1
|
Yadav P, Podia M, Kumari SP, Mani I. Glutamate receptor endocytosis and signaling in neurological conditions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:167-207. [PMID: 36813358 DOI: 10.1016/bs.pmbts.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The non-essential amino acid glutamate acts as a major excitatory neurotransmitter and plays a significant role in the central nervous system (CNS). It binds with two different types of receptors, ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs), responsible for the postsynaptic excitation of neurons. They are important for memory, neural development and communication, and learning. Endocytosis and subcellular trafficking of the receptor are essential for the regulation of receptor expression on the cell membrane and excitation of the cells. The endocytosis and trafficking of the receptor are dependent on its type, ligand, agonist, and antagonist present. This chapter discusses the types of glutamate receptors, their subtypes, and the regulation of their internalization and trafficking. The roles of glutamate receptors in neurological diseases are also briefly discussed.
Collapse
Affiliation(s)
- Prerna Yadav
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Mansi Podia
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Shashi Prabha Kumari
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
2
|
Pomierny-Chamioło L, Rup K, Pomierny B, Niedzielska E, Kalivas PW, Filip M. Metabotropic glutamatergic receptors and their ligands in drug addiction. Pharmacol Ther 2014; 142:281-305. [DOI: 10.1016/j.pharmthera.2013.12.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023]
|
3
|
Huynh N, Jeffrey BG, Turriff A, Sieving PA, Cukras CA. Sorting out co-occurrence of rare monogenic retinopathies: Stargardt disease co-existing with congenital stationary night blindness. Ophthalmic Genet 2014; 35:51-6. [PMID: 24397708 DOI: 10.3109/13816810.2013.865762] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Inherited retinal diseases are uncommon, and the likelihood of having more than one hereditary disorder is rare. Here, we report a case of Stargardt disease and congenital stationary night blindness (CSNB) in the same patient, and the identification of two novel in-frame deletions in the GRM6 gene. MATERIALS AND METHODS The patient underwent an ophthalmic exam and visual function testing including: visual acuity, color vision, Goldmann visual field, and electroretinography (ERG). Imaging of the retina included fundus photography, spectral-domain optical coherence tomography (OCT), and fundus autofluorescence. Genomic DNA was PCR-amplified for analysis of all coding exons and flanking splice sites of both the ABCA4 and GRM6 genes. RESULTS A 46-year-old woman presented with recently reduced central vision and clinical findings of characteristic yellow flecks consistent with Stargardt disease. However, ERG testing revealed an ERG phenotype unusual for Stargardt disease but consistent with CSNB1. Genetic testing revealed two previously reported mutations in the ABCA4 gene and two novel deletions in the GRM6 gene. CONCLUSIONS Diagnosis of concurrent Stargardt disease and CSNB was made on the ophthalmic history, clinical examination, ERG, and genetic testing. This case highlights that clinical tests need to be taken in context, and that co-existing retinal dystrophies and degenerations should be considered when clinical impressions and objective data do not correlate.
Collapse
Affiliation(s)
- Nancy Huynh
- National Eye Institute, National Institutes of Health , Bethesda, MD , USA
| | | | | | | | | |
Collapse
|
4
|
Dhingra A, Vardi N. "mGlu Receptors in the Retina" - WIREs Membrane Transport and Signaling. WILEY INTERDISCIPLINARY REVIEWS. MEMBRANE TRANSPORT AND SIGNALING 2012; 1:641-653. [PMID: 24003403 PMCID: PMC3755759 DOI: 10.1002/wmts.43] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glutamate, a key neurotransmitter in the vertebrate retina, acts via ionotropic and metabotropic receptors. Retina expresses mRNA for all metabotropic glutamate receptors and proteins for all but mGluR3. Every retinal cell class expresses one or more of these receptors. In general, these receptors are present presynaptically and serve to modulate synaptic transmission. While mGluRs on the photoreceptor terminal act as autoreceptors to titer glutamate levels, those on horizontal cell processes seem to shape the light response. Similarly, autoreceptors on bipolar axon terminals modulate glutamate release and the receptors on amacrine and ganglion cells modulate feedforward signals by modulating K+ or Ca2+ current to fine tune light responses. Since most of the mGluR sub-types are present in amacrine and ganglion cells that belong to many cell types, the pathways downstream of mGluRs are highly diverse with primarily modulatory effects. An exception to most mGluRs which have modulatory function is mGluR6 because it plays a key role in the feedforward transmission from photoreceptors to ON bipolar cells and is also required for the correct localization of the synaptic proteins in the dendritic tips. In humans, mutations in the gene encoding mGluR6 cause autosomal recessive night blindness. In addition, mGluRs appear to play a trophic role in development and after retinal damage, suggesting potential future therapeutic implications.
