1
|
He Y, Wang J, Li KL, Wang YQ, Freyberg Z, Dong Y. Membrane excitability of nucleus accumbens neurons gates the incubation of cocaine craving. Neuropsychopharmacology 2023; 48:1318-1327. [PMID: 37041207 PMCID: PMC10354025 DOI: 10.1038/s41386-023-01580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
After drug withdrawal, a key factor triggering relapse is progressively intensified cue-associated drug craving, termed incubation of drug craving. After withdrawal from cocaine self-administration, incubation of cocaine craving develops more reliably in rats compared to mice. This species difference provides an opportunity to determine rat-specific cellular adaptations, which may constitute the critical mechanisms that contribute to incubated cocaine craving in humans. Expression of incubated cocaine seeking is mediated, in part, by cocaine-induced cellular adaptations in medium spiny neurons (MSNs) within the nucleus accumbens (NAc). In rats, decreased membrane excitability in NAc MSNs is a prominent cellular adaptation, which is induced after cocaine self-administration and lasts throughout prolonged drug withdrawal. Here, we show that, similar to rats, mice exhibit decreased membrane excitability of dopamine D1 receptor (D1)-, but not D2 (D2)-, expressing MSNs within the NAc shell (NAcSh) after 1 d withdrawal from cocaine self-administration. However, in contrast to rats, this membrane adaptation does not persist in mice, diminishing after 45-d withdrawal. We also find that restoring the membrane excitability of NAcSh MSNs after cocaine withdrawal decreases cocaine seeking in rats. This suggests that drug-induced membrane adaptations are essential for behavioral expression of incubated cocaine craving. In mice, however, experimentally inducing hypoactivity of D1 NAcSh MSNs after cocaine withdrawal does not alter cocaine seeking, suggesting that MSN hypo-excitability alone is insufficient to increase cocaine seeking. Together, our results demonstrate an overall permissive role of cocaine-induced hypoactivity of NAcSh MSNs in gating increased cocaine seeking after prolonged cocaine withdrawal.
Collapse
Affiliation(s)
- Yi He
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Junshi Wang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - King-Lun Li
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Yao Q Wang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
2
|
Porrino LJ, Smith HR, Beveridge TJ, Miller MD, Nader SH, Nader MA. Prolonged Exposure to Cocaine Self-Administration Results in a Continued Progression of Alterations in Functional Activity in a Nonhuman Primate Model. DRUG AND ALCOHOL DEPENDENCE REPORTS 2023; 7:100148. [PMID: 37033159 PMCID: PMC10074498 DOI: 10.1016/j.dadr.2023.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Background Studies of nonhuman primates with exposures of up to 100 days of cocaine self-administration (SA) have provided evidence that the central effects of cocaine progress over time. These durations of cocaine exposure, however, may be insufficient to capture the extent of the neurobiological alterations observed in cocaine users, many of whom use the drug for years. The goal of the present study was to determine whether 1.5 years of cocaine SA would result in further progression of alterations in functional brain activity. Methods Adult male rhesus monkeys were exposed to 300 sessions of high-dose cocaine SA over 1.5 years. Following the final session rates of local cerebral glucose utilization (LCGU) were assessed with the 2-[14C]-deoxyglucose method and compared to rates of LCGU in control monkeys who responded for food reinforcement. In addition, LCGU in these animals was compared to a previously published group of monkeys that had self-administered cocaine or food for 100 sessions over a 4-5 month period. Results Compared to 100 days of exposure, 300 days of cocaine SA further reduced LCGU in the post-commissural striatum and produced reductions in areas unaffected by the shorter duration of exposure, such as the hypothalamus, all of the amygdala, and large expanses of cortex. Conclusions These findings demonstrate a clear progression of the impact of cocaine on functional activity with increasing durations of drug experience and have important implications for the development of potential strategies for the treatment of cocaine use disorder.
Collapse
|
3
|
Porrino LJ, Smith HR, Beveridge TJR, Miller MD, Nader SH, Nader MA. Residual deficits in functional brain activity after chronic cocaine self-administration in rhesus monkeys. Neuropsychopharmacology 2023; 48:290-298. [PMID: 34385608 PMCID: PMC9751134 DOI: 10.1038/s41386-021-01136-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 12/26/2022]
Abstract
Previous studies in humans and in animals have shown dramatic effects of cocaine on measures of brain function that persist into abstinence. The purpose of this study was to examine the neurobiological consequences of abstinence from cocaine, using a model that removes the potential confound of cocaine cues. Adult male rhesus monkeys self-administered cocaine (0.3 mg/kg/injection; N = 8) during daily sessions or served as food-reinforcement controls (N = 4). Two times per week, monkeys were placed in a neutral environment and presented with a cartoon video for ~30 min, sometimes pre- and sometimes post-operant session, but no reinforcement was presented during the video. After ~100 sessions and when the cocaine groups had self-administered 900 mg/kg cocaine, the final experimental condition was a terminal 2-[14C]-deoxyglucose procedure, which occurred in the neutral (cartoon video) environment; for half of the monkeys in each group, this occurred after 1 day of abstinence and for the others after 30 days of abstinence. Rates of local cerebral glucose metabolism were measured in 57 brain regions. Global rates of cerebral metabolism were significantly lower in animals 1 day and 30 days post-cocaine self-administration when compared to those of food-reinforced controls. Effects were larger in 30- vs. 1-day cocaine abstinence, especially in prefrontal, parietal and cingulate cortex, as well as dorsal striatum and thalamus. Because these measures were obtained from monkeys while in a neutral environment, the deficits in glucose utilization can be attributed to the consequences of cocaine exposure and not to effects of conditioned stimuli associated with cocaine.
Collapse
Affiliation(s)
- Linda J Porrino
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA.
| | - Hilary R Smith
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Thomas J R Beveridge
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Mack D Miller
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Susan H Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
4
|
Harvey E, Blurton‐Jones M, Kennedy PJ. Hippocampal BDNF regulates a shift from flexible, goal-directed to habit memory system function following cocaine abstinence. Hippocampus 2019; 29:1101-1113. [PMID: 31206907 PMCID: PMC6851590 DOI: 10.1002/hipo.23127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 01/08/2023]
Abstract
The transition from recreational drug use to addiction involves pathological learning processes that support a persistent shift from flexible, goal-directed to habit behavioral control. Here, we examined the molecular mechanisms supporting altered function in hippocampal (HPC) and dorsolateral striatum (DLS) memory systems following abstinence from repeated cocaine. After 3 weeks of cocaine abstinence (experimenter- or self-administered), we tested new behavioral learning in male rats using a dual-solution maze task, which provides an unbiased approach to assess HPC- versus DLS-dependent learning strategies. Dorsal hippocampus (dHPC) and DLS brain tissues were collected after memory testing to identify transcriptional adaptations associated with cocaine-induced shifts in behavioral learning. Our results demonstrate that following prolonged cocaine abstinence rats show a bias toward the use of an inflexible, habit memory system (DLS) in lieu of a more flexible, easily updated memory system involving the HPC. This memory system bias was associated with upregulation and downregulation of brain-derived neurotrophic factor (BDNF) gene expression and transcriptionally permissive histone acetylation (acetylated histone H3, AcH3) in the DLS and dHPC, respectively. Using viral-mediated gene transfer, we overexpressed BDNF in the dHPC during cocaine abstinence and new maze learning. This manipulation restored HPC-dependent behavioral control. These findings provide a system-level understanding of altered plasticity and behavioral learning following cocaine abstinence and inform mechanisms mediating the organization of learning and memory more broadly.
Collapse
Affiliation(s)
- Eric Harvey
- Department of PsychologyUniversity of California Los AngelesLos AngelesCalifornia
| | - Matthew Blurton‐Jones
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCalifornia
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineCalifornia
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineCalifornia
| | - Pamela J. Kennedy
- Department of PsychologyUniversity of California Los AngelesLos AngelesCalifornia
- Brain Research InstituteUniversity of California Los AngelesLos AngelesCalifornia
| |
Collapse
|
5
|
Orsini CA, Hernandez CM, Bizon JL, Setlow B. Deconstructing value-based decision making via temporally selective manipulation of neural activity: Insights from rodent models. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:459-476. [PMID: 30341621 PMCID: PMC6472996 DOI: 10.3758/s13415-018-00649-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability to choose among options that differ in their rewards and costs (value-based decision making) has long been a topic of interest for neuroscientists, psychologists, and economists alike. This is likely because this is a cognitive process in which all animals (including humans) engage on a daily basis, be it routine (which road to take to work) or consequential (which graduate school to attend). Studies of value-based decision making (particularly at the preclinical level) often treat it as a uniform process. The results of such studies have been invaluable for our understanding of the brain substrates and neurochemical systems that contribute to decision making involving a range of different rewards and costs. Value-based decision making is not a unitary process, however, but is instead composed of distinct cognitive operations that function in concert to guide choice behavior. Within this conceptual framework, it is therefore important to consider that the known neural substrates supporting decision making may contribute to temporally distinct and dissociable components of the decision process. This review will describe this approach for investigating decision making, drawing from published studies that have used techniques that allow temporal dissection of the decision process, with an emphasis on the literature in animal models. The review will conclude with a discussion of the implications of this work for understanding pathological conditions that are characterized by impaired decision making.
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychiatry, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL, 32610-0256, USA.
