodal tDCS has anticonvulsive after-effects last at least for one day on the amygdala-kindled rats and positively affects cognitive performance.
Collapse
Affiliation(s)
- Tohru Kamida
- Department of Neurosurgery, Oita University Faculty of Medicine, Oita, Japan.
| | | | | | | |
Collapse
|
45
|
Inoue S, Kamiyama H, Matsumoto M, Yanagawa Y, Hiraide S, Saito Y, Shimamura KI, Togashi H. Synaptic Modulation via Basolateral Amygdala on the Rat Hippocampus–Medial Prefrontal Cortex Pathway in Fear Extinction. J Pharmacol Sci 2013; 123:267-78. [DOI: 10.1254/jphs.13123fp] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
46
|
Abstract
Anxiety disorders are among the most common mental health problems; deficits in extinction have been implicated as a possible risk factor for the development of these disorders. Fear extinction refers to the ability to adapt as situations change by learning to suppress a previously acquired fear. Attention is directed toward the medial prefrontal cortex (mPFC) and the interaction it has with the amygdala as this circuit has crucial roles in both the acquisition and the extinction of fear associations. Here, we review converging evidence from different laboratories pointing to multiple roles that the mPFC has in fear regulation. Research on rodents indicates opposing roles that the different subregions of the mPFC have in exciting and inhibiting fear. In addition, this review aims to survey the findings addressing the mechanisms by which the mPFC regulates fear. Data from our laboratory and others show that changes in plasticity in the mPFC could be one of the mechanisms mediating extinction of fear. Recent findings on rodents and nonhuman primates report that modifying plasticity in the mPFC alters fear and affects extinction, suggesting that targeting plasticity in the mPFC could constitute a therapeutic tool for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Mouna Maroun
- The Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.
| |
Collapse
|
47
|
Lopes-Aguiar C, Bueno-Junior LS, Ruggiero RN, Romcy-Pereira RN, Leite JP. NMDA receptor blockade impairs the muscarinic conversion of sub-threshold transient depression into long-lasting LTD in the hippocampus-prefrontal cortex pathway in vivo: correlation with γ oscillations. Neuropharmacology 2012; 65:143-55. [PMID: 23022398 DOI: 10.1016/j.neuropharm.2012.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 07/19/2012] [Accepted: 09/16/2012] [Indexed: 01/22/2023]
Abstract
Cholinergic fibers from the brainstem and basal forebrain innervate the medial prefrontal cortex (mPFC) modulating neuronal activity and synaptic plasticity responses to hippocampal inputs. Here, we investigated the muscarinic and glutamatergic modulation of long-term depression (LTD) in the intact projections from CA1 to mPFC in vivo. Cortical-evoked responses were recorded in urethane-anesthetized rats for 30 min during baseline and 4 h following LTD. In order to test the potentiating effects of pilocarpine (PILO), independent groups of rats received either a microinjection of PILO (40 nmol; i.c.v.) or vehicle, immediately before or 20 min after a sub-threshold LTD protocol (600 pulses, 1 Hz; LFS600). Other groups received either an infusion of the selective NMDA receptor antagonist (AP7; 10 nmol; intra-mPFC) or vehicle, 10 min prior to PILO preceding LFS600, or prior to a supra-threshold LTD protocol (900 pulses, 1 Hz; LFS900). Our results show that PILO converts a transient cortical depression induced by LFS600 into a robust LTD, stable for at least 4 h. When applied after LFS600, PILO does not change either mPFC basal neurotransmission or late LTD. Our data also indicate that NMDA receptor pre-activation is essential to the muscarinic enhancement of mPFC synaptic depression, since AP7 microinjection into the mPFC blocked the conversion of transient depression into long-lasting LTD produced by PILO. In addition, AP7 effectively blocked the long-lasting LTD induced by LFS900. Therefore, our findings suggest that the glutamatergic co-activation of prefrontal neurons is important for the effects of PILO on mPFC synaptic depression, which could play an important role in the control of executive and emotional functions.