Collapse
|
5
|
Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 2010; 60:1017-41. [PMID: 21036182 DOI: 10.1016/j.neuropharm.2010.10.022] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/15/2010] [Accepted: 10/21/2010] [Indexed: 12/24/2022]
Abstract
Metabotropic glutamate (mGlu) receptors were discovered in the mid 1980s and originally described as glutamate receptors coupled to polyphosphoinositide hydrolysis. Almost 6500 articles have been published since then, and subtype-selective mGlu receptor ligands are now under clinical development for the treatment of a variety of disorders such as Fragile-X syndrome, schizophrenia, Parkinson's disease and L-DOPA-induced dyskinesias, generalized anxiety disorder, chronic pain, and gastroesophageal reflux disorder. Prof. Erminio Costa was linked to the early times of the mGlu receptor history, when a few research groups challenged the general belief that glutamate could only activate ionotropic receptors and all metabolic responses to glutamate were secondary to calcium entry. This review moves from those nostalgic times to the most recent advances in the physiology and pharmacology of mGlu receptors, and highlights the role of individual mGlu receptor subtypes in the pathophysiology of human disorders. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- F Nicoletti
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Zeitz C, Forster U, Neidhardt J, Feil S, Kälin S, Leifert D, Flor PJ, Berger W. Night blindness-associated mutations in the ligand-binding, cysteine-rich, and intracellular domains of the metabotropic glutamate receptor 6 abolish protein trafficking. Hum Mutat 2007; 28:771-80. [PMID: 17405131 DOI: 10.1002/humu.20499] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mutations in the GRM6 gene, which encodes the metabotropic glutamate receptor 6 (mGluR6), lead to autosomal recessive congenital stationary night blindness (CSNB), which is characterized by loss of night vision due to a defect in signal transmission from photoreceptor to the adjacent ON-bipolar cells in the retina. So far, the sequence variations that have been described in six different families include nonsense, frameshift, and missense mutations. Here we investigated the impact of missense mutations in the ligand-binding domain, a conserved cysteine-rich domain, and the intracellular domain on the localization of the protein. We visualized and discriminated between surface and intracellular protein. Here we demonstrate that the wild-type (wt) protein localizes to the cell surface, and to endoplasmic reticulum (ER) and Golgi compartments. This also holds true for a mGluR6 variant containing a polymorphic, nondisease-associated amino acid exchange in the ligand-binding domain. In contrast, all disease-associated missense mutations lead to retention of the protein in the ER, while dimerization seems not to be affected. This is the first report that shows that CSNB-associated mutations in three different domains of mGluR6 abolish proper protein trafficking. We propose that the ligand-binding and the poorly characterized cysteine-rich domains, in addition to the intracellular domains, have a pivotal role in correct trafficking of metabotropic glutamate receptors to the cell surface.
Collapse
Affiliation(s)
- Christina Zeitz
- Institute of Medical Genetics, Division of Medical Molecular Genetics and Gene Diagnostics, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Hashimoto T, Zhang XM, Yi-kuang Chen B, Yang XJ. VEGF activates divergent intracellular signaling components to regulate retinal progenitor cell proliferation and neuronal differentiation. Development 2006; 133:2201-10. [PMID: 16672338 PMCID: PMC7060787 DOI: 10.1242/dev.02385] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During vertebrate neurogenesis, multiple extracellular signals influence progenitor cell fate choices. The process by which uncommitted progenitor cells interpret and integrate signals is not well understood. We demonstrate here that in the avascular chicken retina, vascular endothelial growth factor (VEGF) secreted by postmitotic neurons acts through the FLK1 receptor present on progenitor cells to influence cell proliferation and commitment. Augmenting VEGF signals increases progenitor cell proliferation and decreases retinal ganglion cell genesis. Conversely, absorbing endogenous VEGF ligand or disrupting FLK1 activity attenuates cell proliferation and enhances retinal ganglion cell production. In addition, we provide evidence that VEGF signals transmitted by the FLK1 receptor activate divergent intracellular signaling components, which regulate different responses of progenitor cells. VEGF-induced proliferation is influenced by the MEK-ERK pathway, as well as by the basic helix-loop-helix factor HES1. By contrast, VEGF-dependent ganglion cell suppression does not require MEK-ERK activation, but instead relies on VEGF-stimulated HES1 activity, which is independent of NOTCH signaling. Moreover, elevated HES1 expression promotes progenitor cell proliferation and prevents overproduction of retinal ganglion cells owing to the loss of VEGF or sonic hedgehog (SHH), another signal that suppresses ganglion cell development. Based on previous and current findings, we propose that HES1 serves as a convergent signaling node within early retinal progenitor cells to integrate various cell-extrinsic cues, including VEGF and SHH, in order to control cell proliferation and neuronal specification.
