1
|
Moss KR, Bopp TS, Johnson AE, Höke A. New evidence for secondary axonal degeneration in demyelinating neuropathies. Neurosci Lett 2021; 744:135595. [PMID: 33359733 PMCID: PMC7852893 DOI: 10.1016/j.neulet.2020.135595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/31/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Taylor S Bopp
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anna E Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
2
|
Visigalli D, Capodivento G, Basit A, Fernández R, Hamid Z, Pencová B, Gemelli C, Marubbi D, Pastorino C, Luoma AM, Riekel C, Kirschner DA, Schenone A, Fernández JA, Armirotti A, Nobbio L. Exploiting Sphingo- and Glycerophospholipid Impairment to Select Effective Drugs and Biomarkers for CMT1A. Front Neurol 2020; 11:903. [PMID: 32982928 PMCID: PMC7477391 DOI: 10.3389/fneur.2020.00903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/14/2020] [Indexed: 01/12/2023] Open
Abstract
In Charcot-Marie-Tooth type 1A (CMT1A), Schwann cells exhibit a preponderant transcriptional deficiency of genes involved in lipid biosynthesis. This perturbed lipid metabolism affects the peripheral nerve physiology and the structure of peripheral myelin. Nevertheless, the identification and functional characterization of the lipid species mainly responsible for CMT1A myelin impairment currently lack. This is critical in the pathogenesis of the neuropathy since lipids are many and complex molecules which play essential roles in the cell, including the structural components of cellular membranes, cell signaling, and membrane trafficking. Moreover, lipids themselves are able to modify gene transcription, thereby affecting the genotype-phenotype correlation of well-defined inherited diseases, including CMT1A. Here we report for the first time a comprehensive lipid profiling in experimental and human CMT1A, demonstrating a previously unknown specific alteration of sphingolipid (SP) and glycerophospholipid (GP) metabolism. Notably, SP, and GP changes even emerge in biological fluids of CMT1A rat and human patients, implying a systemic metabolic dysfunction for these specific lipid classes. Actually, SP and GP are not merely reduced; their expression is instead aberrant, contributing to the ultrastructural abnormalities that we detailed by X-ray diffraction in rat and human internode myelin. The modulation of SP and GP pathways in myelinating dorsal root ganglia cultures clearly sustains this issue. In fact, just selected molecules interacting with these pathways are able to modify the altered geometric parameters of CMT1A myelinated fibers. Overall, we propose to exploit the present SP and GP metabolism impairment to select effective drugs and validate a set of reliable biomarkers, which remain a challenge in CMT1A neuropathy.
Collapse
Affiliation(s)
- Davide Visigalli
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Giovanna Capodivento
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Abdul Basit
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Roberto Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Zeeshan Hamid
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Barbora Pencová
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Chiara Gemelli
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Daniela Marubbi
- DIMES, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Oncologia Cellulare Genoa, Genoa, Italy
| | - Cecilia Pastorino
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - Adrienne M Luoma
- Department of Biology, Boston College, Boston, MA, United States
| | | | | | - Angelo Schenone
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Lucilla Nobbio
- DINOGMI, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, UO Clinica Neurologica, Genoa, Italy
| |
Collapse
|
3
|
Moruzzo D, Nobbio L, Sterlini B, Consalez GG, Benfenati F, Schenone A, Corradi A. The Transcription Factors EBF1 and EBF2 Are Positive Regulators of Myelination in Schwann Cells. Mol Neurobiol 2016; 54:8117-8127. [DOI: 10.1007/s12035-016-0296-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
|
4
|
Sleigh JN, Weir GA, Schiavo G. A simple, step-by-step dissection protocol for the rapid isolation of mouse dorsal root ganglia. BMC Res Notes 2016; 9:82. [PMID: 26864470 PMCID: PMC4750296 DOI: 10.1186/s13104-016-1915-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/03/2016] [Indexed: 11/25/2022] Open
Abstract
Background The cell bodies of sensory neurons, which transmit information from the external environment to the spinal cord, can be found at all levels of the spinal column in paired structures called dorsal root ganglia (DRG). Rodent DRG neurons have long been studied in the laboratory to improve understanding of sensory nerve development and function, and have been instrumental in determining mechanisms underlying pain and neurodegeneration in disorders of the peripheral nervous system. Here, we describe a simple, step-by-step protocol for the swift isolation of mouse DRG, which can be enzymatically dissociated to produce fully differentiated primary neuronal cultures, or processed for downstream analyses, such as immunohistochemistry or RNA profiling. Findings After dissecting out the spinal column, from the base of the skull to the level of the femurs, it can be cut down the mid-line and the spinal cord and meninges removed, before extracting the DRG and detaching unwanted axons. This protocol allows the easy and rapid isolation of DRG with minimal practice and dissection experience. The process is both faster and less technically challenging than extracting the ganglia from the in situ column after performing a dorsal laminectomy. Conclusions This approach reduces the time required to collect DRG, thereby improving efficiency, permitting less opportunity for tissue deterioration, and, ultimately, increasing the chances of generating healthy primary DRG cultures or high quality, reproducible experiments using DRG tissue.
