1
|
Mohamed T, Melfi V, Colciago A, Magnaghi V. Hearing loss and vestibular schwannoma: new insights into Schwann cells implication. Cell Death Dis 2023; 14:629. [PMID: 37741837 PMCID: PMC10517973 DOI: 10.1038/s41419-023-06141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Hearing loss (HL) is the most common and heterogeneous disorder of the sensory system, with a large morbidity in the worldwide population. Among cells of the acoustic nerve (VIII cranial nerve), in the cochlea are present the hair cells, the spiral ganglion neurons, the glia-like supporting cells, and the Schwann cells (SCs), which alterations have been considered cause of HL. Notably, a benign SC-derived tumor of the acoustic nerve, named vestibular schwannoma (VS), has been indicated as cause of HL. Importantly, SCs are the main glial cells ensheathing axons and forming myelin in the peripheral nerves. Following an injury, the SCs reprogram, expressing some stemness features. Despite the mechanisms and factors controlling their biological processes (i.e., proliferation, migration, differentiation, and myelination) have been largely unveiled, their role in VS and HL was poorly investigated. In this review, we enlighten some of the mechanisms at the base of SCs transformation, VS development, and progression, likely leading to HL, and we pose great attention on the environmental factors that, in principle, could contribute to HL onset or progression. Combining the biomolecular bench-side approach to the clinical bedside practice may be helpful for the diagnosis, prediction, and therapeutic approach in otology.
Collapse
Affiliation(s)
- Tasnim Mohamed
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Valentina Melfi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
2
|
Hong MK, Echanique KA, Hoffman LF, Kita AE. Designing a Prolonged Method of Therapeutic Delivery to Support Rehabilitation From Ototoxic Damage in a Schwann Cell Model. Otol Neurotol 2023; 44:373-381. [PMID: 36791364 PMCID: PMC10038897 DOI: 10.1097/mao.0000000000003839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
HYPOTHESIS The ototoxicity of gentamicin and cisplatin can be evaluated with a Schwann cell model to screen for otoprotective agents that can be encapsulated into poly (lactic-co-glycolic acid) (PLGA) microparticles for drug delivery to the inner ear. BACKGROUND Aminoglycosides and cisplatin are widely prescribed but known to cause ototoxicity. There is strong evidence that compromise to Schwann cells ensheathing inner ear afferent neurons results in inner ear dysfunction mimicking drug-induced ototoxicity. There is a need for a model for ototoxic demyelination to screen medications for protective potential and to subsequently target and tune the delivery of any promising agents. METHODS RT4-D6P2T rat schwannoma cells were used as a Schwann cell model to assess gentamicin and cisplatin toxicity and to screen for protective agents. Cell viability was evaluated with the MTT cell proliferation assay. N -acetylcysteine (NAC) was encapsulated into a PLGA microparticle, and its elution profile was determined. RESULTS The estimated 50% lethal concentration dose for gentamicin was 805.6 μM, which was 46-fold higher than that for cisplatin (17.5 μM). In several trials, cells dosed with NAC and cisplatin demonstrated a 22.6% ( p < 0.001) increase in cell viability when compared with cisplatin alone. However, this protective effect was not consistent across all trials. NAC was encapsulated into a PLGA microparticle and elution plateaued at 5 days. CONCLUSION When dosed at their respective therapeutic ranges, cisplatin is more likely than gentamicin to induce damage to the Schwann cell model. Although NAC demonstrates an uncertain role in protecting against cisplatin-induced Schwann cell cytotoxicity, this study establishes a method to screen for other otoprotective medications to encapsulate into a tunable microparticle for localized drug delivery.
Collapse
Affiliation(s)
- Michelle K Hong
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | | | | |
Collapse
|
3
|
Rahman MT, Bailey EM, Gansemer BM, Pieper AA, Manak JR, Green SH. Anti-inflammatory Therapy Protects Spiral Ganglion Neurons After Aminoglycoside Antibiotic-Induced Hair Cell Loss. Neurotherapeutics 2023; 20:578-601. [PMID: 36697994 PMCID: PMC10121993 DOI: 10.1007/s13311-022-01336-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 01/26/2023] Open
Abstract
Destruction of cochlear hair cells by aminoglycoside antibiotics leads to gradual death of the spiral ganglion neurons (SGNs) that relay auditory information to the brain, potentially limiting the efficacy of cochlear implants. Because the reasons for this cochlear neurodegeneration are unknown, there are no neuroprotective strategies for patients. To investigate this problem, we assessed transcriptomic changes in the rat spiral ganglion following aminoglycoside antibiotic (kanamycin)-induced hair cell destruction. We observed selectively increased expression of immune and inflammatory response genes and increased abundance of activated macrophages in spiral ganglia by postnatal day 32 in kanamycin-deafened rats, preceding significant SGN degeneration. Treatment with the anti-inflammatory medications dexamethasone and ibuprofen diminished long-term SGN degeneration. Ibuprofen and dexamethasone also diminished macrophage activation. Efficacy of ibuprofen treatment was augmented by co-administration of the nicotinamide adenine dinucleotide-stabilizing agent P7C3-A20. Our results support a critical role of neuroinflammation in SGN degeneration after aminoglycoside antibiotic-mediated cochlear hair cell loss, as well as a neuroprotective strategy that could improve cochlear implant efficacy.
Collapse
Affiliation(s)
- Muhammad T Rahman
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Erin M Bailey
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - J Robert Manak
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Steven H Green
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Martins LC, Silva MDS, Pinheiro EF, da Penha LKRL, Passos ADCF, de Moraes SAS, Batista EDJO, Herculano AM, Oliveira KRHM. COCHLEAR GLIAL CELLS MEDIATES GLUTAMATE UPTAKE THROUGH A SODIUM-INDEPENDENT TRANSPORTER. Hear Res 2023; 432:108753. [PMID: 37054532 DOI: 10.1016/j.heares.2023.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Since glutamate is the primary excitatory neurotransmitter in the mammalian cochlea, the mechanisms for the removal of glutamate from the synaptic and extrasynaptic spaces are critical for maintaining normal function of this region. Glial cells of inner ear are crucial for regulation of synaptic transmission throughout since it closely interacts with neurons along the entire auditory pathway, however little is known about the activity and expression of glutamate transporters in the cochlea. In this study, using primary cochlear glial cells cultures obtained from newborn Balb/C mice, we determined the activity of a sodium-dependent and sodium-independent glutamate uptake mechanisms by means of High Performance Liquid Chromatography. The sodium-independent glutamate transport has a prominent contribution in cochlear glial cells which is similar to what has been demonstrated in other sensory organs, but it is not found in tissues less susceptible to continuous glutamate-mediated injuries. Our results showed that xCG- system is expressed in CGCs and is the main responsible for sodium-independent glutamate uptake. The identification and characterization of the xCG- transporter in the cochlea suggests a possible role of this transporter in the control of extracellular glutamate concentrations and regulation of redox state, that may aid in the preservation of auditory function.