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32610, USA.
| | - Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Jennifer L Bizon
- Department of Psychiatry, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL, 32610-0256, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL, 32610-0256, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- Department of Psychology, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
6
|
Regional elevations in microglial activation and cerebral glucose utilization in frontal white matter tracts of rhesus monkeys following prolonged cocaine self-administration. Brain Struct Funct 2019; 224:1417-1428. [PMID: 30747315 DOI: 10.1007/s00429-019-01846-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/06/2019] [Indexed: 12/18/2022]
Abstract
It has been shown that exposure to cocaine can result in neuroinflammatory responses. Microglia, the resident CNS immune cells, undergo a transition to an activated state when challenged. In rodents, and possibly humans, cocaine exposure activates microglia. The goal of this study was to assess the extent and magnitude of microglial activation in rhesus monkeys with an extensive history of cocaine self-administration. Male rhesus monkeys (N = 4/group) were trained to respond on a fixed-interval 3-min schedule of food or 0.3 mg/kg/injection cocaine presentation (30 reinforcers/session) for 300 sessions. At the end of the final session, monkeys were administered 2-[14C]deoxyglucose intravenously and 45 min later euthanized. Brain sections were used for autoradiographic assessments of glucose utilization and for microglia activation with [3H]PK11195, a marker for the microglial 18-kDa translocator protein. There were no group differences in gray matter [3H]PK11195 binding, while binding was significantly greater in cocaine self-administration animals as compared to food controls in 8 of the 11 white matter tracts measured at the striatal level. Binding did not differ from control at other levels. There were also significant increases in white matter local cerebral glucose utilization at the striatal level, which were positively correlated with [3H]PK11195 binding. The present findings demonstrate an elevation in [3H]PK11195 binding in forebrain white matter tracts of nonhuman primates with a prolonged history of cocaine self-administration. These elevations were also associated with greater cerebral metabolic rates. These data suggest that white matter deficits may contribute to behavioral, motivational, and cognitive impairments observed in cocaine abusers.
Collapse
|
7
|
Functional Connectivity of Chronic Cocaine Use Reveals Progressive Neuroadaptations in Neocortical, Striatal, and Limbic Networks. eNeuro 2018; 5:eN-NWR-0081-18. [PMID: 30073194 PMCID: PMC6071197 DOI: 10.1523/eneuro.0081-18.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022] Open
Abstract
Brain imaging studies indicate that chronic cocaine users display altered functional connectivity between prefrontal cortical, thalamic, striatal, and limbic regions; however, the use of cross-sectional designs in these studies precludes measuring baseline brain activity prior to cocaine use. Animal studies can circumvent this limitation by comparing functional connectivity between baseline and various time points after chronic cocaine use. In the present study, adult male Long–Evans rats were trained to self-administer cocaine intravenously for 6 h sessions daily over 14 consecutive days. Two additional groups serving as controls underwent sucrose self-administration or exposure to the test chambers alone. Functional magnetic resonance imaging was conducted before self-administration and after 1 and 14 d of abstinence (1d and 14d Abs). After 1d Abs from cocaine, there were increased clustering coefficients in brain areas involved in reward seeking, learning, memory, and autonomic and affective processing, including amygdala, hypothalamus, striatum, hippocampus, and thalamus. Similar changes in clustering coefficient after 1d Abs from sucrose were evident in predominantly thalamic brain regions. Notably, there were no changes in strength of functional connectivity at 1 or 14 d after either cocaine or sucrose self-administration. The results suggest that cocaine and sucrose can change the arrangement of functional connectivity of brain regions involved in cognition and emotion, but that these changes dissipate across the early stages of abstinence. The study also emphasizes the importance of including baseline measures in longitudinal functional neuroimaging designs seeking to assess functional connectivity in the context of substance use.
Collapse
|
8
|
Abstract
Synthetic cathinones are derivatives of the naturally occurring compound cathinone, the main psychoactive ingredient in the khat plant Catha edulis. Cathinone is the β-keto analog of amphetamine, and all synthetic cathinones display a β-keto moiety in their structure. Several synthetic cathinones are widely prescribed medications (e.g., bupropion, Wellbutrin®), while others are problematic drugs of abuse (e.g., 4-methylmethcathinone, mephedrone). Similar to amphetamines, synthetic cathinones are psychomotor stimulants that exert their effects by impairing the normal function of plasma membrane transporters for dopamine (DAT), norepinephrine (NET), and 5-HT (SERT). Ring-substituted cathinones like mephedrone are transporter substrates that evoke neurotransmitter release by reversing the normal direction of transporter flux (i.e., releasers), whereas pyrrolidine-containing cathinones like 3,4-methylenedioxypyrovalerone (MDPV) are potent transporter inhibitors that block neurotransmitter uptake (i.e., blockers). Regardless of molecular mechanism, all synthetic cathinones increase extracellular monoamine concentrations in the brain, thereby enhancing cell-to-cell monoamine signaling. Here, we briefly review the mechanisms of action, structure-activity relationships, and in vivo pharmacology of synthetic cathinones. Overall, the findings show that certain synthetic cathinones are powerful drugs of abuse that could pose significant risk to users.
Collapse
|
9
|
Differential modulatory effects of cocaine on marmoset monkey recognition memory. PROGRESS IN BRAIN RESEARCH 2017; 235:155-176. [PMID: 29054287 DOI: 10.1016/bs.pbr.2017.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acute and repeated exposure to cocaine alters the cognitive performance of humans and animals. How each administration schedule affects the same memory task has yet to be properly established in nonhuman primates. Therefore, we assessed the performance of marmoset monkeys in a spontaneous object-location (SOL) recognition memory task after acute and repeated exposure to cocaine (COC; 5mg/kg, ip). Two identical neutral stimuli were explored on the 10-min sample trial, after which preferential exploration of the displaced vs the stationary object was analyzed on the 10-min test trial. For the acute treatment, cocaine was given immediately after the sample presentation, and spatial recognition was then tested after a 24-h interval. For the repeated exposure schedule, daily cocaine injections were given on 7 consecutive days. After a 7-day drug-free period, the SOL task was carried out with a 10-min intertrial interval. When given acutely postsample, COC improved the marmosets' recognition memory, whereas it had a detrimental effect after the repeated exposure. Thus, depending on the administration schedule, COC exerted opposing effects on the marmosets' ability to recognize spatial changes. This agrees with recent studies in rodents and the recognition impairment seen in human addicts. Further studies related to the effects of cocaine's acute×prior drug history on the same cognitive domain are warranted.
Collapse
|
10
|
Kutlu MG, Gould TJ. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learn Mem 2016; 23:515-33. [PMID: 27634143 PMCID: PMC5026208 DOI: 10.1101/lm.042192.116] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022]
Abstract
It has long been hypothesized that conditioning mechanisms play major roles in addiction. Specifically, the associations between rewarding properties of drugs of abuse and the drug context can contribute to future use and facilitate the transition from initial drug use into drug dependency. On the other hand, the self-medication hypothesis of drug abuse suggests that negative consequences of drug withdrawal result in relapse to drug use as an attempt to alleviate the negative symptoms. In this review, we explored these hypotheses and the involvement of the hippocampus in the development and maintenance of addiction to widely abused drugs such as cocaine, amphetamine, nicotine, alcohol, opiates, and cannabis. Studies suggest that initial exposure to stimulants (i.e., cocaine, nicotine, and amphetamine) and alcohol may enhance hippocampal function and, therefore, the formation of augmented drug-context associations that contribute to the development of addiction. In line with the self-medication hypothesis, withdrawal from stimulants, ethanol, and cannabis results in hippocampus-dependent learning and memory deficits, which suggest that an attempt to alleviate these deficits may contribute to relapse to drug use and maintenance of addiction. Interestingly, opiate withdrawal leads to enhancement of hippocampus-dependent learning and memory. Given that a conditioned aversion to drug context develops during opiate withdrawal, the cognitive enhancement in this case may result in the formation of an augmented association between withdrawal-induced aversion and withdrawal context. Therefore, individuals with opiate addiction may return to opiate use to avoid aversive symptoms triggered by the withdrawal context. Overall, the systematic examination of the role of the hippocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates.
Collapse
Affiliation(s)
- Munir Gunes Kutlu
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
11
|
Abstract
Although it is challenging for individuals with cocaine addiction to achieve abstinence, the greatest difficulty is avoiding relapse to drug taking, which is often triggered by cues associated with prior cocaine use. This vulnerability to relapse persists for long periods (months to years) after abstinence is achieved. Here, I discuss rodent studies of cue-induced cocaine craving during abstinence, with a focus on neuronal plasticity in the reward circuitry that maintains high levels of craving. Such work has the potential to identify new therapeutic targets and to further our understanding of experience-dependent plasticity in the adult brain under normal circumstances and in the context of addiction.
Collapse
Affiliation(s)
- Marina E Wolf
- The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| |
Collapse
|
12
|
Porrino LJ, Beveridge TJR, Smith HR, Nader MA. Functional consequences of cocaine expectation: findings in a non-human primate model of cocaine self-administration. Addict Biol 2016; 21:519-29. [PMID: 25684556 DOI: 10.1111/adb.12231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Exposure to stimuli and environments associated with drug use is considered one of the most important contributors to relapse among substance abusers. Neuroimaging studies have identified neural circuits underlying these responses in cocaine-dependent subjects. But these studies are often difficult to interpret because of the heterogeneity of the participants, substances abused, and differences in drug histories and social variables. Therefore, the goal of this study was to assess the functional effects of exposure to cocaine-associated stimuli in a non-human primate model of cocaine self-administration, providing precise control over these variables, with the 2-[(14) C]deoxyglucose method. Rhesus monkeys self-administered 0.3 mg/kg/injection cocaine (n = 4) under a fixed-interval 3-minute (FI 3-min) schedule of reinforcement (30 injections/session) for 100 sessions. Control animals (n = 4) underwent identical schedules of food reinforcement. Sessions were then discontinued for 30 days, after which time, monkeys were exposed to cocaine- or food-paired cues, and the 2-[(14) C]deoxyglucose experiment was conducted. The presentation of the cocaine-paired cues resulted in significant increases in functional activity within highly restricted circuits that included portions of the pre-commissural striatum, medial prefrontal cortex, rostral temporal cortex and limbic thalamus when compared with control animals presented with the food-paired cues. The presentation of cocaine-associated cues increased brain functional activity in contrast to the decreases observed after cocaine consumption. Furthermore, the topography of brain circuits engaged by the expectation of cocaine is similar to the distribution of effects during the earliest phases of cocaine self-administration, prior to the onset of neuroadaptations that accompany chronic cocaine exposure.
