1
|
Neale C, García AE. The Plasma Membrane as a Competitive Inhibitor and Positive Allosteric Modulator of KRas4B Signaling. Biophys J 2020; 118:1129-1141. [PMID: 32027820 PMCID: PMC7063485 DOI: 10.1016/j.bpj.2019.12.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022] Open
Abstract
Mutant Ras proteins are important drivers of human cancers, yet no approved drugs act directly on this difficult target. Over the last decade, the idea has emerged that oncogenic signaling can be diminished by molecules that drive Ras into orientations in which effector-binding interfaces are occluded by the cell membrane. To support this approach to drug discovery, we characterize the orientational preferences of membrane-bound K-Ras4B in 1.45-ms aggregate time of atomistic molecular dynamics simulations. Individual simulations probe active or inactive states of Ras on membranes with or without anionic lipids. We find that the membrane orientation of Ras is relatively insensitive to its bound guanine nucleotide and activation state but depends strongly on interactions with anionic phosphatidylserine lipids. These lipids slow Ras' translational and orientational diffusion and promote a discrete population in which small changes in orientation control Ras' competence to bind multiple regulator and effector proteins. Our results suggest that compound-directed conversion of constitutively active mutant Ras into functionally inactive forms may be accessible via subtle perturbations of Ras' orientational preferences at the membrane surface.
Collapse
Affiliation(s)
- Chris Neale
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Angel E García
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico.
| |
Collapse
|
2
|
Ras Guanine Nucleotide Releasing Factor 1 (RasGrf1) Enhancement of Trk Receptor-Mediated Neurite Outgrowth Requires Activation of Both H-Ras and Rac. J Mol Neurosci 2012; 49:38-51. [DOI: 10.1007/s12031-012-9847-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
|
3
|
Ma CHE, Bampton ETW, Evans MJ, Taylor JSH. Synergistic effects of osteonectin and brain-derived neurotrophic factor on axotomized retinal ganglion cells neurite outgrowth via the mitogen-activated protein kinase-extracellular signal-regulated kinase 1/2 pathways. Neuroscience 2010; 165:463-74. [PMID: 19837135 DOI: 10.1016/j.neuroscience.2009.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/06/2009] [Accepted: 10/13/2009] [Indexed: 11/19/2022]
Abstract
Our previous study identified osteonectin (ON) in a screen of factors made by Schwann cells (SCs) which promoted peripheral and central neurons survival and neuritogenesis, however, the mechanisms of ON promoting effects are largely unknown. In the present study, we investigated the effects of ON-deficient SC-conditioned medium (SCCM) and molecular mechanisms of ON, in regulating retinal ganglion cells (RGCs) survival and neurite outgrowth. Neonatal rat RGCs and SCs were purified by immunopanning technique. RGC survival and neuritogenesis reduced significantly when treated with either ON-null mice SCCM or ON-immunodepleted (IP) SCCM (P<0.05). In contrast to wild type SCCM, in the presence of a tyrosine kinase receptor (Trk) inhibitor (K252a), ON-null mice SCCM-induced neuritogenesis were further reduced by 24%. The Trk-mediated signaling pathways became more sensitive to K252a inhibition in the absence of ON. We also showed the synergistic effects of ON and brain-derived neurotrophic factor (BDNF) in promoting RGCs growth and the involvement of ON in two major neurotrophin-mediated signaling pathways, PI-3K-Akt and MAPK-Erk1/2. ON alone activated Akt phosphorylation and increased survival. Blockage of TrkB signalling pathway by TrkB-Fc chimera (BDNF scavenger) or K252a in ON-treated cultures reduced Akt-P level significantly. This suggests that ON induces BDNF synthesis and secretion from RGCs. The enhancement of neuritogenesis and Erk1/2 phosphorylation by ON in BDNF-treated cultures further demonstrate the signaling pathways responsible for the synergistic effect of ON on BDNF-induced neurite outgrowth. To the best of our knowledge, this is the first report showing the synergistic effects of ON on classical neurotrophins which participate in the same signalling pathways in regulating RGC neurite outgrowth.
Collapse
Affiliation(s)
- C H E Ma
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
4
|
Cytoplasmic inclusions of Htt exon1 containing an expanded polyglutamine tract suppress execution of apoptosis in sympathetic neurons. J Neurosci 2009; 28:14401-15. [PMID: 19118173 DOI: 10.1523/jneurosci.4751-08.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proteins containing extended polyglutamine repeats cause at least nine neurodegenerative disorders, but the mechanisms of disease-related neuronal death remain uncertain. We show that sympathetic neurons containing cytoplasmic inclusions formed by 97 glutamines expressed within human huntingtin exon1-enhanced green fluorescent protein (Q97) undergo a protracted form of nonapoptotic death that is insensitive to Bax deletion or caspase inhibition but is characterized by mitochondrial dysfunction. By treating the neurons with combined cytosine arabinoside and NGF withdrawal, we demonstrate that Q97 confers a powerful resistance to apoptosis at multiple levels: despite normal proapoptotic signaling (elevation of P-ser15-p53 and BimEL), there is no increase of Puma mRNA or Bax activation, both necessary for apoptosis. Even restoration of Bax translocation with overexpressed Puma does not activate apoptosis. We demonstrate that this robust inhibition of apoptosis is caused by Q97-mediated accumulation of Hsp70, which occurs through inhibition of proteasomal activity. Thus, apoptosis is reinstated by short hairpin RNA-mediated knockdown of Hsp70. These findings explain the rarity of apoptotic death in Q97-expressing neurons. Given the proteasomal blockade, we test whether enhancing lysosomal-mediated degradation with rapamycin reduces Q97 accumulation. Rapamycin reduces the amount of nonpathological Q25 by 70% over 3 d, but Q97 accumulation is unaffected. Interestingly, Q47 inclusions form more slowly as a result of constitutive lysosomal degradation, but faster-forming Q97 inclusions escape lysosomal control. Thus, cytoplasmic Q97 inclusions are refractory to clearance by proteasomal and lysosomal systems, leading to a toxicity that dominates over neuroprotective Hsp70. Our findings may explain the rarity of apoptosis but the inevitable cell death associated with polyQ inclusion diseases.
Collapse
|
5
|
Makwana M, Serchov T, Hristova M, Bohatschek M, Gschwendtner A, Kalla R, Liu Z, Heumann R, Raivich G. Regulation and function of neuronal GTP-Ras in facial motor nerve regeneration. J Neurochem 2009; 108:1453-63. [PMID: 19284475 DOI: 10.1111/j.1471-4159.2009.05890.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activation of Ras into the GTP-binding, 'ON' state is a key switch in the neurotrophin-mediated neuronal survival and neurite outgrowth, in vitro as well as in vivo. In the current study we explored changes in GTP-Ras levels following facial nerve injury and the ensuing regeneration and the effects of perturbing these changes in vivo using synapsin-promoter mediated neuronal expression of constitutively active Val12H-Ras (synRas). Quantification of GTP-Ras and total Ras revealed a precipitous drop in the relative GTP-Ras levels in the axotomized facial motor nucleus, to 40% of normal levels at 2 days after cut, followed by a partial recovery to 50-65% at 4-28 days. On western blots, control and axotomized nuclei from synRas mutants showed a 2.2- and 2.5-fold elevation in GTP-Ras, respectively, compared with their wild type littermate controls (p < 5%, anova, TUKEY post-hoc), with the levels in the axotomized synRas nucleus slightly but not significantly above that in the uninjured littermate control (p = 9.9%). Similar increase was also observed in the pERK but not pAKT targets of the Ras cascade. This moderate elevation of GTP-Ras strongly curtailed post-traumatic neuronal cell death (-65%), the influx of T-cells (-48%) as well as other parameters of neuroinflammatory response. Although synRas did not affect the speed of axonal regeneration or functional recovery it caused a very pronounced increase in central axonal sprouting. These current data emphasize the role of reduced active Ras, and by extension, the reduced overall level of retrograde neurotrophin signalling after axotomy, in mediating post-traumatic cell death and inflammation and in restricting the sprouting response. Moreover, the neuroprotective and central sprouting-enhancing effects of neuronal Val12H-Ras could help promote recovery in CNS injury.
Collapse
Affiliation(s)
- Milan Makwana
- Perinatal Brain Repair Group, Department of Obstetrics & Gynaecology, EGA Institute of Women's Health, University College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yoshimura T, Arimura N, Kawano Y, Kawabata S, Wang S, Kaibuchi K. Ras regulates neuronal polarity via the PI3-kinase/Akt/GSK-3beta/CRMP-2 pathway. Biochem Biophys Res Commun 2005; 340:62-8. [PMID: 16343426 DOI: 10.1016/j.bbrc.2005.11.147] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 11/19/2005] [Indexed: 01/19/2023]
Abstract
The establishment of a polarized morphology is an essential event in the differentiation of neurons into a single axon and dendrites. We previously showed that glycogen synthase kinase-3beta (GSK-3beta) is critical for specifying axon/dendrite fate by the regulation of the phosphorylation of collapsin response mediator protein-2 (CRMP-2). Here, we found that the overexpression of the small GTPase Ras induced the formation of multiple axons in cultured hippocampal neurons, whereas the ectopic expression of the dominant negative form of Ras inhibited the formation of axons. Inhibition of phosphatidylinositol-3-kinase (PI3-kinase) or extracellular signal-related kinase (ERK) kinase (MEK) suppressed the Ras-induced formation of multiple axons. The expression of the constitutively active form of PI3-kinase or Akt (also called protein kinase B) induced the formation of multiple axons. The overexpression of Ras prevented the phosphorylation of CRMP-2 by GSK-3beta. Taken together, these results suggest that Ras plays critical roles in establishing neuronal polarity upstream of the PI3-kinase/Akt/GSK-3beta/CRMP-2 pathway and mitogen-activated protein kinase cascade.