Collapse
Affiliation(s)
- Luana Carvalho Martins
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPa. Belém, PA CEP:66075-110, Brazil
| | - Mateus Dos Santos Silva
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPa. Belém, PA CEP:66075-110, Brazil
| | - Emerson Feio Pinheiro
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPa. Belém, PA CEP:66075-110, Brazil
| | | | | | | | | | - Anderson Manoel Herculano
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPa. Belém, PA CEP:66075-110, Brazil
| | | |
Collapse
|
5
|
Wrapping glia regulates neuronal signaling speed and precision in the peripheral nervous system of Drosophila. Nat Commun 2020; 11:4491. [PMID: 32901033 PMCID: PMC7479103 DOI: 10.1038/s41467-020-18291-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
The functionality of the nervous system requires transmission of information along axons with high speed and precision. Conductance velocity depends on axonal diameter whereas signaling precision requires a block of electrical crosstalk between axons, known as ephaptic coupling. Here, we use the peripheral nervous system of Drosophila larvae to determine how glia regulates axonal properties. We show that wrapping glial differentiation depends on gap junctions and FGF-signaling. Abnormal glial differentiation affects axonal diameter and conductance velocity and causes mild behavioral phenotypes that can be rescued by a sphingosine-rich diet. Ablation of wrapping glia does not further impair axonal diameter and conductance velocity but causes a prominent locomotion phenotype that cannot be rescued by sphingosine. Moreover, optogenetically evoked locomotor patterns do not depend on conductance speed but require the presence of wrapping glial processes. In conclusion, our data indicate that wrapping glia modulates both speed and precision of neuronal signaling.
Collapse
|
6
|
Li Y, Kanzaki S, Shibata S, Nakamura M, Ozaki M, Okano H, Ogawa K. Comparison of inner ear drug availability of combined treatment with systemic or local drug injections alone. Neurosci Res 2019; 155:27-33. [PMID: 31278973 DOI: 10.1016/j.neures.2019.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 01/25/2023]
Abstract
Combination of systemic and local drug therapy has been proved more effective and safer for idiopathic sudden sensorineural hearing loss by some clinical trials, and there are few laboratory researches on its pharmacokinetic behaviors in the inner ear. In the present study, we use a new in vivo imaging system to compare the pharmacokinetics of combined therapy (CT), with intravenous (IV) or transtympanic (TT) injection alone in both ears of transgenic GFAP-Luc mice. Biological half-life, total photon counts and the area under the curve (AUC) value significantly increased after CT. However, adding IV to TT injection cannot strengthen the peak photon of the drug in the inner ear. In addition, when D-luciferin is injected to the left ear the volume of total photon count and AUC value of CT-left ear are larger than the combined volume of TT-left ear and IV-left ear, suggesting a synergistic effect, and those of CT-right ear are almost equal to the summation of those of IV-right group and TT-right group, suggesting no amplifying effect on the risk of systemic side effect. This study showed that CT could deliver more drugs into the inner ear, and brought a longer therapeutic window, and were more effective than intravenous or transtympanic injection alone in the pharmacokinetics.
Collapse
Affiliation(s)
- Yang Li
- Department of Otolaryngology Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan; Department of OtolaryngologyHead and Neck Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xi Wu Lu, Xi'an, PR China
| | - Sho Kanzaki
- Department of Otolaryngology Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan.
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Masahiro Ozaki
- Department of Orthopedics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Kaoru Ogawa
- Department of Otolaryngology Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
7
|
Coyat C, Cazevieille C, Baudoux V, Larroze-Chicot P, Caumes B, Gonzalez-Gonzalez S. Morphological consequences of acoustic trauma on cochlear hair cells and the auditory nerve. Int J Neurosci 2018; 129:580-587. [DOI: 10.1080/00207454.2018.1552693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Carolanne Coyat
- CILcare. 2214, Boulevard de la Lironde, Parc Scientifique Agropolis, Montpellier, France
| | - Chantal Cazevieille
- Correlative Microscopy and Electron Tomography Platform, Hopital Saint Eloi, Montpellier, France
| | - Véronique Baudoux
- CILcare. 2214, Boulevard de la Lironde, Parc Scientifique Agropolis, Montpellier, France
| | | | | | | |
Collapse
|
8
|
Wise AK, Pujol R, Landry TG, Fallon JB, Shepherd RK. Structural and Ultrastructural Changes to Type I Spiral Ganglion Neurons and Schwann Cells in the Deafened Guinea Pig Cochlea. J Assoc Res Otolaryngol 2017; 18:751-769. [PMID: 28717876 DOI: 10.1007/s10162-017-0631-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/21/2017] [Indexed: 01/03/2023] Open
Abstract
Sensorineural hearing loss is commonly caused by damage to cochlear sensory hair cells. Coinciding with hair cell degeneration, the peripheral fibres of type I spiral ganglion neurons (SGNs) that normally form synaptic connections with the inner hair cell gradually degenerate. We examined the time course of these degenerative changes in type I SGNs and their satellite Schwann cells at the ultrastructural level in guinea pigs at 2, 6, and 12 weeks following aminoglycoside-induced hearing loss. Degeneration of the peripheral fibres occurred prior to the degeneration of the type I SGN soma and was characterised by shrinkage of the fibre followed by retraction of the axoplasm, often leaving a normal myelin lumen devoid of axoplasmic content. A statistically significant reduction in the cross-sectional area of peripheral fibres was evident as early as 2 weeks following deafening (p < 0.001, ANOVA). This was followed by a decrease in type I SGN density within Rosenthal's canal that was statistically significant 6 weeks following deafening (p < 0.001, ANOVA). At any time point examined, few type I SGN soma were observed undergoing degeneration, implying that once initiated, soma degeneration was rapid. While there was a significant reduction in soma area as well as changes to the morphology of the soma, the ultrastructure of surviving type I SGN soma appeared relatively normal over the 12-week period following deafening. Satellite Schwann cells exhibited greater survival traits than their type I SGN; however, on loss of neural contact, they reverted to a non-myelinating phenotype, exhibiting an astrocyte-like morphology with the formation of processes that appeared to be searching for new neural targets. In 6- and 12-week deafened cochlea, we observed cellular interaction between Schwann cell processes and residual SGNs that distorted the morphology of the SGN soma. Understanding the response of SGNs, Schwann cells, and the complex relationship between them following aminoglycoside deafening is important if we are to develop effective therapeutic techniques designed to rescue SGNs.
Collapse
Affiliation(s)
- Andrew K Wise
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, Australia.
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia.
