1
|
Al-Nosairy KO, Quanz EV, Biermann J, Hoffmann MB. Optical Coherence Tomography as a Biomarker for Differential Diagnostics in Nystagmus: Ganglion Cell Layer Thickness Ratio. J Clin Med 2022; 11:jcm11174941. [PMID: 36078871 PMCID: PMC9456294 DOI: 10.3390/jcm11174941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/25/2022] Open
Abstract
In albinism, with the use of optical coherence tomography (OCT), a thinning of the macular ganglion cell layer was recently reported. As a consequence, the relevant OCT measure, i.e., a reduction of the temporal/nasal ganglion cell layer thickness quotient (GCLTQ), is a strong candidate for a novel biomarker of albinism. However, nystagmus is a common trait in albinism and is known as a potential confound of imaging techniques. Therefore, there is a need to determine the impact of nystagmus without albinism on the GCLTQ. In this bi-center study, the retinal GCLTQ was determined (OCT Spectralis, Heidelberg Engineering, Heidelberg, Germany) for healthy controls (n = 5, 10 eyes) vs. participants with nystagmus and albinism (Nalbinism, n = 8, 15 eyes), and with nystagmus of other origins (Nother, n = 11, 17 eyes). Macular OCT with 25 horizontal B scans 20 × 20° with 9 automated real time tracking (ART) frames centered on the retina was obtained for each group. From the sectoral GCLTs of the early treatment diabetic retinopathy study (ETDRS) circular thickness maps, i.e., 3 mm and 6 mm ETDRS rings, GCLTQ I and GCLTQ II were determined. Both GCLTQs were reduced in Nalbinism (GCLTQ I and II: 0.78 and 0.77, p < 0.001) compared to Nother (0.91 and 0.93) and healthy controls (0.89 and 0.95). The discrimination of Nalbinism from Nother via GCLTQ I and II had an area under the curve of 80 and 82% with an optimal cutoff point of 0.86 and 0.88, respectively. In conclusion, lower GCLTQ in Nalbinism appears as a distinguished feature in albinism-related nystagmus as opposed to other causes of nystagmus.
Collapse
Affiliation(s)
- Khaldoon O. Al-Nosairy
- Department of Ophthalmology, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Elisabeth V. Quanz
- Department of Ophthalmology, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Julia Biermann
- Department of Ophthalmology, University of Muenster Medical Centre, 48149 Muenster, Germany
| | - Michael B. Hoffmann
- Department of Ophthalmology, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39118 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
2
|
Neveu MM, Padhy SK, Ramamurthy S, Takkar B, Jalali S, CP D, Padhi TR, Robson AG. Ophthalmological Manifestations of Oculocutaneous and Ocular Albinism: Current Perspectives. Clin Ophthalmol 2022; 16:1569-1587. [PMID: 35637898 PMCID: PMC9148211 DOI: 10.2147/opth.s329282] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
Albinism describes a heterogeneous group of genetically determined disorders characterized by disrupted synthesis of melanin and a range of developmental ocular abnormalities. The main ocular features common to both oculocutaneous albinism (OCA), and ocular albinism (OA) include reduced visual acuity, refractive errors, foveal hypoplasia, congenital nystagmus, iris and fundus hypopigmentation and visual pathway misrouting, but clinical signs vary and there is phenotypic overlap with other pathologies. This study reviews the prevalence, genetics and ocular manifestations of OCA and OA, including abnormal development of the optic chiasm. The role of visual electrophysiology in the detection of chiasmal dysfunction and visual pathway misrouting is emphasized, highlighting how age-associated changes in visual evoked potential (VEP) test results must be considered to enable accurate diagnosis, and illustrated further by the inclusion of novel VEP data in genetically confirmed cases. Differential diagnosis is considered in the context of suspected retinal and other disorders, including rare syndromes that may masquerade as albinism.
Collapse
Affiliation(s)
- Magella M Neveu
- Department Electrophysiology, Moorfields Eye Hospital, London, EC1V 2PD, UK
- Institute of Ophthalmology, University College London, London, UK
| | | | | | - Brijesh Takkar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, India
| | - Subhadra Jalali
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, India
| | - Deepika CP
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, India
| | - Tapas Ranjan Padhi
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Bhubaneswar, India
| | - Anthony G Robson
- Department Electrophysiology, Moorfields Eye Hospital, London, EC1V 2PD, UK
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
3
|
Kruijt CC, Gradstein L, Bergen AA, Florijn RJ, Arveiler B, Lasseaux E, Zanlonghi X, Bagdonaite-Bejarano L, Fulton AB, Yahalom C, Blumenfeld A, Perez Y, Birk OS, de Wit GC, Schalij-Delfos NE, van Genderen MM. The Phenotypic and Mutational Spectrum of the FHONDA Syndrome and Oculocutaneous Albinism: Similarities and Differences. Invest Ophthalmol Vis Sci 2022; 63:19. [PMID: 35029636 PMCID: PMC8762694 DOI: 10.1167/iovs.63.1.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose The purpose of this study was to further expand the mutational spectrum of the Foveal Hypoplasia, Optic Nerve Decussation defect, and Anterior segment abnormalities (FHONDA syndrome), to describe the phenotypic spectrum, and to compare it to albinism. Subjects and Methods We retrospectively collected molecular, ophthalmic, and electrophysiological data of 28 patients molecularly confirmed with FHONDA from the Netherlands (9), Israel (13), France (2), and the United States of America (4). We compared the data to that of 133 Dutch patients with the 3 most common types of albinism in the Netherlands: oculocutaneous albinism type 1 (49), type 2 (41), and ocular albinism (43). Results Patients with FHONDA had a total of 15 different mutations in SLC38A8, of which 6 were novel. Excluding missing data, all patients had moderate to severe visual impairment (median visual acuity [VA] = 0.7 logMAR, interquartile range [IQR] = 0.6-0.8), nystagmus (28/28), and grade 4 foveal hypoplasia (17/17). Misrouting was present in all nine tested patients. None of the patients had any signs of hypopigmentation of skin and hair. VA in albinism was better (median = 0.5 logMAR, IQR = 0.3-0.7, P 0.006) and the phenotypes were more variable: 14 of 132 without nystagmus, foveal hypoplasia grades 1 to 4, and misrouting absent in 16 of 74. Conclusions Compared to albinism, the FHONDA syndrome appears to have a more narrow phenotypic spectrum, consisting of nonprogressive moderately to severely reduced VA, nystagmus, severe foveal hypoplasia, and misrouting. The co-occurrence of nystagmus, foveal hypoplasia, and misrouting in the absence of hypopigmentation implies that these abnormalities are not caused by lack of melanin, which has important implications for understanding the pathogenesis of these features.
