1
|
Amaral IM, Scheffauer L, Hofer A, El Rawas R. Protein kinases in natural versus drug reward. Pharmacol Biochem Behav 2022; 221:173472. [PMID: 36244528 DOI: 10.1016/j.pbb.2022.173472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
Natural and drug rewards act on the same neural pathway, the mesolimbic dopaminergic system. In brain regions such as the nucleus accumbens and ventral tegmental area, drugs of abuse-induced stimulation of signaling pathways can lead to synaptic reshaping within this system. This is believed to be underlying the maladaptive alterations in behaviors associated with addiction. In this review, we discuss animal studies disclosing the implication of several protein kinases, namely protein kinase A (PKA), extracellular signal regulated kinase (ERK) mitogen-activated protein kinases (MAPK), p38 MAPK, and calcium/calmodulin-dependent kinase II (CaMKII), in reward-related brain regions in drug and natural reward. Furthermore, we refer to studies that helped pave the way toward a better understanding of the neurobiology underlying non-drug and drug reward through genetic deletion or brain region-specific pharmacological inhibition of these kinases. Whereas the role of kinases in drug reward has been extensively studied, their implication in natural reward, such as positive social interaction, is less investigated. Discovering molecular candidates, recruited specifically by drug versus natural rewards, can promote the identification of novel targets for the pharmacological treatment of addiction with less off-target effects and being effective when used combined with behavioral-based therapies.
Collapse
Affiliation(s)
- Inês M Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| | - Laura Scheffauer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| |
Collapse
|
2
|
The Role of CaMKII and ERK Signaling in Addiction. Int J Mol Sci 2021; 22:ijms22063189. [PMID: 33804804 PMCID: PMC8004038 DOI: 10.3390/ijms22063189] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Nicotine is the predominant addictive compound of tobacco and causes the acquisition of dependence through its interactions with nicotinic acetylcholine receptors and various neurotransmitter releases in the central nervous system. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) play a pivotal role in synaptic plasticity in the hippocampus. CaMKII is involved in long-term potentiation induction, which underlies the consolidation of learning and memory; however, the roles of CaMKII in nicotine and other psychostimulant-induced addiction still require further investigation. This article reviews the molecular mechanisms and crucial roles of CaMKII and ERK in nicotine and other stimulant drug-induced addiction. We also discuss dopamine (DA) receptor signaling involved in nicotine-induced addiction in the brain reward circuitry. In the last section, we introduce the association of polyunsaturated fatty acids and cellular chaperones of fatty acid-binding protein 3 in the context of nicotine-induced addiction in the mouse nucleus accumbens and provide a novel target for the treatment of drug abuse affecting dopaminergic systems.
Collapse
|
3
|
Abstract
There are sex differences in the development of cocaine addiction. For example, the time that it takes for women from initial use to addiction is significantly shorter than for men. Thus, understanding why females are more vulnerable to cocaine addiction will provide insights into sex differences in the mechanisms underlying cocaine addiction. This study aimed to determine how cocaine demand intensity and elasticity might differ between sexes. In addition, the impact of estrous cycle and cocaine intake on demand was investigated. Male and female rats were trained to self-administer 0.125 mg of cocaine intravenously under a chained schedule in daily 2-h sessions for 2 weeks, and then, the cocaine demand function was determined with a modified within-session threshold procedure. Following the test, the rats began to self-administer a higher dose of cocaine (0.25 mg) to increase the cocaine intake. The demand function was then similarly determined in the same rats after 2 weeks of cocaine self-administration of the higher dose. No sex differences were found in either demand intensity or elasticity. Neither did the level of cocaine intake have an impact on demand. The demand elasticity, but not intensity, was significantly lower during proestrus/estrus compared with diestrus. These data suggest that the faster transition to cocaine addiction in women cannot be explained by sex differences in the demand for cocaine and such a demand may change during different phases of estrus cycle.
Collapse
Affiliation(s)
| | | | - Meiyun Fan
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Amaral IM, Lemos C, Cera I, Dechant G, Hofer A, El Rawas R. Involvement of cAMP-Dependent Protein Kinase in the Nucleus Accumbens in Cocaine Versus Social Interaction Reward. Int J Mol Sci 2020; 22:E345. [PMID: 33396297 PMCID: PMC7794935 DOI: 10.3390/ijms22010345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Evidence suggests that PKA activity in the nucleus accumbens (NAc) plays an essential role in reward-related learning. In this study, we investigated whether PKA is differentially involved in the expression of learning produced by either natural reinforcers or psychostimulants. For that purpose, we inhibited PKA through a bilateral infusion of Rp-cAMPS, a specific PKA inhibitor, directly into the NAc. The effects of PKA inhibition in the NAc on the expression of concurrent conditioned place preference (CPP) for cocaine (drug) and social interaction (natural reward) in rats were evaluated. We found that PKA inhibition increased the expression of cocaine preference. This effect was not due to altered stress levels or decreased social reward. PKA inhibition did not affect the expression of natural reward as intra-NAc Rp-cAMPS infusion did not affect expression of social preference. When rats were trained to express cocaine or social interaction CPP and tested for eventual persisting preference 7 and 14 days after CPP expression, cocaine preference was persistent, but social preference was abolished after the first test. These results suggest that PKA in the NAc is involved in drug reward learning that might lead to addiction and that only drug, but not natural, reward is persistent.
Collapse
Affiliation(s)
- Inês M. Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (C.L.); (A.H.)
| | - Cristina Lemos
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (C.L.); (A.H.)
| | - Isabella Cera
- Institute for Neuroscience, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.C.); (G.D.)
| | - Georg Dechant
- Institute for Neuroscience, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.C.); (G.D.)
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (C.L.); (A.H.)
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (C.L.); (A.H.)
| |
Collapse
|
5
|
You IJ, Hong SI, Ma SX, Nguyen TL, Kwon SH, Lee SY, Jang CG. Transient receptor potential vanilloid 1 mediates cocaine reinstatement via the D1 dopamine receptor in the nucleus accumbens. J Psychopharmacol 2019; 33:1491-1500. [PMID: 31432769 DOI: 10.1177/0269881119864943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that mediates synaptic modification in the nucleus accumbens (NAc). However, no study has yet examined the mechanism of TRPV1 in the NAc on cocaine reinstatement. We investigated the mechanism of TRPV1 in NAc on cocaine reinstatement using the conditioned place preference (CPP) test in mice. METHODS We examined the effect of capsazepine (5 mg/kg, a TRPV1 antagonist, administered intraperitoneally (i.p.)), capsaicin (0.3 mg/kg, a TRPV1 agonist, administered i.p.), and genetic deletion of TRPV1 on the reinstatement of cocaine-induced CPP (15 mg/kg, administered i.p.). The expression of TRPV1 and Ca2+/calmodulin-mediated kinase II (CaMKII) in the NAc were determined after cocaine reinstatement. Microinjection of SB366791 (0.2 ng, a selective TRPV1 antagonist) in the NAc was assessed on SKF-81297 (1 µg, D1-like dopamine (DA) receptor agonist) primed cocaine reinstatement. RESULTS Capsazepine suppressed and capsaicin potentiated cocaine CPP in the reinstatement phase. In addition, genetic deletion of TRPV1 inhibited cocaine-priming reinstatement. Cocaine reinstatement was mediated by increased TRPV1 expression in the NAc, which involves CaMKII. Microinjection of SB366791 in the NAc prevented the cocaine reinstatement evoked by microinjection of SKF-81297 in the NAc. CONCLUSIONS These findings suggest that activation of TRPV1 mediates the stimulation of D1-like DA receptors and CaMKII in the NAc, resulting in the facilitation of cocaine reinstatement behaviors. Thus, our findings reveal a previously unknown TRPV1 mechanism in the reinstatement to drugs of abuse.
