1
|
Diez I, Troyas C, Bauer CM, Sepulcre J, Merabet LB. Reorganization of integration and segregation networks in brain-based visual impairment. Neuroimage Clin 2024; 44:103688. [PMID: 39432973 PMCID: PMC11535411 DOI: 10.1016/j.nicl.2024.103688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/23/2024]
Abstract
Growing evidence suggests that cerebral connectivity changes its network organization by altering modular topology in response to developmental and environmental experience. However, changes in cerebral connectivity associated with visual impairment due to early neurological injury are still not fully understood. Cerebral visual impairment (CVI) is a brain-based visual disorder associated with damage and maldevelopment of retrochiasmal pathways and areas implicated in visual processing. In this study, we used a multimodal imaging approach and connectomic analyses based on structural (voxel-based morphometry; VBM) and resting state functional connectivity (rsfc) to investigate differences in weighted degree and link-level connectivity in individuals with CVI compared to controls with neurotypical development. We found that participants with CVI showed significantly reduced grey matter volume within the primary visual cortex and intraparietal sulcus (IPS) compared to controls. Participants with CVI also exhibited marked reorganization characterized by increased integration of visual connectivity to somatosensory and multimodal integration areas (dorsal and ventral attention regions) and lower connectivity from visual to limbic and default mode networks. Link-level functional changes in CVI were also associated with key clinical outcomes related to visual function and development. These findings provide early insight into how visual impairment related to early brain injury distinctly reorganizes the functional network architecture of the human brain.
Collapse
Affiliation(s)
- Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Computational Neuroimaging Lab, Biobizkaia Health Research Institute, Barakaldo, Spain; IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Carla Troyas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Corinna M Bauer
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Yale PET Center, Yale Medical School, Yale University, New Haven, CT, USA.
| | - Lotfi B Merabet
- Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA; Laboratory for Visual Neuroplasticity, Massachusetts Eye and Ear, Boston, MA, USA.
| |
Collapse
|
2
|
Yamakawa H, Fukawa A, Yairi IE, Matsuo Y. Brain-consistent architecture for imagination. Front Syst Neurosci 2024; 18:1302429. [PMID: 39229305 PMCID: PMC11368743 DOI: 10.3389/fnsys.2024.1302429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background Imagination represents a pivotal capability of human intelligence. To develop human-like artificial intelligence, uncovering the computational architecture pertinent to imaginative capabilities through reverse engineering the brain's computational functions is essential. The existing Structure-Constrained Interface Decomposition (SCID) method, leverages the anatomical structure of the brain to extract computational architecture. However, its efficacy is limited to narrow brain regions, making it unsuitable for realizing the function of imagination, which involves diverse brain areas such as the neocortex, basal ganglia, thalamus, and hippocampus. Objective In this study, we proposed the Function-Oriented SCID method, an advancement over the existing SCID method, comprising four steps designed for reverse engineering broader brain areas. This method was applied to the brain's imaginative capabilities to design a hypothetical computational architecture. The implementation began with defining the human imaginative ability that we aspire to simulate. Subsequently, six critical requirements necessary for actualizing the defined imagination were identified. Constraints were established considering the unique representational capacity and the singularity of the neocortex's modes, a distributed memory structure responsible for executing imaginative functions. In line with these constraints, we developed five distinct functions to fulfill the requirements. We allocated specific components for each function, followed by an architectural proposal aligning each component with a corresponding brain organ. Results In the proposed architecture, the distributed memory component, associated with the neocortex, realizes the representation and execution function; the imaginary zone maker component, associated with the claustrum, accomplishes the dynamic-zone partitioning function; the routing conductor component, linked with the complex of thalamus and basal ganglia, performs the manipulation function; the mode memory component, related to the specific agranular neocortical area executes the mode maintenance function; and the recorder component, affiliated with the hippocampal formation, handles the history management function. Thus, we have provided a fundamental cognitive architecture of the brain that comprehensively covers the brain's imaginative capacities.
Collapse
Affiliation(s)
- Hiroshi Yamakawa
- School of Engineering, The University of Tokyo, Tokyo, Japan
- The Whole Brain Architecture Initiative, Tokyo, Japan
| | - Ayako Fukawa
- The Whole Brain Architecture Initiative, Tokyo, Japan
- Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Ikuko Eguchi Yairi
- Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Yutaka Matsuo
- School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Magrou L, Joyce MKP, Froudist-Walsh S, Datta D, Wang XJ, Martinez-Trujillo J, Arnsten AFT. The meso-connectomes of mouse, marmoset, and macaque: network organization and the emergence of higher cognition. Cereb Cortex 2024; 34:bhae174. [PMID: 38771244 PMCID: PMC11107384 DOI: 10.1093/cercor/bhae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.
Collapse
Affiliation(s)
- Loïc Magrou
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Sean Froudist-Walsh
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, BS8 1QU, United Kingdom
| | - Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Xiao-Jing Wang
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Julio Martinez-Trujillo
- Departments of Physiology and Pharmacology, and Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
4
|
Ohm DT, Xie SX, Capp N, Arezoumandan S, Cousins KAQ, Rascovsky K, Wolk DA, Van Deerlin VM, Lee EB, McMillan CT, Irwin DJ. Cytoarchitectonic gradients of laminar degeneration in behavioral variant frontotemporal dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588259. [PMID: 38644997 PMCID: PMC11030243 DOI: 10.1101/2024.04.05.588259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Behavioral variant frontotemporal dementia (bvFTD) is a clinical syndrome primarily caused by either tau (bvFTD-tau) or TDP-43 (bvFTD-TDP) proteinopathies. We previously found lower cortical layers and dorsolateral regions accumulate greater tau than TDP-43 pathology; however, patterns of laminar neurodegeneration across diverse cytoarchitecture in bvFTD is understudied. We hypothesized that bvFTD-tau and bvFTD-TDP have distinct laminar distributions of pyramidal neurodegeneration along cortical gradients, a topologic order of cytoarchitectonic subregions based on increasing pyramidal density and laminar differentiation. Here, we tested this hypothesis in a frontal cortical gradient consisting of five cytoarchitectonic types (i.e., periallocortex, agranular mesocortex, dysgranular mesocortex, eulaminate-I isocortex, eulaminate-II isocortex) spanning anterior cingulate, paracingulate, orbitofrontal, and mid-frontal gyri in bvFTD-tau (n=27), bvFTD-TDP (n=47), and healthy controls (HC; n=32). We immunostained all tissue for total neurons (NeuN; neuronal-nuclear protein) and pyramidal neurons (SMI32; non-phosphorylated neurofilament) and digitally quantified NeuN-immunoreactivity (ir) and SMI32-ir in supragranular II-III, infragranular V-VI, and all I-VI layers in each cytoarchitectonic type. We used linear mixed-effects models adjusted for demographic and biologic variables to compare SMI32-ir between groups and examine relationships with the cortical gradient, long-range pathways, and clinical symptoms. We found regional and laminar distributions of SMI32-ir expected for HC, validating our measures within the cortical gradient framework. While SMI32-ir loss was not related to the cortical gradient in bvFTD-TDP, SMI32-ir progressively decreased along the cortical gradient of bvFTD-tau and included greater SMI32-ir loss in supragranular eulaminate-II isocortex in bvFTD-tau vs bvFTD-TDP ( p =0.039). In a structural model for long-range laminar connectivity between infragranular mesocortex and supragranular isocortex, we found a larger laminar ratio of mesocortex-to-isocortex SMI32-ir in bvFTD-tau vs bvFTD-TDP ( p =0.019), suggesting select long-projecting pathways may contribute to isocortical-predominant degeneration in bvFTD-tau. In cytoarchitectonic types with the highest NeuN-ir, we found lower SMI32-ir in bvFTD-tau vs bvFTD-TDP ( p =0.047), suggesting pyramidal neurodegeneration may occur earlier in bvFTD-tau. Lastly, we found that reduced SMI32-ir related to behavioral severity and frontal-mediated letter fluency, not temporal-mediated confrontation naming, demonstrating the clinical relevance and specificity of frontal pyramidal neurodegeneration to bvFTD-related symptoms. Our data suggest loss of neurofilament-rich pyramidal neurons is a clinically relevant feature of bvFTD that selectively worsens along a frontal cortical gradient in bvFTD-tau, not bvFTD-TDP. Therefore, tau-mediated degeneration may preferentially involve pyramidal-rich layers that connect more distant cytoarchitectonic types. Moreover, the hierarchical arrangement of cytoarchitecture along cortical gradients may be an important neuroanatomical framework for identifying which types of cells and pathways are differentially involved between proteinopathies.
Collapse
|
5
|
Wang J, Du X, Yao S, Li L, Tanigawa H, Zhang X, Roe AW. Mesoscale organization of ventral and dorsal visual pathways in macaque monkey revealed by 7T fMRI. Prog Neurobiol 2024; 234:102584. [PMID: 38309458 DOI: 10.1016/j.pneurobio.2024.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
In human and nonhuman primate brains, columnar (mesoscale) organization has been demonstrated to underlie both lower and higher order aspects of visual information processing. Previous studies have focused on identifying functional preferences of mesoscale domains in specific areas; but there has been little understanding of how mesoscale domains may cooperatively respond to single visual stimuli across dorsal and ventral pathways. Here, we have developed ultrahigh-field 7 T fMRI methods to enable simultaneous mapping, in individual macaque monkeys, of response in both dorsal and ventral pathways to single simple color and motion stimuli. We provide the first evidence that anatomical V2 cytochrome oxidase-stained stripes are well aligned with fMRI maps of V2 stripes, settling a long-standing controversy. In the ventral pathway, a systematic array of paired color and luminance processing domains across V4 was revealed, suggesting a novel organization for surface information processing. In the dorsal pathway, in addition to high quality motion direction maps of MT, MST and V3A, alternating color and motion direction domains in V3 are revealed. As well, submillimeter motion domains were observed in peripheral LIPd and LIPv. In sum, our study provides a novel global snapshot of how mesoscale networks in the ventral and dorsal visual pathways form the organizational basis of visual objection recognition and vision for action.