Collapse
Affiliation(s)
- Linda J. Porrino
- Center for the Neurobiology of Addiction Treatment; Department of Physiology and Pharmacology; Wake Forest School of Medicine; Winston Salem NC USA
| | - Thomas J. R. Beveridge
- Center for the Neurobiology of Addiction Treatment; Department of Physiology and Pharmacology; Wake Forest School of Medicine; Winston Salem NC USA
| | - Hilary R. Smith
- Center for the Neurobiology of Addiction Treatment; Department of Physiology and Pharmacology; Wake Forest School of Medicine; Winston Salem NC USA
| | - Michael A. Nader
- Center for the Neurobiology of Addiction Treatment; Department of Physiology and Pharmacology; Wake Forest School of Medicine; Winston Salem NC USA
| |
Collapse
|
13
|
Smith HR, Beveridge TJR, Nader MA, Porrino LJ. Effects of abstinence from chronic cocaine self-administration on nonhuman primate dorsal and ventral noradrenergic bundle terminal field structures. Brain Struct Funct 2015; 221:2703-15. [PMID: 26013302 DOI: 10.1007/s00429-015-1066-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/13/2015] [Indexed: 02/01/2023]
Abstract
Repeated exposure to cocaine is known to dysregulate the norepinephrine system, and norepinephrine has also been implicated as having a role in abstinence and withdrawal. The goal of this study was to determine the effects of exposure to cocaine self-administration and subsequent abstinence on regulatory elements of the norepinephrine system in the nonhuman primate brain. Rhesus monkeys self-administered cocaine (0.3 mg/kg/injection, 30 reinforcers/session) under a fixed-interval 3-min schedule of reinforcement for 100 sessions. Animals in the abstinence group then underwent a 30-day period during which no operant responding was conducted, followed by a final session of operant responding. Control animals underwent identical schedules of food reinforcement and abstinence. This duration of cocaine self-administration has been shown previously to increase levels of norepinephrine transporters (NET) in the ventral noradrenergic bundle terminal fields. In contrast, in the current study, abstinence from chronic cocaine self-administration resulted in elevated levels of [(3)H]nisoxetine binding to the NET primarily in dorsal noradrenergic bundle terminal field structures. As compared to food reinforcement, chronic cocaine self-administration resulted in decreased binding of [(3)H]RX821002 to α2-adrenoceptors primarily in limbic-related structures innervated by both dorsal and ventral bundles, as well as elevated binding in the striatum. However, following abstinence from responding for cocaine binding to α2-adrenoceptors was not different than in control animals. These data demonstrate the dynamic nature of the regulation of norepinephrine during cocaine use and abstinence, and provide further evidence that the norepinephrine system should not be overlooked in the search for effective pharmacotherapies for cocaine dependence.
Collapse
Affiliation(s)
- Hilary R Smith
- Department of Physiology and Pharmacology, Center for the Neurobiology of Addiction Treatment, One Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157-1083, USA
| | - Thomas J R Beveridge
- Ferring Pharmaceuticals, Clinical Sciences, Medical Affairs, 100 Interpace Parkway, Parsippany, NJ, 07054, USA
| | - Michael A Nader
- Department of Physiology and Pharmacology, Center for the Neurobiology of Addiction Treatment, One Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157-1083, USA
| | - Linda J Porrino
- Department of Physiology and Pharmacology, Center for the Neurobiology of Addiction Treatment, One Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157-1083, USA.
| |
Collapse
|
14
|
Gould RW, Duke AN, Nader MA. PET studies in nonhuman primate models of cocaine abuse: translational research related to vulnerability and neuroadaptations. Neuropharmacology 2014; 84:138-51. [PMID: 23458573 PMCID: PMC3692588 DOI: 10.1016/j.neuropharm.2013.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 01/07/2013] [Accepted: 02/07/2013] [Indexed: 01/11/2023]
Abstract
The current review highlights the utility of positron emission tomography (PET) imaging to study the neurobiological substrates underlying vulnerability to cocaine addiction and subsequent adaptations following chronic cocaine self-administration in nonhuman primate models of cocaine abuse. Environmental (e.g., social rank) and sex-specific influences on dopaminergic function and sensitivity to the reinforcing effects of cocaine are discussed. Cocaine-related cognitive deficits have been hypothesized to contribute to high rates of relapse and are described in nonhuman primate models. Lastly, the long-term consequences of cocaine on neurobiology are discussed. PET imaging and longitudinal, within-subject behavioral studies in nonhuman primates have provided a strong framework for designing pharmacological and behavioral treatment strategies to aid drug-dependent treatment seekers. Non-invasive PET imaging will allow for individualized treatment strategies. Recent advances in radiochemistry of novel PET ligands and other imaging modalities can further advance our understanding of stimulant use on the brain. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.
Collapse
Affiliation(s)
- Robert W Gould
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Angela N Duke
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA.
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1083, USA.
| |
Collapse
|
15
|
Pattison LP, McIntosh S, Sexton T, Childers SR, Hemby SE. Changes in dopamine transporter binding in nucleus accumbens following chronic self-administration cocaine: heroin combinations. Synapse 2014; 68:437-44. [PMID: 24916769 DOI: 10.1002/syn.21755] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/20/2014] [Accepted: 06/04/2014] [Indexed: 01/10/2023]
Abstract
Concurrent use of cocaine and heroin (speedball) has been shown to exert synergistic effects on dopamine neurotransmission in the nucleus accumbens (NAc), as observed by significant increases in extracellular dopamine levels and compensatory elevations in the maximal reuptake rate of dopamine. The present studies were undertaken to determine whether chronic self-administration of cocaine, heroin or a combination of cocaine:heroin led to compensatory changes in the abundance and/or affinity of high- and low-affinity DAT binding sites. Saturation binding of the cocaine analog [(125) I] 3β-(4-iodophenyl)tropan-2β-carboxylic acid methyl ester ([(125) I]RTI-55) in rat NAc membranes resulted in binding curves that were best fit to two-site binding models, allowing calculation of dissociation constant (Kd ) and binding density (Bmax ) values corresponding to high- and low-affinity DAT binding sites. Scatchard analysis of the saturation binding curves clearly demonstrate the presence of high- and low- affinity binding sites in the NAc, with low-affinity sites comprising 85 to 94% of the binding sites. DAT binding analyses revealed that self-administration of cocaine and a cocaine:heroin combination increased the affinity of the low-affinity site for the cocaine congener RTI-55 compared to saline. These results indicate that the alterations observed following chronic speedball self-administration are likely due to the cocaine component alone; thus further studies are necessary to elaborate upon the synergistic effect of cocaine:heroin combinations on the dopamine system in the NAc.
Collapse
Affiliation(s)
- Lindsey P Pattison
- Graduate Program in Neuroscience, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157
| | | | | | | | | |
Collapse
|
16
|
Beveridge TJR, Smith HR, Nader SH, Nader MA, Porrino LJ. Functional consequences of cocaine re-exposure after discontinuation of cocaine availability. Neuropharmacology 2014; 85:528-37. [PMID: 24953829 DOI: 10.1016/j.neuropharm.2014.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/29/2014] [Accepted: 06/04/2014] [Indexed: 01/22/2023]
Abstract
Cocaine users exhibit a wide range of behavioral impairments accompanied by brain structural, neurochemical and functional abnormalities. Metabolic mapping studies in cocaine users and animal models have shown extensive functional alterations throughout the striatum, limbic system, and cortex. Few studies, however, have evaluated the persistence of these effects following cessation of cocaine availability. The purpose of this study, therefore, was to assess the functional effects of re-exposure to cocaine in nonhuman primates after the discontinuation of cocaine self-administration for 30 or 90 days, using the quantitative autoradiographic 2-[14C]deoxyglucose (2DG) method. Rhesus monkeys self-administered cocaine (fixed interval 3-min schedule, 30 infusions per session, 0.3 mg/kg/infusion) for 100 sessions followed by 30 (n=4) or 90 days (n=3) during which experimental sessions were not conducted. Food-reinforced control animals (n=5) underwent identical schedules of reinforcement. Animals were then re-exposed to cocaine or food for one final session and the 2DG method applied immediately after session completion. Compared to controls, re-exposure to cocaine after 30 or 90 day drug-free periods resulted in lower rates of glucose utilization in ventral and dorsal striatum, prefrontal and temporal cortex, limbic system, thalamus, and midbrain. These data demonstrate that vulnerability to the effects of cocaine persists for as long as 90 days after cessation of drug use. While there was some evidence for recovery (fewer brain areas were affected by cocaine re-exposure at 90 days as compared to 30 days), this was not uniform across regions, thus suggesting that recovery occurs at different rates in different brain systems.