Collapse
Affiliation(s)
- Takeshi Yoshimura
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Wyttenbach A, Tolkovsky AM. Differential phosphoprotein labeling (DIPPL), a method for comparing live cell phosphoproteomes using simultaneous analysis of (33)P- and (32)P-labeled proteins. Mol Cell Proteomics 2005; 5:553-9. [PMID: 16301211 DOI: 10.1074/mcp.t500028-mcp200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We developed a differential method to reveal kinase-specific phosphorylation events in live cells. In this method, cells in which the specified kinase is inactive are labeled with (32)Pi, whereas cells in which the kinase is active are labeled with (33)Pi. The two cell extracts are then mixed, and proteins are separated on a single two-dimensional gel. The dried gel is exposed twice. The first exposure reveals both (32)P- and (33)P-labeled proteins; the kinase-specific spots are revealed because of (33)P labeling. The second exposure is conducted with two acetate sheets intervening between the gel and the detection plate. This maneuver screens out the less energetic (33)P-labeled proteins while allowing the more energetic (32)P-labeled proteins to be detected, thus leaving only those spots that were phosphorylated independently of the specified kinase. We demonstrate the utility of this method for detecting kinase substrates in rare tissue by focusing on extracellular signal-regulated kinase-specific phosphorylation of stathmin/OP18 in primary rat sympathetic neurons.
Collapse
Affiliation(s)
- Andreas Wyttenbach
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom.
| | | |
Collapse
|
8
|
Chae HJ, Chae SW, Kim HR. Cyclic adenosine monophosphate inhibits nitric oxide-induced apoptosis of cardiac muscle cells in a c-Jun N-terminal kinase-dependent manner. Immunopharmacol Immunotoxicol 2004; 26:249-63. [PMID: 15209361 DOI: 10.1081/iph-120037722] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) modulates various agent-induced apoptosis. In this study, we observed that cAMP had a significantly protective effect on nitric oxide (NO)-induced cytotoxicity in H9c2 cardiac muscle cells. Pretreatment with DBcAMP (cAMP analogue) or forskolin (adenylyl cyclase activator) also significantly prevented the SNP-induced apoptosis in H9c2 cells. In contrast, H-89 or KT5720 (PKA inhibitor) reversed the protective effects of DBcAMP. In this study, DBcAMP or forskolin reduced SNP-induced JNK/SAPK activation to the basal level, but KT5720 reversed the inhibitory effects of these two agents. In contrast to JNK/SAPK activation, DBcAMP and forskolin significantly enhanced SNP-activated p38 MAPK phosphorylation and did not affect SNP-mediated ERK activation. KT5720 reversed the effects of DBcAMP and forskolin on p38 MAPK phosphorylation. The inhibition of the JNK pathway by transfection of a dominant negative mutant of JNK/SAPK markedly reduced the extent of SNP-induced cell death. Taken together, we suggest that JNK/SAPK is related to cAMP-protective effect in SNP-induced apoptosis. In addition, c-AMP relating agents protected SNP-induced cell death in neonatal rat ventricular cardiomyocytes. The cAMP-relating agent-induced protective effect is not restricted in H9c2 cardiac muscle cells.
Collapse
Affiliation(s)
- Han-Jung Chae
- Department of Pharmacology and Institute of Cardiovascular Research, Chonbuk National University Medical School, South Korea
| | | | | |
Collapse
|
9
|
Longhi L, Watson DJ, Saatman KE, Thompson HJ, Zhang C, Fujimoto S, Royo N, Castelbuono D, Raghupathi R, Trojanowski JQ, Lee VMY, Wolfe JH, Stocchetti N, McIntosh TK. Ex VivoGene Therapy Using Targeted Engraftment of NGF-Expressing Human NT2N Neurons Attenuates Cognitive Deficits Following Traumatic Brain Injury in Mice. J Neurotrauma 2004; 21:1723-36. [PMID: 15684764 DOI: 10.1089/neu.2004.21.1723] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Infusion of nerve growth factor (NGF) has been shown to be neuroprotective following traumatic brain injury (TBI). In this study, we tested the hypothesis that NGF-expressing human NT2N neurons transplanted into the basal forebrain of brain-injured mice can attenuate long-term cognitive dysfunction associated with TBI. Undifferentiated NT2 cells were transduced in vitro with a lentiviral vector to release NGF, differentiated into NT2N neurons by exposure to retinoic acid and transplanted into the medial septum of mice 24 h following controlled cortical impact (CCI) brain injury or sham injury. Adult mice (n = 78) were randomly assigned to one of four groups: (1) sham-injured and vehicle (serum-free medium)-treated, (2) brain-injured and vehicle-treated, (3) brain-injured engrafted with untransduced NT2N neurons, and (4) brain-injured engrafted with transduced NGF-NT2N neurons. All groups were immunosuppressed daily with cyclosporin A (CsA) for 4 weeks. At 1 month post-transplantation, animals engrafted with NGF-expressing NT2N neurons showed significantly improved learning ability (evaluated with the Morris water maze) compared to brain-injured mice receiving either vehicle (p < 0.05) or untransduced NT2N neurons (p < 0.01). No effect of NGF-secreting NT2N cells on motor function deficits at 1-4 weeks post-transplantation was observed. These data suggest that NGF gene therapy using transduced NT2N neurons (as a source of delivery) may selectively improve cognitive function following TBI.
Collapse
Affiliation(s)
- Luca Longhi
- Veterans Administration Medical Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yano T, Itoh Y, Sendo T, Kubota T, Oishi R. Cyclic AMP reverses radiocontrast media-induced apoptosis in LLC-PK1 cells by activating A kinase/PI3 kinase. Kidney Int 2004; 64:2052-63. [PMID: 14633127 DOI: 10.1046/j.1523-1755.2003.00335.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Radiographic contrast material is one of agents that are prone to cause nephropathy, although little is known about cellular mechanisms underlying contrast media-induced renal failure. The present study was designed to determine the role of caspase in contrast media-induced renal injury. The modulation by cyclic adenosine monophosphate (cAMP) of cell injury was subsequently examined. METHODS LLC-PK1 cells (a proximal renal tubular cell line of porcine origin) were exposed to diverse contrast media for 30 minutes followed by incubation for 24 hours in normal medium. Cell viability was assessed by mitochondrial enzyme activity and propidium iodide stain. Apoptosis was determined by DNA electrophoresis and annexin V stain. Caspase activity was measured fluorometrically. The mRNA for bax and bcl-2 was determined by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Iodinated and magnetic resonance contrast media reduced cell viability due to apoptosis. The cell damage induced by a non-ionic contrast medium ioversol was inhibited by specific inhibitors for caspase-3 and -9 but not caspase-8. Ioversol enhanced the activities of caspase-3 and -9, but to a lesser extent, caspase-8. The bax mRNA was enhanced, while bcl-2 mRNA was reduced, after exposure to ioversol. All of these actions of ioversol were reversed by dibutyl cAMP in the manner sensitive to a protein kinase A inhibitor H89 and a phosphatidylinositol 3 (PI3) kinase inhibitor wortmannin. CONCLUSION We demonstrated for the first time that cAMP reversed caspase-dependent apoptotic renal cell damage caused by contrast media. Both protein kinase A and PI3 kinase might be involved in protective effect of cAMP.
Collapse
Affiliation(s)
- Takahisa Yano
- Department of Hospital Pharmacy, Faculty of Medicine, Kyushu University, Higashi-ku, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
11
|
Yano T, Itoh Y, Kubota T, Sendo T, Oishi R. A prostacyclin analog beraprost sodium attenuates radiocontrast media-induced LLC-PK1 cells injury. Kidney Int 2004; 65:1654-63. [PMID: 15086904 DOI: 10.1111/j.1523-1755.2004.00575.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND We previously reported that the apoptotic injury in a porcine renal tubular cell line LLC-PK1 cells induced by radiographic contrast media is attenuated by dibutyl cyclic adenosine monophosphate (cAMP) in a manner dependent on protein kinase A (PKA). The present study was designed to determine whether the elevation of endogenous cAMP with beraprost sodium, a prostacyclin analog, reduces the contrast material-induced renal tubular injury. METHODS The cell injury was induced by the exposure to ioversol for 30 minutes followed by further incubation for 24 hours in the absence of the contrast medium, and assessed by propidium iodide uptake and WST-8 assay. Apoptosis was determined by annexin V stain and DNA electrophoresis. Caspase activity was assessed by the enzymatic degradation of specific substrate peptides. Bax and bcl-2 mRNA expression were determined by reverse transcription-polymerase chain reaction (RT-PCR). The phosphorylation of cAMP-responsive element binding protein (CREB) was measured by an immunofluorescent method. RESULTS Beraprost sodium (10 to 1000 nmol/L) attenuated concentration dependently the ioversol-induced decrease in cell viability, in which the protective effect of beraprost sodium was dependent on the elevation of cellular cAMP content. The phosphorylation of CREB was enhanced by beraprost sodium in PKA-dependent manner. In addition, beraprost sodium reversed the ioversol-induced increase in bax mRNA with a concomitant decrease in bcl-2 mRNA and subsequent activation of caspase-3 and -9, thereby resulting in the inhibition of the nuclear damage. CONCLUSION Beraprost sodium reversed the contrast media-induced renal tubular cells in culture by activating cAMP/protein kinase A-dependent phosphorylation of CREB and subsequent enhancement of bcl-2 expression.