Collapse
Affiliation(s)
- Jianbao Wang
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Xiao Du
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Songping Yao
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Lihui Li
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Hisashi Tanigawa
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Xiaotong Zhang
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; College of Electrical Engineering, Zhejiang University, Hangzhou, China.
| | - Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Blackman RK, Crowe DA, DeNicola AL, Sakellaridi S, Westerberg JA, Huynh AM, MacDonald AW, Sponheim SR, Chafee MV. Shared Neural Activity But Distinct Neural Dynamics for Cognitive Control in Monkey Prefrontal and Parietal Cortex. J Neurosci 2023; 43:2767-2781. [PMID: 36894317 PMCID: PMC10089244 DOI: 10.1523/jneurosci.1641-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/15/2023] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
To better understand how prefrontal networks mediate forms of cognitive control disrupted in schizophrenia, we translated a variant of the AX continuous performance task that measures specific deficits in the human disease to 2 male monkeys and recorded neurons in PFC and parietal cortex during task performance. In the task, contextual information instructed by cue stimuli determines the response required to a subsequent probe stimulus. We found parietal neurons encoding the behavioral context instructed by cues that exhibited nearly identical activity to their prefrontal counterparts (Blackman et al., 2016). This neural population switched their preference for stimuli over the course of the trial depending on whether the stimuli signaled the need to engage cognitive control to override a prepotent response. Cues evoked visual responses that appeared in parietal neurons first, whereas population activity encoding contextual information instructed by cues was stronger and more persistent in PFC. Increasing cognitive control demand biased the representation of contextual information toward the PFC and augmented the temporal correlation of task-defined information encoded by neurons in the two areas. Oscillatory dynamics in local field potentials differed between cortical areas and carried as much information about task conditions as spike rates. We found that, at the single-neuron level, patterns of activity evoked by the task were nearly identical between the two cortical areas. Nonetheless, distinct population dynamics in PFC and parietal cortex were evident. suggesting differential contributions to cognitive control.SIGNIFICANCE STATEMENT We recorded neural activity in PFC and parietal cortex of monkeys performing a task that measures cognitive control deficits in schizophrenia. This allowed us to characterize computations performed by neurons in the two areas to support forms of cognitive control disrupted in the disease. Subpopulations of neurons in the two areas exhibited parallel modulations in firing rate; and as a result, all patterns of task-evoked activity were distributed between PFC and parietal cortex. This included the presence in both cortical areas of neurons reflecting proactive and reactive cognitive control dissociated from stimuli or responses in the task. However, differences in the timing, strength, synchrony, and correlation of information encoded by neural activity were evident, indicating differential contributions to cognitive control.
Collapse
Affiliation(s)
- Rachael K Blackman
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Brain Sciences Center, VA Medical Center, Minneapolis, Minnesota 55417
- Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, Minnesota 55455
| | - David A Crowe
- Brain Sciences Center, VA Medical Center, Minneapolis, Minnesota 55417
- Department of Biology, Augsburg University, Minneapolis, Minnesota 55454
| | - Adele L DeNicola
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Brain Sciences Center, VA Medical Center, Minneapolis, Minnesota 55417
| | - Sofia Sakellaridi
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Brain Sciences Center, VA Medical Center, Minneapolis, Minnesota 55417
| | | | - Anh M Huynh
- Department of Biology, Augsburg University, Minneapolis, Minnesota 55454
| | - Angus W MacDonald
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, Minnesota 55417
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota 55454
| | - Matthew V Chafee
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Brain Sciences Center, VA Medical Center, Minneapolis, Minnesota 55417
| |
Collapse
|
7
|
John YJ, Zikopoulos B, García-Cabezas MÁ, Barbas H. The cortical spectrum: A robust structural continuum in primate cerebral cortex revealed by histological staining and magnetic resonance imaging. Front Neuroanat 2022; 16:897237. [PMID: 36157324 PMCID: PMC9501703 DOI: 10.3389/fnana.2022.897237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
High-level characterizations of the primate cerebral cortex sit between two extremes: on one end the cortical mantle is seen as a mosaic of structurally and functionally unique areas, and on the other it is seen as a uniform six-layered structure in which functional differences are defined solely by extrinsic connections. Neither of these extremes captures the crucial neuroanatomical finding: that the cortex exhibits systematic gradations in architectonic structure. These gradations have been shown to predict cortico-cortical connectivity, which in turn suggests powerful ways to ground connectomics in anatomical structure, and by extension cortical function. A challenge to widespread use of this concept is the labor-intensive and invasive nature of histological staining, which is the primary means of recognizing anatomical gradations. Here we show that a novel computational analysis technique can provide a coarse-grained picture of cortical variation. For each of 78 cortical areas spanning the entire cortical mantle of the rhesus macaque, we created a high dimensional set of anatomical features derived from captured images of cortical tissue stained for myelin and SMI-32. The method involved semi-automated de-noising of images, and enabled comparison of brain areas without hand-labeling of features such as layer boundaries. We applied multidimensional scaling (MDS) to the dataset to visualize similarity among cortical areas. This analysis shows a systematic variation between weakly laminated (limbic) cortices and sharply laminated (eulaminate) cortices. We call this smooth continuum the “cortical spectrum”. We also show that this spectrum is visible within subsystems of the cortex: the occipital, parietal, temporal, motor, prefrontal, and insular cortices. We compared the MDS-derived spectrum with a spectrum produced using T1- and T2-weighted magnetic resonance imaging (MRI) data derived from macaque, and found close agreement of the two coarse-graining methods. This suggests that T1w/T2w data, routinely obtained in human MRI studies, can serve as an effective proxy for data derived from high-resolution histological methods. More generally, this approach shows that the cortical spectrum is robust to the specific method used to compare cortical areas, and is therefore a powerful tool to understand the principles of organization of the primate cortex.
Collapse
Affiliation(s)
- Yohan J. John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
- Graduate Program in Neuroscience, Boston University School of Medicine, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | | | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
- Graduate Program in Neuroscience, Boston University School of Medicine, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Helen Barbas,
| |
Collapse
|
8
|
Cerebral metabolic pattern associated with progressive parkinsonism in non-human primates reveals early cortical hypometabolism. Neurobiol Dis 2022; 167:105669. [DOI: 10.1016/j.nbd.2022.105669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
|
9
|
Enwright III JF, Arion D, MacDonald WA, Elbakri R, Pan Y, Vyas G, Berndt A, Lewis DA. Differential gene expression in layer 3 pyramidal neurons across 3 regions of the human cortical visual spatial working memory network. Cereb Cortex 2022; 32:5216-5229. [PMID: 35106549 PMCID: PMC9667185 DOI: 10.1093/cercor/bhac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/03/2023] Open
Abstract
Visual spatial working memory (vsWM) is mediated by a distributed cortical network composed of multiple nodes, including primary visual (V1), posterior parietal (PPC), and dorsolateral prefrontal (DLPFC) cortices. Feedforward and feedback information is transferred among these nodes via projections furnished by pyramidal neurons (PNs) located primarily in cortical layer 3. Morphological and electrophysiological differences among layer 3 PNs across these nodes have been reported; however, the transcriptional signatures underlying these differences have not been examined in the human brain. Here we interrogated the transcriptomes of layer 3 PNs from 39 neurotypical human subjects across 3 critical nodes of the vsWM network. Over 8,000 differentially expressed genes were detected, with more than 6,000 transcriptional differences present between layer 3 PNs in V1 and those in PPC and DLPFC. Additionally, over 600 other genes differed in expression along the rostral-to-caudal hierarchy formed by these 3 nodes. Moreover, pathway analysis revealed enrichment of genes in V1 related to circadian rhythms and in DLPFC of genes involved in synaptic plasticity. Overall, these results show robust regional differences in the transcriptome of layer 3 PNs, which likely contribute to regional specialization in their morphological and physiological features and thus in their functional contributions to vsWM.
Collapse
Affiliation(s)
- John F Enwright III
- Department of Psychiatry, University of Pittsburgh Thomas Detre Hall 3811 O'Hara Street Pittsburgh, PA 15213 United States
| | - Dominique Arion
- Department of Psychiatry, University of Pittsburgh Thomas Detre Hall 3811 O'Hara Street Pittsburgh, PA 15213 United States
| | - William A MacDonald
- Department of Pediatrics UPMC Children's Hospital of Pittsburgh 4401 Penn Avenue Pittsburgh, PA 15224-1334 United States,Health Sciences Sequencing Core 4401 Penn Avenue Rangos Research Building 8th Floor Pittsburgh, PA 15224 United States
| | - Rania Elbakri
- Department of Pediatrics UPMC Children's Hospital of Pittsburgh 4401 Penn Avenue Pittsburgh, PA 15224-1334 United States,Health Sciences Sequencing Core 4401 Penn Avenue Rangos Research Building 8th Floor Pittsburgh, PA 15224 United States
| | - Yinghong Pan
- The Institute for Precision Medicine 204 Craft Avenue, Room A412 Pittsburgh, PA 15213 United States
| | - Gopi Vyas
- The Institute for Precision Medicine 204 Craft Avenue, Room A412 Pittsburgh, PA 15213 United States
| | - Annerose Berndt
- The Institute for Precision Medicine 204 Craft Avenue, Room A412 Pittsburgh, PA 15213 United States
| | - David A Lewis
- Address correspondence to David A. Lewis, Department of Psychiatry, University of Pittsburgh, Biomedical Science Tower W1654, 3811 O’Hara Street, Pittsburgh, PA 15213-2593, United States.
| |
Collapse
|
10
|
Giarrocco F, Averbeck B. Organization of Parieto-Prefrontal and Temporo-Prefrontal Networks in the Macaque. J Neurophysiol 2021; 126:1289-1309. [PMID: 34379536 DOI: 10.1152/jn.00092.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The connectivity among architectonically defined areas of the frontal, parietal, and temporal cortex of the macaque has been extensively mapped through tract tracing methods. To investigate the statistical organization underlying this connectivity, and identify its underlying architecture, we performed a hierarchical cluster analysis on 69 cortical areas based on their anatomically defined inputs. We identified 10 frontal, 4 parietal, and 5 temporal hierarchically related sets of areas (clusters), defined by unique sets of inputs and typically composed of anatomically contiguous areas. Across cortex, clusters that share functional properties were linked by dominant information processing circuits in a topographically organized manner that reflects the organization of the main fiber bundles in the cortex. This led to a dorsal-ventral subdivision of the frontal cortex, where dorsal and ventral clusters showed privileged connectivity with parietal and temporal areas, respectively. Ventrally, temporo-frontal circuits encode information to discriminate objects in the environment, their value, emotional properties, and functions such as memory and spatial navigation. Dorsal parieto-frontal circuits encode information for selecting, generating, and monitoring appropriate actions based on visual-spatial and somatosensory information. This organization may reflect evolutionary antecedents, in which the vertebrate pallium, which is the ancestral cortex, was defined by a ventral and lateral olfactory region and a medial hippocampal region.
Collapse
Affiliation(s)
- Franco Giarrocco
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
11
|
Conklin BD, Bressler SL. Organization of areal connectivity in the monkey frontoparietal network. Neuroimage 2021; 241:118414. [PMID: 34298082 DOI: 10.1016/j.neuroimage.2021.118414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 11/27/2022] Open
Abstract
Activity observed in biological neural networks is determined by anatomical connectivity between cortical areas. The monkey frontoparietal network facilitates cognitive functions, but the organization of its connectivity is unknown. Here, a new connectivity matrix is proposed which shows that the network utilizes a small-world architecture and the 3-node M9 motif. Its areas exhibit relatively homogeneous connectivity with no suggestion of the hubs seen in scale-free networks. Crucially, its M9 dynamical relay motif is optimally arranged for near-zero and non-zero phase synchrony to arise in support of cognition, serving as a candidate topological mechanism for previously reported findings. These results can serve as a benchmark to be used in the treatment of neurological disorders where the types of cognition the frontoparietal network supports are impaired.