Collapse
Affiliation(s)
- Charlotte C Kruijt
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands.,Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Libe Gradstein
- Department of Ophthalmology, Soroka Medical Center and Clalit Health Services, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands.,The Netherlands Institute for Neurosciences (NIN-KNAW), Amsterdam, The Netherlands.,Department of Ophthalmology, Academic Medical Center, Amsterdam, The Netherlands
| | - Ralph J Florijn
- Department of Human Genetics, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Benoit Arveiler
- Maladies Rares: Génétique et Métabolisme (MRGM), Inserm U1211, University of Bordeaux, Bordeaux, France.,Department of Medical Genetics, CHU Bordeaux, Bordeaux, France
| | | | - Xavier Zanlonghi
- Centre de Compétence Maladie Rares, Clinique Pluridisciplinaire Jules Verne, Nantes, France
| | | | - Anne B Fulton
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Claudia Yahalom
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; Department of Ophthalmology, Hadassah Medical Center, Jerusalem, Israel
| | - Anat Blumenfeld
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; Department of Ophthalmology, Hadassah Medical Center, Jerusalem, Israel
| | - Yonatan Perez
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel.,Genetics Institute, Soroka Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Gerard C de Wit
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands
| | | | - Maria M van Genderen
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands.,Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Duwell EJ, Woertz EN, Mathis J, Carroll J, DeYoe EA. Aberrant visual population receptive fields in human albinism. J Vis 2021; 21:19. [PMID: 34007988 PMCID: PMC8142699 DOI: 10.1167/jov.21.5.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Retinotopic organization is a fundamental feature of visual cortex thought to play a vital role in encoding spatial information. One important aspect of normal retinotopy is the representation of the right and left hemifields in contralateral visual cortex. However, in human albinism, many temporal retinal afferents decussate aberrantly at the optic chiasm resulting in partially superimposed representations of opposite hemifields in each hemisphere of visual cortex. Previous functional magnetic resonance imaging (fMRI) studies in human albinism suggest that the right and left hemifield representations are superimposed in a mirror-symmetric manner. This should produce imaging voxels which respond to two separate locations mirrored across the vertical meridian. However, it is not yet clear how retino-cortical miswiring in albinism manifests at the level of single voxel population receptive fields (pRFs). Here, we used pRF modeling to fit both single and dual pRF models to the visual responses of voxels in visual areas V1 to V3 of five subjects with albinism. We found that subjects with albinism (but not controls) have sizable clusters of voxels with unequivocal dual pRFs consistently corresponding to, but not fully coextensive with, regions of hemifield overlap. These dual pRFs were typically positioned at locations roughly mirrored across the vertical meridian and were uniquely clustered within a portion of the visual field for each subject.
Collapse
Affiliation(s)
- Ethan J Duwell
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.,
| | - Erica N Woertz
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,
| | - Jedidiah Mathis
- Department of Neurology, Medical College of Wisconsin, USA.,
| | - Joseph Carroll
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.,
| | - Edgar A DeYoe
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA.,
| |
Collapse
|
5
|
Shah M, Khan MT, Saeed N. Visual rehabilitation of people with oculocutaneous albinism in a tertiary clinical setting in Pakistan. Saudi J Ophthalmol 2021; 34:111-115. [PMID: 33575532 PMCID: PMC7866724 DOI: 10.4103/1319-4534.305036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 06/25/2020] [Accepted: 09/05/2020] [Indexed: 12/03/2022] Open
Abstract
PURPOSE: All people with oculocutaneous albinism (OCA) have reduced vision. This study aimed to assess the benefits of low vision aids for people with OCA. METHODS: Seventy-seven consecutive people with OCA age 4 years and above examined in a low vision clinic were included in the study. Uncorrected and best-corrected visual acuity (VA), VA with low vision devices, types of low vision aids, and refractive errors data were analyzed. RESULTS: Of the 77 people with OCA, 57% were in the age group between 4 and 15 years and 43% in the age group of 16 years and above. At the time of presentation, the percentages of visually impaired, severe visually impaired, and blind (using WHO low vision criteria) were 52%, 22%, and 25%. Among them, 39% has near VA of 1 M or better. Difference in the means of the spherical equivalent refractive error in the right eyes and left eyes was −0.494 diopters (−01.686, 0.699; 95% confidence interval). VA improved significantly after adequate refractive correction by more than one log MAR lines in 38.6% (P < 0.01). With low vision devices, in 85.7% (n = 66) participants, VA was enhanced to normal level (6/18 or better) in the better eye while 7.8% still remained in the blind category. Telescopes were prescribed to 61% people for the enhancement of distance VA and hand hold magnifiers were prescribed to 22% people to meet their needs. CONCLUSION: Low vision aids can be successfully used in visual rehabilitation of people with OCA to meet their needs.
Collapse
Affiliation(s)
- Mufarriq Shah
- Department of Optometry, Pakistan Institute of Community Ophthalmology, Hayatabad Medical Complex, Peshawar, Pakistan
| | - Muhammad T Khan
- Department of Ophthalmology, Hayatabad Medical Complex, Peshawar, Pakistan
| | - Nasir Saeed
- Department of Optometry, Pakistan Institute of Community Ophthalmology, Hayatabad Medical Complex, Peshawar, Pakistan.,Department of Ophthalmology, Hayatabad Medical Complex, Peshawar, Pakistan
| |
Collapse
|
6
|
Sayed KM, Mahmoud Abdellah M, Gad Kamel A. Analysis of the Refractive Profile of Children with Oculocutaneous Albinism versus an Age-Matched Non-Albino Group. Clin Ophthalmol 2021; 15:73-78. [PMID: 33447012 PMCID: PMC7802909 DOI: 10.2147/opth.s286126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/08/2020] [Indexed: 11/26/2022] Open
Abstract
Purpose To find out and analyze the points of difference in the refractive profile between children with complete oculocutaneous albinism (OCA) and an age-matched, non-albino group seeking paediatric ophthalmic examination. Methods A cross-sectional study was conducted on 164 infants and young children in Paediatric Ophthalmology Center, Sohag City, Egypt. Informed consent was obtained from the participants’ guardians. The study divided the population into 2 equal groups: albino group = 82 eyes, non-albino group = 82 eyes. Cycloplegic refraction and average keratometric measurements using the hand-held autokeratometer were taken for the study groups. Results In the albino group, astigmatism and hypermetropia were the most common refractive errors, 100% and 62% respectively, with significant difference between both groups. Mean total (TA), corneal (CA) and lenticular astigmatism (LA) were significantly higher in albino group (P<0.05). All albino eyes were high astigmats (≥1.25 D). Conclusion This study is novel in being comparative and includes the largest sample size ever reported for albino eyes of infants and children. High WTR astigmatism is the most prevalent refractive error in albinos with an overall bias toward hyperopia, but extreme errors (>−11.00D myopia or >+10.00D hyperopia) are not common. Albino eyes have a significantly higher degree of LA which compensates for the high CA to decrease the amount of TA. The study emphasizes the importance of refraction examination and visual rehabilitation for OCA children as early as possible to reduce eye morbidity-associated low vision.