Collapse
Affiliation(s)
- Thomas J R Beveridge
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | - Hilary R Smith
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | - Susan H Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | - Linda J Porrino
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| |
Collapse
|
17
|
Adaptations in AMPA receptor transmission in the nucleus accumbens contributing to incubation of cocaine craving. Neuropharmacology 2013; 76 Pt B:287-300. [PMID: 23727437 DOI: 10.1016/j.neuropharm.2013.04.061] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 12/23/2022]
Abstract
Cue-induced cocaine craving in rodents intensifies or "incubates" during the first months of withdrawal from long access cocaine self-administration. This incubation phenomenon is relevant to human users who achieve abstinence but exhibit persistent vulnerability to cue-induced relapse. It is well established that incubation of cocaine craving involves complex neuronal circuits. Here we will focus on neuroadaptations in the nucleus accumbens (NAc), a region of convergence for pathways that control cocaine seeking. A key adaptation is a delayed (~3-4 weeks) accumulation of Ca(2+)-permeable AMPAR receptors (CP-AMPARs) in synapses on medium spiny neurons (MSN) of the NAc. These CP-AMPARs mediate the expression of incubation after prolonged withdrawal, although different mechanisms must be responsible during the first weeks of withdrawal, prior to CP-AMPAR accumulation. The cascade of events leading to CP-AMPAR accumulation is still unclear. However, several candidate mechanisms have been identified. First, mGluR1 has been shown to negatively regulate CP-AMPAR levels in NAc synapses, and it is possible that a withdrawal-dependent decrease in this effect may help explain CP-AMPAR accumulation during incubation. Second, an increase in phosphorylation of GluA1 subunits (at the protein kinase A site) within extrasynaptic homomeric GluA1 receptors (CP-AMPARs) may promote their synaptic insertion and oppose their removal. Finally, elevation of brain-derived neurotrophic factor (BDNF) levels in the NAc may contribute to maintenance of incubation after months of withdrawal, although incubation-related increases in BDNF accumulation do not account for CP-AMPAR accumulation. Receptors and pathways that negatively regulate incubation, such as mGluR1, are promising targets for the development of therapeutic strategies to help recovering addicts maintain abstinence. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
|
18
|
Carelli RM, West EA. When a good taste turns bad: Neural mechanisms underlying the emergence of negative affect and associated natural reward devaluation by cocaine. Neuropharmacology 2013; 76 Pt B:360-9. [PMID: 23639430 DOI: 10.1016/j.neuropharm.2013.04.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 12/01/2022]
Abstract
An important feature of cocaine addiction in humans is the emergence of negative affect (e.g., dysphoria, irritability, anhedonia), postulated to play a key role in craving and relapse. Indeed, the DSM-IV recognizes that social, occupational and/or recreational activities become reduced as a consequence of repeated drug use where previously rewarding experiences (e.g., food, job, family) become devalued as the addict continues to seek and use drug despite serious negative consequences. Here, research in the Carelli laboratory is reviewed that examined neurobiological mechanisms that may underlie these processes using a novel animal model. Oromotor responses (taste reactivity) were examined as rats learned that intraoral infusion of a sweet (e.g., saccharin) predicts impending but delayed access to cocaine self-administration. We showed that rats exhibit aversive taste reactivity (i.e., gapes/rejection responses) during infusion of the sweet paired with impending cocaine, similar to aversive responses observed during infusion of quinine, a bitter tastant. Critically, the expression of this pronounced aversion to the sweet predicted the subsequent motivation to self-administer cocaine. Electrophysiology studies show that this shift in palatability corresponds to an alteration in nucleus accumbens (NAc) cell firing; neurons that previously responded with inhibition during infusion of the palatable sweet shifted to excitatory activity during infusion of the cocaine-devalued tastant. This excitatory response profile is typically observed during infusion of quinine, indicating that the once palatable sweet becomes aversive following its association with impending but delayed cocaine, and NAc neurons encode this aversive state. We also review electrochemical studies showing a shift (from increase to decrease) in rapid NAc dopamine release during infusion of the cocaine-paired tastant as the aversive state developed, again, resulting in responses similar to quinine infusion. Collectively, our findings suggest that cocaine-conditioned cues elicit a cocaine-need state that is aversive, is encoded by a distinct subset of NAc neurons and rapid dopamine signaling, and promotes cocaine-seeking behavior. Finally, we present data showing that experimentally induced abstinence (30 days) exacerbates this natural reward devaluation by cocaine, and this effect is correlated with a greater motivation to lever press during extinction. Dissecting the neural mechanisms underlying these detrimental consequences of addiction is critical since it may lead to novel treatments that ameliorate negative affective states associated with drug use and decrease the drive (craving) for the drug. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Regina M Carelli
- Department of Psychology, The University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, The University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
19
|
Melamed JL, de Souza Silva MA, Tomaz C, Müller CP, Huston JP, Barros M. Sensitization of hypervigilance effects of cocaine can be induced by NK3 receptor activation in marmoset monkeys. Drug Alcohol Depend 2013; 128:155-60. [PMID: 23062871 DOI: 10.1016/j.drugalcdep.2012.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/21/2012] [Accepted: 08/21/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Cocaine is a widely abused drug which can result in the establishment of addiction. The neurokinin3-receptor (NK3-R) has been linked to cocaine addiction by genetic, epigenetic, and pharmacological studies suggesting that a cocaine-induced increase in NK3-R signaling may contribute to the establishment of cocaine addiction-related behaviors. METHODS Here we measured cocaine-induced sensitization of vigilance- and locomotor behaviors in marmoset monkeys (Callithrix penicillata) in an open field. RESULTS We found a sensitization of vigilance-related, but not locomotor behaviors after repeated cocaine (7mg/kg, i.p.) treatment. There was a cross-sensitization for scan frequency, but not of glance frequency, both vigilance-related behaviors, after repeated treatment with the NK3-R agonist senktide (0.2mg/kg, i.p.) given for 7 days, after a cocaine challenge (5mg/kg, i.p.). CONCLUSIONS These data suggest that in marmoset monkeys, repeated cocaine treatment leads to a sensitization of vigilance-related behaviors, which have a prominent role in spontaneously expressed activities in this species, but not of locomotor activity. Repeated activation of NK3-Rs can mimic some of the behavioral sensitization effect and may thus contribute to the establishment of cocaine related behaviors.
Collapse
Affiliation(s)
- Jonathan L Melamed
- Department of Pharmaceutical Sciences, School of Health Sciences, University of Brasilia, 70910-900 Brasilia, DF, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Porrino LJ, Hampson RE, Opris I, Deadwyler SA. Acute cocaine induced deficits in cognitive performance in rhesus macaque monkeys treated with baclofen. Psychopharmacology (Berl) 2013; 225:105-14. [PMID: 22836369 PMCID: PMC3801229 DOI: 10.1007/s00213-012-2798-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 06/28/2012] [Indexed: 01/24/2023]
Abstract
RATIONALE Acute and/or chronic exposure to cocaine can affect cognitive performance, which may influence rate of recovery during treatment. OBJECTIVE Effects of the GABA-B receptor agonist baclofen were assessed for potency to reverse the negative influence of acute, pre-session, intravenous (IV) injection of cocaine on cognitive performance in Macaca mulatta nonhuman primates. METHODS Animals were trained to perform a modified delayed match to sample (DMS) task incorporating two types of trials with varying degrees of cognitive load that had different decision requirements in order to correctly utilize information retained over the delay interval. The effects of cocaine (0.2, 0.4, and 0.6 mg/kg, IV) alone and in combination with baclofen (0.29 and 0.40 mg/kg, IV) were examined with respect to sustained performance levels. Brain metabolic activity during performance of the task was assessed using PET imaged uptake of [(18) F]-fluorodeoxyglucose. RESULTS Acute cocaine injections produced a dose-dependent decline in DMS performance selective for trials of high cognitive load. The GABA-receptor agonist baclofen, co-administered with cocaine, reversed task performance back to nondrug (saline IV) control levels. Simultaneous assessment of PET-imaged brain metabolic activity in prefrontal cortex (PFC) showed alterations by cocaine compared to PFC metabolic activation in nondrug (saline, IV) control DMS sessions, but like performance, PFC activation was returned to control levels by baclofen (0.40 mg/kg, IV) injected with cocaine. CONCLUSIONS The results show that baclofen, administered at a relatively high dose, reversed the cognitive deficits produced by acute cocaine intoxication that may have implications for use in chronic drug exposure.
Collapse
Affiliation(s)
- Linda J. Porrino
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Robert E. Hampson
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Samuel A. Deadwyler
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1083, USA
| |
Collapse
|
21
|
Addiction-related gene regulation: risks of exposure to cognitive enhancers vs. other psychostimulants. Prog Neurobiol 2012; 100:60-80. [PMID: 23085425 DOI: 10.1016/j.pneurobio.2012.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/02/2012] [Accepted: 10/08/2012] [Indexed: 01/09/2023]
Abstract
The psychostimulants methylphenidate (Ritalin, Concerta), amphetamine (Adderall), and modafinil (Provigil) are widely used in the treatment of medical conditions such as attention-deficit hyperactivity disorder and narcolepsy and, increasingly, as "cognitive enhancers" by healthy people. The long-term neuronal effects of these drugs, however, are poorly understood. A substantial amount of research over the past two decades has investigated the effects of psychostimulants such as cocaine and amphetamines on gene regulation in the brain because these molecular changes are considered critical for psychostimulant addiction. This work has determined in some detail the neurochemical and cellular mechanisms that mediate psychostimulant-induced gene regulation and has also identified the neuronal systems altered by these drugs. Among the most affected brain systems are corticostriatal circuits, which are part of cortico-basal ganglia-cortical loops that mediate motivated behavior. The neurotransmitters critical for such gene regulation are dopamine in interaction with glutamate, while other neurotransmitters (e.g., serotonin) play modulatory roles. This review presents (1) an overview of the main findings on cocaine- and amphetamine-induced gene regulation in corticostriatal circuits in an effort to provide a cellular framework for (2) an assessment of the molecular changes produced by methylphenidate, medical amphetamine (Adderall), and modafinil. The findings lead to the conclusion that protracted exposure to these cognitive enhancers can induce gene regulation effects in corticostriatal circuits that are qualitatively similar to those of cocaine and other amphetamines. These neuronal changes may contribute to the addiction liability of the psychostimulant cognitive enhancers.