Collapse
Affiliation(s)
- Takahisa Yano
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
12
|
Ruiz-León Y, Pascual A. Regulation of beta-amyloid precursor protein expression by brain-derived neurotrophic factor involves activation of both the Ras and phosphatidylinositide 3-kinase signalling pathways. J Neurochem 2004; 88:1010-8. [PMID: 14756823 DOI: 10.1046/j.1471-4159.2003.02226.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) stimulates beta-amyloid precursor protein (APP) promoter activity by a Ras-dependent mechanism in TrkB-expressing SH-SY5Y cells. To determine the signalling pathways involved in the BDNF-induced response, we have analysed the ability of TrkB mutated forms to mediate promoter stimulation. Brain-derived neurotrophic factor causes a significant induction of promoter activity and mutation K540R in the active site of TrkB completely abolishes the neurotrophin-induced response. A substitution of the Y484 residue by phenylalanine, which blocks binding of Shc, reduces the activation of APP promoter by BDNF by approximately 50% whereas mutation Y785P, which blocks binding of phospholipase C gamma, does not affect the response. In addition, the phosphatidylinositide 3-kinase (PI3K)-specific inhibitors wortmannin and LY294002 reduced BDNF-induced activation. In agreement with a participation of both Ras/MAPK- and PI3K/Akt-mediated mechanisms, transient expression of constitutive active forms of Ras, PI3K and other components of both signalling pathways led to a significant increase of APP promoter activity. Furthermore, the stimulation of the APP promoter by BDNF was completely precluded by expression of dominant-negative forms of Ras and PI3K effectors. Taken together, our results suggest that simultaneous activation of at least two signalling pathways, Ras/MAPK and PI3K/Akt, is necessary to mediate a full activation of the APP promoter by BDNF.
Collapse
Affiliation(s)
- Yolanda Ruiz-León
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | |
Collapse
|
13
|
Hoshino T, Tsutsumi S, Tomisato W, Hwang HJ, Tsuchiya T, Mizushima T. Prostaglandin E2 protects gastric mucosal cells from apoptosis via EP2 and EP4 receptor activation. J Biol Chem 2003; 278:12752-8. [PMID: 12556459 DOI: 10.1074/jbc.m212097200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Prostaglandin E(2) (PGE(2)) has a strong protective effect on the gastric mucosa in vivo; however, the molecular mechanism of a direct cytoprotective effect of PGE(2) on gastric mucosal cells has yet to be elucidated. Although we reported previously that PGE(2) inhibited gastric irritant-induced apoptotic DNA fragmentation in primary cultures of guinea pig gastric mucosal cells, we show here that PGE(2) inhibits the ethanol-dependent release of cytochrome c from mitochondria. Of the four main subtypes of PGE(2) receptors, we also demonstrated, using subtype-specific agonists, that EP(2) and EP(4) receptors are involved in the PGE(2)-mediated protection of gastric mucosal cells from ethanol-induced apoptosis. Activation of EP(2) and EP(4) receptors is coupled with an increase in cAMP, for which a cAMP analogue was found here to inhibit the ethanol-induced apoptosis. The increase in cAMP is known to activate both protein kinase A (PKA) and phosphatidylinositol 3-kinase pathways. An inhibitor of PKA but not of phosphatidylinositol 3-kinase blocked the PGE(2)-mediated protection of cells from ethanol-induced apoptosis, suggesting that a PKA pathway is mainly responsible for the PGE(2)-mediated inhibition of apoptosis. Based on these results, we considered that PGE(2) inhibited gastric irritant-induced apoptosis in gastric mucosal cells via induction of an increase in cAMP and activation of PKA, and that this effect was involved in the PGE(2)-mediated protection of the gastric mucosa from gastric irritants in vivo.
Collapse
Affiliation(s)
- Tatsuya Hoshino
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
For more than a decade it has been known that certain growth factors inhibit apoptosis in genetically determined and experimental models of inner and outer retinal degeneration. The molecular mechanisms underlying these protective effects and the signaling that supports the survival of photoreceptors and retinal ganglion cells in these models have recently come under more in depth investigation. This paper reviews our current understanding of the balance of pro- and antiapoptotic signals that determine cell fate in the retina and how the activation of key signal transduction pathways by specific classes of neurotrophins protects retinal neurons.
Collapse
Affiliation(s)
- Edward Chaum
- Department of Ophthalmology, Pediatrics, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| |
Collapse
|
15
|
Dodge ME, Rahimtula M, Mearow KM. Factors contributing to neurotrophin-independent survival of adult sensory neurons. Brain Res 2002; 953:144-56. [PMID: 12384248 DOI: 10.1016/s0006-8993(02)03279-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dorsal root ganglion (DRG) sensory neurons become less dependent upon neurotrophins for their survival as they mature. DRG neurons from young adult rats were dissociated and cultured in vitro in serum-free defined medium. We show that adult DRG sensory neurons are able to survive for at least 2 weeks in culture in the absence of nerve growth factor (NGF). We then investigated potential mechanisms contributing to this apparent neurotrophin-independent survival in these neurons through the use of inhibitors of cellular signaling pathways. The phosphoinositide kinase-3 (PI 3-K) inhibitor LY294002, and a protein kinase C (PKC) inhibitor, chelerythrine resulted in significant decreases in neuronal survival. Neither the mitogen activated protein kinase kinase (MEK) inhibitor U0126 nor two other PKC inhibitors (bisindolylmaleimide and rottlerin) had any significant effect on survival. Our results point to the importance of PI 3-K and PKC signaling in the neurotrophin-independent survival of adult DRG neurons.
Collapse
Affiliation(s)
- M Elaine Dodge
- Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NF A1B 3V6 Canada
| | | | | |
Collapse
|
16
|
Webster CRL, Usechak P, Anwer MS. cAMP inhibits bile acid-induced apoptosis by blocking caspase activation and cytochrome c release. Am J Physiol Gastrointest Liver Physiol 2002; 283:G727-38. [PMID: 12181189 DOI: 10.1152/ajpgi.00410.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously shown that cAMP protects against bile acid-induced apoptosis in cultured rat hepatocytes in a phosphoinositide 3-kinase (PI3K)-dependent manner. In the present studies, we investigated the mechanisms involved in this anti-apoptotic effect. Hepatocyte apoptosis induced by glycodeoxycholate (GCDC) was associated with mitochondrial depolarization, activation of caspases, the release of cytochrome c from the mitochondria, and translocation of BAX from the cytosol to the mitochondria. cAMP inhibited GCDC-induced apoptosis, caspase 3 and caspase 9 activation, and cytochrome c release in a PI3K-dependent manner. cAMP activated PI3K in p85 immunoprecipitates and resulted in PI3K-dependent activation of the survival kinase Akt. Chemical inhibition of Akt phosphorylation with SB-203580 partially blocked the protective effect of cAMP. cAMP resulted in wortmannin-independent phosphorylation of BAD and was associated with translocation of BAD from the mitochondria to the cytosol. These results suggest that GCDC-induced apoptosis in cultured rat hepatocytes proceeds through a caspase-dependent intracellular stress pathway and that the survival effect of cAMP is mediated in part by PI3K-dependent Akt activation at the level of the mitochondria.
Collapse
Affiliation(s)
- Cynthia R L Webster
- Department of Clinical Science, Tufts University School of Veterinary Medicine, North Grafton, Massachusetts 01536, USA.
| | | | | |
Collapse
|
17
|
Abstract
Nerve growth factor (NGF) induces dramatic axon growth from responsive embryonic peripheral neurons. However, the roles of the various NGF-triggered signaling cascades in determining specific axon morphological features remain unknown. Here, we transfected activated and inhibitory mutants of Trk effectors into sensory neurons lacking the proapoptotic protein Bax. This allowed axon growth to be studied in the absence of NGF, enabling us to observe the contributions of individual signaling mediators. While Ras was both necessary and sufficient for NGF-stimulated axon growth, the Ras effectors Raf and Akt induced distinct morphologies. Activated Raf-1 caused axon lengthening comparable to NGF, while active Akt increased axon caliber and branching. Our results suggest that the different Trk effector pathways mediate distinct morphological aspects of developing neurons.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Size/genetics
- Female
- Fetus
- Ganglia, Spinal/cytology
- Ganglia, Spinal/embryology
- Ganglia, Spinal/metabolism
- Gene Expression/physiology
- Growth Cones/metabolism
- Growth Cones/ultrastructure
- MAP Kinase Kinase 1
- Male
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase Kinases/genetics
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Nerve Growth Factor/metabolism
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-akt
- Proto-Oncogene Proteins c-bcl-2
- Proto-Oncogene Proteins c-raf/deficiency
- Proto-Oncogene Proteins c-raf/genetics
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Receptor, trkC/genetics
- Receptor, trkC/metabolism
- Signal Transduction/genetics
- bcl-2-Associated X Protein
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Annette Markus
- Neuroscience Center, University of North Carolina, 103 Mason Farm Road, Chapel Hill 27599, USA
| | | | | |
Collapse
|
18
|
Abstract
PURPOSE To demonstrate that vasoactive intestinal peptide (VIP), an immunosuppressive factor found in the aqueous humor, is a modulator of the corneal endothelium (CE) stimulating its intracellular cAMP production. METHODS Rabbit CE cells in cell culture and CE cells in cornea cup organ cultures established from bovine and human donor eyes were treated with VIP at varying concentrations (0, 10(-11)-10(-6) mol/L) for a constant time (4 minutes) or varying times (1, 3.25, 10, 15 minutes) at a constant concentration (1 x 10(-6) mol/L). Intracellular cAMP was extracted and its concentrations were determined by radioimmunoassay. Agonists that are known to modulate the intracellular cAMP concentrations of target cells were allowed to react with cultured rabbit CE cells at 1 x 10(-6) mol/L for 4 minutes. RESULTS Vasoactive intestinal peptide stimulated the intracellular cAMP production in CE cells in a dose- and time-dependent manner. At concentrations lower than 10(-9) mol/L, VIP showed little effect. Treatment with 10(-8), 10(-7), and 10(-6) mol/L VIP for 4 minutes, however, increased the intracellular cAMP by 5.7-, 12.3-, and 9.5-fold, respectively, compared with the basal level in rabbit CE cell cultures, and by 19.5-, 38.7-, and 23.3-fold, respectively, in CE cells in bovine cornea cups. The effect of VIP was confirmed in two pairs of donor human corneas in which an average of 2.7-fold stimulation by 5 x 10(-7) mol/L was observed. Treatment of rabbit CE cells with 1 x 10(-6) mol//L VIP for 1 to 15 minutes elevated the intracellular cAMP level by six- to 69-fold. Among the agonists tested, alpha-melanocyte-stimulating hormone and glucagon were not effective, whereas l-isoproterenol and prostaglandin E1 were capable of stimulating the intracellular cAMP levels in rabbit CE cells. CONCLUSIONS The current study demonstrated that VIP stimulated cAMP production in CE cells, similar to that shown previously in trabecular meshwork and nonpigmented ciliary epithelial cells. Tissues bathed in the aqueous humor are thus responsive to VIP modulation.