Collapse
Affiliation(s)
- Khulood Muhammad Sayed
- The Department of Ophthalmology, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Marwa Mahmoud Abdellah
- The Department of Ophthalmology, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ahmad Gad Kamel
- The Department of Ophthalmology, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
7
|
Woertz EN, Wilk MA, Duwell EJ, Mathis JR, Carroll J, DeYoe EA. The relationship between retinal cone density and cortical magnification in human albinism. J Vis 2020; 20:10. [PMID: 32543650 PMCID: PMC7416892 DOI: 10.1167/jov.20.6.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The human fovea lies at the center of the retina and supports high-acuity vision. In normal visual system development, the highest acuity is correlated with both a high density of cone photoreceptors in the fovea and a magnified retinotopic representation of the fovea in the visual cortex. Both cone density and the cortical area dedicated to each degree of visual space—the latter describing cortical magnification (CM)—steadily decrease with increasing eccentricity from the fovea. In albinism, peak cone density at the fovea and visual acuity are decreased, but seem to be within normal limits in the periphery, thus providing a model to explore the correlation between retinal structure, cortical structure, and behavior. Here, we used adaptive optics scanning light ophthalmoscopy to assess retinal cone density and functional magnetic resonance imaging to measure CM in the primary visual cortex of normal controls and individuals with albinism. We find that retinotopic organization is more varied among individuals with albinism than previously appreciated. Additionally, CM outside the fovea is similar to that in controls, but also more variable. CM in albinism and controls exceeds that which might be predicted based on cone density alone, but is more accurately predicted by retinal ganglion cell density. This finding suggests that decreased foveal cone density in albinism may be partially counteracted by nonuniform connectivity between cones and their downstream signaling partners. Together, these results emphasize that central as well as retinal factors must be included to provide a complete picture of aberrant structure and function in albinism.
Collapse
|
8
|
Falcone MM, Patel NA, Yannuzzi NA, Acon D, Negron CI, McKeown C, Berrocal AM. Bilateral atypical lamellar holes in a patient with oculocutaneous albinism. Ophthalmic Genet 2020; 41:448-450. [PMID: 32543925 DOI: 10.1080/13816810.2020.1765397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Albinism can present with a wide range of ophthalmic findings and variable expressivity. With the use of optical coherence tomography, there has been increasing awareness of the variability of macular findings in this condition. MATERIALS AND METHODS Case report. RESULTS We present a case of oculocutaneous albinism with bilateral atypical lamellar holes which may represent part of the spectrum of retinal abnormalities in this condition. CONCLUSION Optical coherence tomography can be helpful in diagnosing albinism. Variable expressivity leads to a range of macular pathology in albinism which may include atypical lamellar holes as described in this patient.
Collapse
Affiliation(s)
- Michelle M Falcone
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Nimesh A Patel
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Nicolas A Yannuzzi
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Dhariana Acon
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Catherin I Negron
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Craig McKeown
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Audina M Berrocal
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami , Miami, FL, USA
| |
Collapse
|
9
|
Altered visual population receptive fields in human albinism. Cortex 2020; 128:107-123. [PMID: 32334151 DOI: 10.1016/j.cortex.2020.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/10/2020] [Accepted: 03/07/2020] [Indexed: 02/07/2023]
Abstract
Albinism is a congenital disorder where misrouting of the optic nerves at the chiasm gives rise to abnormal visual field representations in occipital cortex. In typical human development, the left occipital cortex receives retinal input predominantly from the right visual field, and vice-versa. In albinism, there is a more complete decussation of optic nerve fibers at the chiasm, resulting in partial representation of the temporal hemiretina (ipsilateral visual field) in the contralateral hemisphere. In this study, we characterize the receptive field properties for these abnormal representations by conducting detailed fMRI population receptive field mapping in a rare subset of participants with albinism and no ocular nystagmus. We find a nasal bias for receptive field positions in the abnormal temporal hemiretina representation. In addition, by modelling responses to bilateral visual field stimulation in the overlap zone, we found evidence in favor of discrete unilateral receptive fields, suggesting a conservative pattern of spatial selectivity in the presence of abnormal retinal input.
Collapse
|
10
|
Puzniak RJ, Ahmadi K, Kaufmann J, Gouws A, Morland AB, Pestilli F, Hoffmann MB. Quantifying nerve decussation abnormalities in the optic chiasm. NEUROIMAGE-CLINICAL 2019; 24:102055. [PMID: 31722288 PMCID: PMC6849426 DOI: 10.1016/j.nicl.2019.102055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022]
Abstract
Diffusion MRI is capable of detecting structural abnormalities of the optic chiasm. Quantification of crossing strength in optic chiasm is of promise for albinism diagnostics. Optic chiasm is a powerful test model for neuroimaging methods resolving crossing fibers.
Objective The human optic chiasm comprises partially crossing optic nerve fibers. Here we used diffusion MRI (dMRI) for the in-vivo identification of the abnormally high proportion of crossing fibers found in the optic chiasm of people with albinism. Methods In 9 individuals with albinism and 8 controls high-resolution 3T dMRI data was acquired and analyzed with a set of methods for signal modeling [Diffusion Tensor (DT) and Constrained Spherical Deconvolution (CSD)], tractography, and streamline filtering (LiFE, COMMIT, and SIFT2). The number of crossing and non-crossing streamlines and their weights after filtering entered ROC-analyses to compare the discriminative power of the methods based on the area under the curve (AUC). The dMRI results were cross-validated with fMRI estimates of misrouting in a subset of 6 albinotic individuals. Results We detected significant group differences in chiasmal crossing for both unfiltered DT (p = 0.014) and CSD tractograms (p = 0.0009) also reflected by AUC measures (for DT and CSD: 0.61 and 0.75, respectively), underlining the discriminative power of the approach. Estimates of crossing strengths obtained with dMRI and fMRI were significantly correlated for CSD (R2 = 0.83, p = 0.012). The results show that streamline filtering methods in combination with probabilistic tracking, both optimized for the data at hand, can improve the detection of crossing in the human optic chiasm. Conclusions Especially CSD-based tractography provides an efficient approach to detect structural abnormalities in the optic chiasm. The most realistic results were obtained with filtering methods with parameters optimized for the data at hand. Significance Our findings demonstrate a novel anatomy-driven approach for the individualized diagnostics of optic chiasm abnormalities.
Collapse
Affiliation(s)
- Robert J Puzniak
- Department of Ophthalmology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Khazar Ahmadi
- Department of Ophthalmology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Andre Gouws
- York Neuroimaging Centre, Department of Psychology, University of York, York, United Kingdom
| | - Antony B Morland
- York Neuroimaging Centre, Department of Psychology, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Program in Neuroscience and Program in Cognitive Science, Indiana University, Bloomington, USA
| | - Michael B Hoffmann
- Department of Ophthalmology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
11
|
Ahmadi K, Herbik A, Wagner M, Kanowski M, Thieme H, Hoffmann MB. Population receptive field and connectivity properties of the early visual cortex in human albinism. Neuroimage 2019; 202:116105. [PMID: 31422172 DOI: 10.1016/j.neuroimage.2019.116105] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/28/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022] Open
Abstract
In albinism, the pathological decussation of the temporal retinal afferents at the optic chiasm leads to superimposed representations of opposing hemifields in the visual cortex. Here, we assessed the equivalence of the two representations and the cortico-cortical connectivity of the early visual areas. Applying fMRI-based population receptive field (pRF)-mapping (both hemifield and bilateral mapping) and connective field (CF)-modeling, we investigated the early visual cortex in 6 albinotic participants and 4 controls. In albinism, superimposed retinotopic representations of the contra- and ipsilateral visual hemifield were observed on the hemisphere contralateral to the stimulated eye. This was confirmed by the observation of bilateral pRFs during bilateral mapping. Hemifield mapping revealed similar pRF-sizes for both hemifield representations throughout V1 to V3. The typical increase of V1-sampling extent for V3 compared to V2 was not found for the albinotic participants. The similarity of the pRF-sizes for opposing visual hemifield representations highlights the equivalence of the two maps in the early visual cortex. The altered V1-sampling extent in V3 might indicate the adaptation of cortico-cortical connections to visual pathway abnormalities in albinism. These findings thus suggest that conservative developmental mechanisms are complemented by alterations of the extrastriate cortico-cortical connectivity.