Collapse
Affiliation(s)
- In-Jee You
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.,Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sa-Ik Hong
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Shi-Xun Ma
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Thi-Lien Nguyen
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seung-Hwan Kwon
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
6
|
Somalwar AR, Choudhary AG, Sharma PR, B. N, Sagarkar S, Sakharkar AJ, Subhedar NK, Kokare DM. Cocaine- and amphetamine-regulated transcript peptide (CART) induced reward behavior is mediated via Gi/o dependent phosphorylation of PKA/ERK/CREB pathway. Behav Brain Res 2018; 348:9-21. [DOI: 10.1016/j.bbr.2018.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 12/28/2022]
|
7
|
Datta U, Martini M, Fan M, Sun W. Compulsive sucrose- and cocaine-seeking behaviors in male and female Wistar rats. Psychopharmacology (Berl) 2018; 235:2395-2405. [PMID: 29947917 PMCID: PMC6061959 DOI: 10.1007/s00213-018-4937-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/30/2018] [Indexed: 11/28/2022]
Abstract
RATIONALE Compulsive cocaine use is a key feature of cocaine addiction and understanding the factors that promote the development of such a behavior will provide important insights into the mechanism of cocaine addiction and is essential for the clinical management of the disorder. OBJECTIVES This study aimed to determine how the preexisting compulsive reward-seeking behavior is related to the development of compulsive cocaine-seeking behavior in male and female rats and the potential impact of the reward value and estrous cycle on such behaviors. METHODS Adult male and female Wistar rats were first trained to self-administer sucrose pellets under a chained schedule, and then, the intensity-response effects of footshock punishment on sucrose SA reinforced by different values of sucrose were measured. Subsequently, the same rats went on to self-administer intravenous cocaine and the punishment intensity-response effects on cocaine SA reinforced by different doses of cocaine were similarly determined. For the female rats, the measurements were made during different phases of the estrous cycle. RESULTS The rats showed a wide range of levels of the compulsive behaviors despite the similar training history. Surprisingly, the compulsive sucrose-seeking behavior did not predict the compulsive cocaine-seeking behavior in either sex. Increasing cocaine dose significantly increased the compulsive cocaine-seeking behavior in the female but not male rats. Estrous cycle did not have impact on the compulsive behaviors. CONCLUSION Preexisting differences in compulsive sucrose-seeking behavior do not predict compulsive cocaine-seeking behavior. Compulsive cocaine-seeking behavior is influenced by cocaine dose but not estrous cycle in the female rats.
Collapse
Affiliation(s)
- Udita Datta
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Mariangela Martini
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Meiyun Fan
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - WenLin Sun
- Department of Pharmacology, University of Tennessee Health Science Center, 71 S. Manassas, Memphis, TN, 38103, USA.
| |
Collapse
|
8
|
Dopamine D1 and D3 receptor polypharmacology as a potential treatment approach for substance use disorder. Neurosci Biobehav Rev 2018; 89:13-28. [PMID: 29577963 DOI: 10.1016/j.neubiorev.2018.03.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/29/2022]
Abstract
In the search for efficacious pharmacotherapies to treat cocaine addiction much attention has been given to agents targeting dopamine D1 or D3 receptors because of the involvement of these receptors in drug-related behaviors. D1-like and D3 receptor partial agonists and antagonists have been shown to reduce drug reward, reinstatement of drug seeking and conditioned place preference in rodents and non-human primates. However, translation of these encouraging results to clinical settings has been limited due to a number of factors including toxicity, poor pharmacokinetic properties and extrapyramidal and sedative side effects. This review highlights the role of D1 and D3 receptors in drug reward and seeking, the discovery of D1-D3 heteromers and their potential as targets in the treatment of addiction.
Collapse
|
9
|
Rich MT, Torregrossa MM. Molecular and synaptic mechanisms regulating drug-associated memories: Towards a bidirectional treatment strategy. Brain Res Bull 2017; 141:58-71. [PMID: 28916448 DOI: 10.1016/j.brainresbull.2017.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022]
Abstract
The successful treatment of substance use disorders is dependent on the establishment of a long-term abstinent state. Relapse can be suppressed by interfering with memories of drug use that are evoked by re-exposure to drug-associated contexts and cues. Two strategies for accomplishing this goal are either to prevent drug-memory reconsolidation or to induce the formation of a competing, extinction memory. However, clinical attempts to prolong abstinence by behavioral modification of drug-related memories have had limited success. One approach to improve behavioral treatment strategies is to identify the molecular mechanisms that regulate these memory processes and then use pharmacological tools as supplements to improve efficacy. Still, due to the involvement of several overlapping signaling cascades in both reconsolidation and extinction, it is difficult to specifically modify one of the two processes. For example, attempting to elicit extinction may instead initiate reconsolidation, resulting in the unintentional strengthening of drug-related memories. A better approach is to identify diverging components of the two processes, whereby a single medication would simultaneously weaken reconsolidation and enhance extinction. This review will provide an overview of the neural substrates that are involved in the regulation of drug-associated memories, and will discuss emerging approaches to pharmacologically weaken these memories, including recent efforts to precisely and bidirectionally target reconsolidation and extinction. Ultimately, pharmacologically-enhanced memory-based approaches have the potential to produce more informed relapse-prevention therapies.
Collapse
Affiliation(s)
- Matthew T Rich
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara St., Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Ave, Pittsburgh, PA, 15213, United States.
| | - Mary M Torregrossa
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, United States.
| |
Collapse
|
10
|
Womersley JS, Uys JD. S-Glutathionylation and Redox Protein Signaling in Drug Addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:87-121. [PMID: 26809999 DOI: 10.1016/bs.pmbts.2015.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug addiction is a chronic relapsing disorder that comes at a high cost to individuals and society. Therefore understanding the mechanisms by which drugs exert their effects is of prime importance. Drugs of abuse increase the production of reactive oxygen and nitrogen species resulting in oxidative stress. This change in redox homeostasis increases the conjugation of glutathione to protein cysteine residues; a process called S-glutathionylation. Although traditionally regarded as a protective mechanism against irreversible protein oxidation, accumulated evidence suggests a more nuanced role for S-glutathionylation, namely as a mediator in redox-sensitive protein signaling. The reversible modification of protein thiols leading to alteration in function under different physiologic/pathologic conditions provides a mechanism whereby change in redox status can be translated into a functional response. As such, S-glutathionylation represents an understudied means of post-translational protein modification that may be important in the mechanisms underlying drug addiction. This review will discuss the evidence for S-glutathionylation as a redox-sensing mechanism and how this may be involved in the response to drug-induced oxidative stress. The function of S-glutathionylated proteins involved in neurotransmission, dendritic spine structure, and drug-induced behavioral outputs will be reviewed with specific reference to alcohol, cocaine, and heroin.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joachim D Uys
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
11
|
Ramôa CP, Doyle SE, Lycas MD, Chernau AK, Lynch WJ. Diminished role of dopamine D1-receptor signaling with the development of an addicted phenotype in rats. Biol Psychiatry 2014; 76:8-14. [PMID: 24199666 PMCID: PMC3976474 DOI: 10.1016/j.biopsych.2013.09.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/29/2013] [Accepted: 09/26/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND Although considerable evidence implicates dopamine D1-receptor signaling in the nucleus accumbens in motivation for cocaine during early stages of addiction, less is known with regard to its role after the development of addiction. Here, we examined its role in the development of an addicted phenotype in intact male and female rats, and in female rats that were either resistant or vulnerable to developing this phenotype. METHODS Intact males, females, and ovariectomized (OVX) females with and without estradiol (vulnerable, OVX+E; resistant, OVX+Veh) were given either short access (ShA) (three fixed-ratio 1 sessions, maximum of 20 infusions) or 24-hour extended access (ExA) to cocaine for 10 days (4 trials/hour). Motivation for cocaine was assessed after a 14-day abstinence period with a progressive-ratio schedule. Once responding stabilized, the effects of intra-accumbens infusion of the D1-receptor antagonist, SCH-23390 (0, .3, 1.0, 3.0 µg), were examined. RESULTS Motivation for cocaine was markedly higher after abstinence from ExA versus ShA self-administration in intact males and females, indicating the development of an addicted phenotype in these groups. Motivation for cocaine was also higher than ShA control subjects in OVX+E but not OVX+Veh females after ExA self-administration, confirming the categorization of these groups as vulnerable versus resistant. After ExA self-administration, intact males and females and OVX+E but not OVX+Veh females were less sensitive to the effects of D1-receptor antagonism as compared with their ShA counterparts. CONCLUSIONS These results suggest that the role of D1-receptor signaling, although critical in "nonaddicted" stages, becomes diminished once addiction has developed.