Collapse
Affiliation(s)
- Bryan D Conklin
- School of Psychology, Georgia Institute of Technology, 654 Cherry Str. NW, Atlanta, GA, 30332, United States.
| | - Steven L Bressler
- Center for Complex Systems & Brain Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, United States
| |
Collapse
|
12
|
Borra E, Luppino G. Comparative anatomy of the macaque and the human frontal oculomotor domain. Neurosci Biobehav Rev 2021; 126:43-56. [PMID: 33737106 DOI: 10.1016/j.neubiorev.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/19/2021] [Accepted: 03/12/2021] [Indexed: 11/15/2022]
Abstract
In non-human primates, at the junction of the prefrontal with the premotor cortex, there is a sector designated as frontal eye field (FEF), involved in controlling oculomotor behavior and spatial attention. Evidence for at least two FEFs in humans is at the basis of the still open issue of the possible homologies between the macaque and the human frontal oculomotor system. In this review article we address this issue suggesting a new view solidly grounded on evidence from the last decade showing that, in macaques, the FEF is at the core of an oculomotor domain in which several distinct areas, including areas 45A and 45B, provide the substrate for parallel processing of different aspects of oculomotor behavior. Based on comparative considerations, we will propose a correspondence between some of the macaque and the human oculomotor fields, thus suggesting sharing of neural substrate for oculomotor control, gaze processing, and orienting attention in space. Accordingly, this article could contribute to settle some aspects of the so-called "enigma" of the human FEF anatomy.
Collapse
Affiliation(s)
- Elena Borra
- University of Parma, Department of Medicine and Surgery, Neuroscience Unit, Italy.
| | - Giuseppe Luppino
- University of Parma, Department of Medicine and Surgery, Neuroscience Unit, Italy
| |
Collapse
|
13
|
Beul SF, Goulas A, Hilgetag CC. An architectonic type principle in the development of laminar patterns of cortico-cortical connections. Brain Struct Funct 2021; 226:979-987. [PMID: 33559742 PMCID: PMC8036174 DOI: 10.1007/s00429-021-02219-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
Structural connections between cortical areas form an intricate network with a high degree of specificity. Many aspects of this complex network organization in the adult mammalian cortex are captured by an architectonic type principle, which relates structural connections to the architectonic differentiation of brain regions. In particular, the laminar patterns of projection origins are a prominent feature of structural connections that varies in a graded manner with the relative architectonic differentiation of connected areas in the adult brain. Here we show that the architectonic type principle is already apparent for the laminar origins of cortico-cortical projections in the immature cortex of the macaque monkey. We find that prenatal and neonatal laminar patterns correlate with cortical architectonic differentiation, and that the relation of laminar patterns to architectonic differences between connected areas is not substantially altered by the complete loss of visual input. Moreover, we find that the degree of change in laminar patterns that projections undergo during development varies in proportion to the relative architectonic differentiation of the connected areas. Hence, it appears that initial biases in laminar projection patterns become progressively strengthened by later developmental processes. These findings suggest that early neurogenetic processes during the formation of the brain are sufficient to establish the characteristic laminar projection patterns. This conclusion is in line with previously suggested mechanistic explanations underlying the emergence of the architectonic type principle and provides further constraints for exploring the fundamental factors that shape structural connectivity in the mammalian brain.
Collapse
Affiliation(s)
- Sarah F Beul
- University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Alexandros Goulas
- University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Claus C Hilgetag
- University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany. .,Department of Health Sciences, Boston University, 635 Commonwealth Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
14
|
Wang J, John Y, Barbas H. Pathways for Contextual Memory: The Primate Hippocampal Pathway to Anterior Cingulate Cortex. Cereb Cortex 2021; 31:1807-1826. [PMID: 33207365 PMCID: PMC7869091 DOI: 10.1093/cercor/bhaa333] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
The anterior cingulate cortex (ACC) is one of the few prefrontal areas that receives robust direct hippocampal terminations. This pathway may enable current context and past experience to influence goal-directed actions and emotional regulation by prefrontal cortices. We investigated the still ill-understood organization of the pathway from anterior hippocampus to ACC (A24a, A25, A32) to identify laminar termination patterns and their postsynaptic excitatory and inhibitory targets from system to synapse in rhesus monkeys. The densest hippocampal terminations targeted posterior A25, a region that is involved in affective and autonomic regulation. Hippocampal terminations innervated mostly excitatory neurons (~90%), suggesting strong excitatory effects. Among the smaller fraction of inhibitory targets, hippocampal terminations in A25 preferentially innervated calretinin neurons, a pattern that differs markedly from rodents. Further, hippocampal terminations innervated spines with D1 receptors, particularly in the deep layers of A25, where D1 receptors are enriched in comparison with the upper layers. The proximity of hippocampal terminations to D1 receptors may enable dopamine to enhance information transfer from the hippocampus to A25 and contribute to dopaminergic influence downstream on goal-directed action and emotional control by prefrontal cortices, in processes that may be disrupted by excessive dopamine release during uncontrollable stress.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Health Sciences, Neural Systems Laboratory, Boston University, Boston, MA 02215, USA
| | - Yohan John
- Department of Health Sciences, Neural Systems Laboratory, Boston University, Boston, MA 02215, USA
| | - Helen Barbas
- Department of Health Sciences, Neural Systems Laboratory, Boston University, Boston, MA 02215, USA
- Graduate Program in Neuroscience, Boston University and School of Medicine, Boston, MA 02215, USA
| |
Collapse
|
15
|
Khanna SB, Scott JA, Smith MA. Dynamic shifts of visual and saccadic signals in prefrontal cortical regions 8Ar and FEF. J Neurophysiol 2020; 124:1774-1791. [PMID: 33026949 DOI: 10.1152/jn.00669.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Active vision is a fundamental process by which primates gather information about the external world. Multiple brain regions have been studied in the context of simple active vision tasks in which a visual target's appearance is temporally separated from saccade execution. Most neurons have tight spatial registration between visual and saccadic signals, and in areas such as prefrontal cortex (PFC), some neurons show persistent delay activity that links visual and motor epochs and has been proposed as a basis for spatial working memory. Many PFC neurons also show rich dynamics, which have been attributed to alternative working memory codes and the representation of other task variables. Our study investigated the transition between processing a visual stimulus and generating an eye movement in populations of PFC neurons in macaque monkeys performing a memory guided saccade task. We found that neurons in two subregions of PFC, the frontal eye fields (FEF) and area 8Ar, differed in their dynamics and spatial response profiles. These dynamics could be attributed largely to shifts in the spatial profile of visual and motor responses in individual neurons. This led to visual and motor codes for particular spatial locations that were instantiated by different mixtures of neurons, which could be important in PFC's flexible role in multiple sensory, cognitive, and motor tasks.NEW & NOTEWORTHY A central question in neuroscience is how the brain transitions from sensory representations to motor outputs. The prefrontal cortex contains neurons that have long been implicated as important in this transition and in working memory. We found evidence for rich and diverse tuning in these neurons, which was often spatially misaligned between visual and saccadic responses. This feature may play an important role in flexible working memory capabilities.
Collapse
Affiliation(s)
- Sanjeev B Khanna
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonathan A Scott
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew A Smith
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Carnegie Mellon Neuroscience Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Yamakawa H. Revealing the Computational Meaning of Neocortical Interarea Signals. Front Comput Neurosci 2020; 14:74. [PMID: 33013340 PMCID: PMC7461790 DOI: 10.3389/fncom.2020.00074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
To understand the function of the neocortex, which is a hierarchical distributed network, it is useful giving meaning to the signals transmitted between these areas from the computational viewpoint. The overall anatomical structure or organs related to this network, including the neocortex, thalamus, and basal ganglia, has been roughly revealed, and much physiological knowledge, though often fragmentary, is being accumulated. The computational theories involving the neocortex have also been developed considerably. By introducing the assumption “The signals transmitted by interarea axonal projections of pyramidal cells in the neocortex carry different meanings for each cell type, common to all areas,” derived from its nature as a distributed network in the neocortex, allows us to specify the computational meanings of interarea signals. In this paper, first, the types of signals exchanged between neocortical areas are investigated, taking into account biological constraints, and employing theories such as predictive coding, reinforcement learning, representation emulation theory, and BDI logic as theoretical starting points, two types of feedforward signals (observation and deviation) and three types of feedback signals (prediction, plan, and intention) are identified. Next, based on the anatomical knowledge of the neocortex and thalamus, the pathways connecting the areas are organized and summarized as three corticocortical pathways and two thalamocortical pathways. Using this summation as preparation, this paper proposes a hypothesis that gives meaning to each type of signals transmitted in the different pathways in the neocortex, from the viewpoint of their functions. This hypothesis reckons that the feedforward corticocortical pathway transmits observation signals, the feedback corticocortical pathway transmits prediction signals, and the corticothalamic pathway mediated by core relay cells transmits deviation signals. The thalamocortical pathway, which is mediated by matrix relay cells, would be responsible for transmitting the signals that activate a part of prediction signals as intentions, due to the reason that the nature of the other available feedback pathways are not sufficient for conveying plans and intentions as signals. The corticocortical pathway, which is projected from various IT cells to the first layer, would be responsible for transmitting signals that activate a part of prediction signals as plans.
Collapse
Affiliation(s)
- Hiroshi Yamakawa
- University of Tokyo, Tokyo, Japan.,The Whole Brain Architecture Initiative, Edogawa-ku, Japan
| |
Collapse
|
17
|
Beul SF, Hilgetag CC. Systematic modelling of the development of laminar projection origins in the cerebral cortex: Interactions of spatio-temporal patterns of neurogenesis and cellular heterogeneity. PLoS Comput Biol 2020; 16:e1007991. [PMID: 33048930 PMCID: PMC7553356 DOI: 10.1371/journal.pcbi.1007991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/27/2020] [Indexed: 11/18/2022] Open
Abstract
The architectonic type principle conceptualizes structural connections between brain areas in terms of the relative architectonic differentiation of connected areas. It has previously been shown that spatio-temporal interactions between the time and place of neurogenesis could underlie multiple features of empirical mammalian connectomes, such as projection existence and the distribution of projection strengths. However, so far no mechanistic explanation for the emergence of typically observed laminar patterns of projection origins and terminations has been tested. Here, we expand an in silico model of the developing cortical sheet to explore which factors could potentially constrain the development of laminar projection patterns. We show that manipulations which rely solely on spatio-temporal interactions, namely the relative density of laminar compartments, a delay in the neurogenesis of infragranular layers relative to layer 1, and a delay in the neurogenesis of supragranular layers relative to infragranular layers, do not result in the striking correlation between supragranular contribution to projections and the relative differentiation of areas that is typically observed in the mammalian cortex. In contrast, we find that if we introduce systematic variation in cell-intrinsic properties, coupling them with architectonic differentiation, the resulting laminar projection patterns closely mirror the empirically observed patterns. We also find that the spatio-temporal interactions posited to occur during neurogenesis are necessary for the formation of the characteristic laminar patterns. Hence, our results indicate that the specification of the laminar patterns of projection origins may result from systematic variation in a number of cell-intrinsic properties, superimposed on the previously identified spatio-temporal interactions which are sufficient for the emergence of the architectonic type principle on the level of inter-areal connectivity in silico.