Collapse
Affiliation(s)
- Khazar Ahmadi
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Herbik
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Wagner
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
| | - Martin Kanowski
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hagen Thieme
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael B Hoffmann
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
12
|
Ather S, Proudlock FA, Welton T, Morgan PS, Sheth V, Gottlob I, Dineen RA. Aberrant visual pathway development in albinism: From retina to cortex. Hum Brain Mapp 2019; 40:777-788. [PMID: 30511784 PMCID: PMC6865554 DOI: 10.1002/hbm.24411] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 09/08/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022] Open
Abstract
Albinism refers to a group of genetic abnormalities in melanogenesis that are associated neuronal misrouting through the optic chiasm. We perform quantitative assessment of visual pathway structure and function in 23 persons with albinism (PWA) and 20 matched controls using optical coherence tomography (OCT), volumetric magnetic resonance imaging (MRI), diffusion tensor imaging and visual evoked potentials (VEP). PWA had a higher streamline decussation index (percentage of total tractography streamlines decussating at the chiasm) compared with controls (Z = -2.24, p = .025), and streamline decussation index correlated weakly with inter-hemispheric asymmetry measured using VEP (r = .484, p = .042). For PWA, a significant correlation was found between foveal development index and total number of streamlines (r = .662, p < .001). Significant positive correlations were found between peri-papillary retinal nerve fibre layer thickness and optic nerve (r = .642, p < .001) and tract (r = .663, p < .001) width. Occipital pole cortical thickness was 6.88% higher (Z = -4.10, p < .001) in PWA and was related to anterior visual pathway structures including foveal retinal pigment epithelium complex thickness (r = -.579, p = .005), optic disc (r = .478, p = .021) and rim areas (r = .597, p = .003). We were unable to demonstrate a significant relationship between OCT-derived foveal or optic nerve measures and MRI-derived chiasm size or streamline decussation index. Our novel tractographic demonstration of altered chiasmatic decussation in PWA corresponds to VEP measured cortical asymmetry and is consistent with chiasmatic misrouting in albinism. We also demonstrate a significant relationship between retinal pigment epithelium and visual cortex thickness indicating that retinal pigmentation defects in albinism lead to downstream structural reorganisation of the visual cortex.
Collapse
Affiliation(s)
- Sarim Ather
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Frank Anthony Proudlock
- University of Leicester Ulverscroft Eye UnitRobert Kilpatrick Clinical Sciences BuildingLeicesterUnited Kingdom
| | - Thomas Welton
- Radiological Sciences, Division of Clinical NeuroscienceUniversity of Nottingham, Queen's Medical CentreNottinghamUnited Kingdom
- Sir Peter Mansfield Imaging Centre, University of NottinghamQueen's Medical CentreNottinghamUnited Kingdom
| | - Paul S. Morgan
- Sir Peter Mansfield Imaging Centre, University of NottinghamQueen's Medical CentreNottinghamUnited Kingdom
- Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS TrustQueen's Medical CentreNottinghamUnited Kingdom
| | - Viral Sheth
- University of Leicester Ulverscroft Eye UnitRobert Kilpatrick Clinical Sciences BuildingLeicesterUnited Kingdom
| | - Irene Gottlob
- University of Leicester Ulverscroft Eye UnitRobert Kilpatrick Clinical Sciences BuildingLeicesterUnited Kingdom
| | - Rob A. Dineen
- Radiological Sciences, Division of Clinical NeuroscienceUniversity of Nottingham, Queen's Medical CentreNottinghamUnited Kingdom
- Sir Peter Mansfield Imaging Centre, University of NottinghamQueen's Medical CentreNottinghamUnited Kingdom
| |
Collapse
|
13
|
Ahmadi K, Fracasso A, van Dijk JA, Kruijt C, van Genderen M, Dumoulin SO, Hoffmann MB. Altered organization of the visual cortex in FHONDA syndrome. Neuroimage 2018. [PMID: 29524626 DOI: 10.1016/j.neuroimage.2018.02.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A fundamental scheme in the organization of the early visual cortex is the retinotopic representation of the contralateral visual hemifield on each hemisphere. We determined the cortical organization in a novel congenital visual pathway disorder, FHONDA-syndrome, where the axons from the temporal retina abnormally cross to the contralateral hemisphere. Using ultra-high field fMRI at 7 T, the population receptive field (pRF) properties of the primary visual cortex were modeled for two affected individuals and two controls. The cortical activation in FHONDA was confined to the hemisphere contralateral to the stimulated eye. Each cortical location was found to contain a pRF in each visual hemifeld and opposing hemifields were represented as retinotopic cortical overlays of mirror-symmetrical locations across the vertical meridian. Since, the enhanced crossing of the retinal fibers at the optic chiasm observed in FHONDA has been previously assumed to be exclusive to the pigment-deficiency in albinism, our direct evidence of abnormal mapping in FHONDA highlights the independence of pigmentation and development of the visual cortex. These findings thus provide fundamental insights into the developmental mechanisms of the human visual system and underline the general relevance of the interplay of subcortical stability and cortical plasticity.
Collapse
Affiliation(s)
- Khazar Ahmadi
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
| | - Alessio Fracasso
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands; Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands; Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands; Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QB, UK
| | - Jelle A van Dijk
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands; Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| | - Charlotte Kruijt
- Bartiméus Diagnostic Center for Rare Visual Disorders, Zeist, The Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria van Genderen
- Bartiméus Diagnostic Center for Rare Visual Disorders, Zeist, The Netherlands; Department of Ophthalmology University Medical Center Utrecht, Utrecht, The Netherlands
| | - Serge O Dumoulin
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands; Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands; Department of Experimental and Applied Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Michael B Hoffmann
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
14
|
Brown HDH, Woodall RL, Kitching RE, Baseler HA, Morland AB. Using magnetic resonance imaging to assess visual deficits: a review. Ophthalmic Physiol Opt 2017; 36:240-65. [PMID: 27112223 PMCID: PMC4855621 DOI: 10.1111/opo.12293] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/15/2016] [Indexed: 01/25/2023]
Abstract
Purpose Over the last two decades, magnetic resonance imaging (MRI) has been widely used in neuroscience research to assess both structure and function in the brain in health and disease. With regard to vision research, prior to the advent of MRI, researchers relied on animal physiology and human post‐mortem work to assess the impact of eye disease on visual cortex and connecting structures. Using MRI, researchers can non‐invasively examine the effects of eye disease on the whole visual pathway, including the lateral geniculate nucleus, striate and extrastriate cortex. This review aims to summarise research using MRI to investigate structural, chemical and functional effects of eye diseases, including: macular degeneration, retinitis pigmentosa, glaucoma, albinism, and amblyopia. Recent Findings Structural MRI has demonstrated significant abnormalities within both grey and white matter densities across both visual and non‐visual areas. Functional MRI studies have also provided extensive evidence of functional changes throughout the whole of the visual pathway following visual loss, particularly in amblyopia. MR spectroscopy techniques have also revealed several abnormalities in metabolite concentrations in both glaucoma and age‐related macular degeneration. GABA‐edited MR spectroscopy on the other hand has identified possible evidence of plasticity within visual cortex. Summary Collectively, using MRI to investigate the effects on the visual pathway following disease and dysfunction has revealed a rich pattern of results allowing for better characterisation of disease. In the future MRI will likely play an important role in assessing the impact of eye disease on the visual pathway and how it progresses over time.