Collapse
Affiliation(s)
- Shay-Whey M Koh
- Department of Ophthalmology, University of Maryland, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
19
|
Saavedra AP, Tsygankova OM, Prendergast GV, Dworet JH, Cheng G, Meinkoth JL. Role of cAMP, PKA and Rap1A in thyroid follicular cell survival. Oncogene 2002; 21:778-88. [PMID: 11850806 DOI: 10.1038/sj.onc.1205123] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2001] [Revised: 10/12/2001] [Accepted: 10/29/2001] [Indexed: 11/10/2022]
Abstract
Cyclic AMP (cAMP) rescues cells from apoptosis stimulated by diverse insults. We examined the role of cAMP as a survival factor, and the signaling pathways through which cAMP affords protection. Rat thyroid cells were selected for these studies given the predominant role of cAMP in thyrotropin (TSH)-stimulated proliferation and as an oncogene in thyroid cells. Wistar rat thyroid (WRT) cells perished via apoptosis following sodium nitroprusside (SNP) treatment. Elevations in cAMP following treatment with forskolin, 8BrcAMP or IBMX rescued cells from SNP-induced cell death. Notably, TSH prevented apoptosis, implicating an important role for this hormone as a survival factor. Cyclic AMP activates multiple signaling pathways including those mediated through PKA, PI3K, p70S6k and the Ras-related small G protein, Rap1. Intriguingly, multiple pathways modulate thyroid cell survival. Interference with cAMP-stimulated p70S6k, but not PI3K, activity abrogated cell survival. Treatment with PKA inhibitors was sufficient to stimulate apoptosis in hormone-deprived cells and markedly enhanced cell death in response to SNP. Cells expressing an activated Rap1A mutant exhibited an enhanced sensitivity to SNP-induced apoptosis, while those expressing dominant negative Rap1A were resistant to SNP-initiated cell death. Together, these findings establish an important role for PKA and Rap1 in the control of thyroid cell survival.
Collapse
Affiliation(s)
- Arturo P Saavedra
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
20
|
Keith CH, Wilson MT. Factors controlling axonal and dendritic arbors. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 205:77-147. [PMID: 11336394 DOI: 10.1016/s0074-7696(01)05003-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The sculpting and maintenance of axonal and dendritic arbors is largely under the control of molecules external to the cell. These factors include both substratum-associated and soluble factors that can enhance or inhibit the outgrowth of axons and dendrites. A large number of factors that modulate axonal outgrowth have been identified, and the first stages of the intracellular signaling pathways by which they modify process outgrowth have been characterized. Relatively fewer factors and pathways that affect dendritic outgrowth have been described. The factors that affect axonal arbors form an incompletely overlapping set with those that affect dendritic arbors, allowing selective control of the development and maintenance of these critical aspects of neuronal morphology.
Collapse
Affiliation(s)
- C H Keith
- Department of Cellular Biology. University of Georgia, Athens, 30605, USA
| | | |
Collapse
|
21
|
Harper SJ, LoGrasso P. Signalling for survival and death in neurones: the role of stress-activated kinases, JNK and p38. Cell Signal 2001; 13:299-310. [PMID: 11369511 DOI: 10.1016/s0898-6568(01)00148-6] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pathways involved in neuronal survival or death have been extensively studied mainly in cell lines. Recent evidence has suggested that activation of the stress activated pathways, jun N-terminal kinase (JNK) and p38 may play important roles in neuronal cell death or regeneration. In this review we will discuss these pahtways in detail. We will examine the evidence that these pathways are important in neuronal cell death. Finally we will review the evidence that inhibitors of these pathways have a neuroprotective effect both in vitro and in vivo.
Collapse
Affiliation(s)
- S J Harper
- Department of Pharmacology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Essex CM20 2QR, Harlow, UK.
| | | |
Collapse
|
22
|
Tatton WG, Chalmers-Redman RM, Sud A, Podos SM, Mittag TW. Maintaining Mitochondrial Membrane Impermeability. Surv Ophthalmol 2001; 45 Suppl 3:S277-83; discussuin S295-6. [PMID: 11377449 DOI: 10.1016/s0039-6257(01)00207-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Apoptosis may contribute to retinal ganglion cell loss in glaucoma and glaucoma models. Recent research has suggested that mitochondrially dependent apoptosis signaling may contribute to apoptosis in a rat model of glaucoma involving chronic increases in intraocular pressure. In some forms of apoptosis, mitochondrially dependent signaling involves increases in mitochondrial membrane permeability and the mitochondrial release of factors that signal for cell degradation. Opening of a multi-protein, mitochondrial megapore is one factor that contributes to the increased permeability and some anti-apoptotic proteins, particularly BCL-2 and BCL-X(L), bind at the megapore and facilitate megapore closure and reduce increases in mitochondrial membrane permeability. Phosphorylated protein kinase B (Akt) serves as an integrator for cellular survival signals and facilitates the megapore actions of BCL-2 and BCL-X(L), which could protect retinal ganglion cells against insults that induce apoptosis. Several anti-apoptotic agents are being evaluated for use in glaucoma, including brimonidine and propargylamines, which oppose mitochondrially dependent apoptosis through pathways involving phosphorylated Akt.
Collapse
Affiliation(s)
- W G Tatton
- Departments of Ophthalmology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
23
|
Chae HJ, Chae SW, An NH, Kim JH, Kim CW, Yoo SK, Kim HH, Lee ZH, Kim HR. Cyclic-AMP inhibits nitric oxide-induced apoptosis in human osteoblast: the regulation of caspase-3, -6, -9 and the release of cytochrome c in nitric oxide-induced apoptosis by cAMP. Biol Pharm Bull 2001; 24:453-60. [PMID: 11379759 DOI: 10.1248/bpb.24.453] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) induces apoptotic cell death and cAMP has a significantly protective effect on NO-induced cytotoxicity in human osteoblasts, MG-63 cells. Treatment with S-nitroso-N-acetylpenicillamine (SNAP) (0.6 mM) resulted in genomic DNA fragmentation, characteristic of apoptosis. However, concomitant incubation of the cells with either DBcAMP or forskolin markedly inhibited SNAP-induced apoptosis in a dose-dependent manner. Furthermore, pretreatment of MG-63 cells with H-89 or KT5720, which is known to inhibit cAMP-dependent protein kinase (PKA), abolished the protective effect of DBcAMP and forskolin on SNAP-induced apoptosis. In this study, we explored the involvement of caspases in the regulatory mechanism of SNAP-induced apoptosis by cAMP. Our data show that DBcAMP or forskolin blocked SNAP-induced caspase-3-like cysteine protease activation and that H-89, a PKA inhibitor, reversed the cAMP-induced regulatory effect of caspase-3 like protease. Consistent with the results, cAMP inhibited the proteolytic cleavage of caspase-3, -6, -9 and cytochrome c release to cytoplasm. The inhibition of caspase-3 activation did not block SNAP-induced cytochrome c release to cytoplasm, suggesting that caspase-3 activation may occur downstream of cytochrome c release. In summary, these findings show that the exposure of MG-63 cells to cAMP analogs renders them more resistant to NO-induced damage and suggests the presence of regulatory mechanisms of the cell death pathway by cAMP in which caspase-3, -6, and -9 and cytochrome c release serves to mediate NO-induced apoptosis.
Collapse
Affiliation(s)
- H J Chae
- Department of Dental Pharmacology and Wonkwang Dental Research Institute, School of Dentistry, Chonbuk, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Besset V, Scott RP, Ibáñez CF. Signaling complexes and protein-protein interactions involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-Ret receptor tyrosine kinase. J Biol Chem 2000; 275:39159-66. [PMID: 10995764 DOI: 10.1074/jbc.m006908200] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proximal signaling events and protein-protein interactions initiated after activation of the c-Ret receptor tyrosine kinase by its ligand, glial cell line-derived neurotrophic factor (GDNF), were investigated in cells carrying native and mutated forms of this receptor. Mutation of Tyr-1062 (Y1062F) in the cytoplasmic tail of c-Ret abolished receptor binding and phosphorylation of the adaptor Shc and eliminated activation of Ras by GDNF. Phosphorylation of Erk kinases was also greatly attenuated but not eliminated by this mutation. This residual wave of Erk phosphorylation was independent of the kinase activity of c-Ret. Mutation of Tyr-1096 (Y1096F), a binding site for the adaptor Grb2, had no effect on Erk activation by GDNF. Activation of phosphatidylinositol-3 kinase (PI3K) and its downstream effector Akt was also reduced in the Y1062F mutant but not completely abolished unless Tyr-1096 was also mutated. Ligand stimulation of neuronal cells induced the assembly of a large protein complex containing c-Ret, Grb2, and tyrosine-phosphorylated forms of Shc, p85(PI3K), the adaptor Gab2, and the protein-tyrosine phosphatase SHP-2. In agreement with Ras-independent activation of PI3K by GDNF in neuronal cells, survival of sympathetic neurons induced by GDNF was dependent on PI3K but was not affected by microinjection of blocking anti-Ras antibodies, which did compromise neuronal survival by nerve growth factor, suggesting that Ras is not required for GDNF-induced survival of sympathetic neurons. These results indicate that upon ligand stimulation, at least two distinct protein complexes assemble on phosphorylated Tyr-1062 of c-Ret via Shc, one leading to activation of the Ras/Erk pathway through recruitment of Grb2/Sos and another to the PI3K/Akt pathway through recruitment of Grb2/Gab2 followed by p85(PI3K) and SHP-2. This latter complex can also assemble directly onto phosphorylated Tyr-1096, offering an alternative route to PI3K activation by GDNF.