Collapse
|
22
|
Ersche KD, Turton AJ, Chamberlain SR, Müller U, Bullmore ET, Robbins TW. Cognitive dysfunction and anxious-impulsive personality traits are endophenotypes for drug dependence. Am J Psychiatry 2012; 169:926-36. [PMID: 22952072 PMCID: PMC3533378 DOI: 10.1176/appi.ajp.2012.11091421] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/12/2011] [Accepted: 04/13/2012] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Not everyone who takes drugs becomes addicted, but the likelihood of developing drug addiction is greater in people with a family history of drug or alcohol dependence. Relatively little is known about how genetic risk mediates the development of drug dependence. By comparing the phenotypic profile of individuals with and without a family history of addiction, the authors sought to clarify the extent to which cognitive dysfunction and personality traits are shared by family members--and therefore likely to have predated drug dependence--and which aspects are specific to drug-dependent individuals. METHOD The authors assessed cognitive function and personality traits associated with drug dependence in stimulant-dependent individuals (N=50), their biological siblings without a history of drug dependence (N=50), and unrelated healthy volunteers (N=50). RESULTS Cognitive function was significantly impaired in the stimulant-dependent individuals across a range of domains. Deficits in executive function and response control were identified in both the stimulant-dependent individuals and in their non-drug-dependent siblings. Drug-dependent individuals and their siblings also exhibited elevated anxious-impulsive personality traits relative to healthy comparison volunteers. CONCLUSIONS Deficits in executive function and response regulation as well as anxious-impulsive personality traits may represent endophenotypes associated with the risk of developing cocaine or amphetamine dependence. The identification of addiction endophenotypes may be useful in facilitating the rational development of therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Karen D Ersche
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Lu H, Chefer S, Kurup PK, Guillem K, Vaupel DB, Ross TJ, Moore A, Yang Y, Peoples LL, Stein EA. fMRI response in the medial prefrontal cortex predicts cocaine but not sucrose self-administration history. Neuroimage 2012; 62:1857-66. [PMID: 22664568 PMCID: PMC3875563 DOI: 10.1016/j.neuroimage.2012.05.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 04/04/2012] [Accepted: 05/28/2012] [Indexed: 10/28/2022] Open
Abstract
Repeated cocaine exposure induces long-lasting neuroadaptations that alter subsequent responsiveness to the drug. However, systems-level investigation of these neuroplastic consequences is limited. We employed a rodent model of drug addiction to investigate neuroadaptations associated with prolonged forced abstinence after long-term cocaine self-administration (SA). Since natural rewards also activate the mesolimbic reward system in a partially overlapping fashion as cocaine, our design also included a sucrose SA group. Rats were trained to self-administer cocaine or sucrose using a fixed-ratio one, long-access schedule (6 h/day for 20 days). A third group of naïve, sedentary rats served as a negative control. After 30 days of abstinence, the reactivity of the reward system was assessed with functional magnetic resonance imaging (fMRI) following an intravenous cocaine injection challenge. A strong positive fMRI response, as measured by fractional cerebral blood volume changes relative to baseline (CBV%), was seen in the sedentary control group in such cortico-limbic regions as medial prefrontal cortex and anterior cingulate cortex. In contrast, both the cocaine and sucrose SA groups demonstrated a very similar initial negative fMRI response followed by an attenuated positive response. The magnitude of the mPFC response was significantly correlated with the total amount of reinforcer intake during the training sessions for the cocaine SA but not for the sucrose SA group. Given that the two SA groups had identical histories of operant training and handling, this region-specific group difference revealed by regression analysis may reflect the development of neuroadaptive mechanisms specifically related to the emergence of addiction-like behavior that occurs only in cocaine SA animals.
Collapse
Affiliation(s)
- Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Svetlana Chefer
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Pradeep K. Kurup
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Karine Guillem
- Department of Psychiatry, TRL, University of Pennsylvania, Philadelphia, PA 19104, USA
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France
| | - D. Bruce Vaupel
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Thomas J. Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Anna Moore
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Laura L. Peoples
- Department of Psychiatry, TRL, University of Pennsylvania, Philadelphia, PA 19104, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N 15th St, Philadelphia PA 19102, USA
| | - Elliot A. Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
24
|
Gould RW, Porrino LJ, Nader MA. Nonhuman primate models of addiction and PET imaging: dopamine system dysregulation. Curr Top Behav Neurosci 2012; 11:25-44. [PMID: 22020537 PMCID: PMC3831150 DOI: 10.1007/7854_2011_168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This chapter highlights the use of nonhuman primate models of cocaine addiction and the use of positron emission tomography (PET) imaging to study the role of individual differences in vulnerability and how environmental and pharmacological variables can impact cocaine abuse. The chapter will describe studies related to the dopamine (DA) neurotransmitter system, and focus primarily on the D2-like DA receptor, the DA transporter and the use of fluorodeoxyglucose to better understand the neuropharmacology of cocaine abuse. The use of nonhuman primates allows for within-subject, longitudinal studies that have provided insight into the human condition and serve as an ideal model of translational research. The combination of nonhuman primate behavior, pharmacology and state-of-the-art brain imaging using PET will provide the foundation for future studies aimed at developing behavioral and pharmacological treatments for drug addiction in humans.
Collapse
Affiliation(s)
- Robert W Gould
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157-1083, USA,
| | | | | |
Collapse
|
25
|
Chronic cocaine exposure induces putamen glutamate and glutamine metabolite abnormalities in squirrel monkeys. Psychopharmacology (Berl) 2011; 217:367-75. [PMID: 21494788 PMCID: PMC3169716 DOI: 10.1007/s00213-011-2292-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/26/2011] [Indexed: 12/17/2022]
Abstract
RATIONALE Chronic cocaine exposure has been associated with progressive brain structural and functional changes. Clarifying mechanisms underlying cocaine's progressive brain effects may help in the development of effective cocaine abuse treatments. OBJECTIVES We used a controlled squirrel monkey model of chronic cocaine exposure (45 mg/kg/week for 9 months) combined with ultra-high magnetic field (9.4 T) proton magnetic resonance spectroscopy to prospectively measure putamen metabolite changes. METHODS Proton metabolites were measured with a STEAM sequence, quantified with LCModel using a simulated basis set, and expressed as metabolite/total creatine (tCr) ratios. RESULTS We found cocaine-induced time-dependent changes in putamen glutamate/tCr and glutamine/tCr metabolite ratios suggestive of altered glutamate compartmentalization, neurotransmission, and metabolism. By contrast, saline-treated monkeys exhibited no metabolite changes over time. The time course of cocaine-induced metabolite abnormalities we detected is consistent with the apparent time course of glutamate abnormalities identified in a cross-sectional study in human cocaine users, as well as with microdialysis findings in rodent models of repeated cocaine exposure. CONCLUSIONS Together, these findings suggests that this squirrel monkey model may be useful for characterizing glutamatergic changes associated with cocaine exposure and for determining efficacies of treatments designed to mitigate cocaine-induced glutamatergic system dysfunction.
Collapse
|
26
|
Gourley SL, Taylor JR, Koleske AJ. Cell adhesion signaling pathways: First responders to cocaine exposure? Commun Integr Biol 2011; 4:30-3. [PMID: 21509173 DOI: 10.4161/cib.4.1.14083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 11/19/2022] Open
Abstract
The 100 billion neurons comprising the human brain are wired together using structural extensions termed axons, dendrites and dendritic spines. Addictive drugs remodel dendritic spine structure in certain brain regions and with repeated exposure, induce psychomotor sensitization and impair behavioral flexibility. We recently reported that low-dose cocaine exposure, in combination with knockout of Arg-an adhesion-regulated nonreceptor tyrosine kinase that stabilizes neuronal shape starting in adolescence-recapitulates both features of chronic drug exposure in rodents. In light of these and other recent findings in the field, we suggest that cell adhesion receptors and their downstream cytoskeletal effectors act as "first responders" to psychostimulant exposure. In this model, cell adhesion factors act to stabilize existing dendritic spines in response to cocaine, and reduced expression/function is expected to increase vulnerability. Moreover, this model anticipates that increased sensitivity to psychostimulants in adolescence relates to neuronal pruning processes that occur during this developmental period.
Collapse
|
27
|
Ghasemzadeh MB, Vasudevan P, Giles C, Purgianto A, Seubert C, Mantsch JR. Glutamatergic plasticity in medial prefrontal cortex and ventral tegmental area following extended-access cocaine self-administration. Brain Res 2011; 1413:60-71. [PMID: 21855055 DOI: 10.1016/j.brainres.2011.06.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/11/2011] [Accepted: 06/16/2011] [Indexed: 12/29/2022]
Abstract
Glutamate signaling in prefrontal cortex and ventral tegmental area plays an important role in the molecular and behavioral plasticity associated with addiction to drugs of abuse. The current study investigated the expression and postsynaptic density redistribution of glutamate receptors and synaptic scaffolding proteins in dorsomedial and ventromedial prefrontal cortex and ventral tegmental area after cocaine self-administration. After 14 days of extended-access (6h/day) cocaine self-administration, rats were exposed to one of three withdrawal regimen for 10 days. Animals either stayed in home cages (Home), returned to self-administration boxes with the levers withdrawn (Box), or underwent extinction training (Extinction). Extinction training was associated with significant glutamatergic plasticity. In dorsomedial prefrontal cortex of the Extinction group, there was an increase in postsynaptic density GluR1, PSD95, and actin proteins; while postsynaptic density mGluR5 protein decreased and there was no change in NMDAR1, Homer1b/c, or PICK1 proteins. These changes were not observed in ventromedial prefrontal cortex or ventral tegmental area. In ventral tegmental area, Extinction training reversed the decreased postsynaptic density NMDAR1 protein in the Home and Box withdrawal groups. These data suggest that extinction of drug seeking is associated with selective glutamatergic plasticity in prefrontal cortex and ventral tegmental area that include modulation of receptor trafficking to postsynaptic density.
Collapse
Affiliation(s)
- M Behnam Ghasemzadeh
- Department of Biomedical Sciences, Integrative Neuroscience Research Center, Marquette University, Milwaukee, WI 53201, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Beveridge TJR, Smith HR, Nader MA, Porrino LJ. Group II metabotropic glutamate receptors in the striatum of non-human primates: dysregulation following chronic cocaine self-administration. Neurosci Lett 2011; 496:15-9. [PMID: 21458540 DOI: 10.1016/j.neulet.2011.03.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/22/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
Abstract
A growing body of evidence has demonstrated a role for group II metabotropic glutamate receptors (mGluRs) in the reinforcing effects of cocaine. These receptors are important given their location in limbic-related areas, and their ability to control the release of glutamate and other neurotransmitters. They are also potential targets for novel pharmacotherapies for cocaine addiction. The present study investigated the impact of chronic cocaine self-administration (9.0mg/kg/session for 100 sessions, 900 mg/kg total intake) on the densities of group II mGluRs, as assessed with in vitro receptor autoradiography, in the striatum of adult male rhesus monkeys. Binding of [(3)H]LY341495 to group II mGluRs in control animals was heterogeneous, with a medial to lateral gradient in binding density. Significant elevations in the density of group II mGluRs following chronic cocaine self-administration were measured in the dorsal, central and ventral portions of the caudate nucleus (P<0.05), compared to controls. No differences in receptor density were observed between the groups in either the putamen or nucleus accumbens. These data demonstrate that group II mGluRs in the dorsal striatum are more sensitive to the effects of chronic cocaine exposure than those in the ventral striatum. Cocaine-induced dysregulation of the glutamate system, and its consequent impact on plasticity and synaptic remodeling, will likely be an important consideration in the development of novel pharmacotherapies for cocaine addiction.