Collapse
Affiliation(s)
| | | | | | - Heidi A Baseler
- Department of Psychology, University of York, York, UK.,Hull York Medical School, University of York, York, UK
| | - Antony B Morland
- Department of Psychology, University of York, York, UK.,Hull York Medical School, University of York, York, UK
| |
Collapse
|
15
|
Welton T, Ather S, Proudlock FA, Gottlob I, Dineen RA. Altered whole-brain connectivity in albinism. Hum Brain Mapp 2016; 38:740-752. [PMID: 27684406 DOI: 10.1002/hbm.23414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 12/15/2022] Open
Abstract
Albinism is a group of congenital disorders of the melanin synthesis pathway. Multiple ocular, white matter and cortical abnormalities occur in albinism, including a greater decussation of nerve fibres at the optic chiasm, foveal hypoplasia and nystagmus. Despite this, visual perception is largely preserved. It was proposed that this may be attributable to reorganisation among cerebral networks, including an increased interhemispheric connectivity of the primary visual areas. A graph-theoretic model was applied to explore brain connectivity networks derived from resting-state functional and diffusion-tensor magnetic resonance imaging data in 23 people with albinism and 20 controls. They tested for group differences in connectivity between primary visual areas and in summary network organisation descriptors. Main findings were supplemented with analyses of control regions, brain volumes and white matter microstructure. Significant functional interhemispheric hyperconnectivity of the primary visual areas in the albinism group were found (P = 0.012). Tests of interhemispheric connectivity based on the diffusion-tensor data showed no significant group difference (P = 0.713). Second, it was found that a range of functional whole-brain network metrics were abnormal in people with albinism, including the clustering coefficient (P = 0.005), although this may have been driven partly by overall differences in connectivity, rather than reorganisation. Based on the results, it was suggested that changes occur in albinism at the whole-brain level, and not just within the visual processing pathways. It was proposed that their findings may reflect compensatory adaptations to increased chiasmic decussation, foveal hypoplasia and nystagmus. Hum Brain Mapp 38:740-752, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thomas Welton
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Room W/B 1441, Queen's Medical Centre, Derby Road, Nottingham, NG7 2UH, United Kingdom
| | - Sarim Ather
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Room W/B 1441, Queen's Medical Centre, Derby Road, Nottingham, NG7 2UH, United Kingdom.,Leicester Royal Infirmary, Ulverscroft Eye Unit, Ophthalmology, University of Leicester, Knighton Street Offices, Leicester, LE2 7LX, United Kingdom
| | - Frank A Proudlock
- Leicester Royal Infirmary, Ulverscroft Eye Unit, Ophthalmology, University of Leicester, Knighton Street Offices, Leicester, LE2 7LX, United Kingdom
| | - Irene Gottlob
- Leicester Royal Infirmary, Ulverscroft Eye Unit, Ophthalmology, University of Leicester, Knighton Street Offices, Leicester, LE2 7LX, United Kingdom
| | - Robert A Dineen
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Room W/B 1441, Queen's Medical Centre, Derby Road, Nottingham, NG7 2UH, United Kingdom
| |
Collapse
|
16
|
Grigorian A, McKetton L, Schneider KA. Measuring Connectivity in the Primary Visual Pathway in Human Albinism Using Diffusion Tensor Imaging and Tractography. J Vis Exp 2016. [PMID: 27585189 DOI: 10.3791/53759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In albinism, the number of ipsilaterally projecting retinal ganglion cells (RGCs) is significantly reduced. The retina and optic chiasm have been proposed as candidate sites for misrouting. Since a correlation between the number of lateral geniculate nucleus (LGN) relay neurons and LGN size has been shown, and based on previously reported reductions in LGN volumes in human albinism, we suggest that fiber projections from LGN to the primary visual cortex (V1) are also reduced. Studying structural differences in the visual system of albinism can improve the understanding of the mechanism of misrouting and subsequent clinical applications. Diffusion data and tractography are useful for mapping the OR (optic radiation). This manuscript describes two algorithms for OR reconstruction in order to compare brain connectivity in albinism and controls.An MRI scanner with a 32-channel head coil was used to acquire structural scans. A T1-weighted 3D-MPRAGE sequence with 1 mm(3) isotropic voxel size was used to generate high-resolution images for V1 segmentation. Multiple proton density (PD) weighted images were acquired coronally for right and left LGN localization. Diffusion tensor imaging (DTI) scans were acquired with 64 diffusion directions. Both deterministic and probabilistic tracking methods were run and compared, with LGN as the seed mask and V1 as the target mask. Though DTI provides relatively poor spatial resolution, and accurate delineation of OR may be challenging due to its low fiber density, tractography has been shown to be advantageous both in research and clinically. Tract based spatial statistics (TBSS) revealed areas of significantly reduced white matter integrity within the OR in patients with albinism compared to controls. Pairwise comparisons revealed a significant reduction in LGN to V1 connectivity in albinism compared to controls. Comparing both tracking algorithms revealed common findings, strengthening the reliability of the technique.
Collapse
Affiliation(s)
- Anahit Grigorian
- Department of Biology, Centre for Vision Research, York University;
| | - Larissa McKetton
- Department of Biology, Centre for Vision Research, York University
| | | |
Collapse
|
17
|
Hull S, Arno G, Holder GE, Plagnol V, Gomez K, Liesner R, Webster AR, Moore AT. The ophthalmic presentation of Hermansky-Pudlak syndrome 6. Br J Ophthalmol 2016; 100:1521-1524. [PMID: 26823395 DOI: 10.1136/bjophthalmol-2015-308067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/02/2016] [Indexed: 11/03/2022]
Abstract
BACKGROUND Hermansky-Pudlak syndrome (HPS) may present to the ophthalmologist with signs suggestive of oculocutaneous albinism. Consideration of HPS as a differential diagnosis is important due to its potential systemic complications. HPS6 is a rarely reported subtype. METHODS Three patients from two families underwent clinical examination, imaging and targeted systemic investigations. Electrophysiology with visual-evoked potentials (VEPs) was performed in both children of family 1. Whole exome sequencing (WES) was performed on the proband of family 1. Bidirectional Sanger sequencing of the single exon and intron-exon boundaries of HPS6 was performed on all affected patients and segregation confirmed in available relatives. RESULTS Two siblings presented in infancy with nystagmus and reduced vision. They were initially diagnosed with isolated foveal hypoplasia with no aberrant chiasmal misrouting on VEPs. WES performed in the proband when 10 years of age identified a novel homozygous missense variant in HPS6 and further questioning elicited a history of nose bleeds and mild bruising. Segregation supported causality of this variant in the affected younger sibling. In the third unrelated patient, an initial diagnosis of ocular albinism was made at 3 months with HPS only diagnosed at 26 years. Biallelic, truncating mutations in HPS6 were identified by candidate Sanger sequencing and included a novel variant. Abnormal platelet function consistent with HPS was confirmed in all patients. CONCLUSIONS The diagnosis of HPS in all patients was delayed due to a mild systemic phenotype. Next-generation sequencing can aid diagnosis of syndromic conditions with important consequences for preventing morbidity.