Collapse
Affiliation(s)
- V Besset
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | | | | |
Collapse
|
25
|
Andersen PL, Webber CA, Kimura KA, Schreyer DJ. Cyclic AMP prevents an increase in GAP-43 but promotes neurite growth in cultured adult rat dorsal root ganglion neurons. Exp Neurol 2000; 166:153-65. [PMID: 11031091 DOI: 10.1006/exnr.2000.7485] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High expression of the growth-associated protein GAP-43 in neurons is correlated with developmental and regenerative axon growth. It has been postulated that during development and after injury, GAP-43 expression is elevated due to the unavailability of a target-derived repressive signal, but that GAP-43 expression then declines upon target contact. Here we examine the cyclic AMP second messenger signaling pathway to determine if it might mediate retrograde transmission of a signal which represses GAP-43 expression and inhibits growth. Cultures of adult rat dorsal root ganglia were chronically exposed to membrane-permeable analogs of cyclic AMP and activators of adenyl cyclase. These treatments caused GAP-43 protein levels to decrease in a dose-dependent manner, although neuronal survival was not affected. GAP-43 mRNA was also decreases by cyclic AMP. GAP-43 protein levels were not repressed by neurotrophins, cytokines, or other agents. Surprisingly, cyclic AMP caused an increase in the rate of neurite outgrowth, even though the neurons were partially depleted of GAP-43. Growth stimulation was quickly inducible and reversible, could occur in the presence of transcription inhibitors, and did not entail alterations in branching pattern. These findings suggest that axon growth involving high levels of GAP-43 is distinct from the growth stimulation which is rapidly induced by cyclic AMP.
Collapse
Affiliation(s)
- P L Andersen
- Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | | | | | | |
Collapse
|
26
|
Fletcher GC, Xue L, Passingham SK, Tolkovsky AM. Death commitment point is advanced by axotomy in sympathetic neurons. J Cell Biol 2000; 150:741-54. [PMID: 10953000 PMCID: PMC2175272 DOI: 10.1083/jcb.150.4.741] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2000] [Accepted: 06/22/2000] [Indexed: 01/10/2023] Open
Abstract
Axotomized neurons have several characteristics that are different from intact neurons. Here we show that, unlike established cultures, the axotomized sympathetic neurons deprived of NGF become committed to die before caspase activation, since the same proportion of NGF-deprived neurons are rescued by NGF regardless of whether caspases are inhibited by the pan-caspase inhibitor Boc-Asp(O-methyl)-CH(2)F (BAF). Despite prolonged Akt and ERK signaling induced by NGF after BAF treatment has prevented death, the neurons fail to increase protein synthesis, recover ATP levels, or grow. Within 3 d, all the mitochondria disappear without apparent removal of any other organelles or loss of membrane integrity. Although NGF does rescue intact BAF-treated 6-d cultures after NGF deprivation, rescue by NGF fails when these neurons are axotomized before NGF deprivation and BAF treatment. Moreover, cytosolic cytochrome c rapidly kills axotomized neurons. We propose that axotomy induces signals that make sympathetic neurons competent to die prematurely. NGF cannot repair these NGF-deprived, BAF-treated neurons because receptor signaling (which is normal) is uncoupled from protein renewal, and the mitochondria (which are damaged) go on to be eliminated. Hence, the order of steps underlying neuronal death commitment is mutable and open to regulation.
Collapse
Affiliation(s)
- Graham C. Fletcher
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, CB2 1QW, United Kingdom
| | - Luzheng Xue
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, CB2 1QW, United Kingdom
| | - Shareta K. Passingham
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, CB2 1QW, United Kingdom
| | - Aviva M. Tolkovsky
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, CB2 1QW, United Kingdom
| |
Collapse
|
27
|
Chang HS, Jeon KW, Kim YH, Chung IY, Park CS. Role of cAMP-dependent pathway in eosinophil apoptosis and survival. Cell Immunol 2000; 203:29-38. [PMID: 10915559 DOI: 10.1006/cimm.2000.1668] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The survival and apoptosis of eosinophils is of pivotal importance for controlling allergic diseases such as asthma and rhinitis. In this study we have investigated the role for cAMP in regulating eosinophil survival and apoptosis in the absence of eosinophil-active cytokines. The treatment with dibutyryl cyclic AMP (dbcAMP) increased eosinophil survival with a concomitant decrease of apoptosis in a dose-dependent manner. The pretreatment with a protein kinase A (PKA) inhibitor blocked the effects of dbcAMP on survival and apoptosis of eosinophils. The catalytic subunit of PKA was translocated to nucleus in parallel with a robust increase of intracellular cAMP levels upon exposure to dbcAMP but not IL-5, suggesting the separation of PKA activation from the IL-5-induced suppression of eosinophil apoptosis. When eosinophils were treated with pharmacological inhibitors of protein kinases prior to exposure to dbcAMP or IL-5, only the mitogen-activating protein kinase (MAPK) inhibitor, PD098059, was partly able to block dbcAMP-induced augmentation of eosinophil viability, whereas both Janus kinase 2 and MAPK inhibitors effectively interrupted the IL-5-induced prolongation of eosinophil survival. The effects of dbcAMP and these protein kinase inhibitors on eosinophil apoptosis were confirmed by morphologic analysis. We propose that a cAMP-dependent pathway may constitute an important component for regulating eosinophil survival/apoptosisand that cAMP may inhibit eosinophil apoptosis through the activation of PKA and of subsequent MAPK in part.
Collapse
Affiliation(s)
- H S Chang
- Division of Allergy and Respiratory Medicine, Soonchunhyang University Hospital, Seoul, Korea
| | | | | | | | | |
Collapse
|
28
|
Abstract
Neurotrophins use two types of receptors, the Trk tyrosine kinase receptors and the p75 neurotrophin receptor (p75NTR), to regulate the growth, development, survival and repair of the nervous system. These receptors can either collaborate with or inhibit each other's actions to mediate neurotrophin effects. The development and survival of neurons is thus based upon the functional interplay of the signals generated by Trk and p75NTR. In the past two years, the signaling pathways used by these receptors, including Akt and MAPK-induced signaling via Trk, and JNK, p53, and NF-kappaB signaling via p75NTR, have been identified. In addition, a number of novel p75NTR-interacting proteins have been identified that transmit growth, survival, and apoptotic signals.
Collapse
Affiliation(s)
- D R Kaplan
- Brain Tumor Research Center, Montreal Neurological Institute, Montreal, H3A 2B4, Canada.
| | | |
Collapse
|
29
|
Deng YS, Zhong JH, Zhou XF. BDNF is involved in sympathetic sprouting in the dorsal root ganglia following peripheral nerve injury in rats. Neurotox Res 2000; 1:311-22. [PMID: 12835098 DOI: 10.1007/bf03033260] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peripheral nerve injury results in sympathetic sprouting around large diameter sensory neurons in the dorsal root ganglia (DRG). The mechanism underlying this pathological phenomenon is not known. Brain-derived neurotrophic factor (BDNF) is up-regulated in large sensory neurons and ensheathing satellite cells following a sciatic nerve injury. In the present study, we investigated the effects of BDNF on the sympathetic sprouting in the DRG, by delivering BDNF antibody or antisense oligodeoxynucleotide to injured DRGs, or by delivering exogenous BDNF to intact DRGs. The sheep antibody to BDNF, characterized by bioassays and dot blots, specifically reacted with BDNF but not other neurotrophins. Noradrenergic fibers were visualized by immunostaining of tyrosine hydroxylase (TH) and quantified by an NIH Imaging program. Two weeks following L5 spinal nerve lesion, a dramatic increase in TH-immunoreactive (-ir) fibres was observed in both ipsi- and contralateral DRGs in normal sheep IgG treated rats. BDNF antibody significantly reduced the sprouting of sympathetic nerves in both ipsi- and contra-lateral DRGs by 67% and 42% respectively. BDNF antisense oligodeoxynucleotide, by inhibiting BDNF synthesis in DRGs, also significantly suppressed the sprouting by 67% and 60% respectively in the ipsi- and contra-lateral DRGs. Delivery of exogenous BDNF into an intact L5 DRGs resulted in an increase in the sprouting by 4.2-fold. Our results clearly indicate that BDNF, synthesized in and secreted from the DRGs, is involved in the sympathetic sprouting in the DRG following the peripheral nerve injury.