Collapse
Affiliation(s)
- T J R Beveridge
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
29
|
|
30
|
Effects of cocaine rewards on neural representations of cognitive demand in nonhuman primates. Psychopharmacology (Berl) 2011; 213:105-18. [PMID: 20865250 PMCID: PMC3126099 DOI: 10.1007/s00213-010-2017-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE Investigations of the neural consequences of the effects of cocaine on cognition have centered on specific brain circuits including prefrontal cortex, medial temporal lobe and striatum and their roles in controlling drug dependent behavior and addiction. These regions are critical to many aspects of drug abuse; however recent investigations in addicted individuals have reported possible cognitive deficits that impact recovery and other therapeutic interventions. OBJECTIVES Therefore a direct assessment of the effects of cocaine as a reward for cognitive function provides a means of determining how brain systems involved such as prefrontal cortex are affected under normal vs. conditions of acute drug exposure as a precursor to the final impaired function in the addicted state. METHODS Nonhuman primates (NHPs) were tested in a delayed-match-to-sample decision making task to determine effects of high vs. low cognitive load trials on single neuron activity and fluorodeoxyglucose-positron emission tomography (FDG-PET) determined metabolic activation of prefrontal cortex when juice vs. intravenous cocaine were employed as rewards for successful performance. RESULTS Cognitive processing in prefrontal cortex was altered primarily on high load trials in which cocaine was randomly presented as the signaled and delivered reward on particular trials. The detrimental actions of cocaine rewards were also shown to persist and impair task performance on subsequent juice rewarded trials. CONCLUSIONS The findings indicate that one of the ways in which cocaine use may disrupt performance of a cognitive task is to alter neural processing in prefrontal cortex when involved in discriminating circumstances on the basis of low vs. high cognitive demand.
Collapse
|
31
|
Comparative neuroscience of stimulant-induced memory dysfunction: role for neurogenesis in the adult hippocampus. Behav Pharmacol 2010; 21:379-93. [PMID: 20700045 DOI: 10.1097/fbp.0b013e32833e16b6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The discovery that the addictive drugs impair neurogenesis in the adult hippocampus has prompted the elaboration of new biological hypotheses to explain addiction and drug-induced cognitive dysfunction. Considerable evidence now implicates the process of adult neurogenesis in at least some critical components of hippocampal-dependent memory function. In experimental models, psychomotor stimulant drugs produce alterations in the rate of birth, survival, maturation and functional integration of adult-born hippocampal neurons. Thus some of the deleterious consequences of drug abuse on memory could result from the neurotoxic actions of drugs on adult hippocampal neurogenesis. In this review, we will first summarize preclinical and clinical literature on the disruptive effects of drugs such as cocaine and ecstasy in the areas of learning, memory and attention. We will also summarize data that document the widespread effects of stimulant drugs on progenitor activity and precursor incorporation in the adult dentate gyrus. Finally, we will examine evidence that supports the involvement of hippocampal neurogenesis in specific aspects of learning and memory function and we will consider critically the hypothesis that some of the negative consequences of drug abuse on cognition might be ascribed to deficits in adult hippocampal neurogenesis. Evidence suggests that stimulant abuse impacts negatively on at least four areas of memory/cognitive function that may be influenced by adult hippocampal neurogenesis: contextual memory, spatial memory, working memory and cognitive flexibility.
Collapse
|
32
|
Winstanley CA, Olausson P, Taylor JR, Jentsch JD. Insight into the relationship between impulsivity and substance abuse from studies using animal models. Alcohol Clin Exp Res 2010; 34:1306-18. [PMID: 20491734 DOI: 10.1111/j.1530-0277.2010.01215.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drug use disorders are often accompanied by deficits in the capacity to efficiently process reward-related information and to monitor, suppress, or override reward-controlled behavior when goals are in conflict with aversive or immediate outcomes. This emerging deficit in behavioral flexibility and impulse control may be a central component of the progression to addiction, as behavior becomes increasingly driven by drugs and drug-associated cues at the expense of more advantageous activities. Understanding how neural mechanisms implicated in impulse control are affected by addictive drugs may therefore prove a useful strategy in the search for new treatment options. Animal models of impulsivity and addiction could make a significant contribution to this endeavor. Here, some of the more common behavioral paradigms used to measure different aspects of impulsivity across species are outlined, and the importance of the response to reward-paired cues in such paradigms is discussed. Naturally occurring differences in forms of impulsivity have been found to be predictive of future drug self-administration, but drug exposure can also increase impulsive responding. Such data are in keeping with the suggestion that impulsivity may contribute to multiple stages within the spiral of addiction. From a neurobiological perspective, converging evidence from rat, monkey, and human studies suggest that compromised functioning within the orbitofrontal cortex may critically contribute to the cognitive sequelae of drug abuse. Changes in gene transcription and protein expression within this region may provide insight into the mechanism underlying drug-induced cortical hypofunction, reflecting new molecular targets for the treatment of uncontrolled drug-seeking and drug-taking behavior.
Collapse
Affiliation(s)
- Catharine A Winstanley
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | |
Collapse
|
33
|
Kicking the habit: the neural basis of ingrained behaviors in cocaine addiction. Neurosci Biobehav Rev 2010; 35:212-9. [PMID: 20097224 DOI: 10.1016/j.neubiorev.2010.01.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 12/20/2009] [Accepted: 01/18/2010] [Indexed: 12/21/2022]
Abstract
Cocaine addiction is a complex and multifaceted process encompassing a number of forms of behavioral plasticity. The process of acquiring and consuming drugs can be sufficiently risky and complicated that the casual drug user may choose not to act on every motivation to use drugs. The repetition of drug seeking and taking, however, often results in the gradual development of drug craving and compulsive drug seeking associated with addiction. Moreover, the complex sets of behaviors associated with drug addiction can become ingrained to such an extent that, when activated by drug-associated stimuli or exposure to the drug itself, the processes underlying drug seeking and taking are automatically engaged and very difficult to suppress. Here, we examine the hypothesis that aspects of cocaine seeking and taking become ingrained with repetition, thereby contributing to continued drug use despite a conscious desire to abstain. We also review emerging evidence indicating that neuronal circuits including the dorsolateral striatum play a particularly important role in the habitual aspects of drug seeking and taking.
Collapse
|
34
|
Sun X, Wolf ME. Nucleus accumbens neurons exhibit synaptic scaling that is occluded by repeated dopamine pre-exposure. Eur J Neurosci 2009; 30:539-50. [PMID: 19674091 DOI: 10.1111/j.1460-9568.2009.06852.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synaptic scaling has been proposed as a form of plasticity that may contribute to drug addiction but it has not been previously demonstrated in the nucleus accumbens (NAc), a critical region for addiction. Here we demonstrate bidirectional synaptic scaling in postnatal rat NAc neurons that were co-cultured with prefrontal cortical neurons to restore excitatory input. Prolonged activity blockade (1-3 days) with an AMPA receptor antagonist increased cell surface (synaptic and extrasynaptic) glutamate receptor 1 (GluR1) and GluR2 but not GluR3, as well as GluR1/2 co-localization on the cell surface and total GluR1 and GluR2 protein levels. A prolonged increase in activity (bicuculline, 48 h) produced opposite effects. These results suggest that GluR1/2-containing AMPA receptors undergo synaptic scaling in NAc neurons. GluR1 and GluR2 surface expression was also increased by tetrodotoxin alone or in combination with an N-methyl-d-aspartate receptor or AMPA receptor antagonist but not by the l-type Ca(2+) channel antagonist nifedipine. A cobalt-quenching assay confirmed the immunocytochemical results indicating that synaptic scaling after activity blockade did not involve a change in abundance of GluR2-lacking AMPA receptors. Increased AMPA receptor surface expression after activity blockade required protein synthesis and was occluded by inhibition of the ubiquitin-proteasome system. Repeated dopamine (DA) treatment, which leads to upregulation of surface GluR1 and GluR2, occluded activity blockade-induced synaptic scaling. These latter results indicate an interaction between cellular mechanisms involved in synaptic scaling and adaptive mechanisms triggered by repeated DA receptor stimulation, suggesting that synaptic scaling may not function normally after exposure to DA-releasing drugs such as cocaine.
Collapse
Affiliation(s)
- Xiu Sun
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | |
Collapse
|
35
|
Unal CT, Beverley JA, Willuhn I, Steiner H. Long-lasting dysregulation of gene expression in corticostriatal circuits after repeated cocaine treatment in adult rats: effects on zif 268 and homer 1a. Eur J Neurosci 2009; 29:1615-26. [PMID: 19419424 DOI: 10.1111/j.1460-9568.2009.06691.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human imaging studies show that psychostimulants such as cocaine produce functional changes in several areas of cortex and striatum. These may reflect neuronal changes related to addiction. We employed gene markers (zif 268 and homer 1a) that offer a high anatomical resolution to map cocaine-induced changes in 22 cortical areas and 23 functionally related striatal sectors, in order to determine the corticostriatal circuits altered by repeated cocaine exposure (25 mg/kg, 5 days). Effects were investigated 1 day and 21 days after repeated treatment to assess their longevity. Repeated cocaine treatment increased basal expression of zif 268 predominantly in sensorimotor areas of the cortex. This effect endured for 3 weeks in some areas. These changes were accompanied by attenuated gene induction by a cocaine challenge. In the insular cortex, the cocaine challenge produced a decrease in zif 268 expression after the 21-day, but not 1-day, withdrawal period. In the striatum, cocaine also affected mostly sensorimotor sectors. Repeated cocaine resulted in blunted inducibility of both zif 268 and homer 1a, changes that were still very robust 3 weeks later. Thus, our findings demonstrate that cocaine produces robust and long-lasting changes in gene regulation predominantly in sensorimotor corticostriatal circuits. These neuronal changes were associated with behavioral stereotypies, which are thought to reflect dysfunction in sensorimotor corticostriatal circuits. Future studies will have to elucidate the role of such neuronal changes in psychostimulant addiction.