Collapse
Affiliation(s)
| | | | | | | | - Wendy J. Lynch
- Address correspondence to: Wendy J. Lynch, PhD Department of Psychiatry and Neurobehavioral Sciences University of Virginia, 1670 Discovery Drive, Charlottesville, VA 22911 Tel: (434) 243-0580 Fax: (434) 973-7031
| |
Collapse
|
12
|
Peng Q, Sun X, Liu Z, Yang J, Oh KW, Hu Z. Microinjection of CART (cocaine- and amphetamine-regulated transcript) peptide into the nucleus accumbens inhibits the cocaine-induced upregulation of dopamine receptors and locomotor sensitization. Neurochem Int 2014; 75:105-11. [PMID: 24953280 DOI: 10.1016/j.neuint.2014.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 11/15/2022]
Abstract
Repeated exposure to addictive drugs enhances dopamine receptor (DR) signaling and the ultimate phosphorylation of the cyclic adenosine 5'-monophosphate (cAMP)-response element-binding protein (CREB)-regulated cocaine- and amphetamine-regulated transcript (CART) expression in the nucleus accumbens (NAcc). These effects are known to contribute to the expression of behavioral sensitization. CART peptides are neuropeptides that modulate drug reward and reinforcement. The present experiments investigated the effects of CART 55-102 microinjection into the NAcc on (1) the phosphorylation of CREB, (2) cAMP/protein kinase A (PKA) signaling and (3) extracellular signal-regulated kinase (ERK) phosphorylated kinase signaling. Here, we show that repeated microinjections into the NAcc of CART 55-102 peptides (1.0 or 2.5μg, 0.5μl/side) attenuates cocaine-induced enhancements of D1R, D2R and D3R phosphorylation in this sites. Furthermore, the microinjection of CART 55-102 followed by repeated injections of cocaine (15mg/kg) dose-dependently blocked the enhancement of cAMP levels, PKA activity and pERK and pCREB levels on the fifth day of cocaine administration. The cocaine-induced locomotor activity and behavioral sensitization in rats were also inhibited by the 5-day-microinjection of CART peptides. These results suggest that the phosphorylation of CREB by cocaine in the NAcc was blocked by the CART 55-102 peptide via the inhibition of D1R and D2R stimulation, D3R phosphorylation, cAMP/PKA signaling and ERK phosphorylated kinase signaling. These effects may have played a compensatory inhibitory role in the behavioral sensitization of rats that received microinjections of CART 55-102.
Collapse
Affiliation(s)
- Qinghua Peng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 33006, China
| | - Xi Sun
- Evidence Identification Center, Department of Jiangxi Provincial Public Security, Nanchang, Jiangxi 33006, China
| | - Ziyong Liu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi 33006, China
| | - Jianghua Yang
- Evidence Identification Center, Department of Jiangxi Provincial Public Security, Nanchang, Jiangxi 33006, China
| | - Ki-Wan Oh
- College of Pharmacy, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Zhenzhen Hu
- Department of Pathophysiology, College of Medicine, Nanchang University, Nanchang, Jiangxi 33006, China.
| |
Collapse
|
13
|
Sun WL, Coleman NT, Zelek-Molik A, Barry SM, Whitfield TW, McGinty JF. Relapse to cocaine-seeking after abstinence is regulated by cAMP-dependent protein kinase A in the prefrontal cortex. Addict Biol 2014; 19:77-86. [PMID: 23461423 PMCID: PMC4110897 DOI: 10.1111/adb.12043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstinence from cocaine self-administration (SA) is associated with neuroadaptations in the prefrontal cortex (PFC) and nucleus accumbens (NAc) that are implicated in cocaine-induced neuronal plasticity and relapse to drug-seeking. Alterations in cAMP-dependent protein kinase A (PKA) signaling are prominent in medium spiny neurons in the NAc after repeated cocaine exposure but it is unknown whether similar changes occur in the PFC. Because cocaine SA induces disturbances in glutamatergic transmission in the PFC-NAc pathway, we examined whether dysregulation of PKA-mediated molecular targets in PFC-NAc neurons occurs during abstinence and, if so, whether it contributes to cocaine-seeking. We measured the phosphorylation of cAMP response element binding protein (Ser133) and GluA1 (Ser845) in the dorsomedial (dm) PFC and the presynaptic marker, synapsin I (Ser9, Ser62/67, Ser603), in the NAc after 7 days of abstinence from cocaine SA with or without cue-induced cocaine-seeking. We also evaluated whether infusion of the PKA inhibitor, 8-bromo-Rp-cyclic adenosine 3', 5'-monophosphorothioate (Rp-cAMPs), into the dmPFC after abstinence would affect cue-induced cocaine-seeking and PKA-regulated phosphoprotein levels. Seven days of forced abstinence increased the phosphorylation of cAMP response element binding protein and GluA1 in the dmPFC and synapsin I (Ser9) in the NAc. Induction of these phosphoproteins was reversed by a cue-induced relapse test of cocaine-seeking. Bilateral intra-dmPFC Rp-cAMPs rescued abstinence-elevated PKA-mediated phosphoprotein levels in the dmPFC and NAc and suppressed cue-induced relapse. Thus, by inhibiting abstinence-induced PKA molecular targets, relapse reverses abstinence-induced neuroadaptations in the dmPFC that are responsible, in part, for the expression of cue-induced cocaine-seeking.
Collapse
Affiliation(s)
- Wei-Lun Sun
- Dept. of Neurosciences, Medical University of South Carolina, Charleston, SC 29425
| | | | | | - Sarah M. Barry
- Dept. of Neurosciences, Medical University of South Carolina, Charleston, SC 29425
| | - Timothy W. Whitfield
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037
| | | |
Collapse
|
14
|
Torregrossa MM, Taylor JR. Learning to forget: manipulating extinction and reconsolidation processes to treat addiction. Psychopharmacology (Berl) 2013; 226:659-72. [PMID: 22638814 PMCID: PMC3466391 DOI: 10.1007/s00213-012-2750-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 05/13/2012] [Indexed: 11/29/2022]
Abstract
Finding effective long-lasting treatments for drug addiction has been an elusive goal. Consequently, researchers are beginning to investigate novel treatment strategies including manipulations of drug-associated memories. When environmental stimuli (cues) become associated with drug use, they become powerful motivators of continued drug use and relapse after abstinence. Reducing the strength of these cue-drug memories could decrease the number of factors that induce craving and relapse to aid in the treatment of addiction. Enhancing the consolidation of extinction learning and/or disrupting cue-drug memory reconsolidation are two strategies that have been proposed to reduce the strength of cues in motivating drug-seeking and drug-taking behavior. Here, we review the latest basic and clinical research elucidating the mechanisms underlying consolidation of extinction and reconsolidation of cue-drug memories in the hopes of developing pharmacological tools that exploit these signaling systems to treat addiction.
Collapse
Affiliation(s)
| | - Jane R. Taylor
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT,Department of Psychology, Yale University, New Haven, CT
| |
Collapse
|
15
|
Kurokawa K, Mizuno K, Shibasaki M, Higashioka M, Oka M, Hirouchi M, Ohkuma S. Acamprosate Suppresses Ethanol-Induced Place Preference in Mice With Ethanol Physical Dependence. J Pharmacol Sci 2013; 122:289-98. [DOI: 10.1254/jphs.13056fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
16
|
Zhong P, Wang W, Yu F, Nazari M, Liu X, Liu QS. Phosphodiesterase 4 inhibition impairs cocaine-induced inhibitory synaptic plasticity and conditioned place preference. Neuropsychopharmacology 2012; 37:2377-87. [PMID: 22713909 PMCID: PMC3442353 DOI: 10.1038/npp.2012.93] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Endocannabinoid-mediated long-term depression of inhibitory synaptic transmission (I-LTD) in the ventral tegmental area (VTA) is implicated in cocaine-induced inhibitory synaptic plasticity and behavioral effects. It remains poorly understood, however, how this I-LTD is regulated and whether this regulation affects cocaine-seeking behavior. I-LTD requires cyclic adenosine 3', 5'-monophosphate (cAMP)-dependent protein kinase A (PKA) signaling, raising the possibility that modulators of cAMP/PKA signaling may regulate I-LTD and the reinforcement behavior. Phosphodiesterase (PDE) 4 hydrolyses cAMP and terminates cAMP/PKA signaling. Here, we report that selective PDE4 inhibitors rolipram and Ro 20-1724 blocked I-LTD and acute depression of inhibitory postsynaptic currents (IPSCs) induced by D₂ dopamine receptor and cannabinoid CB₁ receptor agonists in VTA dopamine neurons. We also show that intra-VTA microinjections of PDE4 inhibitor rolipram impaired the acquisition, but not the expression, of conditioned place preference (CPP) to cocaine. Systemic administration of rolipram also increased cAMP response element-binding protein (CREB) phosphorylation and activation in the VTA. Together, our results suggest that blockade of cocaine-induced inhibitory synaptic plasticity (I-LTD) and enhancement of CREB activation are two putative cellular mechanisms by which PDE4 inhibition impairs the acquisition of cocaine CPP.