Collapse
Affiliation(s)
- Y S Deng
- Department of Human Physiology and Center for Neuroscience, Flinders University of South Australia, GPO Box 2100, Adelaide 5001, Australia
| | | | | |
Collapse
|
30
|
Vogel KS, El-Afandi M, Parada LF. Neurofibromin negatively regulates neurotrophin signaling through p21ras in embryonic sensory neurons. Mol Cell Neurosci 2000; 15:398-407. [PMID: 10845775 DOI: 10.1006/mcne.2000.0836] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Embryonic sensory and sympathetic neurons that lack neurofibromin, the protein product of the neurofibromatosis type 1 (Nfl) gene, survive and extend neurites in the absence of neurotrophins. To determine whether neurofibromin negatively regulates neurotrophin signaling through its interaction with p21ras, we used Fab antibody fragments to block Ras function in DRG, trigeminal, nodose, and SCG neurons isolated from Nfl(-/-) and wild-type mouse embryos. We show that introduction of anti-Ras Fab fragments significantly reduces the ability of neurofibromin-deficient neurons to survive in the absence of neurotrophins. Moreover, addition of H-ras protein enhances the survival of Nfl(-/-), but not wild-type, DRG neurons. Our results are consistent with a major role for neurofibromin in modulating Trk signaling through p21ras during neuronal development.
Collapse
Affiliation(s)
- K S Vogel
- Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas 75235-9133, USA.
| | | | | |
Collapse
|
31
|
Xue L, Murray JH, Tolkovsky AM. The Ras/phosphatidylinositol 3-kinase and Ras/ERK pathways function as independent survival modules each of which inhibits a distinct apoptotic signaling pathway in sympathetic neurons. J Biol Chem 2000; 275:8817-24. [PMID: 10722727 DOI: 10.1074/jbc.275.12.8817] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ras promotes robust survival of many cell systems by activating the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway, but little is understood about the survival functions of the Ras/ERK pathway. We have used three different effector-loop mutant forms of Ras, each of which activates a single downstream effector pathway, to dissect their individual contributions to survival of nerve growth factor (NGF)-dependent sympathetic neurons. The PI3-kinase pathway-selective protein Ras(Val-12)Y40C was as powerful as oncogenic Ras(Val-12) in preventing apoptosis induced by NGF deprivation but conferred no protection against apoptosis induced by cytosine arabinoside. Identical results were obtained with transfected Akt. In contrast, the ERK pathway-selective protein Ras(Val-12)T35S had no protective effects on NGF-deprived neurons but was almost as strongly protective as Ras(Val-12) against cytosine arabinoside-induced apoptosis. The protective effects of Ras(Val-12)T35S against cytosine arabinoside were completely abolished by the ERK pathway inhibitor PD98059. Ras(Val-12)E37G, an activator of RalGDS, had no survival effect on either death pathway, similar to RasS17N, the full survival antagonist. Thus, Ras provides two independent survival pathways each of which inhibits a distinct apoptotic mechanism. Our study presents one of the few clear-cut cases where only the Ras/ERK, but not the Ras/PI3K/Akt pathway, plays a dominant survival signaling role.
Collapse
Affiliation(s)
- L Xue
- Department Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| | | | | |
Collapse
|
32
|
Abstract
In this report, we examine how the Ras protein regulates neuronal survival, focusing on sympathetic neurons. Adenovirus-expressed constitutively activated Ras (RasV12) enhanced survival and the phosphorylation of Akt (protein kinase B) and MAP kinase (MAPK), two targets of Ras activity. Functional inhibition of endogenous Ras by adenovirus-expressed dominant-inhibitory Ras (N17Ras) decreased nerve growth factor (NGF)-dependent survival and both Akt and MAPK phosphorylation as well. To determine the signaling pathways through which Ras mediates survival, we used Ras effector mutants and pharmacological inhibitors that selectively suppress phosphatidylinositol 3-kinase (PI3-K)/Akt or MAP kinase kinase (MEK)/MAPK pathways. The Ras effector mutant Ras(V12)Y40C, which selectively stimulates PI3-K and Akt, rescued survival in the absence of NGF, and the PI3-K inhibitor LY 294002 inhibited both Ras- and NGF-dependent survival. Ras(V12)T(35)S, which activates MEK/MAPK but not PI3-K/Akt, was less effective at rescuing survival, whereas the MEK inhibitor PD 098059 also partially suppressed Ras-dependent survival. To investigate the mechanisms by which Ras suppresses neuronal death, we examined whether Ras functions by inhibiting the proapoptotic p53 pathway (Jun-N-terminal kinase/p53/BAX) that is necessary for neuronal death after NGF withdrawal and p75NTR activation. We found that RasV12 suppressed c-jun, BAX, and p53 levels, whereas inhibition of NGF-induced Ras-survival activity via N17Ras increased the levels of these proteins. Furthermore, the E1B55K protein, which suppresses p53 activity, blocked N17Ras-induced neuronal death. Together, these results indicate that Ras is, in part, both necessary and sufficient for survival of sympathetic neurons and that this effect is mediated by activation of both the PI3-K- and MEK-signaling cascades, which in turn suppress a proapoptotic p53 pathway.
Collapse
|
33
|
Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 1999; 286:1358-62. [PMID: 10558990 DOI: 10.1126/science.286.5443.1358] [Citation(s) in RCA: 1475] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A mechanism by which the Ras-mitogen-activated protein kinase (MAPK) signaling pathway mediates growth factor-dependent cell survival was characterized. The MAPK-activated kinases, the Rsks, catalyzed the phosphorylation of the pro-apoptotic protein BAD at serine 112 both in vitro and in vivo. The Rsk-induced phosphorylation of BAD at serine 112 suppressed BAD-mediated apoptosis in neurons. Rsks also are known to phosphorylate the transcription factor CREB (cAMP response element-binding protein) at serine 133. Activated CREB promoted cell survival, and inhibition of CREB phosphorylation at serine 133 triggered apoptosis. These findings suggest that the MAPK signaling pathway promotes cell survival by a dual mechanism comprising the posttranslational modification and inactivation of a component of the cell death machinery and the increased transcription of pro-survival genes.
Collapse
Affiliation(s)
- A Bonni
- Division of Neuroscience, Children's Hospital, and Department of Neurobiology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
34
|
Encinas M, Iglesias M, Llecha N, Comella JX. Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. J Neurochem 1999; 73:1409-21. [PMID: 10501184 DOI: 10.1046/j.1471-4159.1999.0731409.x] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retinoic acid (RA) induces the differentiation of many cell lines, including those derived from neuroblastoma. RA treatment of SH-SY5Y cells induces the appearance of functional Trk B and Trk C receptors. Acute stimulation of RA-predifferentiated SH-SY5Y cells with brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), or neurotrophin 4/5 (NT-4/5), but not nerve growth factor (NGF), induces Trk autophosphorylation, followed by phosphorylation of Akt and the extracellular signal-regulated kinases (ERKs) 1 and 2. In addition, BDNF, NT-3, or NT-4/5, but not NGF, promotes cell survival and neurite outgrowth in serum-free medium. The mitogen-activated protein kinase and ERK kinase (MEK) inhibitor PD98059 blocks BDNF-induced neurite outgrowth and growth-associated protein-43 expression but has no effects on cell survival. On the other hand, the phosphatidylinositol 3-kinase inhibitor LY249002 reverses the survival response elicited by BDNF, leading to a cell death with morphological features of apoptosis.
Collapse
Affiliation(s)
- M Encinas
- Department de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Catalonia, Spain
| | | | | | | |
Collapse
|
35
|
Virdee K, Xue L, Hemmings BA, Goemans C, Heumann R, Tolkovsky AM. Nerve growth factor-induced PKB/Akt activity is sustained by phosphoinositide 3-kinase dependent and independent signals in sympathetic neurons. Brain Res 1999; 837:127-42. [PMID: 10433995 DOI: 10.1016/s0006-8993(99)01643-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phosphoinositide 3-kinase and its downstream effector kinase PKB/Akt have been suggested to have crucial roles in suppressing apoptosis in several classes of neurons. However, few studies have conducted a long-term investigation of either kinase activity, many studies relying instead on use of the phosphoinositide 3-kinase inhibitors wortmannin and LY294002. When we added LY294002 or wortmannin to sympathetic neurons, apoptosis in the presence of nerve growth factor (NGF) was very slow compared to that obtained by NGF deprivation. However, expression of a kinase-inactive mutant of PKB/Akt in the presence of NGF induced apoptosis in a significant proportion of the neurons. To understand this discrepancy, we investigated more closely the regulation of PKB/Akt activity by NGF. NGF stimulation induced a rapid increase in PKB/Akt activity which was sustained at approximately 6-fold up to 24 h. Phosphoinositide 3-kinase was also rapidly activated by NGF. However, concentrations of wortmannin which completely blocked phosphoinositide 3-kinase activity in the neurons inhibited no more than 50-70% of cellular PKB/Akt activity. Similarly, approximately 50% of maximal NGF-stimulated PKB/Akt activity remained elevated at concentrations of LY294002 which completely blocked neurite outgrowth, a process known to be phosphoinositide 3-kinase dependent. We suggest that a proportion of the sustained PKB/Akt activity induced by NGF is mediated by phosphoinositide 3-kinase-independent pathways. These results raise a cautionary note as to the usefulness of LY294002 or wortmannin as tools to dissect the role of PKB/Akt in neuronal survival.
Collapse
Affiliation(s)
- K Virdee
- Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, UK
| | | | | | | | | | | |
Collapse
|
36
|
Majdan M, Miller FD. Neuronal life and death decisions functional antagonism between the Trk and p75 neurotrophin receptors. Int J Dev Neurosci 1999; 17:153-61. [PMID: 10452359 DOI: 10.1016/s0736-5748(99)00016-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- M Majdan
- Montreal Neurological Institute, McGill University, Que., Canada
| | | |
Collapse
|
37
|
Abstract
The neurotrophin family of growth factors supports survival and differentiation of neurons in the developing vertebrate nervous system by binding activating receptor tyrosine kinases, the Trks. Activation of Trk receptors leads to stimulation of a number of intracellular signaling cascades including, among others, the ras/extracellular regulated kinase (erk) and the phosphatidylinositol-3 kinase (PI 3 kinase) cascades. Over the past several years, work in several neurotrophin responsive systems has begun to identify the role each of these signaling cascades plays in the cellular response to neurotrophins. It now appears that neurotrophins, in particular nerve growth factor (NGF), mediate their multiple effects through a number of distinct intracellular signaling cascades. In this review, we will overview the evidence implicating specific signaling cascades in aspects of the cellular response to the neurotrophins, specifically in response to activation of TrkA by NGF.