Collapse
Affiliation(s)
- Sarah F Beul
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Wells AM, García-Cabezas MÁ, Barbas H. Topological atlas of the hypothalamus in adult rhesus monkey. Brain Struct Funct 2020; 225:1777-1803. [PMID: 32556476 PMCID: PMC7321918 DOI: 10.1007/s00429-020-02093-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/22/2020] [Indexed: 12/31/2022]
Abstract
The prosomeric model explains the embryological development of the central nervous system (CNS) shared by all vertebrates as a Bauplan. As a primary event, the early neural plate is patterned by intersecting longitudinal plates and transverse segments, forming a mosaic of progenitor units. The hypothalamus is specified by three prosomeres (hp1, hp2, and the acroterminal domain) of the secondary prosencephalon with corresponding alar and basal plate parts, which develop apart from the diencephalon. Mounting evidence suggests that progenitor units within alar and basal plate parts of hp1 and hp2 give rise to distinct hypothalamic nuclei, which preserve their relative invariant positioning (topology) in the adult brain. Nonetheless, the principles of the prosomeric model have not been applied so far to the hypothalamus of adult primates. We parcellated hypothalamic nuclei in adult rhesus monkeys (Macaca mulatta) using various stains to view architectonic boundaries. We then analyzed the topological relations of hypothalamic nuclei and adjacent hypothalamic landmarks with homology across rodent and primate species to trace the origin of adult hypothalamic nuclei to the alar or basal plate components of hp1 and hp2. We generated a novel atlas of the hypothalamus of the adult rhesus monkey with developmental ontologies for each hypothalamic nucleus. The result is a systematic reinterpretation of the adult hypothalamus whose prosomeric ontology can be used to study relationships between the hypothalamus and other regions of the CNS. Further, our atlas may serve as a tool to predict causal patterns in physiological and pathological pathways involving the hypothalamus.
Collapse
Affiliation(s)
- Anne Marie Wells
- Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, 02215, USA
- Department of Health Sciences, Neural Systems Laboratory, Boston University, Boston, MA, 02215, USA
| | | | - Helen Barbas
- Department of Health Sciences, Neural Systems Laboratory, Boston University, Boston, MA, 02215, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
19
|
Pinotsis DA, Buschman TJ, Miller EK. Working Memory Load Modulates Neuronal Coupling. Cereb Cortex 2020; 29:1670-1681. [PMID: 29608671 DOI: 10.1093/cercor/bhy065] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/22/2018] [Accepted: 02/28/2018] [Indexed: 12/27/2022] Open
Abstract
There is a severe limitation in the number of items that can be held in working memory. However, the neurophysiological limits remain unknown. We asked whether the capacity limit might be explained by differences in neuronal coupling. We developed a theoretical model based on Predictive Coding and used it to analyze Cross Spectral Density data from the prefrontal cortex (PFC), frontal eye fields (FEF), and lateral intraparietal area (LIP). Monkeys performed a change detection task. The number of objects that had to be remembered (memory load) was varied (1-3 objects in the same visual hemifield). Changes in memory load changed the connectivity in the PFC-FEF-LIP network. Feedback (top-down) coupling broke down when the number of objects exceeded cognitive capacity. Thus, impaired behavioral performance coincided with a break-down of Prediction signals. This provides new insights into the neuronal underpinnings of cognitive capacity and how coupling in a distributed working memory network is affected by memory load.
Collapse
Affiliation(s)
- Dimitris A Pinotsis
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Timothy J Buschman
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Earl K Miller
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
20
|
Finn ES, Huber L, Jangraw DC, Molfese PJ, Bandettini PA. Layer-dependent activity in human prefrontal cortex during working memory. Nat Neurosci 2019; 22:1687-1695. [PMID: 31551596 PMCID: PMC6764601 DOI: 10.1038/s41593-019-0487-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022]
Abstract
Working memory involves storing and/or manipulating previously encoded information over a short-term delay period, which is typically followed by a behavioral response based on the remembered information. Although working memory tasks often engage dorsolateral prefrontal cortex, few studies have investigated whether their subprocesses are localized to different cortical depths in this region, and none have done so in humans. Here we use high-resolution functional MRI to interrogate the layer specificity of neural activity during different periods of a delayed-response task in dorsolateral prefrontal cortex. We detect activity time courses that follow the hypothesized patterns: namely, superficial layers are preferentially active during the delay period, specifically in trials requiring manipulation (rather than mere maintenance) of information held in working memory, and deeper layers are preferentially active during the response. Results demonstrate that layer-specific functional MRI can be used in higher-order brain regions to noninvasively map cognitive processing in humans.
Collapse
Affiliation(s)
- Emily S Finn
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland, USA.
| | - Laurentius Huber
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland, USA
- MR-Methods Group, Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - David C Jangraw
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Peter J Molfese
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Hilgetag CC, Beul SF, van Albada SJ, Goulas A. An architectonic type principle integrates macroscopic cortico-cortical connections with intrinsic cortical circuits of the primate brain. Netw Neurosci 2019; 3:905-923. [PMID: 31637331 PMCID: PMC6777964 DOI: 10.1162/netn_a_00100] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
The connections linking neurons within and between cerebral cortical areas form a multiscale network for communication. We review recent work relating essential features of cortico-cortical connections, such as their existence and laminar origins and terminations, to fundamental structural parameters of cortical areas, such as their distance, similarity in cytoarchitecture, defined by lamination or neuronal density, and other macroscopic and microscopic structural features. These analyses demonstrate the presence of an architectonic type principle. Across species and cortices, the essential features of cortico-cortical connections vary consistently and strongly with the cytoarchitectonic similarity of cortical areas. By contrast, in multivariate analyses such relations were not found consistently for distance, similarity of cortical thickness, or cellular morphology. Gradients of laminar cortical differentiation, as reflected in overall neuronal density, also correspond to regional variations of cellular features, forming a spatially ordered natural axis of concerted architectonic and connectional changes across the cortical sheet. The robustness of findings across mammalian brains allows cross-species predictions of the existence and laminar patterns of projections, including estimates for the human brain that are not yet available experimentally. The architectonic type principle integrates cortical connectivity and architecture across scales, with implications for computational explorations of cortical physiology and developmental mechanisms.
Collapse
Affiliation(s)
- Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Germany
| | - Sarah F Beul
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Germany
| | - Sacha J van Albada
- Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), and JARA-Institute of Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Germany
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Germany
| |
Collapse
|
22
|
Whyte CJ. Integrating the global neuronal workspace into the framework of predictive processing: Towards a working hypothesis. Conscious Cogn 2019; 73:102763. [DOI: 10.1016/j.concog.2019.102763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/29/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
|
23
|
Distinct Properties of Layer 3 Pyramidal Neurons from Prefrontal and Parietal Areas of the Monkey Neocortex. J Neurosci 2019; 39:7277-7290. [PMID: 31341029 DOI: 10.1523/jneurosci.1210-19.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
In primates, working memory function depends on activity in a distributed network of cortical areas that display different patterns of delay task-related activity. These differences are correlated with, and might depend on, distinctive properties of the neurons located in each area. For example, layer 3 pyramidal neurons (L3PNs) differ significantly between primary visual and dorsolateral prefrontal (DLPFC) cortices. However, to what extent L3PNs differ between DLPFC and other association cortical areas is less clear. Hence, we compared the properties of L3PNs in monkey DLPFC versus posterior parietal cortex (PPC), a key node in the cortical working memory network. Using patch-clamp recordings and biocytin cell filling in acute brain slices, we assessed the physiology and morphology of L3PNs from monkey DLPFC and PPC. The L3PN transcriptome was studied using laser microdissection combined with DNA microarray or quantitative PCR. We found that in both DLPFC and PPC, L3PNs were divided into regular spiking (RS-L3PNs) and bursting (B-L3PNs) physiological subtypes. Whereas regional differences in single-cell excitability were modest, B-L3PNs were rare in PPC (RS-L3PN:B-L3PN, 94:6), but were abundant in DLPFC (50:50), showing greater physiological diversity. Moreover, DLPFC L3PNs display larger and more complex basal dendrites with higher dendritic spine density. Additionally, we found differential expression of hundreds of genes, suggesting a transcriptional basis for the differences in L3PN phenotype between DLPFC and PPC. These data show that the previously observed differences between DLPFC and PPC neuron activity during working memory tasks are associated with diversity in the cellular/molecular properties of L3PNs.SIGNIFICANCE STATEMENT In the human and nonhuman primate neocortex, layer 3 pyramidal neurons (L3PNs) differ significantly between dorsolateral prefrontal (DLPFC) and sensory areas. Hence, L3PN properties reflect, and may contribute to, a greater complexity of computations performed in DLPFC. However, across association cortical areas, L3PN properties are largely unexplored. We studied the physiology, dendrite morphology and transcriptome of L3PNs from macaque monkey DLPFC and posterior parietal cortex (PPC), two key nodes in the cortical working memory network. L3PNs from DLPFC had greater diversity of physiological properties and larger basal dendrites with higher spine density. Moreover, transcriptome analysis suggested a molecular basis for the differences in the physiological and morphological phenotypes of L3PNs from DLPFC and PPC.
Collapse
|
24
|
Paquola C, Vos De Wael R, Wagstyl K, Bethlehem RAI, Hong SJ, Seidlitz J, Bullmore ET, Evans AC, Misic B, Margulies DS, Smallwood J, Bernhardt BC. Microstructural and functional gradients are increasingly dissociated in transmodal cortices. PLoS Biol 2019; 17:e3000284. [PMID: 31107870 PMCID: PMC6544318 DOI: 10.1371/journal.pbio.3000284] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/31/2019] [Accepted: 05/08/2019] [Indexed: 01/10/2023] Open
Abstract
While the role of cortical microstructure in organising neural function is well established, it remains unclear how structural constraints can give rise to more flexible elements of cognition. While nonhuman primate research has demonstrated a close structure-function correspondence, the relationship between microstructure and function remains poorly understood in humans, in part because of the reliance on post mortem analyses, which cannot be directly related to functional data. To overcome this barrier, we developed a novel approach to model the similarity of microstructural profiles sampled in the direction of cortical columns. Our approach was initially formulated based on an ultra-high-resolution 3D histological reconstruction of an entire human brain and then translated to myelin-sensitive magnetic resonance imaging (MRI) data in a large cohort of healthy adults. This novel method identified a system-level gradient of microstructural differentiation traversing from primary sensory to limbic regions that followed shifts in laminar differentiation and cytoarchitectural complexity. Importantly, while microstructural and functional gradients described a similar hierarchy, they became increasingly dissociated in transmodal default mode and fronto-parietal networks. Meta-analytic decoding of these topographic dissociations highlighted involvement in higher-level aspects of cognition, such as cognitive control and social cognition. Our findings demonstrate a relative decoupling of macroscale functional from microstructural gradients in transmodal regions, which likely contributes to the flexible role these regions play in human cognition.