Collapse
Affiliation(s)
- Peng Zhong
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wei Wang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fei Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Maressa Nazari
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA,Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA, Tel: +1 414 955 8877, Fax: +1 414 456 6545, E-mail:
| |
Collapse
|
17
|
Effects of protein kinase A inhibitor and activator on rewarding effects of SKF-82958 microinjected into nucleus accumbens shell of ad libitum fed and food-restricted rats. Psychopharmacology (Berl) 2012; 221:589-99. [PMID: 22143580 PMCID: PMC3310955 DOI: 10.1007/s00213-011-2602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 11/27/2011] [Indexed: 10/14/2022]
Abstract
RATIONALE Previous studies indicate that the rewarding effect of D-1 dopamine receptor stimulation in nucleus accumbens (NAc) shell is greater in food-restricted (FR) than in ad libitum fed (AL) rats. The D-1 receptor is positively coupled to adenylyl cyclase and activates protein kinase A (PKA). OBJECTIVES The purpose of this study was to determine whether PKA is involved in the rewarding effect of D-1 receptor stimulation and, if so, whether it is involved in the enhanced response of FR rats. MATERIALS AND METHODS Rats were stereotaxically implanted with microinjection cannulae in NAc shell and a stimulating electrode in lateral hypothalamus. The rewarding effects of SKF-82958 (1.5 or 3.0 μg, bilaterally) in the presence and absence of PKA inhibitor, Rp-cAMPS (8.9 μg), and PKA activator, Sp-cAMPS (8.9 μg), were assessed using the curve-shift method of intracranial self-stimulation (ICSS). Basal NAc levels of DARPP-32 phosphorylated on Thr34 and Thr75 were measured. RESULTS Rp-cAMPS increased the rewarding effect of SKF-82958 in AL but not FR rats, doubling the ICSS threshold-lowering effect of the 3.0-μg dose. Sp-cAMPS decreased the rewarding effect of SKF-82958 in FR but not AL rats. Levels of phospho-DARPP-32 (Thr75), which inhibits PKA, were higher in FR than AL rats. CONCLUSIONS Results indicate that inhibition of PKA enhances the unconditioned rewarding effect of D-1 receptor stimulation and that decreased PKA may be involved in the effect of FR on drug reward. Evidence for involvement of D-2 receptor-expressing neurons in the enhancing effect of PKA inhibition is discussed.
Collapse
|
18
|
Davis MM, Olausson P, Greengard P, Taylor JR, Nairn AC. Regulator of calmodulin signaling knockout mice display anxiety-like behavior and motivational deficits. Eur J Neurosci 2012; 35:300-8. [PMID: 22250817 DOI: 10.1111/j.1460-9568.2011.07956.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Regulator of calmodulin (CaM) signaling (RCS), when phosphorylated by protein kinase A (PKA) on Ser55, binds to CaM and inhibits CaM-dependent signaling. RCS expression is high in the dorsal striatum, nucleus accumbens and amygdala, suggesting that the protein is involved in limbic-striatal function. To test this hypothesis, we examined RCS knockout (KO) mice in behavioral models dependent on these brain areas. Mice were tested for food-reinforced instrumental conditioning and responding under a progressive ratio (PR) schedule of reinforcement and in models of anxiety (elevated plus maze and open field). While RCS KO mice showed normal acquisition of a food-motivated instrumental response, they exhibited a lower breakpoint value when tested on responding under a PR schedule of reinforcement. RCS KO mice also displayed decreased exploration in both the open arms of an elevated plus maze and in the center region of an open field, suggesting an enhanced anxiety response. Biochemical studies revealed a reduction in the levels of dopamine and cAMP-regulated phosphoprotein (DARPP-32) in the striatum of RCS KO mice. DARPP-32 is important in reward-mediated behavior, suggestive of a possible role for DARPP-32 in mediating some of the effects of RCS. Together these results implicate a novel PKA-regulated phosphoprotein, RCS, in the etiology of motivational deficits and anxiety.
Collapse
Affiliation(s)
- Maya M Davis
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06508, USA
| | | | | | | | | |
Collapse
|
19
|
Disrupting effect of drug-induced reward on spatial but not cue-guided learning: implication of the striatal protein kinase A/cAMP response element-binding protein pathway. J Neurosci 2012; 31:16517-28. [PMID: 22090478 DOI: 10.1523/jneurosci.1787-11.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The multiple memory systems hypothesis posits that different neural circuits function in parallel and may compete for information processing and storage. For example, instrumental conditioning would depend on the striatum, whereas spatial memory may be mediated by a circuit centered on the hippocampus. However, the nature of the task itself is not sufficient to select durably one system over the other. In this study, we investigated the effects of natural and pharmacological rewards on the selection of a particular memory system during learning. We compared the effects of food- or drug-induced activation of the reward system on cue-guided versus spatial learning using a Y-maze discrimination task. Drug-induced reward severely impaired the acquisition of a spatial discrimination task but spared the cued version of the task. Immunohistochemical analysis of the phosphorylated form of the cAMP response element binding (CREB) protein and c-Fos expression induced by behavioral testing revealed that the spatial deficit was associated with a decrease of both markers within the hippocampus and the prefrontal cortex. In contrast, drug reward potentiated the cued learning-induced CREB phosphorylation within the dorsal striatum. Administration of the protein kinase A inhibitor 8-Bromo-adenosine-3',5'-cyclic monophosphorothioate Rp isomer (Rp-cAMPS) into the dorsal striatum before training completely reversed the drug-induced spatial deficit and restored CREB phosphorylation levels within the hippocampus and the prefrontal cortex. Therefore, drug-induced striatal hyperactivity may underlie the declarative memory deficit reported here. This mechanism could represent an important early step toward the development of addictive behaviors by promoting conditioning to the detriment of more flexible forms of memory.
Collapse
|
20
|
Smith MA, Lynch WJ. Exercise as a potential treatment for drug abuse: evidence from preclinical studies. Front Psychiatry 2012; 2:82. [PMID: 22347866 PMCID: PMC3276339 DOI: 10.3389/fpsyt.2011.00082] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 12/28/2011] [Indexed: 01/02/2023] Open
Abstract
Epidemiological studies reveal that individuals who engage in regular aerobic exercise are less likely to use and abuse illicit drugs. Until recently, very few studies had examined the causal influences that mediate this relationship, and it was not clear whether exercise was effective at reducing substance use and abuse. In the past few years, several preclinical studies have revealed that exercise reduces drug self-administration in laboratory animals. These studies have revealed that exercise produces protective effects in procedures designed to model different transitional phases that occur during the development of, and recover from, a substance use disorder (e.g., acquisition, maintenance, escalation, and relapse/reinstatement of drug use). Moreover, recent studies have revealed several behavioral and neurobiological consequences of exercise that may be responsible for its protective effects in these assays. Collectively, these studies have provided convincing evidence to support the development of exercise-based interventions to reduce compulsive patterns of drug intake in clinical and at-risk populations.