Collapse
Affiliation(s)
- L J Klesse
- Center for Developmental Biology, University of Texas, Southwestern Medical Center, Dallas 75235-9133, USA
| | | |
Collapse
|
38
|
Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 1999; 284:339-43. [PMID: 10195903 DOI: 10.1126/science.284.5412.339] [Citation(s) in RCA: 866] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Ca2+-activated protein phosphatase calcineurin induces apoptosis, but the mechanism is unknown. Calcineurin was found to dephosphorylate BAD, a pro-apoptotic member of the Bcl-2 family, thus enhancing BAD heterodimerization with Bcl-xL and promoting apoptosis. The Ca2+-induced dephosphorylation of BAD correlated with its dissociation from 14-3-3 in the cytosol and translocation to mitochondria where Bcl-xL resides. In hippocampal neurons, L-glutamate, an inducer of Ca2+ influx and calcineurin activation, triggered mitochondrial targeting of BAD and apoptosis, which were both suppressible by coexpression of a dominant-inhibitory mutant of calcineurin or pharmacological inhibitors of this phosphatase. Thus, a Ca2+-inducible mechanism for apoptosis induction operates by regulating BAD phosphorylation and localization in cells.
Collapse
Affiliation(s)
- H G Wang
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
p21 ras and phosphatidylinositol-3 kinase are required for survival of wild-type and NF1 mutant sensory neurons. J Neurosci 1999. [PMID: 9852579 DOI: 10.1523/jneurosci.18-24-10420.1998] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nerve growth factor (NGF) is a required differentiation and survival factor for sympathetic and a majority of neural crest-derived sensory neurons in the developing vertebrate peripheral nervous system. Although much is known about the function of NGF, the intracellular signaling cascade that it uses continues to be a subject of intense study. p21 ras signaling is considered necessary for sensory neuron survival. How additional intermediates downstream or in parallel may function has not been fully understood yet. Two intracellular signaling cascades, extra cellular regulated kinase (erk) and phosphatidylinositol-3 (PI 3) kinase, transduce NGF signaling in the pheochromocytoma cell line PC12. To elucidate the role these cascades play in survival and differentiation, we used a combination of recombinant adenoviruses and chemical inhibitors to perturb these pathways in sensory neurons from wild-type mice and mice deficient for neurofibromin in which the survival and differentiation pathway is constitutively active. We demonstrate that ras activity is both necessary and sufficient for the survival of embryonic sensory neurons. Downstream of ras, however, the erk cascade is neither required nor sufficient for neuron survival or overall differentiation. Instead, the activity of PI 3 kinase is necessary for the survival of the wild-type and neurofibromin-deficient neurons. Therefore, we conclude that in sensory neurons, NGF acts via a signaling pathway, which includes both ras and PI 3 kinase.
Collapse
|
40
|
A role for MAPK/ERK in sympathetic neuron survival: protection against a p53-dependent, JNK-independent induction of apoptosis by cytosine arabinoside. J Neurosci 1999. [PMID: 9880587 DOI: 10.1523/jneurosci.19-02-00664.1999] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The antimitotic nucleoside cytosine arabinoside (araC) causes apoptosis in postmitotic neurons for which two mechanisms have been suggested: (1) araC directly inhibits a trophic factor-maintained signaling pathway required for survival, effectively mimicking trophic factor withdrawal; and (2) araC induces apoptosis by a p53-dependent mechanism distinct from trophic factor withdrawal. In rat sympathetic neurons, we found that araC treatment for 12 hr induced approximately 25% apoptosis without affecting NGF-maintained signaling; there was neither reduction in the activity of mitogen activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) or protein kinase B/Akt, a kinase implicated in NGF-mediated survival, nor was there c-Jun N-terminal kinase (JNK) activation or c-Jun N-terminal phosphorylation, events implicated in apoptosis induced by NGF withdrawal. However, araC treatment, but not NGF-withdrawal, elevated expression of p53 protein before and during apoptosis. Additionally, araC-induced apoptosis was suppressed in sympathetic neurons from p53 null mice. Although MAPK/ERK activity is not necessary for NGF-induced survival, it protected against toxicity by araC, because inhibition of the MAPK pathway by PD98059 resulted in a significant increase in the rate of apoptosis induced by araC in the presence of NGF. Consistent with this finding, ciliary neurotrophic factor, which does not cause sustained activation of MAPK/ERK, did not protect against araC toxicity. Our data show that, in contrast to NGF deprivation, araC induces apoptosis via a p53-dependent, JNK-independent mechanism, against which MAPK/ERK plays a substantial protective role. Thus, NGF can suppress apoptotic mechanisms in addition to those caused by its own deprivation.
Collapse
|
41
|
Kaplan DR. Studying signal transduction in neuronal cells: the Trk/NGF system. PROGRESS IN BRAIN RESEARCH 1999; 117:35-46. [PMID: 9932398 DOI: 10.1016/s0079-6123(08)64005-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- D R Kaplan
- Brain Tumor Research Centre, Montreal Neurological Institute, McGill University, Canada.
| |
Collapse
|
42
|
Skaper SD, Walsh FS. Neurotrophic molecules: strategies for designing effective therapeutic molecules in neurodegeneration. Mol Cell Neurosci 1998; 12:179-93. [PMID: 9828084 DOI: 10.1006/mcne.1998.0714] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Over the past several years, neurotrophic factors-a description generally applied to naturally occurring polypeptides that support the development and survival of neurons-have made considerable progress from the laboratory into the clinic. Evidence from preclinical and clinical studies indicates that it may be possible to use neurotrophic factors to prevent, slow the progression of, or even reverse the effects of a number of neurodegenerative diseases and other types of insults in both the central nervous system (CNS) and the peripheral nervous system. Initially, investigations focused on recombinant neurotrophic proteins that are identical or highly homologous to the natural human sequence. Given the difficulties inherent with a protein therapeutic approach to treating nervous system disorders, especially those of the CNS, increasing attention has now turned to the development of alternative strategies and, in particular, small molecule mimetics. Regulation of the transcription of neurotrophic factors may provide a means of manipulating endogenous factor production; gene therapy may also allow for the circumvention of exogenous neurotrophic factor administration. The problem of transport across the blood-brain barrier may be overcome by developing small-molecule mimetics that maintain the neurotrophic activity of the protein while having improved pharmacokinetic and disposition characteristics. Components of neurotrophic factor signal transduction pathways may provide additional targets for novel drugs that can induce or modulate the responses normally activated by the binding of the neurotrophic factor to its receptor. This review focusses on some of the major themes and lines of mechanistic and therapeutic advances in this fast-moving field of neuroscience.
Collapse
Affiliation(s)
- S D Skaper
- Neuroscience Research Department, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW, United Kingdom
| | | |
Collapse
|
43
|
Lei S, Dryden WF, Smith PA. Involvement of Ras/MAP kinase in the regulation of Ca2+ channels in adult bullfrog sympathetic neurons by nerve growth factor. J Neurophysiol 1998; 80:1352-61. [PMID: 9744944 DOI: 10.1152/jn.1998.80.3.1352] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cellular mechanisms that underlie nerve growth factor (NGF) induced increase in Ca(2+)-channel current in adult bullfrog sympathetic B-neurons were examined by whole cell recording techniques. Cells were maintained at low density in neuron-enriched, defined-medium, serum-free tissue culture for 6 days in the presence or absence of NGF (200 ng/ml). The increase in Ba2+ current (IBa) density induced by NGF was attenuated by the RNA synthesis inhibitor cordycepin (20 microM), by the DNA transcription inhibitor actinomycin D (0.01 microgram/ml), by inhibitors of Ras isoprenylation (perillic acid 0.1-1.0 mM or alpha-hydroxyfarnesylphosphonic acid 10-100 microM), by tyrosine kinase inhibitors genistein (20 microM) or lavendustin A (1 microM), and by PD98059 (10-100 microM), an inhibitor of mitogen-activated protein kinase kinase. Inhibitors of the phosphatidylinositol 3-kinase (PI3K) pathway (wortmannin, 100 nM, or LY29400, 100 microM) were ineffective as were inhibitors of phospholipase C gamma (U73122 or neomycin, both 100 microM). The effect of NGF persisted in Ca(2+)-free medium that contained 1.8 mM Mg2+ and 2 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. It was mimicked by a Trk antibody that was capable of inducing neurite outgrowth in explant cultures of bullfrog sympathetic ganglion. Antibodies raised against the low-affinity p75 neurotrophin receptor were ineffective in blocking the effect of NGF on IBa. These results suggest that NGF-induced increase in Ca2+ channel current in adult sympathetic neurons results, at least in part, from new channel synthesis after Trk activation of Ras and mitogen activated protein kinase by a mechanism that is independent of extracellular Ca2+.