Collapse
Affiliation(s)
- Sarah Hull
- University College London Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Gavin Arno
- University College London Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Graham E Holder
- University College London Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | | | - Keith Gomez
- Haematology Department, Royal Free London NHS Foundation Trust, London, UK
| | - Ri Liesner
- Haematology Department, Great Ormond Street Hospital for Children NHS Trust, London, UK
- Haematology Department, University College London Hospitals, London, UK
| | - Andrew R Webster
- University College London Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Anthony T Moore
- University College London Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
- San Francisco Medical Centre, University of California, San Francisco, California, USA
| |
Collapse
|
18
|
Mohammad S, Gottlob I, Sheth V, Pilat A, Lee H, Pollheimer E, Proudlock FA. Characterization of Abnormal Optic Nerve Head Morphology in Albinism Using Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2015. [PMID: 26200501 DOI: 10.1167/iovs.15-16856] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize abnormalities in three-dimensional optic nerve head (ONH) morphology in people with albinism (PWA) using spectral-domain optical coherence tomography (SD-OCT) and to determine whether ONH abnormalities relate to other retinal and clinical abnormalities. METHODS Spectral-domain OCT was used to obtain three-dimensional images from 56 PWA and 60 age- and sex-matched control subjects. B-scans were corrected for nystagmus-associated motion artefacts. Disc, cup, and rim ONH dimensions and peripapillary retinal nerve fiber layer (ppRNFL) thickness were calculated using Copernicus and ImageJ software. RESULTS Median disc areas were similar in PWA (median = 1.65 mm2) and controls (1.71 mm2, P = 0.128), although discs were significantly elongated horizontally in PWA (P < 0.001). In contrast, median optic cup area in PWA (0.088 mm2) was 23.7% of that in controls (0.373 mm2, P < 0.001), with 39.4% of eyes in PWA not demonstrating a measurable optic cup. This led to significantly smaller cup to disc ratios in PWA (P < 0.001). Median rim volume in PWA (0.273 mm3) was 136.6% of that in controls (0.200 mm3). The ppRNFL was significantly thinner in PWA compared with controls (P < 0.001), especially in the temporal quadrant. In PWA, ppRNFL thickness was correlated to ganglion cell thickness at the central fovea (P = 0.007). Several ONH abnormalities, such as cup to disc ratio, were related to higher refractive errors in PWA. CONCLUSIONS In PWA, ocular maldevelopment is not just limited to the retina but also involves the ONH. Reduced ppRNFL thickness is consistent with previous reports of reduced ganglion cell numbers in PWA. The thicker rim volumes may be a result of incomplete maturation of the ONH.
Collapse
|
19
|
Banihani SM. Loss of binocular vision as direct cause for misrouting of temporal retinal fibers in albinism. Med Hypotheses 2015; 85:458-62. [PMID: 26163060 DOI: 10.1016/j.mehy.2015.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/23/2015] [Accepted: 06/28/2015] [Indexed: 10/23/2022]
Abstract
In humans, the nasal retina projects to the contralateral hemisphere, whereas the temporal retina projects ipsilaterally. The nasotemporal line that divides the retina into crossed and uncrossed parts coincides with the vertical meridian through the fovea. This normal projection of the retina is severely altered in albinism, in which the nasotemporal line shifted into the temporal retina with temporal retinal fibers cross the midline at the optic chiasm. This study proposes the loss of binocular vision as direct cause for misrouting of temporal retinal fibers and shifting of the nasotemporal line temporally in albinism. It is supported by many observations that clearly indicate that loss of binocular vision causes uncrossed retinal fibers to cross the midline. This hypothesis may alert scientists and clinicians to find ways to prevent or minimize the loss of binocular vision that may occur in some diseases such as albinism and early squint. Hopefully, this will minimize the misrouting of temporal fibers and improve vision in such diseases.
Collapse
Affiliation(s)
- Saleh M Banihani
- Anatomy Dept., Medical School, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
20
|
Hoffmann MB, Dumoulin SO. Congenital visual pathway abnormalities: a window onto cortical stability and plasticity. Trends Neurosci 2014; 38:55-65. [PMID: 25448619 DOI: 10.1016/j.tins.2014.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 12/13/2022]
Abstract
Sensory systems project information in a highly organized manner to the brain, where it is preserved in maps of the sensory structures. These sensory projections are altered in congenital abnormalities, such as anophthalmia, albinism, achiasma, and hemihydranencephaly. Consequently, these abnormalities, profoundly affect the organization of the visual system. Surprisingly, visual perception remains largely intact, except for anophthalmia. Recent brain imaging advances shed light on the mechanisms that underlie this phenomenon. In contrast to animal models, in humans the plasticity of thalamocortical connections appears limited, thus demonstrating the importance of cortical adaptations. We suggest that congenital visual pathway abnormalities provide a valuable model to investigate the principles of plasticity that make visual representations available for perception and behavior in humans.
Collapse
Affiliation(s)
- Michael B Hoffmann
- Department of Ophthalmology, Visual Processing Laboratory, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | - Serge O Dumoulin
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Mechanisms underlying infantile nystagmus are unclear. The aim of this review is to outline recent developments in understanding the aetiology of infantile nystagmus. RECENT FINDINGS There have been advances in understanding mechanisms underlying idiopathic infantile nystagmus, which has progressed through determining the role of the FRMD7 gene in controlling neurite outgrowth, and albinism, in which recent models have investigated the possibility of retinal miswiring leading to nystagmus. We also briefly review aetiology of infantile nystagmus in afferent visual deficits caused by ocular disease, and PAX6 mutations. Improved phenotypical characterization of all these infantile nystagmus subtypes has been achieved recently through high-resolution retinal imaging using optical coherence tomography. Several new hypotheses proposing common mechanisms that could underlie various infantile nystagmus subtypes are also highlighted. SUMMARY Although there is still no consensus of opinion regarding the mechanisms causing infantile nystagmus, identification of new genes and determining their cellular function, phenotypical characterization of genetic subtypes, and improvements in animal models have significantly advanced our understanding of infantile nystagmus. These recent developments pave the way to achieving a much clearer picture of infantile nystagmus aetiology in the future.