Collapse
Affiliation(s)
- Cagri T Unal
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science/The Chicago Medical School, North Chicago, IL 60064, USA
| | | | | | | |
Collapse
|
36
|
Beveridge TJR, Smith HR, Nader MA, Porrino LJ. Abstinence from chronic cocaine self-administration alters striatal dopamine systems in rhesus monkeys. Neuropsychopharmacology 2009; 34:1162-71. [PMID: 18769473 PMCID: PMC3845090 DOI: 10.1038/npp.2008.135] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although dysregulation within the dopamine (DA) system is a hallmark feature of chronic cocaine exposure, the question of whether these alterations persist into abstinence remains largely unanswered. Nonhuman primates represent an ideal model in which to assess the effects of abstinence on the DA system following chronic cocaine exposure. In this study, male rhesus monkeys self-administered cocaine (0.3 mg/kg per injection, 30 reinforcers per session) under a fixed-interval 3-min schedule for 100 days followed by either 30 or 90 days abstinence. This duration of cocaine self-administration has been previously shown to decrease DA D2-like receptor densities and increase levels of D1-like receptors and DA transporters (DAT). Responding by control monkeys was maintained by food presentation under an identical protocol and the same abstinence periods. [(3)H]SCH 23390 binding to DA D1 receptors following 30 days of abstinence was significantly higher in all portions of the striatum, compared to control animals, whereas [(3)H]raclopride binding to DA D2 receptors was not different between groups. [(3)H]WIN 35 428 binding to DAT was also significantly higher throughout virtually all portions of the dorsal and ventral striatum following 30 days of abstinence. Following 90 days of abstinence, however, levels of DA D1 receptors and DAT were not different from control values. Although these results indicate that there is eventual recovery of the separate elements of the DA system, they also highlight the dynamic nature of these components during the initial phases of abstinence from chronic cocaine self-administration.
Collapse
Affiliation(s)
- Thomas JR Beveridge
- Department of Physiology and Pharmacology, Center for the Neurobiological Investigation of Drug Abuse, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hilary R Smith
- Department of Physiology and Pharmacology, Center for the Neurobiological Investigation of Drug Abuse, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Michael A Nader
- Department of Physiology and Pharmacology, Center for the Neurobiological Investigation of Drug Abuse, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Linda J Porrino
- Department of Physiology and Pharmacology, Center for the Neurobiological Investigation of Drug Abuse, Wake Forest University School of Medicine, Winston-Salem, NC, USA,Correspondence: Dr LJ Porrino, Department of Physiology and Pharmacology, Center for the Neurobiological Investigation of Drug Abuse, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA, Tel: + 1 336 716 8575, Fax: + 1 336 716 8501,
| |
Collapse
|
37
|
Nelson CL, Milovanovic M, Wetter JB, Ford KA, Wolf ME. Behavioral sensitization to amphetamine is not accompanied by changes in glutamate receptor surface expression in the rat nucleus accumbens. J Neurochem 2009; 109:35-51. [PMID: 19183251 DOI: 10.1111/j.1471-4159.2009.05911.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We examined whether behavioral sensitization to amphetamine is associated with redistribution of glutamate receptors (GluR) in the rat nucleus accumbens (NAc) or dorsolateral striatum (DLSTR). Following repeated amphetamine treatment and 21 days of withdrawal, surface and intracellular levels of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) or NMDA receptor subunits were determined using a protein cross-linking assay. In contrast to our previous results in cocaine-sensitized rats, we did not observe redistribution of GluR1 or GluR2 to the cell surface in the NAc after amphetamine withdrawal, although a small increase in total GluR1 was found in the shell subregion. Nor did we observe activation of signaling pathways associated with cocaine-induced AMPA receptor trafficking or changes in NMDA receptor subunits. No significant changes were observed in the DLSTR. We also investigated the effect of administering a challenge injection of amphetamine to amphetamine-sensitized rats 24 h prior to biochemical analysis based on prior studies showing that cocaine challenge decreases AMPA receptor surface expression in the NAc of cocaine-sensitized rats. GluR1 and GluR2 were not significantly altered in either NAc or DLSTR, although a modest effect on GluR3 cannot be ruled out. Our results suggest that glutamate transmission in the NAc is dramatically different in rats sensitized to amphetamine versus cocaine.
Collapse
Affiliation(s)
- Christopher L Nelson
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095, USA
| | | | | | | | | |
Collapse
|
38
|
Lull ME, Freeman WM, Vrana KE, Mash DC. Correlating human and animal studies of cocaine abuse and gene expression. Ann N Y Acad Sci 2008; 1141:58-75. [PMID: 18991951 DOI: 10.1196/annals.1441.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gene expression changes resulting from cocaine abuse in both humans and animal models have been studied for several decades. Although human studies have been very useful at illuminating cocaine-related expression changes, there are many factors complicating these studies, including the difficulty of obtaining high-quality postmortem brain tissue and patient comorbidities. Animal models of cocaine abuse have served as valuable additions to human data and allow examination of specific aspects of cocaine abuse, including immediate early gene expression and the molecular effects of abstinence and relapse. In total, human and animal studies of cocaine abuse have uncovered gene expression changes in the brain related to a number of molecular functions, including the extracellular matrix, synaptic communication and neuroplasticity, receptors, ion channels and transporters, oligodendrocytes and myelin, apoptosis and cell death, mitochondrial function, signal transduction, and transcription factors. In addition, the mitogen-activated protein kinase and synaptic long-term potentiation signal transduction pathways are highlighted as pathways in which multiple components are altered by cocaine. Pathways and processes affected by changes in gene expression that overlap among multiple species may be promising pharmacotherapeutic targets for reducing the behavioral effects of cocaine abuse and the relapse potential observed in humans.
Collapse
Affiliation(s)
- Melinda E Lull
- Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
39
|
Briand LA, Flagel SB, Garcia-Fuster MJ, Watson SJ, Akil H, Sarter M, Robinson TE. Persistent alterations in cognitive function and prefrontal dopamine D2 receptors following extended, but not limited, access to self-administered cocaine. Neuropsychopharmacology 2008; 33:2969-80. [PMID: 18305460 PMCID: PMC3092154 DOI: 10.1038/npp.2008.18] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Drug addicts have deficits in frontocortical function and cognition even long after the discontinuation of drug use. It is not clear, however, whether the cognitive deficits are a consequence of drug use, or are present prior to drug use, and thus are a potential predisposing factor for addiction. To determine if self-administration of cocaine is capable of producing long-lasting alterations in cognition, rats were allowed access to cocaine for either 1 h/day (short access, ShA) or 6 h/day (long access, LgA) for 3 weeks. Between 1 and 30 days after the last self-administration session, we examined performance on a cognitively demanding test of sustained attention that requires an intact medial prefrontal cortex. The expression levels of dopamine D1 and D2 receptor mRNA and D2 protein in the prefrontal cortex were also examined. Early after discontinuation of drug use, LgA (but not ShA) animals were markedly impaired on the sustained attention task. Although the LgA animals improved over time, they continued to show a persistent pattern of performance deficits indicative of a disruption of cognitive flexibility up to 30 days after the discontinuation of drug use. This was accompanied by a significant decrease in DA D2 (but not D1) mRNA in the medial and orbital prefrontal cortex, and D2 receptor protein in the medial prefrontal cortex of LgA (but not ShA) animals. These findings establish that repeated cocaine use is capable of producing persistent alterations in the prefrontal cortex and in cognitive function, and illustrate the usefulness of extended access self-administration procedures for studying the neurobiology of addiction.
Collapse
MESH Headings
- Animals
- Cocaine/pharmacology
- Cocaine-Related Disorders/metabolism
- Cocaine-Related Disorders/physiopathology
- Cognition Disorders/chemically induced
- Cognition Disorders/metabolism
- Cognition Disorders/physiopathology
- Disease Models, Animal
- Dopamine/metabolism
- Dopamine Uptake Inhibitors/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Neural Pathways/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Prefrontal Cortex/physiopathology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Self Administration
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
| | - Shelly B. Flagel
- Molecular and Behavioral Neuroscience Institute, The University of Michigan
| | | | - Stanley J. Watson
- Neuroscience Program, The University of Michigan
- Molecular and Behavioral Neuroscience Institute, The University of Michigan
| | - Huda Akil
- Neuroscience Program, The University of Michigan
- Molecular and Behavioral Neuroscience Institute, The University of Michigan
| | - Martin Sarter
- Neuroscience Program, The University of Michigan
- Department of Psychology, The University of Michigan
| | - Terry E. Robinson
- Neuroscience Program, The University of Michigan
- Department of Psychology, The University of Michigan
| |
Collapse
|
40
|
Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng LJ, Shaham Y, Marinelli M, Wolf ME. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 2008; 454:118-21. [PMID: 18500330 DOI: 10.1038/nature06995] [Citation(s) in RCA: 673] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 04/07/2008] [Indexed: 11/09/2022]
Abstract
Relapse to cocaine use after prolonged abstinence is an important clinical problem. This relapse is often induced by exposure to cues associated with cocaine use. To account for the persistent propensity for relapse, it has been suggested that cue-induced cocaine craving increases over the first several weeks of abstinence and remains high for extended periods. We and others identified an analogous phenomenon in rats that was termed 'incubation of cocaine craving': time-dependent increases in cue-induced cocaine-seeking over the first months after withdrawal from self-administered cocaine. Cocaine-seeking requires the activation of glutamate projections that excite receptors for alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) in the nucleus accumbens. Here we show that the number of synaptic AMPA receptors in the accumbens is increased after prolonged withdrawal from cocaine self-administration by the addition of new AMPA receptors lacking glutamate receptor 2 (GluR2). Furthermore, we show that these new receptors mediate the incubation of cocaine craving. Our results indicate that GluR2-lacking AMPA receptors could be a new target for drug development for the treatment of cocaine addiction. We propose that after prolonged withdrawal from cocaine, increased numbers of synaptic AMPA receptors combined with the higher conductance of GluR2-lacking AMPA receptors causes increased reactivity of accumbens neurons to cocaine-related cues, leading to an intensification of drug craving and relapse.