Collapse
Affiliation(s)
- James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, WC1 N 3BG, UK.
| | - Greg A Weir
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, WC1 N 3BG, UK.
| |
Collapse
|
5
|
Nobbio L, Visigalli D, Mannino E, Fiorese F, Kassack MU, Sturla L, Prada V, De Flora A, Zocchi E, Bruzzone S, Schenone A. The diadenosine homodinucleotide P18 improves in vitro myelination in experimental Charcot-Marie-Tooth type 1A. J Cell Biochem 2014; 115:161-7. [PMID: 23959806 DOI: 10.1002/jcb.24644] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/02/2013] [Indexed: 11/05/2022]
Abstract
Charcot-Marie-Tooth 1A (CMT1A) is a demyelinating hereditary neuropathy whose pathogenetic mechanisms are still poorly defined and an etiologic treatment is not yet available. An abnormally high intracellular Ca(2+) concentration ([Ca(2+)]i) occurs in Schwann cells from CMT1A rats (CMT1A SC) and is caused by overexpression of the purinoceptor P2X7. Normalization of the Ca(2+) levels through down-regulation of P2X7 appears to restore the normal phenotype of CMT1A SC in vitro. We recently demonstrated that the diadenosine 5',5'''-P1, P2-diphosphate (Ap2A) isomer P18 behaves as an antagonist of the P2X7 purinergic receptor, effectively blocking channel opening induced by ATP. In addition, P18 behaves as a P2Y11 agonist, inducing cAMP overproduction in P2Y11-overexpressing cells. Here we investigated the in vitro effects of P18 on CMT1A SC. We observed that basal levels of intracellular cAMP ([cAMP]i), a known regulator of SC differentiation and myelination, are significantly lower in CMT1A SC than in wild-type (wt) cells. P18 increased [cAMP]i in both CMT1A and wt SC, and this effects was blunted by NF157, a specific P2Y11 antagonist. Prolonged treatment of organotypic dorsal root ganglia (DRG) cultures with P18 significantly increased expression of myelin protein zero, a marker of myelin production, in both CMT1A and wt cultures. Interestingly, P18 decreased the content of non-phosphorylated neurofilaments, a marker of axonal damage, only in CMT1A DRG cultures. These results suggest that P2X7 antagonists, in combination with [cAMP]i-increasing agents, could represent a therapeutic strategy aimed at correcting the molecular derangements causing the CMT1A phenotype.
Collapse
Affiliation(s)
- Lucilla Nobbio
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Mother and Child Sciences and CEBR, University of Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ohyama K, Koike H, Katsuno M, Takahashi M, Hashimoto R, Kawagashira Y, Iijima M, Adachi H, Watanabe H, Sobue G. Muscle atrophy in chronic inflammatory demyelinating polyneuropathy: a computed tomography assessment. Eur J Neurol 2014; 21:1002-10. [DOI: 10.1111/ene.12426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/24/2014] [Indexed: 11/28/2022]
Affiliation(s)
- K. Ohyama
- Department of Neurology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - H. Koike
- Department of Neurology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - M. Katsuno
- Department of Neurology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - M. Takahashi
- Department of Neurology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - R. Hashimoto
- Department of Neurology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Y. Kawagashira
- Department of Neurology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - M. Iijima
- Department of Neurology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - H. Adachi
- Department of Neurology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - H. Watanabe
- Department of Neurology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - G. Sobue
- Department of Neurology; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
7
|
Kinter J, Lazzati T, Schmid D, Zeis T, Erne B, Lützelschwab R, Steck AJ, Pareyson D, Peles E, Schaeren-Wiemers N. An essential role of MAG in mediating axon-myelin attachment in Charcot-Marie-Tooth 1A disease. Neurobiol Dis 2012; 49:221-31. [PMID: 22940629 DOI: 10.1016/j.nbd.2012.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/30/2012] [Accepted: 08/16/2012] [Indexed: 10/28/2022] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is a hereditary demyelinating peripheral neuropathy caused by the duplication of the PMP22 gene. Demyelination precedes the occurrence of clinical symptoms that correlate with axonal degeneration. It was postulated that a disturbed axon-glia interface contributes to altered myelination consequently leading to axonal degeneration. In this study, we examined the expression of MAG and Necl4, two critical adhesion molecules that are present at the axon-glia interface, in sural nerve biopsies of CMT1A patients and in peripheral nerves of mice overexpressing human PMP22, an animal model for CMT1A. We show an increase in the expression of MAG and a strong decrease of Necl4 in biopsies of CMT1A patients as well as in CMT1A mice. Expression analysis revealed that MAG is strongly upregulated during peripheral nerve maturation, whereas Necl4 expression remains very low. Ablating MAG in CMT1A mice results in separation of axons from their myelin sheath. Our data show that MAG is important for axon-glia contact in a model for CMT1A, and suggest that its increased expression in CMT1A disease has a compensatory role in the pathology of the disease. Thus, we demonstrate that MAG together with other adhesion molecules such as Necl4 is important in sustaining axonal integrity.