Collapse
|
22
|
Body pigmentation as a risk factor for the formation of intracranial aneurysms. BIOMED RESEARCH INTERNATIONAL 2014; 2014:301631. [PMID: 24967348 PMCID: PMC4054613 DOI: 10.1155/2014/301631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 11/18/2022]
Abstract
Recent studies demonstrated pigmented cells both in the murine heart, in pulmonary veins, and in brain arteries. Moreover, a role for melanocytes in the downregulation of inflammatory processes was suggested. As there is increasing evidence that inflammation is contributing significantly to the pathogenesis of intracranial aneurysms, melanocyte-like cells may be relevant in preventing age-related impairment of vessels. As pigmentation of the heart reflects that of coat color, aspects of body pigmentation might be associated with the incidence of intracranial aneurysms. We performed a case-control study to evaluate associations between the pigmentation of hair and eyes and the formation of aneurysms. In addition to hair and eye color, constitutive and facultative skin pigmentation were assessed in a replication study as well as individual handedness which can be seen as a neurophysiological correlate of developmental pigmentation processes. Hair pigmentation was highly associated with intracranial aneurysms in both samples, whereas eye pigmentation was not. In the replication cohort, facultative but not constitutive skin pigmentation proved significant. The strongest association was observed for individual handedness. Results indicate a significant association of intracranial aneurysms with particular aspects of body pigmentation as well as handedness, and imply clinical usefulness for screening of aneurysms and possible interventions.
Collapse
|
23
|
Wilk MA, McAllister JT, Cooper RF, Dubis AM, Patitucci TN, Summerfelt P, Anderson JL, Stepien KE, Costakos DM, Connor TB, Wirostko WJ, Chiang PW, Dubra A, Curcio CA, Brilliant MH, Summers CG, Carroll J. Relationship between foveal cone specialization and pit morphology in albinism. Invest Ophthalmol Vis Sci 2014; 55:4186-98. [PMID: 24845642 DOI: 10.1167/iovs.13-13217] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Albinism is associated with disrupted foveal development, though intersubject variability is becoming appreciated. We sought to quantify this variability, and examine the relationship between foveal cone specialization and pit morphology in patients with a clinical diagnosis of albinism. METHODS We recruited 32 subjects with a clinical diagnosis of albinism. DNA was obtained from 25 subjects, and known albinism genes were analyzed for mutations. Relative inner and outer segment (IS and OS) lengthening (fovea-to-perifovea ratio) was determined from manually segmented spectral domain-optical coherence tomography (SD-OCT) B-scans. Foveal pit morphology was quantified for eight subjects from macular SD-OCT volumes. Ten subjects underwent imaging with adaptive optics scanning light ophthalmoscopy (AOSLO), and cone density was measured. RESULTS We found mutations in 22 of 25 subjects, including five novel mutations. All subjects lacked complete excavation of inner retinal layers at the fovea, though four subjects had foveal pits with normal diameter and/or volume. Peak cone density and OS lengthening were variable and overlapped with that observed in normal controls. A fifth hyper-reflective band was observed in the outer retina on SD-OCT in the majority of the subjects with albinism. CONCLUSIONS Foveal cone specialization and pit morphology vary greatly in albinism. Normal cone packing was observed in the absence of a foveal pit, suggesting a pit is not required for packing to occur. The degree to which retinal anatomy correlates with genotype or visual function remains unclear, and future examination of larger patient groups will provide important insight on this issue.
Collapse
Affiliation(s)
- Melissa A Wilk
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John T McAllister
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Robert F Cooper
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States
| | - Adam M Dubis
- Moorfields Eye Hospital, London, United Kingdom Institute of Ophthalmology, University College London, United Kingdom
| | - Teresa N Patitucci
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Phyllis Summerfelt
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | | | - Kimberly E Stepien
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Deborah M Costakos
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Thomas B Connor
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - William J Wirostko
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Pei-Wen Chiang
- Casey Eye Institute Molecular Diagnostics Laboratory, Portland, Oregon, United States
| | - Alfredo Dubra
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Christine A Curcio
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, Alabama, United States
| | - Murray H Brilliant
- Center for Human Genetics, Marshfield Clinic, Marshfield, Wisconsin, United States
| | - C Gail Summers
- Departments of Ophthalmology and Visual Neurosciences and Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
| | - Joseph Carroll
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
24
|
Kaule FR, Wolynski B, Gottlob I, Stadler J, Speck O, Kanowski M, Meltendorf S, Behrens-Baumann W, Hoffmann MB. Impact of chiasma opticum malformations on the organization of the human ventral visual cortex. Hum Brain Mapp 2014; 35:5093-105. [PMID: 24771411 DOI: 10.1002/hbm.22534] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/21/2014] [Accepted: 04/04/2014] [Indexed: 11/08/2022] Open
Abstract
Congenital malformations of the optic chiasm, such as enhanced and reduced crossing of the optic nerve fibers, are evident in albinism and achiasma, respectively. In early visual cortex the resulting additional visual input from the ipsilateral visual hemifield is superimposed onto the normal retinotopic representation of the contralateral visual field, which is likely due to conservative geniculo-striate projections. Counterintuitively, this organization in early visual cortex does not have profound consequences on visual function. Here we ask, whether higher stages of visual processing provide a correction to the abnormal representation allowing for largely normal perception. To this end we assessed the organization patterns of early and ventral visual cortex in five albinotic, one achiasmic, and five control participants. In albinism and achiasma the mirror-symmetrical superposition of the ipsilateral and contalateral visual fields was evident not only in early visual cortex, but also in the higher areas of the ventral processing stream. Specifically, in the visual areas VO1/2 and PHC1/2 no differences in the extent, the degree of superposition, and the magnitude of the responses were evident in comparison to the early visual areas. Consequently, the highly atypical organization of the primary visual cortex was propagated downstream to highly specialized processing stages in an undiminished and unchanged manner. This indicates largely unaltered cortico-cortical connections in both types of misrouting, i.e., enhanced and reduced crossing of the optic nerves. It is concluded that main aspects of visual function are preserved despite sizable representation abnormalities in the ventral visual processing stream.
Collapse
Affiliation(s)
- Falko R Kaule
- Department of Ophthalmology, Visual Processing Laboratory, Otto-von-Guericke University, Magdeburg, Germany; Department of Experimental Psychology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Clinical characteristics of high grade foveal hypoplasia. Int Ophthalmol 2012; 33:9-14. [DOI: 10.1007/s10792-012-9664-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/22/2012] [Indexed: 02/07/2023]
|
26
|
Omar R, Idris SS, Meng CK, Knight VF. Management of visual disturbances in albinism: a case report. J Med Case Rep 2012; 6:316. [PMID: 22992390 PMCID: PMC3459795 DOI: 10.1186/1752-1947-6-316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 08/03/2012] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION A number of vision defects have been reported in association with albinism, such as photophobia, nystagmus and astigmatism. In many cases only prescription sunglasses are prescribed. In this report, the effectiveness of low-vision rehabilitation in albinism, which included prescription of multiple visual aids, is discussed. CASE PRESENTATION We present the case of a 21-year-old Asian woman with albinism and associated vision defects. Her problems were blurring of distant vision, glare and her dissatisfaction with her current auto-focus spectacle-mounted telescope device, which she reported as being heavy as well as cosmetically unacceptable. We describe how low-vision rehabilitation using multiple visual aids, namely spectacles, special iris-tinted contact lenses with clear pupils, and bi-level telemicroscopic apparatus devices improved her quality of life. Subsequent to rehabilitation our patient is happier and continues to use the visual aids. CONCLUSIONS Contact lenses with a special iris tint and clear pupil area are useful aids to reduce the glare experienced by albinos. Bi-level telemicroscopic apparatus telemicroscopes fitted onto our patient's prescription spectacles were cosmetically acceptable and able to improve her distance vision. As a result these low-vision rehabilitation approaches improved the quality of life of our albino patient.