- Department of Otolaryngology, University of Melbourne, Melbourne, Australia.
| | - Remy Pujol
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, Australia
- INSERM Unit 1051, INM, Montpellier, France
| | - Thomas G Landry
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, Australia
| | - James B Fallon
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, Australia
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia
- Department of Otolaryngology, University of Melbourne, Melbourne, Australia
| | - Robert K Shepherd
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria, 3002, Australia
- Department of Medical Bionics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
9
|
Degeneration of auditory nerve fibers in guinea pigs with severe sensorineural hearing loss. Hear Res 2017; 345:79-87. [DOI: 10.1016/j.heares.2017.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/07/2016] [Accepted: 01/06/2017] [Indexed: 01/17/2023]
|
10
|
Ramamurthy P, White JB, Yull Park J, Hume RI, Ebisu F, Mendez F, Takayama S, Barald KF. Concomitant differentiation of a population of mouse embryonic stem cells into neuron-like cells and schwann cell-like cells in a slow-flow microfluidic device. Dev Dyn 2017; 246:7-27. [PMID: 27761977 PMCID: PMC5159187 DOI: 10.1002/dvdy.24466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/16/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To send meaningful information to the brain, an inner ear cochlear implant (CI) must become closely coupled to as large and healthy a population of remaining spiral ganglion neurons (SGN) as possible. Inner ear gangliogenesis depends on macrophage migration inhibitory factor (MIF), a directionally attractant neurotrophic cytokine made by both Schwann and supporting cells (Bank et al., 2012). MIF-induced mouse embryonic stem cell (mESC)-derived "neurons" could potentially substitute for lost or damaged SGN. mESC-derived "Schwann cells" produce MIF, as do all Schwann cells (Huang et al., a; Roth et al., 2007; Roth et al., 2008) and could attract SGN to a "cell-coated" implant. RESULTS Neuron- and Schwann cell-like cells were produced from a common population of mESCs in an ultra-slow-flow microfluidic device. As the populations interacted, "neurons" grew over the "Schwann cell" lawn, and early events in myelination were documented. Blocking MIF on the Schwann cell side greatly reduced directional neurite outgrowth. MIF-expressing "Schwann cells" were used to coat a CI: Mouse SGN and MIF-induced "neurons" grew directionally to the CI and to a wild-type but not MIF-knockout organ of Corti explant. CONCLUSIONS Two novel stem cell-based approaches for treating the problem of sensorineural hearing loss are described. Developmental Dynamics 246:7-27, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Poornapriya Ramamurthy
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Joshua B White
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - Joong Yull Park
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Richard I Hume
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Fumi Ebisu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Flor Mendez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shuichi Takayama
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - Kate F Barald
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
11
|
McLean WJ, McLean DT, Eatock RA, Edge ASB. Distinct capacity for differentiation to inner ear cell types by progenitor cells of the cochlea and vestibular organs. Development 2016; 143:4381-4393. [PMID: 27789624 DOI: 10.1242/dev.139840] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/11/2016] [Indexed: 01/16/2023]
Abstract
Disorders of hearing and balance are most commonly associated with damage to cochlear and vestibular hair cells or neurons. Although these cells are not capable of spontaneous regeneration, progenitor cells in the hearing and balance organs of the neonatal mammalian inner ear have the capacity to generate new hair cells after damage. To investigate whether these cells are restricted in their differentiation capacity, we assessed the phenotypes of differentiated progenitor cells isolated from three compartments of the mouse inner ear - the vestibular and cochlear sensory epithelia and the spiral ganglion - by measuring electrophysiological properties and gene expression. Lgr5+ progenitor cells from the sensory epithelia gave rise to hair cell-like cells, but not neurons or glial cells. Newly created hair cell-like cells had hair bundle proteins, synaptic proteins and membrane proteins characteristic of the compartment of origin. PLP1+ glial cells from the spiral ganglion were identified as neural progenitors, which gave rise to neurons, astrocytes and oligodendrocytes, but not hair cells. Thus, distinct progenitor populations from the neonatal inner ear differentiate to cell types associated with their organ of origin.
Collapse
Affiliation(s)
- Will J McLean
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA.,Eaton-Peabody Laboratories of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Program in Speech and Hearing Bioscience and Technology, Division of Health Sciences and Technology, Harvard & MIT, Cambridge, MA 02139, USA
| | - Dalton T McLean
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA.,Eaton-Peabody Laboratories of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Ruth Anne Eatock
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Albert S B Edge
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA .,Eaton-Peabody Laboratories of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Program in Speech and Hearing Bioscience and Technology, Division of Health Sciences and Technology, Harvard & MIT, Cambridge, MA 02139, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Schwieger J, Esser KH, Lenarz T, Scheper V. Establishment of a long-term spiral ganglion neuron culture with reduced glial cell number: Effects of AraC on cell composition and neurons. J Neurosci Methods 2016; 268:106-16. [DOI: 10.1016/j.jneumeth.2016.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 01/13/2023]
|
13
|
Sensor JD, Suydam R, George JC, Liberman MC, Lovano D, Rhaganti MA, Usip S, Vinyard CJ, Thewissen JGM. The spiral ganglion and Rosenthal's canal in beluga whales. J Morphol 2016; 276:1455-66. [PMID: 26769322 DOI: 10.1002/jmor.20434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/03/2015] [Accepted: 07/05/2015] [Indexed: 12/20/2022]
Abstract
With the increase of human activity and corresponding increase in anthropogenic sounds in marine waters of the Arctic, it is necessary to understand its effect on the hearing of marine wildlife. We have conducted a baseline study on the spiral ganglion and Rosenthal's canal of the cochlea in beluga whales (Delphinapterus leucas) as an initial assessment of auditory anatomy and health. We present morphometric data on the length of the cochlea, number of whorls, neuron densities along its length, Rosenthal's canal length, and cross-sectional area, and show some histological results. In belugas, Rosenthal's canal is not a cylinder of equal cross-sectional area, but its cross-section is greatest near the apex of the basal whorl. We found systematic variation in the numbers of neurons along the length of the spiral ganglion, indicating that neurons are not dispersed evenly in Rosenthal's canal. These results provide data on functionally important structural parameters of the beluga ear. We observed no signs of acoustic trauma in our sample of beluga whales.