Collapse
Affiliation(s)
- Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Reinder Vos De Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Konrad Wagstyl
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
| | - Richard A. I. Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Seok-Jun Hong
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Jakob Seidlitz
- Developmental Neurogenomics Unit, National Institute of Mental Health, Bethesda, Maryland, United States of America
- Brain Mapping Unit, University of Cambridge, Department of Psychiatry, Cambridge, United Kingdom
| | - Edward T. Bullmore
- Brain Mapping Unit, University of Cambridge, Department of Psychiatry, Cambridge, United Kingdom
| | - Alan C. Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | | | | | - Boris C. Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| |
Collapse
|
25
|
The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex. Brain Struct Funct 2019; 224:985-1008. [PMID: 30739157 PMCID: PMC6500485 DOI: 10.1007/s00429-019-01841-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022]
Abstract
The classical theory of cortical systematic variation has been independently described in reptiles, monotremes, marsupials and placental mammals, including primates, suggesting a common bauplan in the evolution of the cortex. The Structural Model is based on the systematic variation of the cortex and is a platform for advancing testable hypotheses about cortical organization and function across species, including humans. The Structural Model captures the overall laminar structure of areas by dividing the cortical architectonic continuum into discrete categories (cortical types), which can be used to test hypotheses about cortical organization. By type, the phylogenetically ancient limbic cortices-which form a ring at the base of the cerebral hemisphere-are agranular if they lack layer IV, or dysgranular if they have an incipient granular layer IV. Beyond the dysgranular areas, eulaminate type cortices have six layers. The number and laminar elaboration of eulaminate areas differ depending on species or cortical system within a species. The construct of cortical type retains the topology of the systematic variation of the cortex and forms the basis for a predictive Structural Model, which has successfully linked cortical variation to the laminar pattern and strength of cortical connections, the continuum of plasticity and stability of areas, the regularities in the distribution of classical and novel markers, and the preferential vulnerability of limbic areas to neurodegenerative and psychiatric diseases. The origin of cortical types has been recently traced to cortical development, and helps explain the variability of diseases with an onset in ontogeny.
Collapse
|
26
|
Postnatal development and maturation of layer 1 in the lateral prefrontal cortex and its disruption in autism. Acta Neuropathol Commun 2019; 7:40. [PMID: 30867066 PMCID: PMC6417186 DOI: 10.1186/s40478-019-0684-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/23/2019] [Indexed: 12/11/2022] Open
Abstract
Autism is a neurodevelopmental connectivity disorder characterized by cortical network disorganization and imbalance in excitation/inhibition. However, little is known about the development of autism pathology and the disruption of laminar-specific excitatory and inhibitory cortical circuits. To begin to address these issues, we examined layer 1 of the lateral prefrontal cortex (LPFC), an area with prolonged development and maturation that is affected in autism. We focused on layer 1 because it contains a distinctive, diverse population of interneurons and glia, receives input from feedback and neuromodulatory pathways, and plays a critical role in the development, maturation, and function of the cortex. We used unbiased quantitative methods at high resolution to study the morphology, neurochemistry, distribution, and density of neurons and myelinated axons in post-mortem brain tissue from children and adults with and without autism. We cross-validated our findings through comparisons with neighboring anterior cingulate cortices and optimally-fixed non-human primate tissue. In neurotypical controls we found an increase in the density of myelinated axons from childhood to adulthood. Neuron density overall declined with age, paralleled by decreased density of inhibitory interneurons labeled by calretinin (CR), calbindin (CB), and parvalbumin (PV). Importantly, we found PV neurons in layer 1 of typically developing children, previously detected only perinatally. In autism there was disorganization of cortical networks within layer 1: children with autism had increased variability in the trajectories and thickness of myelinated axons in layer 1, while adults with autism had a reduction in the relative proportion of thin axons. Neurotypical postnatal changes in layer 1 of LPFC likely underlie refinement of cortical activity during maturation of cortical networks involved in cognition. Our findings suggest that disruption of the maturation of feedback pathways, rather than interneurons in layer 1, has a key role in the development of imbalance between excitation and inhibition in autism.
Collapse
|
27
|
Beul SF, Hilgetag CC. Neuron density fundamentally relates to architecture and connectivity of the primate cerebral cortex. Neuroimage 2019; 189:777-792. [PMID: 30677500 DOI: 10.1016/j.neuroimage.2019.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/05/2019] [Indexed: 12/16/2022] Open
Abstract
Studies of structural brain connectivity have revealed many intriguing features of complex cortical networks. To advance integrative theories of cortical organization, an understanding is required of how connectivity interrelates with other aspects of brain structure. Recent studies have suggested that interareal connectivity may be related to a variety of macroscopic as well as microscopic architectonic features of cortical areas. However, it is unclear how these features are inter-dependent and which of them most strongly and fundamentally relate to structural corticocortical connectivity. Here, we systematically investigated the relation of a range of microscopic and macroscopic architectonic features of cortical organization, namely layer III pyramidal cell soma cross section, dendritic synapse count, dendritic synapse density and dendritic tree size as well as area neuron density, to multiple properties of cortical connectivity, using a comprehensive, up-to-date structural connectome of the primate brain. Importantly, relationships were investigated by multi-variate analyses to account for the interrelations of features. Of all considered factors, the classical architectonic parameter of neuron density most strongly and consistently related to essential features of cortical connectivity (existence and laminar patterns of projections, area degree), and in conjoint analyses largely abolished effects of cellular morphological features. These results confirm neuron density as a central architectonic indicator of the primate cerebral cortex that is closely related to essential aspects of brain connectivity and is also highly indicative of further features of the architectonic organization of cortical areas, such as the considered cellular morphological measures. Our findings integrate several aspects of cortical micro- and macroscopic organization, with implications for cortical development and function.
Collapse
Affiliation(s)
- Sarah F Beul
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Department of Health Sciences, Boston University, 02215, Boston, MA, USA.
| |
Collapse
|
28
|
John YJ, Zikopoulos B, Bullock D, Barbas H. Visual Attention Deficits in Schizophrenia Can Arise From Inhibitory Dysfunction in Thalamus or Cortex. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2018; 2:223-257. [PMID: 30627672 PMCID: PMC6317791 DOI: 10.1162/cpsy_a_00023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/17/2018] [Indexed: 01/13/2023]
Abstract
Schizophrenia is associated with diverse cognitive deficits, including disorders of attention-related oculomotor behavior. At the structural level, schizophrenia is associated with abnormal inhibitory control in the circuit linking cortex and thalamus. We developed a spiking neural network model that demonstrates how dysfunctional inhibition can degrade attentive gaze control. Our model revealed that perturbations of two functionally distinct classes of cortical inhibitory neurons, or of the inhibitory thalamic reticular nucleus, disrupted processing vital for sustained attention to a stimulus, leading to distractibility. Because perturbation at each circuit node led to comparable but qualitatively distinct disruptions in attentive tracking or fixation, our findings support the search for new eye movement metrics that may index distinct underlying neural defects. Moreover, because the cortico-thalamic circuit is a common motif across sensory, association, and motor systems, the model and extensions can be broadly applied to study normal function and the neural bases of other cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Yohan J. John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA
- Graduate Program for Neuroscience, Boston University, and School of Medicine, Boston, Massachusetts, USA
| | - Daniel Bullock
- Graduate Program for Neuroscience, Boston University, and School of Medicine, Boston, Massachusetts, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA
- Graduate Program for Neuroscience, Boston University, and School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Beul SF, Goulas A, Hilgetag CC. Comprehensive computational modelling of the development of mammalian cortical connectivity underlying an architectonic type principle. PLoS Comput Biol 2018; 14:e1006550. [PMID: 30475798 PMCID: PMC6261046 DOI: 10.1371/journal.pcbi.1006550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/06/2018] [Indexed: 12/31/2022] Open
Abstract
The architectonic type principle relates patterns of cortico-cortical connectivity to the relative architectonic differentiation of cortical regions. One mechanism through which the observed close relation between cortical architecture and connectivity may be established is the joint development of cortical areas and their connections in developmental time windows. Here, we describe a theoretical exploration of the possible mechanistic underpinnings of the architectonic type principle, by performing systematic computational simulations of cortical development. The main component of our in silico model was a developing two-dimensional cortical sheet, which was gradually populated by neurons that formed cortico-cortical connections. To assess different explanatory mechanisms, we varied the spatiotemporal trajectory of the simulated neurogenesis. By keeping the rules governing axon outgrowth and connection formation constant across all variants of simulated development, we were able to create model variants which differed exclusively by the specifics of when and where neurons were generated. Thus, all differences in the resulting connectivity were due to the variations in spatiotemporal growth trajectories. Our results demonstrated that a prescribed targeting of interareal connection sites was not necessary for obtaining a realistic replication of the experimentally observed relation between connection patterns and architectonic differentiation. Instead, we found that spatiotemporal interactions within the forming cortical sheet were sufficient if a small number of empirically well-grounded assumptions were met, namely planar, expansive growth of the cortical sheet around two points of origin as neurogenesis progressed, stronger architectonic differentiation of cortical areas for later neurogenetic time windows, and stochastic connection formation. Thus, our study highlights a potential mechanism of how relative architectonic differentiation and cortical connectivity become linked during development. We successfully predicted connectivity in two species, cat and macaque, from simulated cortico-cortical connection networks, which further underscored the general applicability of mechanisms through which the architectonic type principle can explain cortical connectivity in terms of the relative architectonic differentiation of cortical regions.