Collapse
Affiliation(s)
- Mark A. Smith
- Department of Psychology and Program in Neuroscience, Davidson CollegeDavidson, NC, USA
| | - Wendy J. Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of VirginiaCharlottesville, VA, USA
| |
Collapse
|
21
|
Chen D, Liu F, Shang Q, Song X, Miao X, Wang Z. Association between polymorphisms of DRD2 and DRD4 and opioid dependence: evidence from the current studies. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:661-70. [PMID: 21714067 DOI: 10.1002/ajmg.b.31208] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 05/26/2011] [Indexed: 11/10/2022]
Abstract
Several studies have assessed the association between genetic polymorphisms of DRD2 and DRD4 genes and opioid dependence risk, while the results were inconsistent. We performed a meta-analysis, including 6,846 opioid dependence cases and 4,187 controls from 22 individual studies, to evaluate the roles of four variants (DRD2 -141ins/delC, rs1799732; DRD2 311 Ser > Cys, rs1801028; DRD2-related TaqI A, rs1800497 and DRD4 exon III VNTR) in opioid dependence for the first time. We found that the -141delC polymorphism was significantly associated with increased risk of opioid dependence (homozygote comparison: odds ratios [OR], 2.71; 95% confidence interval [CI], 1.74-4.22; dominant comparison: OR, 1.27; 95% CI, 1.09-1.48). Similarly, the TaqI A1 polymorphism was also significantly increased opioid dependence risk (homozygote comparison: OR, 2.06; 95% CI, 1.25-3.42; dominant comparison: OR, 1.34; 95% CI, 1.08-1.67). Moreover, long allele (≥5-repeat) and 7-repeat allele of DRD4 exon III VNTR were found to be associated with significantly increased opioid dependence risk (OR, 1.50; 95% CI, 1.24-1.80 and OR, 1.57; 95%, 1.18-2.09, respectively). However, no association was detected between the DRD2 311 Ser > Cys polymorphism and opioid dependence. In conclusion, our results suggested that DRD2 -141ins/delC, DRD2-related TaqI A and DRD4 exon III VNTR polymorphisms might play important roles in the development of opioid dependence.
Collapse
Affiliation(s)
- Dingyan Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Abdolahi A, Acosta G, Breslin FJ, Hemby SE, Lynch WJ. Incubation of nicotine seeking is associated with enhanced protein kinase A-regulated signaling of dopamine- and cAMP-regulated phosphoprotein of 32 kDa in the insular cortex. Eur J Neurosci 2010; 31:733-41. [PMID: 20384816 DOI: 10.1111/j.1460-9568.2010.07114.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A recent clinical study demonstrated that damage to the insular cortex can disrupt tobacco addiction. The neurobiological mechanisms for this effect are not yet understood. In this study we used an animal model of nicotine addiction to examine the possibility that changes in insular cortex levels of dopamine (DA)- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), a phosphoprotein enriched in DA neurons containing DA D1 receptors, may be associated with changes in vulnerability to nicotine addiction. Once rats acquired self-administration, they were given unlimited access to nicotine (0.01 mg/kg/infusion) for 23 h/day for a total of 10 days. Each infusion was paired with a visual cue (stimulus light) and auditory cue (sound of pump). Nicotine seeking, as assessed under a cue-induced reinstatement paradigm, and markers of DARPP-32 signaling, as assessed using western blot analysis, were examined in separate groups of rats at two different abstinent intervals: 1 and 7 days. Consistent with findings with other drugs of abuse, rats in the 7-day abstinence group took longer to extinguish and responded at higher levels during reinstatement testing as compared with rats in the 1-day reinstatement group. Relative to saline controls, rats in the 7-day but not the 1-day abstinence group had higher levels of DARPP-32 phosphorylated at the protein kinase A site in the insular cortex. These results demonstrate incubation of drug seeking following extended access to nicotine self-administration and suggest that enhanced protein kinase A signaling in the insular cortex via phosphorylation of DARPP-32 at Thr34 is associated with this effect.
Collapse
Affiliation(s)
- Amir Abdolahi
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 1670 Discovery Drive, Charlottesville, VA 22911, USA
| | | | | | | | | |
Collapse
|
23
|
The role of mesocorticolimbic dopamine in regulating interactions between drugs of abuse and social behavior. Neurosci Biobehav Rev 2010; 35:498-515. [PMID: 20600286 DOI: 10.1016/j.neubiorev.2010.06.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 06/08/2010] [Accepted: 06/11/2010] [Indexed: 01/07/2023]
Abstract
The use of addictive drugs can have profound short- and long-term consequences on social behaviors. Similarly, social experiences and the presence or absence of social attachments during early development and throughout life can greatly influence drug intake and the susceptibility to drug abuse. The following review details this reciprocal interaction, focusing on common drugs of abuse (e.g., psychostimulants, opiates, alcohol and nicotine) and social behaviors (e.g., maternal, sexual, play, aggressive and bonding behaviors). The neural mechanisms underlying this interaction are discussed, with a particular emphasis on the involvement of the mesocorticolimbic dopamine system.
Collapse
|
24
|
Schmidt HD, Pierce RC. Cocaine-induced neuroadaptations in glutamate transmission: potential therapeutic targets for craving and addiction. Ann N Y Acad Sci 2010; 1187:35-75. [PMID: 20201846 DOI: 10.1111/j.1749-6632.2009.05144.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A growing body of evidence indicates that repeated exposure to cocaine leads to profound changes in glutamate transmission in limbic nuclei, particularly the nucleus accumbens. This review focuses on preclinical studies of cocaine-induced behavioral plasticity, including behavioral sensitization, self-administration, and the reinstatement of cocaine seeking. Behavioral, pharmacological, neurochemical, electrophysiological, biochemical, and molecular biological changes associated with cocaine-induced plasticity in glutamate systems are reviewed. The ultimate goal of these lines of research is to identify novel targets for the development of therapies for cocaine craving and addiction. Therefore, we also outline the progress and prospects of glutamate modulators for the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Heath D Schmidt
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
25
|
Ha RY, Namkoong K, Kang JI, Kim YT, Kim SJ. Interaction between serotonin transporter promoter and dopamine receptor D4 polymorphisms on decision making. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1217-22. [PMID: 19615421 DOI: 10.1016/j.pnpbp.2009.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 07/04/2009] [Accepted: 07/04/2009] [Indexed: 11/19/2022]
Abstract
Appropriate decision making is an important brain function to maintain our lives. The Iowa gambling task (IGT) is a tool for decision making under ambiguity. The aims of this study were to evaluate the influence of serotonin transporter linked polymorphic region (5-HTTLPR) and dopamine receptor D4 (DRD4) polymorphisms and their interaction on IGT performance. One hundred fifty-nine normal subjects were involved in this study. All subjects performed the IGT and were genotyped for the triallelic 5-HTTLPR and DRD4 48 bp uVNTR polymorphisms. After controlling for gender, age, and impulsiveness, there were no main effects of 5-HTTLPR and DRD4 gene polymorphisms on total IGT score. However, there was a significant effect on the interaction between 5-HTTLPR and DRD4 on total IGT score. In the presence of the 5-HTTLPR S'S' (SS+SL(G)+L(G)L(G)), subjects with the DRD4 2R+ (2 repeat carrier) had higher total IGT score compared to those with the DRD4 2R-. In contrast, in the absence of the 5-HTTLPR S'S', subjects with the DRD4 2R- had higher total IGT score than those with the DRD4 2R+. When we divided IGT scores into the first and second half of trials, the 5-HTTLPRxDRD4 interaction effects were stronger in the second half block (decision under risk) than in the first half block (decision under ambiguity). In conclusion, the DRD4 genotypes might influence decision-making performance differently according to the background genotypes of 5-HTTLPR.
Collapse
Affiliation(s)
- Ra Yeon Ha
- Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| | | | | | | | | |
Collapse
|
26
|
Aragona BJ, Wang Z. Dopamine regulation of social choice in a monogamous rodent species. Front Behav Neurosci 2009; 3:15. [PMID: 19707518 PMCID: PMC2729670 DOI: 10.3389/neuro.08.015.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 07/23/2009] [Indexed: 11/13/2022] Open
Abstract
There is growing appreciation that social decision making in humans is strongly influenced by hedonic and emotional processing. The field of social neuroeconomics has shown that neural systems important for reward are associated with social choice and social preferences in humans. Here, we show that the neurobiology of social preferences in a monogamous rodent species, the prairie vole, is also regulated by neural systems involved in reward and emotional processing. Specifically, we describe how mesolimbic dopamine transmission differentially mediates the formation and maintenance of monogamous pair bonds in this species. Thus, reward processing exerts tremendous regulation over social choice behaviors that serve as the foundation of a rather complex social organization. We conclude that prairie voles are an excellent model system for the neuroscience of social choice and that complex social decision-making can be robustly explained by reward and hedonic processing.