Collapse
Affiliation(s)
- Jennifer D Sensor
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44240
| | - Robert Suydam
- Department of Wildlife Management, North Slope Borough, Barrow, Alaska, 99723
| | - John C George
- Department of Wildlife Management, North Slope Borough, Barrow, Alaska, 99723
| | - M C Liberman
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, 02115.,Eaton-Peabody Laboratories Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114
| | - Denise Lovano
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44240
| | - Mary Ann Rhaganti
- Department of Anthropology, Kent State University, Kent, Ohio, 44240
| | - Sharon Usip
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44240
| | - Christopher J Vinyard
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44240
| | - J G M Thewissen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44240
| |
Collapse
|
14
|
Bas E, Goncalves S, Adams M, Dinh CT, Bas JM, Van De Water TR, Eshraghi AA. Spiral ganglion cells and macrophages initiate neuro-inflammation and scarring following cochlear implantation. Front Cell Neurosci 2015; 9:303. [PMID: 26321909 PMCID: PMC4532929 DOI: 10.3389/fncel.2015.00303] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/23/2015] [Indexed: 12/03/2022] Open
Abstract
Conservation of a patient's residual hearing and prevention of fibrous tissue/new bone formation around an electrode array are some of the major challenges in cochlear implant (CI) surgery. Although it is well-known that fibrotic tissue formation around the electrode array can interfere with hearing performance in implanted patients, and that associated intracochlear inflammation can initiate loss of residual hearing, little is known about the molecular and cellular mechanisms that promote this response in the cochlea. In vitro studies in neonatal rats and in vivo studies in adult mice were performed to gain insight into the pro-inflammatory, proliferative, and remodeling phases of pathological wound healing that occur in the cochlea following an electrode analog insertion. Resident Schwann cells (SC), macrophages, and fibroblasts had a prominent role in the inflammatory process in the cochlea. Leukocytes were recruited to the cochlea following insertion of a nylon filament in adult mice, where contributed to the inflammatory response. The reparative stages in wound healing are characterized by persistent neuro-inflammation of spiral ganglion neurons (SGN) and expression of regenerative monocytes/macrophages in the cochlea. Accordingly, genes involved in extracellular matrix (ECM) deposition and remodeling were up-regulated in implanted cochleae. Maturation of scar tissue occurs in the remodeling phase of wound healing in the cochlea. Similar to other damaged peripheral nerves, M2 macrophages and de-differentiated SC were observed in damaged cochleae and may play a role in cell survival and axonal regeneration. In conclusion, the insertion of an electrode analog into the cochlea is associated with robust early and chronic inflammatory responses characterized by recruitment of leukocytes and expression of pro-inflammatory cytokines that promote intracochlear fibrosis and loss of the auditory hair cells (HC) and SGN important for hearing after CI surgery.
Collapse
Affiliation(s)
- Esperanza Bas
- Department of Otolaryngology, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Stefania Goncalves
- Department of Otolaryngology, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Michelle Adams
- Department of Otolaryngology, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Christine T Dinh
- Department of Otolaryngology, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Jose M Bas
- Department of Otolaryngology, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Thomas R Van De Water
- Department of Otolaryngology, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Adrien A Eshraghi
- Department of Otolaryngology, Miller School of Medicine, University of Miami Miami, FL, USA
| |
Collapse
|
15
|
Abbas L, Rivolta MN. Aminoglycoside ototoxicity and hair cell ablation in the adult gerbil: A simple model to study hair cell loss and regeneration. Hear Res 2015; 325:12-26. [PMID: 25783988 PMCID: PMC4441107 DOI: 10.1016/j.heares.2015.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 11/19/2022]
Abstract
The Mongolian gerbil, Meriones unguiculatus, has been widely employed as a model for studies of the inner ear. In spite of its established use for auditory research, no robust protocols to induce ototoxic hair cell damage have been developed for this species. In this paper, we demonstrate the development of an aminoglycoside-induced model of hair cell loss, using kanamycin potentiated by the loop diuretic furosemide. Interestingly, we show that the gerbil is relatively insensitive to gentamicin compared to kanamycin, and that bumetanide is ineffective in potentiating the ototoxicity of the drug. We also examine the pathology of the spiral ganglion after chronic, long-term hair cell damage. Remarkably, there is little or no neuronal loss following the ototoxic insult, even at 8 months post-damage. This is similar to the situation often seen in the human, where functioning neurons can persist even decades after hair cell loss, contrasting with the rapid, secondary degeneration found in rats, mice and other small mammals. We propose that the combination of these factors makes the gerbil a good model for ototoxic damage by induced hair cell loss.
Collapse
Affiliation(s)
- Leila Abbas
- Centre for Stem Cell Biology and Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Marcelo N Rivolta
- Centre for Stem Cell Biology and Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| |
Collapse
|
16
|
Butler BE, Lomber SG. Functional and structural changes throughout the auditory system following congenital and early-onset deafness: implications for hearing restoration. Front Syst Neurosci 2013; 7:92. [PMID: 24324409 PMCID: PMC3840613 DOI: 10.3389/fnsys.2013.00092] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/03/2013] [Indexed: 11/23/2022] Open
Abstract
The absence of auditory input, particularly during development, causes widespread changes in the structure and function of the auditory system, extending from peripheral structures into auditory cortex. In humans, the consequences of these changes are far-reaching and often include detriments to language acquisition, and associated psychosocial issues. Much of what is currently known about the nature of deafness-related changes to auditory structures comes from studies of congenitally deaf or early-deafened animal models. Fortunately, the mammalian auditory system shows a high degree of preservation among species, allowing for generalization from these models to the human auditory system. This review begins with a comparison of common methods used to obtain deaf animal models, highlighting the specific advantages and anatomical consequences of each. Some consideration is also given to the effectiveness of methods used to measure hearing loss during and following deafening procedures. The structural and functional consequences of congenital and early-onset deafness have been examined across a variety of mammals. This review attempts to summarize these changes, which often involve alteration of hair cells and supporting cells in the cochleae, and anatomical and physiological changes that extend through subcortical structures and into cortex. The nature of these changes is discussed, and the impacts to neural processing are addressed. Finally, long-term changes in cortical structures are discussed, with a focus on the presence or absence of cross-modal plasticity. In addition to being of interest to our understanding of multisensory processing, these changes also have important implications for the use of assistive devices such as cochlear implants.