Collapse
Affiliation(s)
- Kelly L Conrad
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Orozco-Cabal L, Liu J, Pollandt S, Schmidt K, Shinnick-Gallagher P, Gallagher JP. Dopamine and corticotropin-releasing factor synergistically alter basolateral amygdala-to-medial prefrontal cortex synaptic transmission: functional switch after chronic cocaine administration. J Neurosci 2008; 28:529-42. [PMID: 18184795 PMCID: PMC6670550 DOI: 10.1523/jneurosci.2666-07.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 12/05/2007] [Accepted: 12/05/2007] [Indexed: 11/21/2022] Open
Abstract
Basolateral amygdala (BLA) neurons provide a major excitatory input to medial prefrontal cortex (mPFC)-layer V pyramidal neurons. Under stressful conditions, commonly associated with chronic cocaine abuse, altered BLA-to-mPFC synaptic transmission could lead to defective emotional information processing and decision making within the mPFC and result in misguided and inappropriate behaviors. We examined the effects of cocaine administered chronically in vivo on EPSCs recorded from a putative BLA-mPFC pathway in vitro and their modulation by dopamine (DA), corticotropin-releasing factor (CRF), and their combination (DA plus CRF). In saline-treated animals, activation of D(1/5) receptors depressed BLA-mPFC EPSCs, whereas CRF1 receptor activation alone had no effect on EPSCs. Activating D(1/5) and CRF1 receptors in combination, however, worked synergistically through presynaptic and postsynaptic mechanisms to depress EPSCs to levels greater than D(1/5) receptor activation alone. After chronic cocaine administration, the function of DA(1/5) and CRF receptors switched from inhibitory to excitatory. In slices from cocaine-treated animals, putative BLA-mPFC EPSCs were depressed through a presynaptic mechanism. Now, activation of either D(1/5) or CRF2 receptors increased the cocaine-induced, depressed EPSCs. Additionally, simultaneous activation of presynaptic D(1/5) and CRF2 receptors led to further enhancement of EPSCs. These data indicate that CRF acting synergistically with DA normally potentiates D(1/5)-induced synaptic depression. However, after chronic cocaine, the combined synergistic actions of DA and CRF switched polarity to enhance facilitation of BLA-mPFC glutamatergic transmission. Also unmasked after acute withdrawal from chronic cocaine are endogenous, tonic-inhibitory D2-like and tonic-facilitatory CRF2 receptor actions. These multiple functional and receptor changes may underlie the altered, possibly aberrant, decision-making process after chronic cocaine.
Collapse
Affiliation(s)
- Luis Orozco-Cabal
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-1031
| | - Jie Liu
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-1031
| | - Sebastian Pollandt
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-1031
| | - Kady Schmidt
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-1031
| | - Patricia Shinnick-Gallagher
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-1031
| | - Joel P. Gallagher
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-1031
| |
Collapse
|
42
|
Liu S, Heitz RP, Sampson AR, Zhang W, Bradberry CW. Evidence of temporal cortical dysfunction in rhesus monkeys following chronic cocaine self-administration. ACTA ACUST UNITED AC 2007; 18:2109-16. [PMID: 18096561 DOI: 10.1093/cercor/bhm236] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cocaine abusers show impaired performance on cognitive tasks that engage prefrontal cortex. These deficits may contribute to impaired control and relapse in abusers. Understanding the neuronal substrates that lead to these deficits requires animal models that are relevant to the human condition. However, to date, models have mostly focused on behaviors mediated by subcortical systems. Here we evaluated the impact of long-term self-administration of cocaine in the rhesus monkey on cognitive performance. Tests included stimulus discrimination (SD)/reversal and delayed alternation tasks. The chronic cocaine animals showed marked deficits in ability to organize their behavior for maximal reward. This was demonstrated by an increased time needed to acquire SDs. Deficits were also indicated by an increased time to initially learn the delayed alternation task, and to adapt strategies for bypassing a reliance on working memory to respond accurately. Working memory per se (delay dependent performance) was not affected by chronic self-administration. This pattern of cognitive deficits suggests dysfunction that extends beyond localized prefrontal cortical areas. In particular, it appears that temporal cortical function is also compromised. This agrees with other recent clinical and preclinical findings, and suggests further study into addiction related dysfunction across more widespread cortical networks is warranted.
Collapse
Affiliation(s)
- S Liu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
43
|
Porrino LJ, Smith HR, Nader MA, Beveridge TJR. The effects of cocaine: a shifting target over the course of addiction. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:1593-600. [PMID: 17900777 PMCID: PMC2211431 DOI: 10.1016/j.pnpbp.2007.08.040] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Repeated exposure to psychostimulant drugs such as cocaine has been shown in numerous studies to produce significant neuroadaptations in both structure and function throughout the brain. Nonhuman primate models provide a way to systematically evaluate these adaptations engendered by cocaine self-administration and simulate the progressive nature of cocaine addiction in humans. Functional activity, measured using the 2-[14C]deoxyglucose method, was evaluated at selected critical time points over the course of chronic cocaine self-administration in rhesus monkeys. The effects of cocaine exposure in the initial stages of self-administration resulted in changes in functional activity in a highly restricted network of interconnected brain regions when compared to activity in food-reinforced controls. This pattern of changes was confined mainly to ventromedial prefrontal cortex and ventral striatum. Following chronic exposure to cocaine self-administration, however, the spatial extent and intensity of significant alterations in functional activity expanded considerably. The shift in topography of these changes was orderly, originating ventromedially in the prefrontal cortical-ventral striatal network and expanding dorsally to encompass the dorsal striatum. A strikingly similar progression occurred within the cortical areas that project to each of these striatal regions. Preliminary studies suggest that this pattern is maintained despite periods of abstinence from cocaine. The shifting patterns of cerebral metabolic function that accompany longer durations of cocaine self-administration may underlie many of the characteristics of chronic drug exposure, and may provide transitional mechanisms to more compulsive cocaine use.
Collapse
Affiliation(s)
- Linda J Porrino
- Center for the Neurobiological Investigation of Drug Abuse, Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA.
| | | | | | | |
Collapse
|
44
|
Castner SA, Williams GV. From vice to virtue: insights from sensitization in the nonhuman primate. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:1572-92. [PMID: 17904719 DOI: 10.1016/j.pnpbp.2007.08.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Repeated, intermittent administration of psychomotor stimulants, or D1 agonists in dopamine-deficient states, induces behavioral sensitization, characterized by an enhanced response to a subsequent acute low dose challenge, which may be manifested in form of altered behavior or cognitive function. Amphetamine sensitization in the nonhuman primate encompasses profound and enduring changes to similar neuronal and neurochemical substrates that occur in rodents. The process of sensitization in the monkey also results in a long-lasting depression in baseline behavioral responding, as well as emergence of hallucinatory-like behaviors reminiscent of human psychosis in response to an acute challenge. Nonhuman primates show a reduction in spine density and dendritic length in prefrontal neurons and a marked reduction in basal dopamine turnover in both prefrontal cortex and striatum. A major hallmark of amphetamine sensitization in both nonhuman primates and rodents is the manifestation of deficits in executive function and working memory which rely upon the integrity of prefrontal cortex and thereby, may yield significant insights into the cognitive dysfunction associated with addiction. Together with evidence from human and rodent studies, it can be concluded that repeated exposure to psychomotor stimulants can lead to a corruption of neuroadaptive systems in the brain by an extraordinary influence on synaptic plasticity, learning, and memory. Actively harnessing this same process by repeated, intermittent D1 agonist administration may be the key to improved working memory and decision making in addiction and other dopamine dysfunctional states, such as schizophrenia.
Collapse
Affiliation(s)
- Stacy A Castner
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.
| | | |
Collapse
|
45
|
Bradberry CW. Cocaine sensitization and dopamine mediation of cue effects in rodents, monkeys, and humans: areas of agreement, disagreement, and implications for addiction. Psychopharmacology (Berl) 2007; 191:705-17. [PMID: 17031707 DOI: 10.1007/s00213-006-0561-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 08/10/2006] [Indexed: 11/24/2022]
Abstract
BACKGROUND Sensitization of mesocorticolimbic dopamine projections has been a valuable model of neurobiological adaptation to chronic exposure to cocaine and other psychostimulants. DISCUSSIONS In addition to providing an explanation of exaggerated responses to drugs that might explain their increased ability to serve as reinforcers, sensitization has also been incorporated into influential theories of how drug associated cues can acquire increased salience and incentive motivation. However, almost all of the work exploring behavioral and neurochemical sensitization has been conducted in rodents. Importantly, the relatively small amount of work conducted in human and nonhuman primates differs from the rodent work in some important regards. This review will examine areas of convergence and divergence between the rodent and primate literature on sensitization and the ability of drug associated environmental cues to elicit dopamine release. The implications of this comparison for expanding addiction research beyond dopaminergic mechanisms in the striatum/nucleus accumbens will be considered.
Collapse
Affiliation(s)
- Charles W Bradberry
- Department of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|