Collapse
Affiliation(s)
- Brandon J Aragona
- Department of Psychology and Program in Neuroscience, University of Michigan Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
27
|
Orio L, Edwards S, George O, Parsons LH, Koob GF. A role for the endocannabinoid system in the increased motivation for cocaine in extended-access conditions. J Neurosci 2009; 29:4846-57. [PMID: 19369553 PMCID: PMC2688678 DOI: 10.1523/jneurosci.0563-09.2009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 11/21/2022] Open
Abstract
Extended access to cocaine produces an increase in cocaine self-administration in rats that mimics aspects of compulsive drug intake in human addicts. Although emerging evidence implicates the endogenous cannabinoid system in aspects of opioid and ethanol addiction, a role of the endocannabinoid system in cocaine addiction remains widely inconclusive. Here, we investigate the effects of systemic and intra-accumbal administration of the CB1 antagonist SR141716A (Rimonabant) on cocaine self-administration (0.5 mg/kg/infusion) under a progressive ratio (PR) schedule in rats with extended [long access (LgA); 6 h/d] or limited [short access (ShA); 1 h/d] access to cocaine. LgA rats, but not ShA rats, showed an increase in cocaine intake as previously reported, and responding for cocaine by LgA rats was higher than in ShA rats under a PR schedule. Systemic SR141716A induced a dramatic dose-dependent decrease in the breakpoint for cocaine by LgA rats, whereas only the highest dose of the antagonist had a significant effect in the ShA group. Anandamide levels in the nucleus accumbens (NAc) shell were decreased in ShA rats but unchanged in LgA rats during cocaine self-administration. Both phosphorylated and total CB1 receptor protein expression were upregulated in LgA rats in the NAc and the amygdala compared with ShA and drug-naive rats, 24 h after last cocaine session. Finally, intra-NAc infusions of SR141716A reduced cocaine breakpoints selectively in LgA animals. These results suggest that neuroadaptations in the endogenous cannabinoid system may be part of the neuroplasticity associated with the development of cocaine addiction.
Collapse
Affiliation(s)
- Laura Orio
- Committee on Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | |
Collapse
|
28
|
Ray LA, Bryan A, Mackillop J, McGeary J, Hesterberg K, Hutchison KE. The dopamine D Receptor (DRD4) gene exon III polymorphism, problematic alcohol use and novelty seeking: direct and mediated genetic effects. Addict Biol 2009; 14:238-44. [PMID: 18715282 PMCID: PMC3151559 DOI: 10.1111/j.1369-1600.2008.00120.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study sought to integrate convergent lines of research on the associations among the dopamine D(4) receptor (DRD4) gene, novelty seeking and drinking behaviors with the overall goal of elucidating genetic influences on problematic drinking in young adulthood. Specifically, this study tested a model in which novelty seeking mediated the relationship between DRD4 variable number of tandem repeats (VNTR) genotype and problematic alcohol use. Participants (n = 90, 40 females) were heavy-drinking college students. Analyses using a structural equation modeling framework suggested that the significant direct path between DRD4 VNTR genotype and problematic alcohol use was reduced to a trend level in the context of a model that included novelty seeking as a mediator, thereby suggesting that the effects of DRD4 VNTR genotype on problematic alcohol use among heavy-drinking young adults were partially mediated by novelty seeking. Cross-group comparisons indicated that the relationships among the model variables were not significantly different in models for men versus women. These results extend recent findings of the association between this polymorphism of the DRD4 receptor gene, problematic alcohol use and novelty seeking. These findings may also help elucidate the specific pathways of risk associated with genetic influences on alcohol use and abuse phenotypes.
Collapse
Affiliation(s)
- Lara A Ray
- Brown University, Center for Alcohol and Addiction Studies, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Evidence for beta1-adrenergic receptor involvement in amygdalar corticotropin-releasing factor gene expression: implications for cocaine withdrawal. Neuropsychopharmacology 2009; 34:1135-48. [PMID: 18596687 PMCID: PMC3660858 DOI: 10.1038/npp.2008.102] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We previously showed that betaxolol, a selective beta(1)-adrenergic receptor antagonist, administered during early phases of cocaine abstinence, ameliorated withdrawal-induced anxiety and blocked increases in amygdalar beta(1)-adrenergic receptor expression in rats. Here, we report the efficacy of betaxolol in reducing increases in gene expression of amygdalar corticotropin-releasing factor (CRF), a peptide known to be involved in mediating 'anxiety-like' behaviors during initial phases of cocaine abstinence. We also demonstrate attenuation of an amygdalar beta(1)-adrenergic receptor-mediated cell-signaling pathway following this treatment. Male rats were administered betaxolol at 24 and 44 h following chronic cocaine administration. Animals were euthanized at the 48-h time point and the amygdala was microdissected and processed for quantitative reverse transcriptase-polymerase chain reaction and/or western blot analysis. Results showed that betaxolol treatment during early cocaine withdrawal attenuated increases in amygdalar CRF gene expression and cyclic adenosine monophosphate-dependent protein kinase regulatory and catalytic subunit (nuclear fraction) protein expression. Our data also reveal that beta(1)-adrenergic receptors are on amygdalar neurons, which are immunoreactive for CRF. The present findings suggest that the efficacy of betaxolol treatment on cocaine withdrawal-induced anxiety may be related, in part, to its effect on amygdalar beta(1)-adrenergic receptor, modulation of its downstream cell-signaling elements and CRF gene expression.
Collapse
|
30
|
Sex differences in basal and cocaine-induced alterations in PKA and CREB proteins in the nucleus accumbens. Psychopharmacology (Berl) 2009; 203:641-50. [PMID: 19052730 DOI: 10.1007/s00213-008-1411-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Alterations in protein kinase (PKA) protein levels have been implicated in the regulation of responses to and development of cocaine addiction. However, the contribution of differences in PKA intracellular cascade to the known sex differences in responses to cocaine is not well understood. This study examined whether there are intrinsic or cocaine-induced alterations in PKA-mediated responses, such as phosphorylation of cyclic AMP response element binding protein, in male and female rats. MATERIALS AND METHODS To this end, protein levels of PKA and phosphorylated CREB (pCREB) in the caudate putamen (CPu) and nucleus accumbens (NAc) of male and female rats were measured basally or after acute (one 30-mg/kg intraperitoneal injection) or chronic (twice-daily 15-mg/kg injections for 14 days) cocaine administration. Behavioral responses to both cocaine administration paradigms were also studied. RESULTS Similar to previous findings, ambulatory, rearing, and stereotypic activities were higher in female rats after acute cocaine administration. Sex differences in cocaine-induced responses were also observed after chronic cocaine administration: While males developed a robust sensitization in ambulatory activities to cocaine, females developed tolerance in cocaine-induced rearing and stereotypic activities. In the basal group, females had significantly higher PKA protein levels in the NAc. Regardless of the cocaine administration paradigm, PKA protein levels in the NAc were higher overall in females than in males. Furthermore, after cocaine administration, while pCREB protein levels in male rats were induced for a longer amount of time than in female rats, the magnitude of change on pCREB levels were higher in female than male rats. However, in the CPu, no sex differences in PKA or pCREB protein levels were observed either in the basal group or after acute or chronic cocaine administration. DISCUSSION Taken together, these findings suggest that sex differences in basal and cocaine-induced alterations in the PKA signaling regulation in the NAc may contribute to sex differences in the psychomotor responses to cocaine.
Collapse
|
31
|
Abstract
Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharmacotherapies to treat drug addiction.