Collapse
Affiliation(s)
- Blake E. Butler
- Cerebral Systems Laboratory, Department of Physiology and Pharmacology, Brain and Mind Institute, University of Western OntarioLondon, ON, Canada
| | - Stephen G. Lomber
- Cerebral Systems Laboratory, Department of Physiology and Pharmacology and Department of Psychology, National Centre for Audiology, Brain and Mind Institute, University of Western OntarioLondon, ON, Canada
| |
Collapse
|
17
|
He Y, Zhang PZ, Sun D, Mi WJ, Zhang XY, Cui Y, Jiang XW, Mao XB, Qiu JH. Wnt1 from cochlear schwann cells enhances neuronal differentiation of transplanted neural stem cells in a rat spiral ganglion neuron degeneration model. Cell Transplant 2013; 23:747-60. [PMID: 23809337 DOI: 10.3727/096368913x669761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although neural stem cell (NSC) transplantation is widely expected to become a therapy for nervous system degenerative diseases and injuries, the low neuronal differentiation rate of NSCs transplanted into the inner ear is a major obstacle for the successful treatment of spiral ganglion neuron (SGN) degeneration. In this study, we validated whether the local microenvironment influences the neuronal differentiation of transplanted NSCs in the inner ear. Using a rat SGN degeneration model, we demonstrated that transplanted NSCs were more likely to differentiate into microtubule-associated protein 2 (MAP2)-positive neurons in SGN-degenerated cochleae than in control cochleae. Using real-time quantitative PCR and an immunofluorescence assay, we also proved that the expression of Wnt1 (a ligand of Wnt signaling) increases significantly in Schwann cells in the SGN-degenerated cochlea. We further verified that NSC cultures express receptors and signaling components for Wnts. Based on these expression patterns, we hypothesized that Schwann cell-derived Wnt1 and Wnt signaling might be involved in the regulation of the neuronal differentiation of transplanted NSCs. We verified our hypothesis in vitro using a coculture system. We transduced a lentiviral vector expressing Wnt1 into cochlear Schwann cell cultures and cocultured them with NSC cultures. The coculture with Wnt1-expressing Schwann cells resulted in a significant increase in the percentage of NSCs that differentiated into MAP2-positive neurons, whereas this differentiation-enhancing effect was prevented by Dkk1 (an inhibitor of the Wnt signaling pathway). These results suggested that Wnt1 derived from cochlear Schwann cells enhanced the neuronal differentiation of transplanted NSCs through Wnt signaling pathway activation. Alterations of the microenvironment deserve detailed investigation because they may help us to conceive effective strategies to overcome the barrier of the low differentiation rate of transplanted NSCs.
Collapse
Affiliation(s)
- Ya He
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kalwani NM, Ong CA, Lysaght AC, Haward SJ, McKinley GH, Stankovic KM. Quantitative polarized light microscopy of unstained mammalian cochlear sections. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:26021. [PMID: 23407909 PMCID: PMC3571355 DOI: 10.1117/1.jbo.18.2.026021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hearing loss is the most common sensory deficit in the world, and most frequently it originates in the inner ear. Yet, the inner ear has been difficult to access for diagnosis because of its small size, delicate nature, complex three-dimensional anatomy, and encasement in the densest bone in the body. Evolving optical methods are promising to afford cellular diagnosis of pathologic changes in the inner ear. To appropriately interpret results from these emerging technologies, it is important to characterize optical properties of cochlear tissues. Here, we focus on that characterization using quantitative polarized light microscopy (qPLM) applied to unstained cochlear sections of the mouse, a common animal model of human hearing loss. We find that the most birefringent cochlear materials are collagen fibrils and myelin. Retardance of the otic capsule, the spiral ligament, and the basilar membrane are substantially higher than that of other cochlear structures. Retardance of the spiral ligament and the basilar membrane decrease from the cochlear base to the apex, compared with the more uniform retardance of other structures. The intricate structural details revealed by qPLM of unstained cochlear sections ex vivo strongly motivate future application of polarization-sensitive optical coherence tomography to human cochlea in vivo.
Collapse
Affiliation(s)
- Neil M. Kalwani
- Harvard Medical School, Department of Otology and Laryngology, 25 Shattuck Street, Boston, Massachusetts 02115
- Massachusetts Eye and Ear Infirmary, Department of Otolaryngology, 243 Charles Street, Boston, Massachusetts 02114
| | - Cheng Ai Ong
- Harvard Medical School, Department of Otology and Laryngology, 25 Shattuck Street, Boston, Massachusetts 02115
- Massachusetts Eye and Ear Infirmary, Department of Otolaryngology, 243 Charles Street, Boston, Massachusetts 02114
- Hospital Queen Elizabeth, ENT Department, KarungBerkunci No. 2029, 88586 Kota Kinabalu, Sabah, Malaysia
| | - Andrew C. Lysaght
- Harvard Medical School, Department of Otology and Laryngology, 25 Shattuck Street, Boston, Massachusetts 02115
- Massachusetts Eye and Ear Infirmary, Department of Otolaryngology, 243 Charles Street, Boston, Massachusetts 02114
- Harvard/Massachusetts Institute of Technology Joint Division of Health Sciences and Technology, Program in Speech and Hearing Bioscience and Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Simon J. Haward
- Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
- Centro de Estudos de Fenómenos de Transporte, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Gareth H. McKinley
- Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Konstantina M. Stankovic
- Harvard Medical School, Department of Otology and Laryngology, 25 Shattuck Street, Boston, Massachusetts 02115
- Massachusetts Eye and Ear Infirmary, Department of Otolaryngology, 243 Charles Street, Boston, Massachusetts 02114
- Harvard/Massachusetts Institute of Technology Joint Division of Health Sciences and Technology, Program in Speech and Hearing Bioscience and Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
- Address all correspondence to: Konstantina M. Stankovic, Massachusetts Eye and Ear Infirmary, Department of Otolaryngology, 243 Charles Street, Boston, Massachusetts 02114. Tel: +617-573-3972; Fax: +617-573-3914; E-mail:
| |
Collapse
|
19
|
Barker M, Solinski HJ, Hashimoto H, Tagoe T, Pilati N, Hamann M. Acoustic overexposure increases the expression of VGLUT-2 mediated projections from the lateral vestibular nucleus to the dorsal cochlear nucleus. PLoS One 2012; 7:e35955. [PMID: 22570693 PMCID: PMC3343051 DOI: 10.1371/journal.pone.0035955] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 03/28/2012] [Indexed: 11/19/2022] Open
Abstract
The dorsal cochlear nucleus (DCN) is a first relay of the central auditory system as well as a site for integration of multimodal information. Vesicular glutamate transporters VGLUT-1 and VGLUT-2 selectively package glutamate into synaptic vesicles and are found to have different patterns of organization in the DCN. Whereas auditory nerve fibers predominantly co-label with VGLUT-1, somatosensory inputs predominantly co-label with VGLUT-2. Here, we used retrograde and anterograde transport of fluorescent conjugated dextran amine (DA) to demonstrate that the lateral vestibular nucleus (LVN) exhibits ipsilateral projections to both fusiform and deep layers of the rat DCN. Stimulating the LVN induced glutamatergic synaptic currents in fusiform cells and granule cell interneurones. We combined the dextran amine neuronal tracing method with immunohistochemistry and showed that labeled projections from the LVN are co-labeled with VGLUT-2 by contrast to VGLUT-1. Wistar rats were exposed to a loud single tone (15 kHz, 110 dB SPL) for 6 hours. Five days after acoustic overexposure, the level of expression of VGLUT-1 in the DCN was decreased whereas the level of expression of VGLUT-2 in the DCN was increased including terminals originating from the LVN. VGLUT-2 mediated projections from the LVN to the DCN are likely to play a role in the head position in response to sound. Amplification of VGLUT-2 expression after acoustic overexposure could be a compensatory mechanism from vestibular inputs in response to hearing loss and to a decrease of VGLUT-1 expression from auditory nerve fibers.