Collapse
Affiliation(s)
- Takao Hashimoto
- Jules Stein Eye Institute and Department of Ophthalmology, Molecular Biology Institute, University of California, David Geffen School of Medicine, 100 Stein Plaza Los Angeles, CA 90095, USA
| | - Xiang-Mei Zhang
- Jules Stein Eye Institute and Department of Ophthalmology, Molecular Biology Institute, University of California, David Geffen School of Medicine, 100 Stein Plaza Los Angeles, CA 90095, USA
| | | | - Xian-Jie Yang
- Jules Stein Eye Institute and Department of Ophthalmology, Molecular Biology Institute, University of California, David Geffen School of Medicine, 100 Stein Plaza Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Dryja TP, McGee TL, Berson EL, Fishman GA, Sandberg MA, Alexander KR, Derlacki DJ, Rajagopalan AS. Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc Natl Acad Sci U S A 2005; 102:4884-9. [PMID: 15781871 PMCID: PMC555731 DOI: 10.1073/pnas.0501233102] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report three unrelated patients with mutations in the GRM6 gene that normally encodes the glutamate receptor mGluR6. This neurotransmitter receptor has been shown previously to be present only in the synapses of the ON bipolar cell dendrites, and it mediates synaptic transmission from rod and cone photoreceptors to this type of second-order neuron. Despite the synaptic defect, best visual acuities were normal or only moderately reduced (20/15 to 20/40). The patients were night blind from an early age, and when maximally dark-adapted, they could perceive lights only with an intensity equal to or slightly dimmer than that normally detected by the cone system (i.e., 2-3 log units above normal). Electroretinograms (ERGs) in response to single brief flashes of light had clearly detectable a-waves, which are derived from photoreceptors, and greatly reduced b-waves, which are derived from the second-order inner retinal neurons. ERGs in response to sawtooth flickering light indicated a markedly reduced ON response and a nearly normal OFF response. There was no subjective delay in the perception of suddenly appearing white vs. black objects on a gray background. These patients exemplify a previously unrecognized, autosomal recessive form of congenital night blindness associated with a negative ERG waveform.
Collapse
Affiliation(s)
- Thaddeus P Dryja
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Normal visual development requires: 1) environmental factors (i.e. sensory experience) and 2) molecular programs that are genetically determined. Experience determines the development and preservation of visual cortical circuitry in accordance with Hebb's principle. The molecular and genetic mechanisms that regulate visual plasticity are less known. Visual experience induces postnatal neural activity that triggers a cascade of molecular processes including release of neurotrophic factors from target neurons and genetic expression of protein synthesis, transcription factors and neurotransmitters. The continuous sensory experience induces activity-dependent tuning of synaptic connections. The present knowledge permits some manipulation of plasticity and the induction of functional changes beneficial for vision. Three areas of intervention will be discussed: 1) enhancement of visual experience for children with ocular disorders, 2) re-organization of visual cortical maps, 3) retinal and cortical implants (prostheses) and transplants.
Collapse
|
10
|
Yang XL. Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol 2004; 73:127-50. [PMID: 15201037 DOI: 10.1016/j.pneurobio.2004.04.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2003] [Accepted: 04/12/2004] [Indexed: 11/16/2022]
Abstract
Glutamate and gamma-aminobutyric acid (GABA) are major excitatory and inhibitory neurotransmitters in the vertebrate retina, "a genuine neural center" (Ramón y Cajal, 1964, Recollections of My Life, C.E. Horne (Translater) MIT Press, Cambridge, MA). Photoreceptors, generating visual signals, and bipolar cells, mediating signal transfer from photoreceptors to ganglion cells, both release glutamate, which induces and/or changes the activity of the post-synaptic neurons (horizontal and bipolar cells for photoreceptors; amacrine and ganglion cells for bipolar cells). Horizontal and amacrine cells, which mediate lateral interaction in the outer and inner retina respectively, use GABA as a principal neurotransmitter. In recent years, glutamate receptors and GABA receptors in the retina have been extensively studied, using multi-disciplinary approaches. In this article some important advances in this field are reviewed, with special reference to retinal information processing. Photoreceptors possess metabotropic glutamate receptors and several subtypes of GABA receptors. Most horizontal cells express AMPA receptors, which may be predominantly assembled from flop slice variants. In addition, these cells also express GABAA and GABAC receptors. Signal transfer from photoreceptors to bipolar cells is rather complicated. Whereas AMPA/KA receptors mediate transmission for OFF type bipolar cells, several subtypes of glutamate receptors, both ionotropic and metabotropic, are involved in the generation of light responses of ON type bipolar cells. GABAA and GABAC receptors with distinct kinetics are differentially expressed on dendrites and axon terminals of both ON and OFF bipolar cells, mediating inhibition from horizontal cells and amacrine cells. Amacrine cells possess ionotropic glutamate receptors, whereas ganglion cells express both ionotropic and metabotropic glutamate receptors. GABAA receptors exist in amacrine and ganglion cells. Physiological data further suggest that GABAC receptors may be involved in the activity of these neurons. Moreover, responses of these retinal third order neurons are modulated by GABAB receptors, and in ganglion cells there exist several subtypes of GABAB receptors. A variety of glutamate receptor and GABA receptor subtypes found in the retina perform distinct functions, thus providing a wide range of neural integration and versatility of synaptic transmission. Perspectives in this research field are presented.