Collapse
Affiliation(s)
- S Lei
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
44
|
Abstract
Marijuana consumption elicits diverse physiological and psychological effects in humans, including memory loss. Here we report that Delta9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana, is toxic for hippocampal neurons. Treatment of cultured neurons or hippocampal slices with THC caused shrinkage of neuronal cell bodies and nuclei as well as genomic DNA strand breaks, hallmarks of neuronal apoptosis. Neuron death induced by THC was inhibited by nonsteroidal anti-inflammatory drugs, including indomethacin and aspirin, as well as vitamin E and other antioxidants. Furthermore, treatment of neurons with THC stimulated a significant increase in the release of arachidonic acid. We hypothesize that THC neurotoxicity is attributable to activation of the prostanoid synthesis pathway and generation of free radicals by cyclooxygenase. These data suggest that some of the memory deficits caused by cannabinoids may be caused by THC neurotoxicity.
Collapse
|
45
|
Abstract
We have shown that N-acetylcysteine (NAC) promotes survival of sympathetic neurons and pheochromocytoma (PC12) cells in the absence of trophic factors. This action of NAC was not related to its antioxidant properties or ability to increase intracellular glutathione levels but was instead dependent on ongoing transcription and seemed attributable to the action of NAC as a reducing agent. Here, we investigate the mechanism by which NAC promotes neuronal survival. We show that NAC activates the Ras-extracellular signal-regulated kinase (ERK) pathway in PC12 cells. Ras activation by NAC seems necessary for survival in that it is unable to sustain serum-deprived PC12 MM17-26 cells constitutively expressing a dominant-negative form of Ras. Promotion of PC12 cell survival by NAC is totally blocked by PD98059, an inhibitor of the ERK-activating MAP kinase/ERK kinase, suggesting a required role for ERK activation in the NAC mechanism. In contrast, LY294002 and wortmannin, inhibitors of phosphatidylinositol 3-kinase (PI3K) that partially block NGF-promoted PC12 cell survival, have no effect on prevention of death by NAC. We hypothesized previously that the ability of NAC to promote survival correlates with its antiproliferative properties. However, although NAC does not protect PC12 MM17-26 cells from loss of trophic support, it does inhibit their capacity to synthesize DNA. Thus, the antiproliferative effect of NAC does not require Ras activation, and inhibition of DNA synthesis is insufficient to mediate NAC-promoted survival. These findings highlight the role of Ras-ERK activation in the mechanism by which NAC prevents neuronal death after loss of trophic support.
Collapse
|
46
|
Webster CR, Anwer MS. Cyclic adenosine monophosphate-mediated protection against bile acid-induced apoptosis in cultured rat hepatocytes. Hepatology 1998; 27:1324-31. [PMID: 9581687 DOI: 10.1002/hep.510270519] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Cyclic adenosine monophosphate (cAMP) has been shown to modulate apoptosis. To evaluate the role of cAMP in bile acid-induced hepatocyte apoptosis, we studied the effect of agents that increase cAMP on the induction of apoptosis by glycochenodeoxycholate (GCDC) in cultured rat hepatocytes. GCDC induced apoptosis in 26.5%+/-1.1% of hepatocytes within 2 hours. Twenty-minute pretreatment of hepatocytes with 100 micromol/L 8-(4-chlorothiophenyl) cAMP (CP-cAMP) resulted in a reduction in the amount of apoptosis to 35.2%+/-3.8% of that seen in hepatocytes treated with GCDC alone. Other agents that increase intracellular cAMP, including dibutyryl cAMP (100 micromol/L), glucagon (200 nmol/L), and a combination of forskolin (20 micromol/L) and 3-isobutyl-1-methylxanthine (20 micromol/L), also inhibited GCDC-induced apoptosis to a similar extent. Pretreatment with the protein kinase A (PKA) inhibitor, KT5720, prevented the protective effect of CP-cAMP and inhibited CP-cAMP-induced activation of PKA activity. Inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin (50 nmol/L), or Ly 294002 (20 micromol/L) also prevented the cytoprotective effect of cAMP. PI3K assays confirmed that wortmannin (50 nmol/L) inhibited PI3K activity, while CP-cAMP had no effect on the activity of this lipid kinase. GCDC increased mitogen-activated protein kinase (MAPK) activity, but had no effect on stress-activated protein kinase (SAPK) activity in hepatocytes. cAMP decreased basal and GCDC-induced MAPK activity and increased SAPK activity. The MAPK kinase inhibitor, PD 98059, inhibited both GCDC-mediated MAPK activation and GCDC-induced apoptosis. IN CONCLUSION 1) agents that increase intracellular cAMP protect against hepatocyte apoptosis induced by hydrophobic bile acids; 2) activation of MAPK by GCDC may be involved in bile acid-induced apoptosis; and 3) cAMP-mediated cytoprotection against bile acid-induced apoptosis appears to involve PKA, MAPK, and PI3K.
Collapse
Affiliation(s)
- C R Webster
- Tufts University School of Veterinary Medicine, North Grafton, MA, USA
| | | |
Collapse
|
47
|
Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. J Neurosci 1998. [PMID: 9526010 DOI: 10.1523/jneurosci.18-08-02933.1998] [Citation(s) in RCA: 425] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent studies have suggested a role for phosphatidylinositol (PI) 3-kinase in cell survival, including the survival of neurons. We used rat sympathetic neurons maintained in vitro to characterize the potential survival signals mediated by PI 3-kinase and to test whether the Akt protein kinase, a putative effector of PI 3-kinase, functions during nerve growth factor (NGF)-mediated survival. Two PI 3-kinase inhibitors, LY294002 and wortmannin, block NGF-mediated survival of sympathetic neurons. Cell death caused by LY294002 resembles death caused by NGF deprivation in that it is blocked by a caspase inhibitor or a cAMP analog and that it is accompanied by the induction of c-jun, c-fos, and cyclin D1 mRNAs. Treatment of neurons with NGF activates endogenous Akt protein kinase, and LY294002 or wortmannin blocks this activation. Expression of constitutively active Akt or PI 3-kinase in neurons efficiently prevents death after NGF withdrawal. Conversely, expression of dominant negative forms of PI 3-kinase or Akt induces apoptosis in the presence of NGF. These results demonstrate that PI 3-kinase and Akt are both necessary and sufficient for the survival of NGF-dependent sympathetic neurons.
Collapse
|
48
|
Gunn-Moore FJ, Tavaré JM. Progress toward understanding the molecular mechanisms of neurotrophic factor signalling. Cell Signal 1998; 10:151-7. [PMID: 9607137 DOI: 10.1016/s0898-6568(97)00114-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Understanding the mechanism of action of the neurotrophic factors is central to unravelling of the mysteries of some of the neurodegenerative disorders. In this review we will discuss recent advances in our understanding of neurotrophic factor signalling in primary cultured neurons, in particular those from the superior cervical and dorsal root ganglia, as well as cerebellar granule cells, cortical neurons and oligodendrocytes.
Collapse
Affiliation(s)
- F J Gunn-Moore
- Department of Biochemistry, School of Medical Sciences, University of Bristol, UK
| | | |
Collapse
|
49
|
Frago LM, León Y, de la Rosa EJ, Gómez-Muñoz A, Varela-Nieto I. Nerve growth factor and ceramides modulate cell death in the early developing inner ear. J Cell Sci 1998; 111 ( Pt 5):549-56. [PMID: 9454729 DOI: 10.1242/jcs.111.5.549] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of normal development involves a dynamic balance of the mechanisms regulating cell division, differentiation and death. We have investigated the signalling mechanisms involved in regulation of the balance between cell proliferation and apoptotic cell death in the otic vesicle. The sphingomyelin pathway signals apoptosis for nerve growth factor upon binding to p75 receptors. It is initiated by sphingomyelin hydrolysis to generate the second messenger ceramide. In the present study, we show that nerve growth factor stimulates sphingomyelin hydrolysis and the concomitant ceramide release in organotypic cultures of otic vesicles. Both nerve growth factor and ceramide induce apoptotic responses to a different extent. Ceramide-induced apoptosis was suppressed by insulin-like growth factor-I which is a strong promoter of cell growth and morphogenesis for the developing inner ear. In contrast, ceramide-1-phosphate protected the explants from apoptosis induced by serum withdrawal but did not antagonise ceramide-induced cell death. This study suggests that sphingomyelin-derived second messengers might be key modulators of programmed cell death during development.
Collapse
Affiliation(s)
- L M Frago
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | | | | | | | | |
Collapse
|
50
|
Abstract
Neurons undergoing apoptosis can be rescued by trophic factors that simultaneously increase the activity of extracellular signal-regulated kinase (ERK) and decrease c-Jun N-terminal kinase (JNK) and p38. We identified a molecule, CEP-1347 (KT7515), that rescues motoneurons undergoing apoptosis and investigated its effect on ERK1 and JNK1 activity. Cultured rat embryonic motoneurons, in the absence of trophic factor, began to die 24-48 hr after plating. During the first 24 hr ERK1 activity was unchanged, whereas JNK1 activity increased fourfold. CEP-1347 completely rescued motoneurons for at least 72 hr with an EC50 of 20 +/- 2 nM. CEP-1347 did not alter ERK1 activity but rapidly inhibited JNK1 activation. The IC50 of CEP-1347 for JNK1 activation was the same as the EC50 for motoneuron survival. Inhibition of JNK1 activation by CEP-1347 was not selective to motoneurons. CEP-1347 also inhibited JNK1 activity in Cos7 cells under conditions of ultraviolet irradiation, osmotic shock, and inhibition of glycosylation. Inhibition by CEP-1347 of the JNK1 signaling pathway appeared to be selective, because CEP-1347 did not inhibit p38-regulated mitogen-activated protein kinase-activated protein kinase-2 (MAPKAP2) activity in Cos7 cells subjected to osmotic shock. The direct molecular target of CEP-1347 was not JNK1, because CEP-1347 did not inhibit JNK1 activity in Cos7 cells cotransfected with MEKK1 and JNK1 cDNA constructs. This is the first demonstration of a small organic molecule that promotes motoneuron survival and that simultaneously inhibits the JNK1 signaling cascade.
Collapse
|