Collapse
Affiliation(s)
- Jochen Kinter
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Thomas Lazzati
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Daniela Schmid
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Thomas Zeis
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Beat Erne
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Roland Lützelschwab
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland; Department of Neurology, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Andreas J Steck
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland; Department of Neurology, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Davide Pareyson
- IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy.
| | - Elior Peles
- Department of Molecular Cell Biology, The Weizmann Institute of Science, POB 26, Rehovot 76100, Israel.
| | - Nicole Schaeren-Wiemers
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland; Department of Neurology, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| |
Collapse
|
8
|
Melli G, Höke A. Dorsal Root Ganglia Sensory Neuronal Cultures: a tool for drug discovery for peripheral neuropathies. Expert Opin Drug Discov 2009; 4:1035-1045. [PMID: 20657751 DOI: 10.1517/17460440903266829] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND: Peripheral neuropathies affect many people worldwide and are caused by or associated with a wide range of conditions, both genetic and acquired. Current therapies are directed at symptomatic control because no effective regenerative treatment exists. Primary challenge is that mechanisms that lead to distal axonal degeneration, a common feature of all peripheral neuropathies, are largely unknown. OBJECTIVE/METHODS: To address the role and specific characteristics of dorsal root ganglia (DRG) derived sensory neuron culture system as a useful model in evaluating the pathogenic mechanisms of peripheral neuropathies and examination and validation of potential therapeutic compounds. A thorough review of the recent literature was completed and select examples of the use of DRG neurons in different peripheral neuropathy models were chosen to highlight the utility of these cultures. CONCLUSION: Many useful models of different peripheral neuropathies have been developed using DRG neuronal culture and potential therapeutic targets have been examined, but so far none of the potential therapeutic compounds have succeeded in clinical trials. In recent years, focus has changed to evaluation of axon degeneration as the primary outcome measure advocating a drug development strategy starting with phenotypic drug screening, followed by validation in primary complex co-cultures and animal models.
Collapse
Affiliation(s)
- Giorgia Melli
- Istituto Nazionale Neurologico Carlo Besta, Milano, Italy
| | | |
Collapse
|
9
|
Impaired expression of ciliary neurotrophic factor in Charcot-Marie-Tooth type 1A neuropathy. J Neuropathol Exp Neurol 2009; 68:441-55. [PMID: 19525893 DOI: 10.1097/nen.0b013e31819fa6ba] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We investigated the contribution of Schwann cell-derived ciliary neurotrophic factor (CNTF) to the pathogenesis of Charcot-Marie-Tooth disease type 1A (CMT1A) and addressed the question as to whether it plays a role in the development of axonal damage observed in the disease, with aging. Ciliary neurotrophic factor was underexpressed in experimental CMT1A but not in other models of hereditary neuropathies. Sciatic nerve crush experiments and dosage of CNTF at different time points showed that expression of this trophic factor remained significantly lower in CMT1A rats than in normal controls; moreover, in uninjured CMT1A sciatic nerves CNTF levels further decreased with ageing, thus paralleling the molecular signs of axonal impairment, that is increased expression of non-phosphorylated neurofilaments and amyloid precursor protein. Administration of CNTF to dorsal root ganglia cultures reduced dephosphorylation of neurofilaments in CMT1A cultures, without improving demyelination. Taken together, these results provide further evidence that the production of CNTF by Schwann cells is markedly reduced in CMT1A. Moreover, the observations suggest that trophic support to the axon is impaired in CMT1A and that further studies on the therapeutic use of trophic factors or their derivatives in experimental and human CMT1A are warranted.