Collapse
Affiliation(s)
- Anna M Lee
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, Emeryville, CA 94608, USA
| | | |
Collapse
|
32
|
Goto Y, Grace AA. Limbic and cortical information processing in the nucleus accumbens. Trends Neurosci 2008; 31:552-8. [PMID: 18786735 DOI: 10.1016/j.tins.2008.08.002] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 11/30/2022]
Abstract
The nucleus accumbens regulates goal-directed behaviors by integrating information from limbic structures and the prefrontal cortex. Here, we review recent studies in an attempt to provide an integrated view of the control of information processing in the nucleus accumbens in terms of the regulation of goal-directed behaviors and how disruption of these functions might underlie the pathological states in drug addiction and other psychiatric disorders. We propose a model that could account for the results of several studies investigating limbic-system interactions in the nucleus accumbens and their modulation by dopamine and provide testable hypotheses for how these might relate to the pathophysiology of major psychiatric disorders.
Collapse
Affiliation(s)
- Yukiori Goto
- Department of Psychiatry, McGill University, Montreal, Quebec, H3A 1A1, Canada.
| | | |
Collapse
|
33
|
Taylor JR, Olausson P, Quinn JJ, Torregrossa MM. Targeting extinction and reconsolidation mechanisms to combat the impact of drug cues on addiction. Neuropharmacology 2008; 56 Suppl 1:186-95. [PMID: 18708077 DOI: 10.1016/j.neuropharm.2008.07.027] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/11/2008] [Accepted: 07/20/2008] [Indexed: 02/01/2023]
Abstract
Drug addiction is a progressive and compulsive disorder, where recurrent craving and relapse to drug-seeking occur even after long periods of abstinence. A major contributing factor to relapse is drug-associated cues. Here we review behavioral and pharmacological studies outlining novel methods of effective and persistent reductions in cue-induced relapse behavior in animal models. We focus on extinction and reconsolidation of cue-drug associations as the memory processes that are the most likely targets for interventions. Extinction involves the formation of new inhibitory memories rather than memory erasure; thus, it should be possible to facilitate the extinction of cue-drug memories to reduce relapse. We propose that context-dependency of extinction might be altered by mnemonic agents, thereby enhancing the efficacy of cue-exposure therapy as treatment strategy. In contrast, interfering with memory reconsolidation processes can disrupt the integrity or strength of specific cue-drug memories. Reconsolidation is argued to be a distinct process that occurs over a brief time period after memory is reactivated/retrieved - when the memory becomes labile and vulnerable to disruption. Reconsolidation is thought to be an independent, perhaps opposing, process to extinction and disruption of reconsolidation has recently been shown to directly affect subsequent cue-drug memory retrieval in an animal model of relapse. We hypothesize that a combined approach aimed at both enhancing the consolidation of cue-drug extinction and interfering with the reconsolidation of cue-drug memories will have a greater potential for persistently inhibiting cue-induced relapse than either treatment alone.
Collapse
Affiliation(s)
- Jane R Taylor
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, S307 Connecticut Mental Health Center, Ribicoff Research Laboratories, 34 Park Street, New Haven, CT 06508, USA.
| | | | | | | |
Collapse
|
34
|
Anderson SM, Famous KR, Sadri-Vakili G, Kumaresan V, Schmidt HD, Bass CE, Terwilliger EF, Cha JHJ, Pierce RC. CaMKII: a biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking. Nat Neurosci 2008; 11:344-53. [PMID: 18278040 DOI: 10.1038/nn2054] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 01/24/2008] [Indexed: 12/25/2022]
Abstract
Increases in dopamine and glutamate transmission in the nucleus accumbens independently promote the reinstatement of cocaine seeking, an animal model of relapse. Here we have tested whether cocaine reinstatement in rats depends on interactions between accumbal dopamine and glutamate systems that are mediated by Ca(2+)/calmodulin-mediated kinase II (CaMKII). We show that stimulation of D1-like dopamine receptors in the nucleus accumbens shell reinstates cocaine seeking by activating L-type Ca(2+) channels and CaMKII. Cocaine reinstatement is associated with D1-like dopamine receptor-dependent increases in accumbens shell CaMKII phosphorylated on Thr286 and glutamate receptor 1 (GluR1) phosphorylated on Ser831 (a known CaMKII phosphorylation site), in addition to increases in cell-surface expression of GluR1-containing AMPA receptors in the shell. Consistent with these findings, cocaine reinstatement is attenuated by intra-shell administration of AAV10-GluR1-C99, a vector that impairs the transport of GluR1-containing AMPA receptors. Thus, CaMKII may be an essential link between accumbens shell dopamine and glutamate systems involved in the neuronal plasticity underlying cocaine craving and relapse.
Collapse
Affiliation(s)
- Sharon M Anderson
- Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, L603, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Opposing regulation of pair bond formation by cAMP signaling within the nucleus accumbens shell. J Neurosci 2008; 27:13352-6. [PMID: 18045929 DOI: 10.1523/jneurosci.3216-07.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The formation of monogamous pair bonds, by prairie voles, is facilitated by activation of dopamine (DA) D2-like, but not D1-like, receptors within the nucleus accumbens (NAcc) shell. Because DA exerts opposing regulation of cAMP production depending on the subtype of receptor activated, we tested the hypothesis that DA regulation of pair bond formation is mediated via the cAMP signaling cascade. Consistent with activation of D2-like receptors, decreasing cAMP signaling, by blocking cAMP binding sites on protein kinase A (PKA), facilitated partner preference formation. Conversely, increasing cAMP signaling, by preventing the activation of inhibitory G-proteins, activating stimulatory G-proteins, or stimulating PKA prevented the formation of mating-induced partner preferences. These manipulations were effective in the shell, but not the core, of the NAcc. Together, these data demonstrate opposing regulation over pair bond formation by cAMP signaling within the NAcc shell.
Collapse
|
36
|
Lynch WJ, Kiraly DD, Caldarone BJ, Picciotto MR, Taylor JR. Effect of cocaine self-administration on striatal PKA-regulated signaling in male and female rats. Psychopharmacology (Berl) 2007; 191:263-71. [PMID: 17180335 DOI: 10.1007/s00213-006-0656-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 11/21/2006] [Indexed: 10/23/2022]
Abstract
RATIONALE Chronic cocaine produces changes in the dopamine (DA)/D1/cAMP/protein kinase A (PKA)-regulated signaling pathway that may underlie the development of addiction. OBJECTIVE Given sex differences in the progression to cocaine addiction, we examined the possibility that the PKA pathway is differentially activated by cocaine in male and female rats. MATERIALS AND METHODS Rats were given 24-h access to cocaine (1.5 mg/kg) or saline for 7 days under a discrete trial procedure (four trials per hour). Rats were then retested on responding for cocaine under a progressive-ratio schedule after either 0 (no-delay retest) or 10 (10-day-delay retest) days of abstinence. Markers of PKA-regulated signaling in the striatum and nucleus accumbens were evaluated by Western blotting, including phosphorylation of DA and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) at Thr 34 and glutamate receptor 1 (GluR1) at Ser 845. RESULTS Compared to males, females had higher levels of DARPP-32 phosphorylated at the PKA site in the striatum. Increased phosphorylation of DARPP-32 at the PKA site was also seen in the nucleus accumbens of females compared to males, particularly among controls and rats tested after a 10-day abstinence period. DARPP-32 phosphorylation was also increased as a consequence of cocaine when tested after a 0-day abstinence period in male rats but not female rats. CONCLUSION These findings indicate sex differences in PKA-regulated signaling in drug-naïve controls. Furthermore, these data suggest that regulation of PKA signaling by cocaine is differentially influenced in male and female rats as a consequence of cocaine exposure and cocaine abstinence period.