Collapse
Affiliation(s)
- Sarah F. Beul
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claus C. Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
30
|
Barbas H, Wang J, Joyce MKP, García-Cabezas MÁ. Pathway mechanism for excitatory and inhibitory control in working memory. J Neurophysiol 2018; 120:2659-2678. [PMID: 30256740 DOI: 10.1152/jn.00936.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Humans engage in many daily activities that rely on working memory, the ability to hold and sequence information temporarily to accomplish a task. We focus on the process of working memory, based on circuit mechanisms for attending to relevant signals and suppressing irrelevant stimuli. We discuss that connections critically depend on the systematic variation in laminar structure across all cortical systems. Laminar structure is used to group areas into types regardless of their placement in the cortex, ranging from low-type agranular areas that lack layer IV to high-type areas that have six well-delineated layers. Connections vary in laminar distribution and strength based on the difference in type between linked areas, according to the "structural model" (Barbas H, Rempel-Clower N. Cereb Cortex 7: 635-646, 1997). The many possible pathways thus vary systematically by laminar distribution and strength, and they interface with excitatory neurons to select relevant stimuli and with functionally distinct inhibitory neurons that suppress activity at the site of termination. Using prefrontal pathways, we discuss how systematic architectonic variation gives rise to diverse pathways that can be recruited, along with amygdalar and hippocampal pathways that provide sensory, affective, and contextual information. The prefrontal cortex is also connected with thalamic nuclei that receive the output of the basal ganglia and cerebellum, which may facilitate fast sequencing of information. The complement of connections and their interface with distinct inhibitory neurons allows dynamic recruitment of areas and shifts in cortical rhythms to meet rapidly changing demands of sequential components of working memory tasks.
Collapse
Affiliation(s)
- Helen Barbas
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Department of Health Sciences, Boston University , Boston, Massachusetts.,Graduate Program in Neuroscience, Boston University , Boston, Massachusetts
| | - Jingyi Wang
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Department of Health Sciences, Boston University , Boston, Massachusetts
| | - Mary Kate P Joyce
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Graduate Program in Neuroscience, Boston University , Boston, Massachusetts
| | - Miguel Ángel García-Cabezas
- Neural Systems Laboratory, Boston University , Boston, Massachusetts.,Department of Health Sciences, Boston University , Boston, Massachusetts
| |
Collapse
|
31
|
Scholtens LH, van den Heuvel MP. Multimodal Connectomics in Psychiatry: Bridging Scales From Micro to Macro. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:767-776. [PMID: 29779726 DOI: 10.1016/j.bpsc.2018.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/28/2018] [Accepted: 03/16/2018] [Indexed: 01/21/2023]
Abstract
The human brain is a highly complex system, with a large variety of microscale cellular morphologies and macroscale global properties. Working at multiple scales, it forms an efficient system for processing and integration of multimodal information. Studies have repeatedly demonstrated strong associations between modalities of both microscales and macroscales of brain organization. These consistent observations point toward potential common organization principles where regions with a microscale architecture supportive of a larger computational load have more and stronger connections in the brain network on the macroscale. Conversely, disruptions observed on one organizational scale could modulate the other. First neuropsychiatric micro-macro comparisons in, among other conditions, Alzheimer's disease and schizophrenia, have, for example, shown overlapping alterations across both scales. We give an overview of recent findings on associations between microscale and macroscale organization observed in the healthy brain, followed by a summary of microscale and macroscale findings reported in the context of brain disorders. We conclude with suggestions for future multiscale connectome comparisons linking multiple scales and modalities of organization and suggest how such comparisons could contribute to a more complete fundamental understanding of brain organization and associated disease-related alterations.
Collapse
Affiliation(s)
- Lianne H Scholtens
- Connectome Lab, Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research, VU Amsterdam, Amsterdam, The Netherlands
| | - Martijn P van den Heuvel
- Connectome Lab, Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research, VU Amsterdam, Amsterdam, The Netherlands; Department of Clinical Genetics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Zikopoulos B, García-Cabezas MÁ, Barbas H. Parallel trends in cortical gray and white matter architecture and connections in primates allow fine study of pathways in humans and reveal network disruptions in autism. PLoS Biol 2018; 16:e2004559. [PMID: 29401206 PMCID: PMC5814101 DOI: 10.1371/journal.pbio.2004559] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/15/2018] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Noninvasive imaging and tractography methods have yielded information on broad communication networks but lack resolution to delineate intralaminar cortical and subcortical pathways in humans. An important unanswered question is whether we can use the wealth of precise information on pathways from monkeys to understand connections in humans. We addressed this question within a theoretical framework of systematic cortical variation and used identical high-resolution methods to compare the architecture of cortical gray matter and the white matter beneath, which gives rise to short- and long-distance pathways in humans and rhesus monkeys. We used the prefrontal cortex as a model system because of its key role in attention, emotions, and executive function, which are processes often affected in brain diseases. We found striking parallels and consistent trends in the gray and white matter architecture in humans and monkeys and between the architecture and actual connections mapped with neural tracers in rhesus monkeys and, by extension, in humans. Using the novel architectonic portrait as a base, we found significant changes in pathways between nearby prefrontal and distant areas in autism. Our findings reveal that a theoretical framework allows study of normal neural communication in humans at high resolution and specific disruptions in diverse psychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
- Graduate Program in Neuroscience, Boston University, Boston, Massachusetts, United States of America
| | - Miguel Ángel García-Cabezas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Helen Barbas
- Graduate Program in Neuroscience, Boston University, Boston, Massachusetts, United States of America
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
33
|
Cortical Afferents and Myeloarchitecture Distinguish the Medial Intraparietal Area (MIP) from Neighboring Subdivisions of the Macaque Cortex. eNeuro 2017; 4:eN-NWR-0344-17. [PMID: 29379868 PMCID: PMC5779118 DOI: 10.1523/eneuro.0344-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 01/07/2023] Open
Abstract
The parietal reach region (PRR) in the medial bank of the macaque intraparietal sulcus has been a subject of considerable interest in research aimed at the development of brain-controlled prosthetic arms, but its anatomical organization remains poorly characterized. We examined the anatomical organization of the putative PRR territory based on myeloarchitecture and retrograde tracer injections. We found that the medial bank includes three areas: an extension of the dorsal subdivision of V6A (V6Ad), the medial intraparietal area (MIP), and a subdivision of area PE (PEip). Analysis of corticocortical connections revealed that both V6Ad and MIP receive inputs from visual area V6; the ventral subdivision of V6A (V6Av); medial (PGm, 31), superior (PEc), and inferior (PFG/PF) parietal association areas; and intraparietal areas AIP and VIP. They also receive long-range projections from the superior temporal sulcus (MST, TPO), cingulate area 23, and the dorsocaudal (area F2) and ventral (areas F4/F5) premotor areas. In comparison with V6Ad, MIP receives denser input from somatosensory areas, the primary motor cortex, and the medial motor fields, as well as from visual cortex in the ventral precuneate cortex and frontal regions associated with oculomotor guidance. Unlike MIP, V6Ad receives stronger visual input, from the caudal inferior parietal cortex (PG/Opt) and V6Av, whereas PEip shows marked emphasis on anterior parietal, primary motor, and ventral premotor connections. These anatomical results suggest that MIP and V6A have complementary roles in sensorimotor behavior, with MIP more directly involved in movement planning and execution in comparison with V6A.
Collapse
|
34
|
García-Cabezas MÁ, Barbas H. Anterior Cingulate Pathways May Affect Emotions Through Orbitofrontal Cortex. Cereb Cortex 2017; 27:4891-4910. [PMID: 27655930 PMCID: PMC6075591 DOI: 10.1093/cercor/bhw284] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 08/04/2016] [Accepted: 08/19/2016] [Indexed: 12/17/2022] Open
Abstract
The anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) are associated with emotional regulation. These regions are old in phylogeny and have widespread connections with eulaminate neocortices, intricately linking areas associated with emotion and cognition. The ACC and pOFC have distinct cortical and subcortical connections and are also interlinked, but the pattern of their connections-which may be used to infer the flow of information between them-is not well understood. Here we found that pathways from ACC area 32 innervated all pOFC areas with a significant proportion of large and efficient terminals, seen at the level of the system and the synapse. The pathway from area 32 targeted overwhelmingly elements of excitatory neurons in pOFC, with few postsynaptic sites found on presumed inhibitory neurons. Moreover, pathways from area 32 originated mostly in the upper layers and innervated preferentially the middle-deep layers of the least differentiated pOFC areas, in a pattern reminiscent of feedforward communication. Pathway terminations from area 32 overlapped in the deep layers of pOFC with output pathways that project to the thalamus and the amygdala, and may have cascading downstream effects on emotional and cognitive processes and their disruption in psychiatric disorders.
Collapse
Affiliation(s)
- Miguel Á. García-Cabezas
- Department of Health Sciences, Boston University, Neural Systems Lab, 635 Commonwealth Ave., Boston, MA02215, USA
| | - Helen Barbas
- Department of Health Sciences, Boston University, Neural Systems Lab, 635 Commonwealth Ave., Boston, MA02215, USA
| |
Collapse
|
35
|
Kleckner IR, Zhang J, Touroutoglou A, Chanes L, Xia C, Simmons WK, Quigley KS, Dickerson BC, Barrett LF. Evidence for a Large-Scale Brain System Supporting Allostasis and Interoception in Humans. Nat Hum Behav 2017; 1:0069. [PMID: 28983518 PMCID: PMC5624222 DOI: 10.1038/s41562-017-0069] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 02/13/2017] [Indexed: 12/23/2022]
Abstract
Large-scale intrinsic brain systems have been identified for exteroceptive senses (e.g., sight, hearing, touch). We introduce an analogous system for representing sensations from within the body, called interoception, and demonstrate its relation to regulating peripheral systems in the body, called allostasis. Employing the recently introduced Embodied Predictive Interoception Coding (EPIC) model, we used tract-tracing studies of macaque monkeys, followed by two intrinsic functional magnetic resonance imaging samples (N = 280 and N = 270) to evaluate the existence of an intrinsic allostatic/interoceptive system in the human brain. Another sample (N = 41) allowed us to evaluate the convergent validity of the hypothesized allostatic/interoceptive system by showing that individuals with stronger connectivity between system hubs performed better on an implicit index of interoceptive ability related to autonomic fluctuations. Implications include insights for the brain's functional architecture, dissolving the artificial boundary between mind and body, and unifying mental and physical illness.
Collapse
Affiliation(s)
- Ian R. Kleckner
- Department of Psychology, Northeastern University, Boston, MA
| | - Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA
| | - Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School
- Athinoula A. Martinos Center for Biomedical Imaging
- Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Lorena Chanes
- Department of Psychology, Northeastern University, Boston, MA
- Athinoula A. Martinos Center for Biomedical Imaging
- Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Chenjie Xia
- Athinoula A. Martinos Center for Biomedical Imaging
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - W. Kyle Simmons
- Laureate Institute for Brain Research, Tulsa, OK
- School of Community Medicine, The University of Tulsa, Tulsa, OK
| | - Karen S. Quigley
- Department of Psychology, Northeastern University, Boston, MA
- Edith Nourse Rogers Memorial VA Hospital, Bedford, MA
| | - Bradford C. Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA
- Athinoula A. Martinos Center for Biomedical Imaging
- Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| |
Collapse
|
36
|
Beul SF, Barbas H, Hilgetag CC. A Predictive Structural Model of the Primate Connectome. Sci Rep 2017; 7:43176. [PMID: 28256558 PMCID: PMC5335700 DOI: 10.1038/srep43176] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 01/23/2017] [Indexed: 11/17/2022] Open
Abstract
Anatomical connectivity imposes strong constraints on brain function, but there is no general agreement about principles that govern its organization. Based on extensive quantitative data, we tested the power of three factors to predict connections of the primate cerebral cortex: architectonic similarity (structural model), spatial proximity (distance model) and thickness similarity (thickness model). Architectonic similarity showed the strongest and most consistent influence on connection features. This parameter was strongly associated with the presence or absence of inter-areal connections and when integrated with spatial distance, the factor allowed predicting the existence of projections with very high accuracy. Moreover, architectonic similarity was strongly related to the laminar pattern of projection origins, and the absolute number of cortical connections of an area. By contrast, cortical thickness similarity and distance were not systematically related to connection features. These findings suggest that cortical architecture provides a general organizing principle for connections in the primate brain, providing further support for the well-corroborated structural model.