Collapse
Affiliation(s)
- Xiong-Li Yang
- Institute of Neurobiology, Fudan University, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
11
|
Corti C, Clarkson RWE, Crepaldi L, Sala CF, Xuereb JH, Ferraguti F. Gene structure of the human metabotropic glutamate receptor 5 and functional analysis of its multiple promoters in neuroblastoma and astroglioma cells. J Biol Chem 2003; 278:33105-19. [PMID: 12783878 DOI: 10.1074/jbc.m212380200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metabotropic glutamate receptor 5 (mGluR5) has a discrete tissue expression mainly limited to neural cells. Expression of mGluR5 is developmentally regulated and undergoes dramatic changes in association with neuropathological disorders. We report the complete genomic structure of the mGluR5 gene, which is composed of 11 exons and encompasses approximately 563 kbp. Three clusters of multiple transcription initiation sites located on three distinct exons (IA, IB, and II), which undergo alternative splicing, have been identified. The 5'-flanking regions of these exons were isolated and, using a luciferase reporter gene assay, shown to possess active promoter elements in SKN-MC neuroblastoma and U178-MG astroglioma cells. Promoter IA was characterized by a CpG island; promoter IB contained a TATA box, and promoter II possessed three active Oct-1-binding sites. Preferential luciferase activity was observed in SKN-MC concomitant with differential DNA binding activity to several responsive elements, including CREB, Oct-1, C/EBP, and Brn-2. Exposure to growth factors produced enhanced expression of promoters IB and II in astroglioma cells and activation of NF-kappa B. These results suggest that alternative 5'-splicing and usage of multiple promoters may contribute regulatory mechanisms for tissue- and context-specific expression of the mGluR5 gene.
Collapse
MESH Headings
- 5' Untranslated Regions
- Alternative Splicing
- Animals
- Astrocytoma/metabolism
- Base Sequence
- Binding Sites
- Blotting, Northern
- Brain/metabolism
- CHO Cells
- CpG Islands
- Cricetinae
- DNA/metabolism
- DNA, Complementary/metabolism
- Databases as Topic
- Exons
- Gene Expression Regulation
- Genes, Reporter
- Humans
- Luciferases/metabolism
- Mice
- Models, Genetic
- Molecular Sequence Data
- NF-kappa B/metabolism
- Neuroblastoma/metabolism
- Oligonucleotides/chemistry
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/metabolism
- Rats
- Receptor, Metabotropic Glutamate 5
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleases/metabolism
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Corrado Corti
- Cambridge Brain Bank Laboratory, Department of Pathology, University of Cambridge, Level 3 Laboratory Block Addenbrooke's Hospital, Hills Road, CB2 2QQ Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
12
|
Hashimoto T, Zhang XM, Yang XJ. Expression of the Flk1 receptor and its ligand VEGF in the developing chick central nervous system. Gene Expr Patterns 2003; 3:109-13. [PMID: 12609612 PMCID: PMC7048375 DOI: 10.1016/s1567-133x(02)00065-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The receptor tyrosine kinase Flk1 is known to mediate signals of vascular endothelial growth factor (VEGF) during vasculogenesis and hematopoiesis. We demonstrate by in situ hybridization that in addition to endothelial cells, chick Flk1 mRNA is also expressed in the notochord and in the neural epithelial cells of the ventral diencephalon, hindbrain, and spinal cord. During the development of the avascular chick retina, Flk1 mRNA is detected in the proliferative zone of the neural epithelium, whereas the VEGF ligand is expressed by differentiated retinal ganglion cells. Moreover, expression patterns of Flk1 in the retina are conserved among chick, quail and mouse, thus suggesting a distinct role of Flk1 and VEGF in the development of the vertebrate central nervous system.
Collapse
Affiliation(s)
| | | | - Xian-Jie Yang
- Jules Stein Eye Institute and Department of Ophthalmology, Molecular Biology Institute, University of California School of Medicine, 100 Stein Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Hermans E, Challiss RA. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J 2001; 359:465-84. [PMID: 11672421 PMCID: PMC1222168 DOI: 10.1042/0264-6021:3590465] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In 1991 a new type of G-protein-coupled receptor (GPCR) was cloned, the type 1a metabotropic glutamate (mGlu) receptor, which, despite possessing the defining seven-transmembrane topology of the GPCR superfamily, bore little resemblance to the growing number of other cloned GPCRs. Subsequent studies have shown that there are eight mammalian mGlu receptors that, together with the calcium-sensing receptor, the GABA(B) receptor (where GABA is gamma-aminobutyric acid) and a subset of pheromone, olfactory and taste receptors, make up GPCR family C. Currently available data suggest that family C GPCRs share a number of structural, biochemical and regulatory characteristics, which differ markedly from those of the other GPCR families, most notably the rhodopsin/family A GPCRs that have been most widely studied to date. This review will focus on the group I mGlu receptors (mGlu1 and mGlu5). This subgroup of receptors is widely and differentially expressed in neuronal and glial cells within the brain, and receptor activation has been implicated in the control of an array of key signalling events, including roles in the adaptative changes needed for long-term depression or potentiation of neuronal synaptic connectivity. In addition to playing critical physiological roles within the brain, the mGlu receptors are also currently the focus of considerable attention because of their potential as drug targets for the treatment of a variety of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- E Hermans
- Laboratoire de Pharmacologie, Université Catholique de Louvain (54.10), B-1200 Brussels, Belgium.