Collapse
Affiliation(s)
- Rokiah Omar
- Optometry and Visual Science Program, School of Healthcare Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
27
|
Wolynski B, Kanowski M, Meltendorf S, Behrens-Baumann W, Hoffmann MB. Self-organisation in the human visual system--visuo-motor processing with congenitally abnormal V1 input. Neuropsychologia 2010; 48:3834-45. [PMID: 20863844 DOI: 10.1016/j.neuropsychologia.2010.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/23/2010] [Accepted: 09/14/2010] [Indexed: 11/26/2022]
Abstract
Due to an abnormal projection of the temporal retina the albinotic primary visual cortex receives substantial input from the ipsilateral visual field. To test whether representation abnormalities are also evident in higher tier visual, and in motor and somatosensory cortices, brain activity was measured with fMRI in 14 subjects with albinism performing a visuo-motor task. During central fixation, a blue or red target embedded in a distractor array was presented for 250 ms in the left or right visual hemifield. After a delay, the subjects were prompted to indicate with left or right thumb button presses the target presence in the upper or lower hemifield. The fMRI responses were evaluated for different regions of interest concerned with visual, motor and somatosensory processing and compared to previously acquired data from 14 controls. The following results were obtained: (1) in albinism the hit rates in the visuo-motor task were indistinguishable from normal. (2) In area MT and the intraparietal sulcus there was an indication of abnormal lateralisation patterns. (3) Largely normal lateralisation patterns were evident in motor and somatosensory cortices. It is concluded that in human albinism, the abnormal visual field representation is made available for visuo-motor processing with a motor cortex that comprises an essentially normal lateralisation. Consequently, specific adaptations of the mechanisms mediating visuo-motor integration are required in albinism.
Collapse
Affiliation(s)
- Barbara Wolynski
- Department of Ophthalmology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
28
|
McAllister JT, Dubis AM, Tait DM, Ostler S, Rha J, Stepien KE, Summers CG, Carroll J. Arrested development: high-resolution imaging of foveal morphology in albinism. Vision Res 2010; 50:810-7. [PMID: 20149815 DOI: 10.1016/j.visres.2010.02.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
Abstract
Albinism, an inherited disorder of melanin biosynthesis, disrupts normal retinal development, with foveal hypoplasia as one of the more commonly associated ocular phenotypes. However the cellular integrity of the fovea in albinism is not well understood - there likely exist important anatomical differences that underlie phenotypic variability within the disease and that also may affect responsiveness to therapeutic intervention. Here, using spectral-domain optical coherence tomography (SD-OCT) and adaptive optics (AO) retinal imaging, we obtained high-resolution images of the foveal region in six individuals with albinism. We provide a quantitative analysis of cone density and outer segment elongation demonstrating that foveal cone specialization is variable in albinism. In addition, our data reveal a continuum of foveal pit morphology, roughly aligning with schematics of normal foveal development based on post-mortem analyses. Different albinism subtypes, genetic mutations, and constitutional pigment background likely play a role in determining the degree of foveal maturation.
Collapse
Affiliation(s)
- John T McAllister
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
In mammals smooth retinotopic maps of the visual field are formed along the visual processing pathway whereby the left visual field is represented in the right hemisphere and vice versa. The reorganization of retinotopic maps in the lateral geniculate nucleus (LGN) of the thalamus and early visual areas (V1-V3) is studied in a patient who was born with only one cerebral hemisphere. Before the seventh week of embryonic gestation, the development of the patient's right cerebral hemisphere terminated. Despite the complete loss of her right hemisphere (di- and telencephalon) at birth, the patient's remaining hemisphere has not only developed maps of the contralateral (right) visual hemifield but, surprisingly, also maps of the ipsilateral (left) visual hemifield. Retinal ganglion-cells changed their predetermined crossing pattern in the optic chiasm and grew to the ipsilateral LGN. In the visual cortex, islands of ipsilateral visual field representations were located along the representations of the vertical meridian. In V1, smooth and continuous maps from contra- and ipsilateral hemifield overlap each other, whereas in ventral V2 and V3 ipsilateral quarter field representations invaded small distinct cortical patches. This reveals a surprising flexibility of the self-organizing developmental mechanisms responsible for map formation.
Collapse
|
30
|
Käsmann-Kellner B. Albinismus. Ophthalmologe 2007; 104:646-7. [PMID: 17661056 DOI: 10.1007/s00347-007-1588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- B Käsmann-Kellner
- Kinderophthalmologie, Orthoptik, Paed. Low Vision,Campus, Universitätsaugenklinik, Geb. 22, 66421, Homburg (Saar), Deutschland.
| |
Collapse
|
31
|
Hoffmann MB, Schmidtborn LC, Morland AB. Abnormale Repräsentationen im visuellen Kortex von Albinismus-Patienten. Ophthalmologe 2007; 104:666-73. [PMID: 17661055 DOI: 10.1007/s00347-007-1589-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A characteristic feature of patients with albinism is the misrouting of the optic nerves, which causes the visual cortex to receive an abnormal input. This report details how the detection of misrouting using visual evoked potentials assists the clinical diagnosis of albinism. Further, it shows how the projection abnormality observed in patients with albinism provides a model for investigating the self-organisation of the human visual cortex. This is highlighted by recent findings that were obtained using functional magnetic resonance imaging, visual evoked potentials, and static visual field perimetry.
Collapse
Affiliation(s)
- M B Hoffmann
- Sektion für klinische und experimentelle Sinnesphysiologie, Universitätsaugenklinik Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Deutschland.
| | | | | |
Collapse
|
32
|
Abstract
Albinism is associated with a misrouting of fibers at the optic chiasm where the majority of fibers cross to the contralateral side. The cause of this abnormal decussation pattern reflects a disturbance of cell cycle regulation in the development of the retina which is in part controlled by melanin. Growing axons from retinal ganglion cells therefore arrive later than usual at the optic chiasm and are misrouted contralaterally. This atypical decussation leads to morphological changes of the optic chiasm including a reduced chiasm width with larger angles between optic nerves and tracts which can be shown by magnetic resonance imaging.
Collapse
Affiliation(s)
- B Schmitz
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätskliniken Ulm, Steinhövelstrasse 9, 89075, Ulm, Deutschland.
| | | | | |
Collapse
|