Collapse
Affiliation(s)
- Sarah F Beul
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52 - W36, 20246 Hamburg, Germany
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., 2215 Boston, MA, USA.,Boston University School of Medicine, Department of Anatomy and Neurobiology, 72 East Concord St., 02118 Boston, MA, USA
| | - Claus C Hilgetag
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52 - W36, 20246 Hamburg, Germany.,Neural Systems Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., 2215 Boston, MA, USA
| |
Collapse
|
37
|
Anderson MC, Bunce JG, Barbas H. Prefrontal-hippocampal pathways underlying inhibitory control over memory. Neurobiol Learn Mem 2016; 134 Pt A:145-161. [PMID: 26642918 PMCID: PMC5106245 DOI: 10.1016/j.nlm.2015.11.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/06/2015] [Accepted: 11/17/2015] [Indexed: 12/29/2022]
Abstract
A key function of the prefrontal cortex is to support inhibitory control over behavior. It is widely believed that this function extends to stopping cognitive processes as well. Consistent with this, mounting evidence establishes the role of the right lateral prefrontal cortex in a clear case of cognitive control: retrieval suppression. Retrieval suppression refers to the ability to intentionally stop the retrieval process that arises when a reminder to a memory appears. Functional imaging data indicate that retrieval suppression involves top-down modulation of hippocampal activity by the dorsolateral prefrontal cortex, but the anatomical pathways supporting this inhibitory modulation remain unclear. Here we bridge this gap by integrating key findings about retrieval suppression observed through functional imaging with a detailed consideration of relevant anatomical pathways observed in non-human primates. Focusing selectively on the potential role of the anterior cingulate cortex, we develop two hypotheses about the pathways mediating interactions between lateral prefrontal cortex and the medial temporal lobes during suppression, and their cellular targets: the entorhinal gating hypothesis, and thalamo-hippocampal modulation via the nucleus reuniens. We hypothesize that whereas entorhinal gating is well situated to stop retrieval proactively, thalamo-hippocampal modulation may interrupt an ongoing act of retrieval reactively. Isolating the pathways that underlie retrieval suppression holds the potential to advance our understanding of a range of psychiatric disorders characterized by persistent intrusive thoughts. More broadly, an anatomical account of retrieval suppression would provide a key model system for understanding inhibitory control over cognition.
Collapse
Affiliation(s)
- Michael C Anderson
- MRC Cognition & Brain Sciences Unit, 15 Chaucer Road, Cambridge, England CB2 7EF, United Kingdom.
| | - Jamie G Bunce
- Neural Systems Laboratory, Boston University, 635 Commonwealth Ave., Boston, MA 02215, USA
| | - Helen Barbas
- Neural Systems Laboratory, Boston University, 635 Commonwealth Ave., Boston, MA 02215, USA
| |
Collapse
|
38
|
Two subdivisions of macaque LIP process visual-oculomotor information differently. Proc Natl Acad Sci U S A 2016; 113:E6263-E6270. [PMID: 27681616 DOI: 10.1073/pnas.1605879113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the cerebral cortex is thought to be composed of functionally distinct areas, the actual parcellation of area and assignment of function are still highly controversial. An example is the much-studied lateral intraparietal cortex (LIP). Despite the general agreement that LIP plays an important role in visual-oculomotor transformation, it remains unclear whether the area is primary sensory- or motor-related (the attention-intention debate). Although LIP has been considered as a functionally unitary area, its dorsal (LIPd) and ventral (LIPv) parts differ in local morphology and long-distance connectivity. In particular, LIPv has much stronger connections with two oculomotor centers, the frontal eye field and the deep layers of the superior colliculus, than does LIPd. Such anatomical distinctions imply that compared with LIPd, LIPv might be more involved in oculomotor processing. We tested this hypothesis physiologically with a memory saccade task and a gap saccade task. We found that LIP neurons with persistent memory activities in memory saccade are primarily provoked either by visual stimulation (vision-related) or by both visual and saccadic events (vision-saccade-related) in gap saccade. The distribution changes from predominantly vision-related to predominantly vision-saccade-related as the recording depth increases along the dorsal-ventral dimension. Consistently, the simultaneously recorded local field potential also changes from visual evoked to saccade evoked. Finally, local injection of muscimol (GABA agonist) in LIPv, but not in LIPd, dramatically decreases the proportion of express saccades. With these results, we conclude that LIPd and LIPv are more involved in visual and visual-saccadic processing, respectively.
Collapse
|
39
|
Zikopoulos B, John YJ, García-Cabezas MÁ, Bunce JG, Barbas H. The intercalated nuclear complex of the primate amygdala. Neuroscience 2016; 330:267-90. [PMID: 27256508 DOI: 10.1016/j.neuroscience.2016.05.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/09/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022]
Abstract
The organization of the inhibitory intercalated cell masses (IM) of the primate amygdala is largely unknown despite their key role in emotional processes. We studied the structural, topographic, neurochemical and intrinsic connectional features of IM neurons in the rhesus monkey brain. We found that the intercalated neurons are not confined to discrete cell clusters, but form a neuronal net that is interposed between the basal nuclei and extends to the dorsally located anterior, central, and medial nuclei of the amygdala. Unlike the IM in rodents, which are prominent in the anterior half of the amygdala, the primate inhibitory net stretched throughout the antero-posterior axis of the amygdala, and was most prominent in the central and posterior extent of the amygdala. There were two morphologic types of intercalated neurons: spiny and aspiny. Spiny neurons were the most abundant; their somata were small or medium size, round or elongated, and their dendritic trees were round or bipolar, depending on location. The aspiny neurons were on average slightly larger and had varicose dendrites with no spines. There were three non-overlapping neurochemical populations of IM neurons, in descending order of abundance: (1) Spiny neurons that were positive for the striatal associated dopamine- and cAMP-regulated phosphoprotein (DARPP-32+); (2) Aspiny neurons that expressed the calcium-binding protein calbindin (CB+); and (3) Aspiny neurons that expressed nitric oxide synthase (NOS+). The unique combinations of structural and neurochemical features of the three classes of IM neurons suggest different physiological properties and function. The three types of IM neurons were intermingled and likely interconnected in distinct ways, and were innervated by intrinsic neurons within the amygdala, or by external sources, in pathways that underlie fear conditioning and anxiety.
Collapse
Affiliation(s)
- Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States; Graduate Program for Neuroscience, Boston University and School of Medicine, Boston, MA, United States.
| | - Yohan J John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | | | - Jamie G Bunce
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Helen Barbas
- Graduate Program for Neuroscience, Boston University and School of Medicine, Boston, MA, United States; Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
40
|
The primate connectome in context: Principles of connections of the cortical visual system. Neuroimage 2016; 134:685-702. [PMID: 27083526 DOI: 10.1016/j.neuroimage.2016.04.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/23/2016] [Accepted: 04/07/2016] [Indexed: 01/13/2023] Open
Abstract
Which principles determine the organization of the intricate network formed by nerve fibers that link the primate cerebral cortex? We addressed this issue for the connections of primate visual cortices by systematically analyzing how the existence or absence of connections, their density as well as laminar patterns of projection origins and terminations are correlated with distance, similarity in cortical type as well as neuronal density or the thickness of cortical areas. Analyses were based on four extensive compilations of qualitative as well as quantitative data for connections of the primate visual cortical system in macaque monkeys (Felleman and Van Essen 1991; Barbas 1986; Barbas and Rempel-Clower 1997; Barone et al. 2000; Markov et al. 2014). Distance and thickness similarity were not consistently correlated with connection features, but similarity of cortical type, determined by qualitative features of laminar differentiation, or measured quantitatively as the areas' overall neuronal density, was a reliable predictor for the existence of connections between areas. Cortical type similarity was also consistently and closely correlated with characteristic laminar connection profiles: structurally dissimilar areas had origin and termination patterns that were biased to the upper or deep cortical layers, while similar areas showed more bilaminar origins and terminations. These results suggest that patterns of corticocortical connections of primate visual cortices are closely linked to the stratified architecture of the cerebral cortex. In particular, the regularity of laminar projection origins and terminations arises from the structural differences between cortical areas. The observed integration of projections with the intrinsic cortical architecture provides a structural basis for advanced theories of cortical organization and function.
Collapse
|
41
|
Affiliation(s)
- Jeffrey D. Schall
- Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, and Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203;
| |
Collapse
|
42
|
Barbas H. General Cortical and Special Prefrontal Connections: Principles from Structure to Function. Annu Rev Neurosci 2015; 38:269-89. [DOI: 10.1146/annurev-neuro-071714-033936] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences; Graduate Program in Neuroscience; School of Medicine; Boston University, Boston, Massachusetts 02215;
| |
Collapse
|
43
|
Miconi T, Groomes L, Kreiman G. There's Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an Object Search Task. Cereb Cortex 2015; 26:3064-82. [PMID: 26092221 DOI: 10.1093/cercor/bhv129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
When searching for an object in a scene, how does the brain decide where to look next? Visual search theories suggest the existence of a global "priority map" that integrates bottom-up visual information with top-down, target-specific signals. We propose a mechanistic model of visual search that is consistent with recent neurophysiological evidence, can localize targets in cluttered images, and predicts single-trial behavior in a search task. This model posits that a high-level retinotopic area selective for shape features receives global, target-specific modulation and implements local normalization through divisive inhibition. The normalization step is critical to prevent highly salient bottom-up features from monopolizing attention. The resulting activity pattern constitues a priority map that tracks the correlation between local input and target features. The maximum of this priority map is selected as the locus of attention. The visual input is then spatially enhanced around the selected location, allowing object-selective visual areas to determine whether the target is present at this location. This model can localize objects both in array images and when objects are pasted in natural scenes. The model can also predict single-trial human fixations, including those in error and target-absent trials, in a search task involving complex objects.