Collapse
Affiliation(s)
- Matthew Barker
- Department of Cell Physiology and Pharmacology, Leicester University, Leicester, United Kingdom
| | - Hans Jürgen Solinski
- Department of Cell Physiology and Pharmacology, Leicester University, Leicester, United Kingdom
| | - Haruka Hashimoto
- Department of Cell Physiology and Pharmacology, Leicester University, Leicester, United Kingdom
| | - Thomas Tagoe
- Department of Cell Physiology and Pharmacology, Leicester University, Leicester, United Kingdom
| | - Nadia Pilati
- Department of Cell Physiology and Pharmacology, Leicester University, Leicester, United Kingdom
| | - Martine Hamann
- Department of Cell Physiology and Pharmacology, Leicester University, Leicester, United Kingdom
| |
Collapse
|
20
|
Sinkkonen ST, Chai R, Jan TA, Hartman BH, Laske RD, Gahlen F, Sinkkonen W, Cheng AG, Oshima K, Heller S. Intrinsic regenerative potential of murine cochlear supporting cells. Sci Rep 2011; 1:26. [PMID: 22355545 PMCID: PMC3216513 DOI: 10.1038/srep00026] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/17/2011] [Indexed: 12/17/2022] Open
Abstract
The lack of cochlear regenerative potential is the main cause for the permanence of hearing loss. Albeit quiescent in vivo, dissociated non-sensory cells from the neonatal cochlea proliferate and show ability to generate hair cell-like cells in vitro. Only a few non-sensory cell-derived colonies, however, give rise to hair cell-like cells, suggesting that sensory progenitor cells are a subpopulation of proliferating non-sensory cells. Here we purify from the neonatal mouse cochlea four different non-sensory cell populations by fluorescence-activated cell sorting (FACS). All four populations displayed proliferative potential, but only lesser epithelial ridge and supporting cells robustly gave rise to hair cell marker-positive cells. These results suggest that cochlear supporting cells and cells of the lesser epithelial ridge show robust potential to de-differentiate into prosensory cells that proliferate and undergo differentiation in similar fashion to native prosensory cells of the developing inner ear.
Collapse
Affiliation(s)
- Saku T Sinkkonen
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sox2 up-regulation and glial cell proliferation following degeneration of spiral ganglion neurons in the adult mouse inner ear. J Assoc Res Otolaryngol 2011; 12:151-71. [PMID: 21061038 DOI: 10.1007/s10162-010-0244-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022] Open
Abstract
In the present study, glial cell responses to spiral ganglion neuron (SGN) degeneration were evaluated using a murine model of auditory neuropathy. Ouabain, a well-known Na,K-ATPase inhibitor, has been shown to induce SGN degeneration while sparing hair cell function. In addition to selectively removing type I SGNs, ouabain leads to hyperplasia and hypertrophy of glia-like cells in the injured auditory nerves. As the transcription factor Sox2 is predominantly expressed in proliferating and undifferentiated neural precursors during neurogenesis,we sought to examine Sox2 expression patterns following SGN injury by ouabain. Real-time RT-PCR and Western blot analyses of cochlea indicated a significant increase in Sox2 expression by 3 days posttreatment with ouabain. Cells incorporating bromodeoxyuridine(BrdU) and expressing Sox2 were counted in the auditory nerves of control and ouabain-treated ears. The glial phenotype of Sox2+cells was identified by two neural glial markers: S100 and Sox10. The number of Sox2+ glial cells significantly increased at 3 days post-treatment and reached its maximum level at 7 days post-treatment. Similarly,the number of BrdU+ cells increased at 3 and 7 days post-treatment in the injured nerves. Quantitative analysis with dual-immunostaining procedures indicated that about 70% of BrdU+ cells in the injured nerves were Sox2+ glial cells. These results demonstrate that up-regulation of Sox2 expression is associated with increased cell proliferation in the auditory nerve after injury.
Collapse
|
22
|
Monk KR, Oshima K, Jörs S, Heller S, Talbot WS. Gpr126 is essential for peripheral nerve development and myelination in mammals. Development 2011; 138:2673-80. [PMID: 21613327 DOI: 10.1242/dev.062224] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In peripheral nerves, Schwann cells form the myelin sheath that insulates axons and allows rapid propagation of action potentials. Although a number of regulators of Schwann cell development are known, the signaling pathways that control myelination are incompletely understood. In this study, we show that Gpr126 is essential for myelination and other aspects of peripheral nerve development in mammals. A mutation in Gpr126 causes a severe congenital hypomyelinating peripheral neuropathy in mice, and expression of differentiated Schwann cell markers, including Pou3f1, Egr2, myelin protein zero and myelin basic protein, is reduced. Ultrastructural studies of Gpr126-/- mice showed that axonal sorting by Schwann cells is delayed, Remak bundles (non-myelinating Schwann cells associated with small caliber axons) are not observed, and Schwann cells are ultimately arrested at the promyelinating stage. Additionally, ectopic perineurial fibroblasts form aberrant fascicles throughout the endoneurium of the mutant sciatic nerve. This analysis shows that Gpr126 is required for Schwann cell myelination in mammals, and defines new roles for Gpr126 in axonal sorting, formation of mature non-myelinating Schwann cells and organization of the perineurium.
Collapse
Affiliation(s)
- Kelly R Monk
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
23
|
Jeon EJ, Xu N, Xu L, Hansen MR. Influence of central glia on spiral ganglion neuron neurite growth. Neuroscience 2011; 177:321-34. [PMID: 21241783 PMCID: PMC3057386 DOI: 10.1016/j.neuroscience.2011.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
Spiral ganglion neurons (SGNs) extend processes that interact with Schwann cells (SCs) and with oligodendrocytes (OLs) and astrocytes (ACs). We investigated the ability of these glial cells to support SGN neurite growth. In the presence of cultured ACs, OLs and SCs, SGN neurites tended to follow SCs and OLs and cross-over ACs. Most neurites initially followed the type of glial cell on which the neuronal cell body was found. To determine the influence of homogeneous populations of glia on neurite growth, SG explants were plated on cultured SCs, ACs or OLs. The number of neurites/explant extending onto SCs (463.89±16.25) was significantly greater than the number extending onto ACs (111.38±38.73) or OLs (6.75±2.21), indicating that populations of central glia inhibit SGN neurite growth. Treatment with cell-permeant cpt-cAMP or forskolin (FSK) each significantly increased the number of neurites on OLs (133.54±25.59 and 292.25±83.57, respectively). cpt-cAMP and FSK each also increased the number of neurites on ACs (213.19±36.06 and 208.64±59.25, respectively), however the difference was not significant compared with control. The neurites on ACs and OLs failed to grow radially in a well-fasciculated pattern as on SCs. In explants plated on the borders of cultured OL-SC or AC-SC groups, more neurites extended onto SCs compared with OLs and ACs. Conditioned media (CM) from OL or AC cultures did not reduce neurite length, implying that the inhibition of neurite growth by central glia is not due to soluble factors. Taken together, these results demonstrate that homogeneous populations of central glia inhibit SGN neurite growth.