Collapse
|
10
|
Päiväläinen S, Nissinen M, Honkanen H, Lahti O, Kangas SM, Peltonen J, Peltonen S, Heape AM. Myelination in mouse dorsal root ganglion/Schwann cell cocultures. Mol Cell Neurosci 2007; 37:568-78. [PMID: 18206387 DOI: 10.1016/j.mcn.2007.12.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 11/26/2007] [Accepted: 12/06/2007] [Indexed: 10/22/2022] Open
Abstract
The established protocols for in vitro studies of peripheral nerve myelination with rat embryonic dorsal root ganglia (DRG) and postnatal Schwann cell cocultures do not work with mouse cells. Consequently, the full potential of this model, which would allow to perform cell type-specific, mixed genotype cocultures without cross-breeding the animals, cannot be exploited. We determined the conditions required to promote full myelination in cocultures of pre-purified mouse embryonic DRG and neonatal Schwann cells, and present a method which consistently yields 50-200 mature myelin sheaths/culture. Causes for the failure of the existing protocols to yield satisfactory results with mouse cells fell into three categories: the lack of adherent support provided by the substratum, growth factor and hormone deficiencies, and the high serum content of the media. For optimal results, mouse cocultures require a 3-dimensional substratum, a myelination-promoting culture medium containing pituitary extract, N2 supplement and forskolin, and a low serum concentration.
Collapse
Affiliation(s)
- Satu Päiväläinen
- Department of Anatomy and Cell Biology, University of Oulu, Aapistie 7A, 90014 Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Nonmyelinating Schwann cell involvement with well-preserved unmyelinated axons in Charcot-Marie-Tooth disease type 1A. J Neuropathol Exp Neurol 2007; 66:1027-36. [PMID: 17984684 DOI: 10.1097/nen.0b013e3181598294] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Electron microscopic examination was performed to compare morphologic changes of nonmyelinating Schwann cells and unmyelinated axons in patients with Charcot-Marie-Tooth disease type 1A (CMT1A) with peripheral myelin protein 22 duplication (n = 27) and normal control individuals (n = 14). Complete transverse sural nerve cross-sections were obtained in 16 patients and the total number of axons and Schwann cells in each cross-section was estimated. In patients with CMT1A, the number of myelinated axons was significantly decreased, whereas unmyelinated axons were well-preserved and did not show any marked changes. The numbers of nuclei, subunits, and profiles of nonmyelinating Schwann cells were all increased significantly in patients with CMT1A, whereas the numbers of axons per unmyelinated axon-containing subunit were significantly decreased. Schwann cell subunits consisted of layers of flattened cytoplasmic profiles wrapped around unmyelinated axons in the patient with CMT1A. The numbers of nonmyelinating Schwann cell profiles were increased and the numbers of axons per unmyelinated axon-containing subunit were reduced even in young patients with well-preserved myelinated fibers. In conclusion, there is marked alteration of the population and morphology of nonmyelinating Schwann cells, and axon-Schwann cell interactions seem to be regulated differently between myelinated and unmyelinated fibers in CMT1A.
Collapse
|
12
|
Honkanen H, Lahti O, Nissinen M, Myllylä RM, Kangas S, Päiväläinen S, Alanne MH, Peltonen S, Peltonen J, Heape AM. Isolation, purification and expansion of myelination-competent, neonatal mouse Schwann cells. Eur J Neurosci 2007; 26:953-64. [PMID: 17714189 DOI: 10.1111/j.1460-9568.2007.05726.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Most studies of peripheral nerve myelination using culture models are performed with dorsal root ganglion neurons and Schwann cells pre-purified from the rat. The potential of this model is severely compromised by the lack of rat myelin mutants and the published protocols work poorly with mouse cells, for which numerous myelin mutants are available. This is partly due to difficulties in obtaining sufficient quantities of myelination-competent mouse Schwann cells. Here, we describe the isolation, purification and expansion of wild-type, myelination-competent Schwann cells from the sciatic nerves of 4-day-old mouse pups. The method consistently yields 1.9-3.3 x 10(6) of approximately 95% pure Schwann cells from the sciatic nerves of 12-15 4-day-old mouse pups, within 14-20 days. The Schwann cell proliferation rate ranges from 2.7- to 4.30-fold growth/week. Proliferation ceases within 4 weeks, when the cells become quiescent. Growth is reinduced by the presence of neurons; neuregulin is not sufficient for this effect. The Schwann cells isolated by this protocol are able to form compact myelin in culture, as judged by the segregated expression patterns of early (myelin-associated glycoprotein) and late (myelin basic protein) myelination markers in a three-dimensional neuron/Schwann cell coculture model. The Schwann cell batch yields are sufficient to perform 100-150 individual myelinating coculture assays. Employing mixed phenotype/genotype mouse neuron/Schwann cell cocultures, it will be possible to analyse the cell specificity of a mutation, and the cumulative effects of different mutations, without having to cross-breed the animals.