| | | |
Collapse
|
14
|
Martin SC, Russek SJ, Farb DH. Human GABA(B)R genomic structure: evidence for splice variants in GABA(B)R1 but not GABA(B)R2. Gene 2001; 278:63-79. [PMID: 11707323 DOI: 10.1016/s0378-1119(01)00678-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The type B gamma-aminobutryic acid receptor (GABA(B)R) is a G protein coupled receptor that mediates slow pre- and post-synaptic inhibition in the nervous system. We find that the human GABA(B)R2 gene spans greater than 350 kb and contains 2.8 kb of coding region in 19 exons. The overall similarity in genomic structure with regard to conservation of intron position and exon size between human or Drosophila GABA(B)R1 and GABA(B)R2 genes suggests a common ancestral origin. Multiple transcripts GABA(B)R1a-c and GABA(B)R2a-c have been described and alternative splicing has been proposed to result in GABA(B)R1c, GABA(B)R2b and GABA(B)R2c. The results described here provide support for the existence of GABA(B)R1c but not for GABA(B)R2b and GABA(B)R2c. Splice junctions present in the GABA(B)R1 gene sequence are consistent with the formation of GABA(B)R1c by exon skipping of one sushi domain module. The GABA(B)R2 gene lacks canonical splice junctions for the reported variants. Consistent with this, RNA analysis demonstrates the presence of GABA(B)R1c and GABA(B)R2 transcripts in fetal and adult human brain RNA but GABA(B)R2b and GABA(B)R2c transcripts are not detected. These results provide insight into the evolution and transcript diversity of the mammalian GABA(B)R genes.
Collapse
Affiliation(s)
- S C Martin
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118-2394, USA
| | | | | |
Collapse
|
15
|
Fitzgerald KM, Hashimoto T, Hug TE, Cibis GW, Harris DJ. Autosomal dominant inheritance of a negative electroretinogram phenotype in three generations. Am J Ophthalmol 2001; 131:495-502. [PMID: 11292414 DOI: 10.1016/s0002-9394(00)00849-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE We report an abnormal electroretinogram with a negative configuration in a child who presented with moderate myopia, nystagmus, and visual developmental delay. We investigated the electroretinogram and explored the possibility of a metabotropic glutamate receptor subtype 6 mutation in six family members spanning four generations. METHODS Case report and family study: Complete eye examinations and Ganzfeld electroretinograms were recorded from the maternal great-grandmother, maternal grandmother, mother, uncle, and sibling of the 7-month-old female proband. The electroretinogram was repeated in the proband at 17 months of age. Dark adaptometry was performed in all adult subjects. Fundus photographs and visual field examinations were administered to the grandmother and mother. The metabotropic glutamate receptor subtype 6 gene was amplified and sequenced in all affected subjects. RESULTS The proband had a negative electroretinogram and a normal fundus. The maternal grandmother, uncle, and mother had an abnormal electroretinogram identical to the proband yet had no visual complaints. The ophthalmology examinations in the adult subjects were normal, and subsequent examination of the proband at 17 months, 5 years, and 6.5 years of age showed no changes in the fundus or refractive error. Her nystagmus resolved by 5 years of age. Rod threshold and visual fields were normal in the affected adult subjects. No mutation in the metabotropic glutamate receptor subtype 6 gene was found. CONCLUSIONS In this family, a negative electroretinogram was not associated with decreased rod threshold, visual acuity loss, visual field loss, muscle disease, or metabotropic glutamate receptor subtype 6 mutation. Additional study will be required to understand the nature of the negative electroretinogram phenotype in this family.
Collapse
Affiliation(s)
- K M Fitzgerald
- Vision Science Laboratory, The Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri 64108-9898, USA.
| | | | | | | | | |
Collapse
|
16
|
Wong CG, Scherer SW, Snead OC, Hampson DR. Localization of the human mGluR4 gene within an epilepsy susceptibility locus(1). BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 87:109-16. [PMID: 11223165 DOI: 10.1016/s0169-328x(00)00283-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The family of metabotropic glutamate receptors (mGluRs) consists of eight homologous G-protein coupled receptors. Several of the mGluRs, including the mGluR4 receptor subtype, are localized presynaptically; activation of this receptor induces an inhibition of neurotransmitter release from nerve terminals. Disruption of the mGluR4 gene in mice results in impaired motor and spatial learning, and alterations in seizure susceptibility. In this study, we have determined the structure of the human mGluR4 gene, as well as its chromosomal localization. A comparison of the gene structure of mGluR4 with the highly homologous mGluR6 receptor subtype reveals that both of the genes contain ten exons with similar exon/intron boundaries. A refined localization of mGluR4 was carried out by constructing a bacterial artificial chromosome clone contig of the region surrounding the gene. Thirteen sequence tagged sites (STSs) were identified within this contig. The gene was localized to chromosome 6 band p21.3 by fluorescence in situ hybridization (FISH). The mapping of the mGluR4 gene indicates that it is approximately 1 megabases centromeric of the major histocompatibility complex and 5 megabase from the GABA(B)R1 gene. The mGluR4 gene also falls within a susceptibility locus for juvenile myoclonic epilepsy suggesting a potential link to this form of epilepsy.