Collapse
Affiliation(s)
- Eun-Ju Jeon
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa
- Department of Otolaryngology, Incheon St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Ningyong Xu
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa
| | - Lingjing Xu
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa
| | - Marlan R. Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa
| |
Collapse
|
24
|
Zhang Y, Zhang W, Löbler M, Schmitz KP, Saulnier P, Perrier T, Pyykkö I, Zou J. Inner ear biocompatibility of lipid nanocapsules after round window membrane application. Int J Pharm 2010; 404:211-9. [PMID: 21075187 DOI: 10.1016/j.ijpharm.2010.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/05/2010] [Accepted: 11/05/2010] [Indexed: 12/16/2022]
Abstract
Nanoparticle-mediated drug delivery represents the future in terms of treating inner ear diseases. Lipid core nanocapsules (LNCs), 50 nm in size, were shown to pass though the round window membrane (RWM) and reached the spiral ganglion cells and nerve fibers, among other cell types in the inner ear. The present study aimed to evaluate the toxicity of the LNCs in vitro and in vivo, utilizing intact round window membrane delivery in rats. The primary cochlear cells and mouse fibroblast cells treated with LNCs displayed dosage dependant toxicity. In vivo study showed that administration of LNCs did not cause hearing loss, nanoparticle application-related cell death, or morphological changes in the inner ear, at up to 28 days of observation. The cochlear neural elements, such as synaptophysin, ribbon synapses, and S-100, were not affected by the administration of LNCs. However, expression of neurofilament-200 decreased in SGCs and in cochlear nerve in osseous spiral lamina canal after LNC delivery, a phenomenon that requires further investigation. LNCs are potential vectors for the delivery of drugs to the inner ear.
Collapse
MESH Headings
- Acoustic Stimulation
- Animals
- Animals, Newborn
- Auditory Threshold/drug effects
- Biocompatible Materials
- Cell Survival/drug effects
- Cells, Cultured
- Chemistry, Pharmaceutical
- Dose-Response Relationship, Drug
- Drug Carriers
- Drug Compounding
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Fibroblasts/drug effects
- Fibroblasts/pathology
- Inhibitory Concentration 50
- Lipids/chemistry
- Lipids/toxicity
- Male
- Mice
- Nanocapsules
- Nanotechnology
- Plant Lectins/chemistry
- Plant Lectins/toxicity
- Polyethylene Glycols/chemistry
- Polyethylene Glycols/toxicity
- Rats
- Rats, Sprague-Dawley
- Round Window, Ear/drug effects
- Round Window, Ear/metabolism
- Round Window, Ear/pathology
- Soybean Proteins/chemistry
- Soybean Proteins/toxicity
- Stearates/chemistry
- Stearates/toxicity
- Stearic Acids/chemistry
- Stearic Acids/toxicity
- Technology, Pharmaceutical/methods
- Triglycerides/chemistry
- Triglycerides/toxicity
Collapse
Affiliation(s)
- Ya Zhang
- Department of Otolaryngology, University of Tampere, Medical School, FM1, 3rd Floor, Biokatu 6, 33520 Tampere, Finland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Heffer LF, Sly DJ, Fallon JB, White MW, Shepherd RK, O'Leary SJ. Examining the auditory nerve fiber response to high rate cochlear implant stimulation: chronic sensorineural hearing loss and facilitation. J Neurophysiol 2010; 104:3124-35. [PMID: 20926607 DOI: 10.1152/jn.00500.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neural prostheses, such as cochlear and retinal implants, induce perceptual responses by electrically stimulating sensory nerves. These devices restore sensory system function by using patterned electrical stimuli to evoke neural responses. An understanding of their function requires knowledge of the nerves responses to relevant electrical stimuli as well as the likely effects of pathology on nerve function. We describe how sensorineural hearing loss (SNHL) affects the response properties of single auditory nerve fibers (ANFs) to electrical stimuli relevant to cochlear implants. The response of 188 individual ANFs were recorded in response to trains of stimuli presented at 200, 1,000, 2,000, and 5,000 pulse/s in acutely and chronically deafened guinea pigs. The effects of stimulation rate and SNHL on ANF responses during the 0-2 ms period following stimulus onset were examined to minimize the influence of ANF adaptation. As stimulation rate increased to 5,000 pulse/s, threshold decreased, dynamic range increased and first spike latency decreased. Similar effects of stimulation rate were observed following chronic SNHL, although onset threshold and first spike latency were reduced and onset dynamic range increased compared with acutely deafened animals. Facilitation, defined as an increased nerve excitability caused by subthreshold stimulation, was observed in both acute and chronic SNHL groups, although the magnitude of its effect was diminished in the latter. These results indicate that facilitation, demonstrated here using stimuli similar to those used in cochlear implants, influences the ANF response to pulsatile electrical stimulation and may have important implications for cochlear implant signal processing strategies.
Collapse
Affiliation(s)
- Leon F Heffer
- Dept. of Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, Level 2, 32 Gisborne St., East Melbourne, VIC, 3002, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Time sequence of auditory nerve and spiral ganglion cell degeneration following chronic kanamycin-induced deafness in the guinea pig. Brain Res 2010; 1331:28-38. [DOI: 10.1016/j.brainres.2010.02.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/07/2010] [Accepted: 02/19/2010] [Indexed: 02/06/2023]
|
27
|
Horner KC, Troadec JD, Dallaporta M, Pio J. Effect of chronic estradiol administration on vimentin and GFAP immunohistochemistry within the inner ear. Neurobiol Dis 2009; 35:201-8. [DOI: 10.1016/j.nbd.2009.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/17/2009] [Accepted: 04/21/2009] [Indexed: 11/15/2022] Open
|
28
|
Spontaneous association of glial cells with regrowing neurites in mixed cultures of dissociated spiral ganglia. Neuroscience 2009; 161:227-35. [PMID: 19324078 DOI: 10.1016/j.neuroscience.2009.03.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 11/23/2022]
Abstract
Evidence from developmental and regeneration studies of the cochlea and other tissues gives reason to hypothesize a role for nonneural cells in the growth and regeneration of cochlear spiral ganglion nerve fibers. We examined the spontaneous associations of regrowing neurites and nonneural cells in mixed cultures of dissociated newborn mouse spiral ganglia. After 7 days in vitro, nonneural cells formed a confluent layer in the culture well. Regrowing neurites grew atop this layer, forming non-uniform patterns that were similar to those formed by endogenously expressed laminin-1, entactin and integrin beta4, but not fibronectin or tenascin. In cultures grown for 42 h and maintained in three different growth media, all regrowing neurites were preferentially associated with spindle-shaped nonneural cells. The spindle-shaped cells incorporated bromodeoxyuridine in culture and were immunoreactive for the proteins S100, laminin-1, laminin-2, SRY-related high-mobility-group box 10 transcription factor (Sox10), neurotrophin receptor (P75) and connexin29 but negative for fibronectin and glial fibrillary acidic protein. These cells existed in the culture within a much larger, general population of fibronectin positive cells. Immunolabeling of fixed cochleas from neonatal mice localized Sox10, P75 and connexin29, to peripheral nerve bundles. The observed expressions of protein markers and the bipolar, spindle shape of the neurite-associated cells indicate that they are derived in vitro from the original Schwann or satellite cells in the ganglion or spiral lamina. The spontaneous and preferential association of neurites in culture with mitotic Schwann cells highlights the potential contribution neurite-Schwann cell interactions may have in promoting the growth and regrowth of damaged spiral ganglion neurons in the cochlea.