Collapse
Affiliation(s)
- Thomas Miconi
- Children's Hospital, Harvard Medical School, Boston, MA, USA The Neurosciences Institute, La Jolla, CA 92037, USA
| | - Laura Groomes
- Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriel Kreiman
- Children's Hospital, Harvard Medical School, Boston, MA, USA Center for Brain Science Swartz Center for Theoretical Neuroscience, Harvard University, Cambridge, MA, USA
| |
Collapse
|
44
|
Abstract
Intuition suggests that perception follows sensation and therefore bodily feelings originate in the body. However, recent evidence goes against this logic: interoceptive experience may largely reflect limbic predictions about the expected state of the body that are constrained by ascending visceral sensations. In this Opinion article, we introduce the Embodied Predictive Interoception Coding model, which integrates an anatomical model of corticocortical connections with Bayesian active inference principles, to propose that agranular visceromotor cortices contribute to interoception by issuing interoceptive predictions. We then discuss how disruptions in interoceptive predictions could function as a common vulnerability for mental and physical illness.
Collapse
Affiliation(s)
- Lisa Feldman Barrett
- Northeastern University, Department of Psychology, Boston, Massachusetts 02115, USA; and the Massachusetts General Hospital, Department of Psychiatry and the Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129, USA
| | - W Kyle Simmons
- Laureate Institute for Brain Research, Tulsa, Oklahoma 74133, USA; and the Faculty of Community Medicine, University of Tulsa, Tulsa, Oklahoma 74104, USA
| |
Collapse
|
45
|
García-Cabezas MÁ, Barbas H. A direct anterior cingulate pathway to the primate primary olfactory cortex may control attention to olfaction. Brain Struct Funct 2015; 219:1735-54. [PMID: 23797208 DOI: 10.1007/s00429-013-0598-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/05/2013] [Indexed: 11/25/2022]
Abstract
Behavioral and functional studies in humans suggest that attention plays a key role in activating the primary olfactory cortex through an unknown circuit mechanism. We report that a novel pathway from the anterior cingulate cortex, an area which has a key role in attention, projects directly to the primary olfactory cortex in rhesus monkeys, innervating mostly the anterior olfactory nucleus. Axons from the anterior cingulate cortex formed synapses mostly with spines of putative excitatory pyramidal neurons and with a small proportion of a neurochemical class of inhibitory neurons that are thought to have disinhibitory effect on excitatory neurons. This novel pathway from the anterior cingulate is poised to exert a powerful excitatory effect on the anterior olfactory nucleus, which is a critical hub for odorant processing via extensive bilateral connections with primary olfactory cortices and the olfactory bulb. Acting on the anterior olfactory nucleus, the anterior cingulate may activate the entire primary olfactory cortex to mediate the process of rapid attention to olfactory stimuli.
Collapse
|
46
|
Beul SF, Hilgetag CC. Towards a "canonical" agranular cortical microcircuit. Front Neuroanat 2015; 8:165. [PMID: 25642171 PMCID: PMC4294159 DOI: 10.3389/fnana.2014.00165] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/19/2014] [Indexed: 01/17/2023] Open
Abstract
Based on regularities in the intrinsic microcircuitry of cortical areas, variants of a "canonical" cortical microcircuit have been proposed and widely adopted, particularly in computational neuroscience and neuroinformatics. However, this circuit is founded on striate cortex, which manifests perhaps the most extreme instance of cortical organization, in terms of a very high density of cells in highly differentiated cortical layers. Most other cortical regions have a less well differentiated architecture, stretching in gradients from the very dense eulaminate primary cortical areas to the other extreme of dysgranular and agranular areas of low density and poor laminar differentiation. It is unlikely for the patterns of inter- and intra-laminar connections to be uniform in spite of strong variations of their structural substrate. This assumption is corroborated by reports of divergence in intrinsic circuitry across the cortex. Consequently, it remains an important goal to define local microcircuits for a variety of cortical types, in particular, agranular cortical regions. As a counterpoint to the striate microcircuit, which may be anchored in an exceptional cytoarchitecture, we here outline a tentative microcircuit for agranular cortex. The circuit is based on a synthesis of the available literature on the local microcircuitry in agranular cortical areas of the rodent brain, investigated by anatomical and electrophysiological approaches. A central observation of these investigations is a weakening of interlaminar inhibition as cortical cytoarchitecture becomes less distinctive. Thus, our study of agranular microcircuitry revealed deviations from the well-known "canonical" microcircuit established for striate cortex, suggesting variations in the intrinsic circuitry across the cortex that may be functionally relevant.
Collapse
Affiliation(s)
- Sarah F Beul
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Claus C Hilgetag
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Department of Health Sciences, Boston University, Boston MA, USA
| |
Collapse
|
47
|
A predictive model of the cat cortical connectome based on cytoarchitecture and distance. Brain Struct Funct 2014; 220:3167-84. [PMID: 25062666 PMCID: PMC4575693 DOI: 10.1007/s00429-014-0849-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 07/10/2014] [Indexed: 12/24/2022]
Abstract
Information processing in the brain is strongly constrained by anatomical connectivity. However, the principles governing the organization of corticocortical connections remain elusive. Here, we tested three models of relationships between the organization of cortical structure and features of connections linking 49 areas of the cat cerebral cortex. Factors taken into account were relative cytoarchitectonic differentiation (‘structural model’), relative spatial position (‘distance model’), or relative hierarchical position (‘hierarchical model’) of the areas. Cytoarchitectonic differentiation and spatial distance (themselves uncorrelated) correlated strongly with the existence of inter-areal connections, whereas no correlation was found with relative hierarchical position. Moreover, a strong correlation was observed between patterns of laminar projection origin or termination and cytoarchitectonic differentiation. Additionally, cytoarchitectonic differentiation correlated with the absolute number of corticocortical connections formed by areas, and varied characteristically between different cortical subnetworks, including a ‘rich-club’ module of hub areas. Thus, connections between areas of the cat cerebral cortex can, to a large part, be explained by the two independent factors of relative cytoarchitectonic differentiation and spatial distance of brain regions. As both the structural and distance model were originally formulated in the macaque monkey, their applicability in another mammalian species suggests a general principle of global cortical organization.
Collapse
|
48
|
Patel GH, Kaplan DM, Snyder LH. Topographic organization in the brain: searching for general principles. Trends Cogn Sci 2014; 18:351-63. [PMID: 24862252 PMCID: PMC4074559 DOI: 10.1016/j.tics.2014.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/12/2022]
Abstract
The neurons comprising many cortical areas have long been known to be arranged topographically such that nearby neurons have receptive fields at nearby locations in the world. Although this type of organization may be universal in primary sensory and motor cortex, in this review we demonstrate that associative cortical areas may not represent the external world in a complete and continuous fashion. After reviewing evidence for novel principles of topographic organization in macaque lateral intraparietal area (LIP) - one of the most-studied associative areas in the parietal cortex - we explore the implications of these new principles for brain function.
Collapse
Affiliation(s)
- Gaurav H Patel
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
| | - David M Kaplan
- Department of Cognitive Science, Macquarie University, Sydney, NSW 2109, Australia
| | - Lawrence H Snyder
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
49
|
Bunce JG, Zikopoulos B, Feinberg M, Barbas H. Parallel prefrontal pathways reach distinct excitatory and inhibitory systems in memory-related rhinal cortices. J Comp Neurol 2014; 521:4260-83. [PMID: 23839697 DOI: 10.1002/cne.23413] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/24/2013] [Accepted: 06/28/2013] [Indexed: 01/19/2023]
Abstract
To investigate how prefrontal cortices impinge on medial temporal cortices we labeled pathways from the anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) in rhesus monkeys to compare their relationship with excitatory and inhibitory systems in rhinal cortices. The ACC pathway terminated mostly in areas 28 and 35 with a high proportion of large terminals, whereas the pOFC pathway terminated mostly through small terminals in area 36 and sparsely in areas 28 and 35. Both pathways terminated in all layers. Simultaneous labeling of pathways and distinct neurochemical classes of inhibitory neurons, followed by analyses of appositions of presynaptic and postsynaptic fluorescent signal, or synapses, showed overall predominant association with spines of putative excitatory neurons, but also significant interactions with presumed inhibitory neurons labeled for calretinin, calbindin, or parvalbumin. In the upper layers of areas 28 and 35 the ACC pathway was associated with dendrites of neurons labeled with calretinin, which are thought to disinhibit neighboring excitatory neurons, suggesting facilitated hippocampal access. In contrast, in area 36 pOFC axons were associated with dendrites of calbindin neurons, which are poised to reduce noise and enhance signal. In the deep layers, both pathways innervated mostly dendrites of parvalbumin neurons, which strongly inhibit neighboring excitatory neurons, suggesting gating of hippocampal output to other cortices. These findings suggest that the ACC, associated with attention and context, and the pOFC, associated with emotional valuation, have distinct contributions to memory in rhinal cortices, in processes that are disrupted in psychiatric diseases.
Collapse
Affiliation(s)
- Jamie G Bunce
- Neural Systems Lab, Department of Health Sciences, Boston University, Boston, Massachusetts, 02215
| | | | | | | |
Collapse
|
50
|
García-Cabezas MÁ, Barbas H. Area 4 has layer IV in adult primates. Eur J Neurosci 2014; 39:1824-34. [PMID: 24735460 PMCID: PMC4201116 DOI: 10.1111/ejn.12585] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/07/2014] [Accepted: 03/07/2014] [Indexed: 11/27/2022]
Abstract
There are opposing views about the status of layer IV in the primary motor cortex (area 4). Cajal described a layer IV in area 4 of adult humans. In contrast, Brodmann found layer IV in developmental but not in adult primates and called area 4 'agranular'. We addressed this issue in rhesus monkeys using the neural marker SMI-32, which labels neurons in lower layer III and upper layer V, but not in layer IV. SMI-32 delineated a central unlabeled cortical stripe in area 4 that corresponds to layer IV, which was populated with small interneurons also found in layer IV in 'granular' areas (such as area 46). We distinguished layer IV interneurons from projection neurons in the layers above and below using cellular criteria. The commonly used term 'agranular' for area 4 is also used for the phylogenetically ancient limbic cortices, confusing areas that differ markedly in laminar structure. This issue pertains to the systematic variation in the architecture across cortices, traced from limbic cortices through areas with increasingly more elaborate laminar structure. The principle of systematic variation can be used to predict laminar patterns of connections across cortical systems. This principle places area 4 and agranular anterior cingulate cortices at opposite poles of the graded laminar differentiation of motor cortices. The status of layer IV in area 4 thus pertains to core organisational features of the cortex, its connections and evolution.
Collapse
Affiliation(s)
| | - Helen Barbas
- Neural Systems Laboratory (www.bu.edu/neural), Dept. of Health Sciences, Boston University, Boston, MA, USA
- Graduate Program in Neuroscience, Boston University and School of Medicine, Boston, MA, USA
| |
Collapse
|