Collapse
Affiliation(s)
- C G Wong
- Department of Pharmacology, University of Toronto, Ontario, Toronto, Canada
| | | | | | | |
Collapse
|
17
|
Valerio A, Ferraboli S, Paterlini M, Spano P, Barlati S. Identification of novel alternatively-spliced mRNA isoforms of metabotropic glutamate receptor 6 gene in rat and human retina. Gene 2001; 262:99-106. [PMID: 11179672 DOI: 10.1016/s0378-1119(00)00547-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Novel splice variants of metabotropic glutamate receptor type 6 (mGlu6 receptor) were identified by reverse transcription-polymerase chain reaction (RT-PCR) amplification and sequence analysis of rat and human retina cDNAs. The new rat mGlu6 receptor mRNA isoform is characterized by an additional exon of 88 nucleotides containing an in frame stop codon, thus predicting the expression of a truncated protein of 508 amino acids. The human retina was found to express two different mGlu6 receptor mRNA variants: one lacking 97 nucleotides from exon 6, the other including five nucleotides of intron 5. These mRNAs would encode truncated receptors of 425 and 405 amino acids, respectively. Both in rats and in humans, the truncated mGlu6 receptor proteins would comprise the extracellular domain but lack the transmembrane and intracellular portion of the receptor, thus possibly acting as retinal soluble receptors for glutamate. Though generated by different patterns of alternative splicing, the inter-species conservation of truncated mGlu receptor molecules strongly suggest their relevance in the regulatory network of glutamatergic neurotransmission.
Collapse
Affiliation(s)
- A Valerio
- Division of Biology and Genetics, Department of Biomedical Sciences & Biotechnologies, Brescia University Medical School, Via Valsabbina 19, 25123, Brescia, Italy
| | | | | | | | | |
Collapse
|
18
|
Corti C, Sala CF, Yang F, Corsi M, Xuereb JH, Ferraguti F. Genomic organization of the human metabotropic glutamate receptor subtype 3. J Neurogenet 2000; 14:207-25, 271. [PMID: 11342382 DOI: 10.3109/01677060009084499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, the genomic organization of the human metabotropic glutamate receptor subtype 3 (mGluR3) gene has been determined. We have identified two transcription initiation sites and the polyadenylation signal by using 5'-rapid amplification of cDNA ends (RACE) and 3'-RACE, respectively. The exon/intron organization of the human mGluR3 gene revealed the presence of 6 exons separated by 5 introns. The size of introns varied from 10.4 to 120 kbp that contained consensus sequences for repetitive elements such as Alu and long interspersed elements. A putative promoter region flanking the 5' sequence of exon 1 was identified by computer-aided analysis. The putative promoter region was characterized by the presence of a CAAT and GC box, and the absence of a TATA box or CpG islands. Several putative binding sites for transcription factors were also identified. In addition, we have isolated, from a mouse genomic library, part of the mouse mGluR3 gene and found it to correspond to exon 2 in the human mGluR3 gene. The mouse mGluR3 gene was then mapped by fluorescent in situ hybridization analysis to chromosome 5qA2.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chromosome Mapping
- Chromosomes, Human, Pair 7
- Data Interpretation, Statistical
- Electronic Data Processing
- Genomic Library
- Humans
- In Situ Hybridization, Fluorescence
- Mice
- Molecular Sequence Data
- Nucleic Acid Amplification Techniques
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- Receptors, Metabotropic Glutamate/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- C Corti
- Biology Department, GlaxoWellcome Medicines Research Centre, Via Fleming 4, 37135 Verona, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T, Nakanishi S, Jingami H, Morikawa K. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 2000; 407:971-7. [PMID: 11069170 DOI: 10.1038/35039564] [Citation(s) in RCA: 898] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The metabotropic glutamate receptors (mGluRs) are key receptors in the modulation of excitatory synaptic transmission in the central nervous system. Here we have determined three different crystal structures of the extracellular ligand-binding region of mGluR1--in a complex with glutamate and in two unliganded forms. They all showed disulphide-linked homodimers, whose 'active' and 'resting' conformations are modulated through the dimeric interface by a packed alpha-helical structure. The bi-lobed protomer architectures flexibly change their domain arrangements to form an 'open' or 'closed' conformation. The structures imply that glutamate binding stabilizes both the 'active' dimer and the 'closed' protomer in dynamic equilibrium. Movements of the four domains in the dimer are likely to affect the separation of the transmembrane and intracellular regions, and thereby activate the receptor. This scheme in the initial receptor activation could be applied generally to G-protein-coupled neurotransmitter receptors that possess extracellular ligand-binding sites.
Collapse
Affiliation(s)
- N Kunishima
- Department of Structural Biology, Biomolecular Engineering Research Institute, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
We prepared antibodies selective for the C-terminus of the human mGluR6 receptor and used confocal and electron microscopy to study the patterns of immunostaining in retina of monkey, cat, and rabbit. In all three species punctate stain was restricted to the outer plexiform layer. In monkey, stain was always observed in the central element of the postsynaptic "triad" of rod and cone terminals. In monkey peripheral retina, stain was seen only in central elements, but in the fovea, stain was also observed in some dendrites contacting the base of the cone terminal. S-cone terminals, identified by staining for S opsin, showed staining of postsynaptic dendrites. These were identified as dendrites of the ON S-cone bipolar cell by immunostaining for the marker cholecystokinin precursor. The staining pattern suggests that all types of ON bipolar cells, despite their marked differences in function, express a single isoform of mGluR6. Ultrastructurally, mGluR6 was located not on the tip of the central element, near the site of vesicle release, but on its base at the mouth of the invagination, 400-800 nm from the release site. Thus, the mGluR6 receptors of ON bipolar cells lie at about the same distance from sites of vesicle release as the iGluR receptors of OFF bipolar cells at the basal contacts.