Collapse
Affiliation(s)
- Wendy J Lynch
- Division of Molecular Psychiatry and Center for Genes and Behavior, Department of Psychiatry, Yale University School of Medicine and Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06508, USA.
| | | | | | | | | |
Collapse
|
37
|
Gould TJ. Nicotine and hippocampus-dependent learning: implications for addiction. Mol Neurobiol 2007; 34:93-107. [PMID: 17220532 PMCID: PMC2716133 DOI: 10.1385/mn:34:2:93] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 11/30/1999] [Accepted: 06/14/2006] [Indexed: 02/06/2023]
Abstract
Addiction is a complex disorder because many factors contribute to the development and maintenance of addiction. One factor is learning. For example, drug-context associations that develop during drug use could facilitate drug craving upon re-exposure to contexts previously associated with drugs. Additionally, deficits in cognitive processes associated with withdrawal could precipitate relapse in attempts to ameliorate those deficits. Because addiction and learning involve common neural areas and cell signaling cascades, addiction-related changes in processes underlying plasticity may contribute to addiction. This article examines similarities between addiction and learning at the behavioral, neural, and cellular levels, with emphasis on the neural substrates underlying the effects of acute nicotine, chronic nicotine, and withdrawal from chronic nicotine on hippocampus-dependent contextual learning.
Collapse
Affiliation(s)
- Thomas J Gould
- Department of Psychology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Hope BT, Nagarkar D, Leonard S, Wise RA. Long-term upregulation of protein kinase A and adenylate cyclase levels in human smokers. J Neurosci 2007; 27:1964-72. [PMID: 17314292 PMCID: PMC2575739 DOI: 10.1523/jneurosci.3661-06.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repeated injections of cocaine and morphine in laboratory rats cause a variety of molecular neuroadaptations in the cAMP signaling pathway in nucleus accumbens and ventral tegmental area. Here we report similar neuroadaptations in postmortem tissue from the brains of human smokers and former smokers. Activity levels of two major components of cAMP signaling, cAMP-dependent protein kinase A (PKA) and adenylate cyclase, were abnormally elevated in nucleus accumbens of smokers and in ventral midbrain dopaminergic region of both smokers and former smokers. Protein levels of the catalytic subunit of PKA were correspondingly higher in the ventral midbrain dopaminergic region of both smokers and former smokers. Protein levels of other candidate neuroadaptations, including glutamate receptor subunits, tyrosine hydroxylase, and other protein kinases, were within normal range. These findings extend our understanding of addiction-related neuroadaptations of cAMP signaling to tobacco smoking in human subjects and suggest that smoking-induced brain neuroadaptations can persist for significant periods in former smokers.
Collapse
Affiliation(s)
- Bruce T Hope
- Behavioral Neuroscience Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland 21224, USA.
| | | | | | | |
Collapse
|
39
|
MacKillop J, Menges DP, McGeary JE, Lisman SA. Effects of craving and DRD4 VNTR genotype on the relative value of alcohol: an initial human laboratory study. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2007; 3:11. [PMID: 17309802 PMCID: PMC1805446 DOI: 10.1186/1744-9081-3-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 02/19/2007] [Indexed: 11/12/2022]
Abstract
BACKGROUND Craving for alcohol is a highly controversial subjective construct and may be clarified by Loewenstein's visceral theory, which emphasizes craving's behavioral effects on the relative value of alcohol. Based on the visceral theory, this study examined the effects of a craving induction on the relative value of alcohol as measured by a behavioral choice task. In addition, based on previous evidence of its role in the expression of craving, the influence of DRD4 VNTR genotype (DRD4-L vs. DRD4-S) was also examined. METHODS Thirty-five heavy drinkers (54% male; 31% DRD4-L) were randomly assigned to receive either a craving induction (exposure to personally relevant alcohol cues) or a control induction (exposure to neutral cues), which was followed by an alcohol-money choice task. Participants were assessed for craving and positive/negative affect throughout the procedure, and relative value of alcohol was derived from participant choices for alcohol versus money. DRD4 VNTR status was assessed retrospectively via buccal samples using previously established protocols. RESULTS Factorial analysis of the craving induction revealed that it was associated with significant increase in craving (p < .001), but not greater relative value of alcohol. Factorial analyses including DRD4 VNTR genotype of did not suggest an influence on reactivity to the craving induction, although this analysis was substantially compromised by small cell sample sizes. Continuous analyses revealed that craving was significantly associated with the relative value of alcohol (p < .05) and possession of the DRD4-L allele further amplified this relationship (p < .001). CONCLUSION These results are interpreted as generally supporting Loewenstein's visceral theory of craving and evidence of a functional role of DRD4 VNTR genotype in the expression of craving for alcohol. Methodological limitations, mechanisms underlying these findings, and future directions are discussed.
Collapse
Affiliation(s)
- James MacKillop
- Department of Psychology, State University of New York at Binghamton, PO Box 6000, Binghamton, NY 13902-6000, USA
- Center for Alcohol and Addiction Studies, Brown University, Box G-BH, Providence RI 02906, USA
| | - David P Menges
- Department of Psychology, State University of New York at Binghamton, PO Box 6000, Binghamton, NY 13902-6000, USA
| | - John E McGeary
- Center for Alcohol and Addiction Studies, Brown University, Box G-BH, Providence RI 02906, USA
- Providence Veteran Affairs Medical Center, Providence RI 02909, USA
| | - Stephen A Lisman
- Department of Psychology, State University of New York at Binghamton, PO Box 6000, Binghamton, NY 13902-6000, USA
| |
Collapse
|
40
|
Gerdjikov TV, Giles AC, Swain SN, Beninger RJ. Nucleus accumbens PKA inhibition blocks acquisition but enhances expression of amphetamine-produced conditioned activity in rats. Psychopharmacology (Berl) 2007; 190:65-72. [PMID: 17047929 DOI: 10.1007/s00213-006-0590-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 09/11/2006] [Indexed: 11/25/2022]
Abstract
RATIONALE The nucleus accumbens (NAc) plays a central role in dopamine-produced reward-related learning. In previous studies, the cyclic adenosine monophosphate-dependent protein kinase (PKA) inhibitor Rp-Cyclic 3',5'-hydrogen phosphorothioate adenosine triethylammonium salt (Rp-cAMPS) blocked the acquisition but not expression of NAc reward-related learning for natural rewards and the acquisition of psychostimulant drug conditioning. OBJECTIVES The current study assessed the role of PKA in the expression of NAc amphetamine (amph)-produced conditioning using conditioned activity (CA). MATERIALS AND METHODS After 5 days of habituation, a test environment was paired with bilateral NAc injections of amph (0.0 or 25.0 micro g) and the PKA inhibitor Rp-cAMPS (0.0, 5.0, 10.0, or 20.0 micro g) over three 60-min conditioning sessions separated by 48 h. To test for effects on expression, some groups received vehicle or amph alone before conditioning sessions and were injected with 0.0, 0.25, 5.0, or 20.0 mug of Rp-cAMPS before the single 60-min test session. RESULTS Amph produced acute increases in locomotion and robust CA. Rp-cAMPS impaired the acquisition of amph-produced CA but not its expression; in fact, it enhanced expression. CONCLUSIONS Results show that PKA inhibition blocks the acquisition but not the expression of amph-produced conditioning.
Collapse
|
41
|
Haile CN, Kosten TR, Kosten TA. Genetics of dopamine and its contribution to cocaine addiction. Behav Genet 2006; 37:119-45. [PMID: 17063402 DOI: 10.1007/s10519-006-9115-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 09/07/2006] [Indexed: 12/30/2022]
Abstract
Cocaine addiction is a major health and social problem for which there are presently no effective pharmacotherapies. Many of the most promising medications target dopamine based on the large literature that supports its role in addiction. Recent studies show that genetic factors are also important. Rodent models and gene knock-out technology have helped elucidate the involvement of specific genes in the function of the dopamine reward system and intracellular cascades that lead to neuronal changes in this system. Human epidemiological, linkage, and association studies have identified allelic variants (polymorphisms) that give rise to altered metabolism of dopamine and its functional consequences. Individuals with these polymorphisms respond differently to psychostimulants and possibly to pharmacotherapies. Here we review the literature on genetic variations that affect dopamine neurotransmission, responses to psychostimulants and potential treatments for cocaine addiction. Behavioral responses to psychostimulants in animals with different or modified genetics in dopamine signaling are discussed. We also review polymorphisms in humans that affect dopaminergic neurotransmission and alter the subjective effects of psychostimulants. Pharmacotherapies may have increased efficacy when targeted to individuals possessing specific genetic polymophisms in dopamine's metabolic and intracellular messenger systems.
Collapse
Affiliation(s)
- Colin N Haile
- Michael E. DeBakey VA Medical Center, and Meninger Department of Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|