Collapse
Affiliation(s)
- Cleiton Lopes-Aguiar
- Department of Neuroscience and Behavioral Science, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
48
|
Baudin A, Blot K, Verney C, Estevez L, Santamaria J, Gressens P, Giros B, Otani S, Daugé V, Naudon L. Maternal deprivation induces deficits in temporal memory and cognitive flexibility and exaggerates synaptic plasticity in the rat medial prefrontal cortex. Neurobiol Learn Mem 2012; 98:207-14. [PMID: 22922490 DOI: 10.1016/j.nlm.2012.08.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/27/2012] [Accepted: 08/12/2012] [Indexed: 01/18/2023]
Abstract
Early life adverse events can lead to structural and functional impairments in the prefrontal cortex (PFC). Here, we investigated whether maternal deprivation (MD) alters PFC-dependent executive functions, neurons and astrocytes number and synaptic plasticity in adult male Long-Evans rats. The deprivation protocol consisted of a daily separation of newborn Long-Evans pups from their mothers and littermates 3h/day postnatal day 1-14. Cognitive performances were assessed in adulthood using the temporal order memory task (TMT) and the attentional set-shifting task (ASST) that principally implicates the PFC and the Morris water maze task (WMT) that does not essentially rely on the PFC. The neurons and astrocytes of the prelimbic (PrL) area of the medial PFC (mPFC) were immunolabelled respectively with anti-NeuN and anti-GFAP antibodies and quantified by stereology. The field potentials evoked by electrical stimulation of ventral hippocampus (ventral HPC) were recorded in vivo in the PrL area. In adulthood, MD produced cognitive deficits in two PFC-dependent tasks, the TMT and ASST, but not in the WMT. In parallel, MD induced in the prelimbic area of the medial PFC an upregulation of long-term potentiation (LTP), without any change in the number of neurons and astrocytes. We provide evidence that MD leads in adults to an alteration of the cognitive abilities dependent on the PFC, and to an exaggerated synaptic plasticity in this region. We suggest that this latter phenomenon may contribute to the impairments in the cognitive tasks.
Collapse
Affiliation(s)
- Aurélie Baudin
- INSERM, UMRs, Physiopathologie des Maladies du Système Nerveux Central, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kroes MC, Fernández G. Dynamic neural systems enable adaptive, flexible memories. Neurosci Biobehav Rev 2012; 36:1646-66. [DOI: 10.1016/j.neubiorev.2012.02.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 02/07/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
|
50
|
Brown PL, Shepard PD, Elmer GI, Stockman S, McFarland R, Mayo CL, Cadet JL, Krasnova IN, Greenwald M, Schoonover C, Vogel MW. Altered spatial learning, cortical plasticity and hippocampal anatomy in a neurodevelopmental model of schizophrenia-related endophenotypes. Eur J Neurosci 2012; 36:2773-81. [PMID: 22762562 DOI: 10.1111/j.1460-9568.2012.08204.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adult rats exposed to the DNA-methylating agent methylazoxymethanol on embryonic day 17 show a pattern of neurobiological deficits that model some of the neuropathological and behavioral changes observed in schizophrenia. Although it is generally assumed that these changes reflect targeted disruption of embryonic neurogenesis, it is unknown whether these effects generalise to other antimitotic agents administered at different stages of development. In the present study, neurochemical, behavioral and electrophysiological techniques were used to determine whether exposure to the antimitotic agent Ara-C later in development recapitulates some of the changes observed in methylazoxymethanol (MAM)-treated animals and in patients with schizophrenia. Male rats exposed to Ara-C (30 mg/kg/day) at embryonic days 19.5 and 20.5 show reduced cell numbers and heterotopias in hippocampal CA1 and CA2/3 regions, respectively, as well as cell loss in the superficial layers of the pre- and infralimbic cortex. Birth date labeling with bromodeoxyuridine reveals that the cytoarchitectural changes in CA2/3 are a consequence rather that a direct result of disrupted cortical neurogenesis. Ara-C-treated rats possess elevated levels of cortical dopamine and DOPAC (3,4-didyhydroxypheylacetic acid) but no change in norepinephrine or serotonin. Ara-C-treated rats are impaired in their ability to learn the Morris water maze task and showed diminished synaptic plasticity in the hippocampocortical pathway. These data indicate that disruption of neurogenesis at embryonic days 19.5 and 20.5 constitutes a useful model for the comparative study of deficits observed in other gestational models and their relationship to cognitive changes observed in schizophrenia.
Collapse
Affiliation(s)
- P Leon Brown
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|