Collapse
Affiliation(s)
- N Vardi
- Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | | | |
Collapse
|
21
|
Caramelo OL, Santos PF, Carvalho AP, Duarte CB. Metabotropic glutamate receptors modulate [(3)H]acetylcholine release from cultured amacrine-like neurons. J Neurosci Res 1999; 58:505-14. [PMID: 10533043 DOI: 10.1002/(sici)1097-4547(19991115)58:4<505::aid-jnr4>3.0.co;2-j] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retinal amacrine cells express metabotropic glutamate receptors (mGluRs), but their physiological role is unknown. We investigated the effect of mGluR on [(3)H]acetylcholine release ([(3)H]ACh) from cultured chick amacrine-like neurons. Activation of group III mGluR with the agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4) inhibited [(3)H]ACh release evoked by 25 mM KCl in a dose-dependent manner, and this effect was sensitive to pertussis toxin. In contrast, activation of group I or II mGluR with (S)-3, 5-dihydroxyphenylglycine (DHPG) and (2S,2'R,3'R)-2-(2', 3'-dicarboxycyclopropyl)glycine (DCG-IV), respectively, did not affect significantly [(3)H]ACh release. The effect of L-AP4 on [(3)H]ACh release was sensitive to nitrendipine, suggesting that it is, at least in part, due to inhibition of L-type Ca(2+) channels. Activation of group III mGluR also partly inhibited omega-conotoxin GVIA-sensitive Ca(2+) channels, coupled to [(3)H]ACh release. The L-AP4 did not affect the cAMP levels measured in amacrine-like neurons depolarized with 25 mM KCl or stimulated with forskolin, indicating that the effect of group III mGluR on [(3)H]ACh release is not due to inhibition of adenylyl cyclase activity. Inhibition of protein kinase A with KT-5720 was without effect on [(3)H]ACh release evoked by 25 mM KCl, further indicating that the effect of group III mGluR on [(3)H]ACh release cannot be attributed to the inhibition of the kinase. The effect of L-AP4 on [(3)H]ACh release was reversed by DHPG or by DCG-IV, and activation of group II mGluR also partially inhibited cAMP production stimulated by forskolin. Taken together, our results show that the effect of group III mGluR on [(3)H]ACh release may be due to a direct inhibition of L- and N-type Ca(2+) channels and is modulated by group I and group II mGluR.
Collapse
Affiliation(s)
- O L Caramelo
- Center for Neuroscience of Coimbra, Department of Zoology, University of Coimbra, Coimbra, Portugal
| | | | | | | |
Collapse
|
22
|
Schoepp DD, Jane DE, Monn JA. Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 1999; 38:1431-76. [PMID: 10530808 DOI: 10.1016/s0028-3908(99)00092-1] [Citation(s) in RCA: 831] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Metabotropic (G-protein-coupled) glutamate (mGlu) receptors have now emerged as a recognized, but still relatively new area of excitatory amino acid research. Current understanding of the roles and involvement of mGlu receptor subtypes in physiological/pathophysiological functions of the central nervous system has been recently propelled by the emergence of various structurally novel, potent, and mGlu receptor selective pharmacological agents. This article reviews the evolution of pharmacological agents that have been reported to target mGlu receptors, with a focus on the known receptor subtype selectivities of current agents.
Collapse
Affiliation(s)
- D D Schoepp
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | |
Collapse
|
23
|
Gafka AC, Vogel KS, Linn CL. Evidence of metabotropic glutamate receptor subtypes found on catfish horizontal and bipolar retinal neurons. Neuroscience 1999; 90:1403-14. [PMID: 10338307 DOI: 10.1016/s0306-4522(98)00512-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used electrophysiological, pharmacological and immunological techniques to determine which classes of metabotropic glutamate receptors exist on cone horizontal cells in the catfish retina. Patch-clamp recordings in acutely dissociated cone horizontal cells provide evidence that group I and III metabotropic glutamate receptors exist, and are linked to modulation of a voltage-gated calcium current. Group II metabotropic glutamate receptor agonists did not affect the calcium current. Immunocytochemical techniques were used to study the localization of metabotropic glutamate receptor subtypes found in the catfish retina. Antibodies raised against group I (metabotropic glutamate receptor 1alpha, metabotropic glutamate receptor 5), group II (metabotropic glutamate receptor 2/3) and group III (metabotropic glutamate receptor 6) metabotropic glutamate receptor subtypes were used to label acutely dissociated horizontal, bipolar and Müller cells. Results from immunostaining provide evidence that cone horizontal cells express group I (metabotropic glutamate receptor 1alpha, metabotropic glutamate receptor 5) and group III (metabotropic glutamate receptor 6), but not group II (metabotropic glutamate receptor 2/3) receptor subtypes, consistent with our electrophysiological results. Cone horizontal cells exposed to anti-metabotropic glutamate receptor 1alpha, 5 or 6 antibodies all demonstrated diffuse overall staining, with patches of dark immunostaining found on both dendritic processes and cell somata. In catfish bipolar cells, all four of the anti-metabotropic glutamate receptor antibodies stained the processes and cell bodies of bipolar cells homogeneously. There was no evidence for a group of bipolar cells that did not stain with the antimetabotropic glutamate receptor antibodies, although the densest immunostaining occurred when bipolar cells were incubated with the anti-metabotropic glutamate receptor 6 antibody. Müller cells did not show immunostaining against any anti-metabotropic glutamate receptor antibody. Our non-immune controls confirmed that immunostaining was specific for the antigen, and immunoblots were performed to demonstrate the specificity of the antibodies in catfish retina. These results support the hypothesis that group I and III metabotropic glutamate receptor subtypes are found on catfish horizontal cells, and group I, II and III metabotropic glutamate receptor subtypes are expressed on catfish bipolar cells. The metabotropic glutamate receptors on catfish cone horizontal cells act to modulate the voltage-gated sustained calcium current found on these cells.