Collapse
|
29
|
Tan J, Widjaja S, Xu J, Shepherd RK. Cochlear implants stimulate activity-dependent CREB pathway in the deaf auditory cortex: implications for molecular plasticity induced by neural prosthetic devices. Cereb Cortex 2008; 18:1799-813. [PMID: 18063565 PMCID: PMC2790391 DOI: 10.1093/cercor/bhm206] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neural activity modulates the maturation of synapses and their organization into functional circuits by regulating activity-dependent signaling pathways. Phosphorylation of cyclic AMP/Ca(2+)-responsive element-binding protein (CREB) is widely accepted as a stimulus-inducible event driven by calcium influx into depolarized neurons. In turn, phosphorylated CREB (pCREB) activates the transcription of brain-derived neurotrophic factor (BDNF), which is needed for synaptic transmission and long-term potentiation. We examined how these molecular events are influenced by sensorineural hearing loss and long-term reactivation via cochlear implants. Sensorineural hearing loss reduced the expression of pCREB and BDNF. In contrast, deafened animals subject to long-term, unilateral intracochlear electrical stimulation exhibited an increased expression of pCREB and BDNF in the contralateral auditory cortical neurons, relative to ipsilateral ones. These changes induced by cochlear implants are further accompanied by the activation of the mitogen-activated protein kinase (MAPK) signaling pathway, which has been implicated in long-lasting forms of synaptic plasticity. Because CREB and BDNF are critical modulators of synaptic plasticity, our data describe for the first time possible molecular candidate genes, which are altered in the auditory cortex, following cochlear implantation. These findings provide insights into adaptive, molecular mechanisms recruited by the brain upon functional electrical stimulation by neural prosthetic devices.
Collapse
Affiliation(s)
- Justin Tan
- The Bionic Ear Institute, East Melbourne, Victoria 3002, Australia.
| | | | | | | |
Collapse
|
30
|
Shepherd RK, Coco A, Epp SB. Neurotrophins and electrical stimulation for protection and repair of spiral ganglion neurons following sensorineural hearing loss. Hear Res 2008; 242:100-9. [PMID: 18243608 PMCID: PMC2630855 DOI: 10.1016/j.heares.2007.12.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 12/05/2007] [Accepted: 12/12/2007] [Indexed: 01/14/2023]
Abstract
Exogenous neurotrophins (NTs) have been shown to rescue spiral ganglion neurons (SGNs) from degeneration following a sensorineural hearing loss (SNHL). Furthermore, chronic electrical stimulation (ES) has been shown to retard SGN degeneration in some studies but not others. Since there is evidence of even greater SGN rescue when NT administration is combined with ES, we examined whether chronic ES can maintain SGN survival long after cessation of NT delivery. Young adult guinea pigs were profoundly deafened using ototoxic drugs; five days later they were unilaterally implanted with an electrode array and drug delivery system. Brain derived neurotrophic factor (BDNF) was continuously delivered to the scala tympani over a four week period while the animal simultaneously received ES via bipolar electrodes in the basal turn (i.e., turn 1) scala tympani. One cohort (n=5) received ES for six weeks (i.e., including a two week period after the cessation of BDNF delivery; ES(6)); a second cohort (n=5) received ES for 10 weeks (i.e., a six week period following cessation of BDNF delivery; ES(10)). The cochleae were harvested for histology and SGN density determined for each cochlear turn for comparison with normal hearing controls (n=4). The withdrawal of BDNF resulted in a rapid loss of SGNs in turns 2-4 of the deafened/BDNF-treated cochleae; this was significant as early as two weeks following removal of the NT when compared with normal controls (p<0.05). Importantly, there was not a significant reduction in SGNs in turn 1 (i.e., adjacent to the electrode array) two and six weeks after NT removal, as compared with normal controls. This result suggests that chronic ES can prevent the rapid loss of SGNs that occurs after the withdrawal of exogenous NTs. Implications for the clinical delivery of NTs are discussed.
Collapse
Affiliation(s)
- Robert K Shepherd
- The Bionic Ear Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia.
| | | | | |
Collapse
|
31
|
Pettingill LN, Minter RL, Shepherd RK. Schwann cells genetically modified to express neurotrophins promote spiral ganglion neuron survival in vitro. Neuroscience 2008; 152:821-8. [PMID: 18304740 DOI: 10.1016/j.neuroscience.2007.11.057] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 11/26/2007] [Accepted: 01/09/2008] [Indexed: 01/16/2023]
Abstract
The intracochlear infusion of neurotrophic factors via a mini-osmotic pump has been shown to prevent deafness-induced spiral ganglion neuron (SGN) degeneration; however, the use of pumps may increase the incidence of infection within the cochlea, making this technique unsuitable for neurotrophin administration in a clinical setting. Cell- and gene-based therapies are potential therapeutic options. This study investigated whether Schwann cells which were genetically modified to over-express the neurotrophins brain-derived neurotrophic factor (BDNF) or neurotrophin 3 (Ntf3, formerly NT-3) could support SGN survival in an in vitro model of deafness. Co-culture of either BDNF over-expressing Schwann cells or Ntf3 over-expressing Schwann cells with SGNs from early postnatal rats significantly enhanced neuronal survival in comparison to both control Schwann cells and conventional recombinant neurotrophin proteins. Transplantation of neurotrophin over-expressing Schwann cells into the cochlea may provide an alternative means of delivering neurotrophic factors to the deaf cochlea for therapeutic purposes.
Collapse
Affiliation(s)
- L N Pettingill
- The Bionic Ear Institute, 384 Albert Street, East Melbourne, Australia 3002.
| | | | | |
Collapse
|