Collapse
Affiliation(s)
- Henrika Honkanen
- Department of Anatomy and Cell Biology, University of Oulu, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Meyer zu Hörste G, Hu W, Hartung HP, Lehmann HC, Kieseier BC. The immunocompetence of Schwann cells. Muscle Nerve 2007; 37:3-13. [PMID: 17823955 DOI: 10.1002/mus.20893] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Schwann cells are the myelinating glial cells of the peripheral nervous system that support and ensheath axons with myelin to enable rapid saltatory signal propagation in the axon. Immunocompetence, however, has only recently been recognized as an important feature of Schwann cells. An autoimmune response against components of the peripheral nervous system triggers disabling inflammatory neuropathies in patients and corresponding animal models. The immune system participates in nerve damage and disease manifestation even in non-inflammatory hereditary neuropathies. A growing body of evidence suggests that Schwann cells may modulate local immune responses by recognizing and presenting antigens and may also influence and terminate nerve inflammation by secreting cytokines. This review summarizes current knowledge on the interaction of Schwann cells with the immune system, which is involved in diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- Gerd Meyer zu Hörste
- Department of Neurology, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
14
|
Abstract
The myelin-associated glycoprotein (MAG) is a type I transmembrane glycoprotein localized in periaxonal Schwann cell and oligodendroglial membranes of myelin sheaths where it functions in glia-axon interactions. It contains five immunoglobulin (Ig)-like domains and is in the sialic acid-binding subgroup of the Ig superfamily. It appears to function both as a ligand for an axonal receptor that is needed for the maintenance of myelinated axons and as a receptor for an axonal signal that promotes the differentiation, maintenance and survival of oligodendrocytes. Its function in the maintenance of myelinated axons may be related to its role as one of the white matter inhibitors of neurite outgrowth acting through a receptor complex involving the Nogo receptor and/or gangliosides containing 2,3-linked sialic acid. MAG is expressed as two developmentally regulated isoforms with different cytoplasmic domains that may activate different signal transduction pathways in myelin-forming cells. MAG contains a carbohydrate epitope shared with other glycoconjugates that is a target antigen in autoimmune peripheral neuropathy associated with IgM gammopathy and has been implicated in a dying back oligodendrogliopathy in multiple sclerosis.
Collapse
Affiliation(s)
- Richard H Quarles
- Myelin and Brain Development Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland 20892, USA.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Mutations in a number of genes have been associated with inherited neuropathies (Charcot-Marie-Tooth or CMT disease). This review highlights how animal models of demyelinating CMT have improved our understanding of disease mechanisms. Transgenic CMT models also allow therapies to be developed in a preclinical setting. RECENT FINDINGS Rodent models for the most common subtypes of human CMT disease are now available, and two mouse mutants modeling the rare CMT4B subform have lately extended this repertoire. In a peripheral myelin protein 22 kDa (Pmp22) transgenic rat model of CMT1A, administration of a progesterone receptor antagonist reduced Pmp22 overexpression, axon loss and clinical impairments. Dietary ascorbic acid prevented dysmyelination and premature death in a Pmp22 transgenic mouse line. Neurotrophin-3 promoted small fiber remyelination in CMT1A xenografts and sensory functions in CMT1A patients. Gene expression profiling in rodent models of CMT may identify further therapeutical targets. While original classifications distinguish the demyelinating and axonal forms of CMT, recent findings emphasize that axon loss is a common feature, possibly caused by Schwann cell defects rather than demyelination per se. This supports our model that myelination and long-term axonal support are distinct functions of all myelinating glial cells. SUMMARY Animal models have opened up new perspectives on the pathomechanisms and possible treatment strategies of inherited neuropathies.
Collapse
|