Collapse
Affiliation(s)
- A C Gafka
- Department of Cell Biology and Anatomy, Louisiana State University Medical Center, New Orleans 70112, USA
| | | | | |
Collapse
|
24
|
Cacabelos R, Takeda M, Winblad B. The glutamatergic system and neurodegeneration in dementia: preventive strategies in Alzheimer's disease. Int J Geriatr Psychiatry 1999; 14:3-47. [PMID: 10029935 DOI: 10.1002/(sici)1099-1166(199901)14:1<3::aid-gps897>3.0.co;2-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- R Cacabelos
- Institute for CNS Disorders, EuroEspes Biomedical Research Center, La Coruña, Spain.
| | | | | |
Collapse
|
25
|
Brinkmann U, Vasmatzis G, Lee B, Yerushalmi N, Essand M, Pastan I. PAGE-1, an X chromosome-linked GAGE-like gene that is expressed in normal and neoplastic prostate, testis, and uterus. Proc Natl Acad Sci U S A 1998; 95:10757-62. [PMID: 9724777 PMCID: PMC27968 DOI: 10.1073/pnas.95.18.10757] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/1998] [Indexed: 11/18/2022] Open
Abstract
We have used a combination of computerized database mining and experimental expression analyses to identify a gene that is preferentially expressed in normal male and female reproductive tissues, prostate, testis, fallopian tube, uterus, and placenta, as well as in prostate cancer, testicular cancer, and uterine cancer. This gene is located on the human X chromosome, and it is homologous to a family of genes encoding GAGE-like proteins. GAGE proteins are expressed in a variety of tumors and in testis. We designate the novel gene PAGE-1 because the expression pattern in the Cancer Genome Anatomy Project libraries indicates that it is predominantly expressed in normal and neoplastic prostate. Further database analysis indicates the presence of other genes with high homology to PAGE-1, which were found in cDNA libraries derived from testis, pooled libraries (with testis), and in a germ cell tumor library. The expression of PAGE-1 in normal and malignant prostate, testicular, and uterine tissues makes it a possible target for the diagnosis and possibly for the vaccine-based therapy of neoplasms of prostate, testis, and uterus.
Collapse
Affiliation(s)
- U Brinkmann
- Laboratory of Molecular Biology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Building 37, Room 4E16, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | |
Collapse
|
26
|
The mGluR6 5' upstream transgene sequence directs a cell-specific and developmentally regulated expression in retinal rod and ON-type cone bipolar cells. J Neurosci 1997. [PMID: 9096137 DOI: 10.1523/jneurosci.17-09-03014.1997] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We generated transgenic mice, using 9.5 kilobase pairs of the 5' upstream sequence from the mouse metabotropic glutamate receptor subtype 6 (mGluR6) gene fused to the beta-galactosidase (lacZ) reporter gene, and investigated the promoter function of the cell-specific and developmentally regulated expression of mGluR6. Most of the independent transgenic lines commonly showed the lacZ expression in the defined cell layers of the retina, and four transgenic lines were characterized in detail for cell-specific lacZ expression patterns by X-gal staining and lacZ immunostaining. The lacZ-expressing retinal cells were classified into two cell types. One cell type was identified as rod bipolar cells on the basis of colocalization of protein kinase C (PKC) immunoreactivity and morphological criteria. The other cell type was PKC-immunonegative and resided at the cell layers corresponding precisely to ON-type cone bipolar cells. The latter bipolar cells were found to exist as a large cell population comparable to rod bipolar cells. This observation was confirmed by coimmunostaining of dissociated retinal cells with the lacZ and PKC antibodies. The ontogeny analysis indicated that the lacZ expression completely agrees with a temporal expression pattern of mGluR6 during retinal development. This study demonstrates that the mGluR6 5' upstream genomic sequence is capable of directing a cell-specific and developmentally regulated expression of mGluR6 in ON-type bipolar cells and supports the view that mGluR6 is responsible for ON responses in both the rod and cone systems.
Collapse
|