1
|
Laine MA, Greiner EM, Shansky RM. Sex differences in the rodent medial prefrontal cortex - What Do and Don't we know? Neuropharmacology 2024; 248:109867. [PMID: 38387553 DOI: 10.1016/j.neuropharm.2024.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
The prefrontal cortex, particularly its medial subregions (mPFC), mediates critical functions such as executive control, behavioral inhibition, and memory formation, with relevance for everyday functioning and psychopathology. Despite broad characterization of the mPFC in multiple model organisms, the extent to which mPFC structure and function vary according to an individual's sex is unclear - a knowledge gap that can be attributed to a historical bias for male subjects in neuroscience research. Recent efforts to consider sex as a biological variable in basic science highlight the great need to close this gap. Here we review the knowns and unknowns about how rodents categorized as male or female compare in mPFC neuroanatomy, pharmacology, as well as in aversive, appetitive, and goal- or habit-directed behaviors that recruit the mPFC. We propose that long-standing dogmatic concepts of mPFC structure and function may not remain supported when we move beyond male-only studies, and that empirical challenges to these dogmas are warranted. Additionally, we note some common pitfalls in this work. Most preclinical studies operationalize sex as a binary categorization, and while this approach has furthered the inclusion of non-male rodents it is not as such generalizable to what we know of sex as a multidimensional, dynamic variable. Exploration of sex variability may uncover both sex differences and sex similarities, but care must be taken in their interpretation. Including females in preclinical research needs to go beyond the investigation of sex differences, improving our knowledge of how this brain region and its subregions mediate behavior and health. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- M A Laine
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - E M Greiner
- Department of Psychology, Northeastern University, Boston, MA, USA.
| | - R M Shansky
- Department of Psychology, Northeastern University, Boston, MA, USA
| |
Collapse
|
2
|
Krueger JN, Patel NN, Shim K, Ng K, Sangha S. Conditioned inhibition of fear and reward in male and female rats. Neurobiol Learn Mem 2024; 208:107881. [PMID: 38135111 PMCID: PMC10922191 DOI: 10.1016/j.nlm.2023.107881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Stimuli in our environment are not always associated with an outcome. Some of these stimuli, depending on how they are presented, may gain inhibitory value or simply be ignored. If experienced in the presence of other cues predictive of appetitive or aversive outcomes, they typically gain inhibitory value and become predictive cues indicating the absence of appetitive or aversive outcomes. In this case, these cues are referred to as conditioned inhibitors. Here, male and female Long Evans rats underwent cue discrimination training where a reward cue was paired with sucrose, a fear cue with footshock, and an inhibitor cue resulted in neither sucrose or footshock. During a subsequent summation test for conditioned inhibition of fear and reward, the inhibitor cue was presented concurrently with the reward and fear cues without any outcome, intermixed with trials of reinforced reward and fear trials. Males showed significant conditioned inhibition of freezing, while females did not, which was not dependent on estrous. Both males and females showed significant conditioned inhibition of reward. During a retardation of fear acquisition test, the inhibitor was paired with footshock and both males and females showed delayed acquisition of fear. During a retardation of reward acquisition test, the inhibitor was paired with sucrose, and females showed delayed acquisition of reward, while males did not. In summary, males and females showed significant reward-fear-inhibitor cue discrimination, conditioned inhibition of reward, and retardation of fear acquisition. The main sex difference, which was not estrous-dependent, was the lack of conditioned inhibition of freezing in females. These data imply that while the inhibitor cue gained some inhibitory value in the females, the strength of this inhibitory value may not have been great enough to effectively downregulate freezing elicited by the fear cue.
Collapse
Affiliation(s)
- Jamie N Krueger
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA 47907
| | - Nupur N Patel
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA 47907
| | - Kevin Shim
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA 47907
| | - Ka Ng
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA 47907
| | - Susan Sangha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA 47907; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA 46202.
| |
Collapse
|
3
|
Hornstein E, Leschak CJ, Parrish MH, Byrne-Haltom KE, Fanselow MS, Craske MG, Eisenberger NI. Social support and fear-inhibition: an examination of underlying neural mechanisms. Soc Cogn Affect Neurosci 2024; 19:nsae002. [PMID: 38217103 PMCID: PMC10868130 DOI: 10.1093/scan/nsae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
Recent work has demonstrated that reminders of those we are closest to have a unique combination of effects on fear learning and represent a new category of fear inhibitors, termed prepared fear suppressors. Notably, social-support-figure images have been shown to resist becoming associated with fear, suppress conditional-fear-responding and lead to long-term fear reduction. Due to the novelty of this category, understanding the underlying neural mechanisms that support these unique abilities of social-support-reminders has yet to be investigated. Here, we examined the neural correlates that enable social-support-reminders to resist becoming associated with fear during a retardation-of-acquisition test. We found that social-support-figure-images (vs stranger-images) were less readily associated with fear, replicating prior work, and that this effect was associated with decreased amygdala activity and increased ventromedial prefrontal cortex (VMPFC) activity for social-support-figure-images (vs stranger-images), suggesting that social-support-engagement of the VMPFC and consequent inhibition of the amygdala may contribute to unique their inhibitory effects. Connectivity analyses supported this interpretation, showing greater connectivity between the VMPFC and left amygdala for social-support-figure-images (vs stranger-images).
Collapse
Affiliation(s)
- E.A Hornstein
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | - C J Leschak
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | - M H Parrish
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | - K E Byrne-Haltom
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | - M S Fanselow
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095, USA
| | - M G Craske
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095, USA
| | - N I Eisenberger
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Ng KH, Sangha S. Encoding of conditioned inhibitors of fear in the infralimbic cortex. Cereb Cortex 2023; 33:5658-5670. [PMID: 36411540 PMCID: PMC10152082 DOI: 10.1093/cercor/bhac450] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cues in the environment signaling the absence of threat, i.e. safety, can influence both fear and reward-seeking behaviors. Heightened and maladaptive fear is associated with reduced activity in the medial prefrontal cortex. We have previously shown in male rats that the infralimbic (IL) prefrontal cortex is necessary for suppressing fear during a safety cue. The objective of the present study was to determine if there was safety cue-specific neural activity within the IL using a Pavlovian conditioning paradigm, where a fear cue was paired with shock, a safety cue was paired with no shock, and a reward cue was paired with sucrose. To investigate how safety cues can suppress fear, the fear and safety cues were presented together as a compound fear + safety cue. Single-unit activity showed a large proportion of neurons with excitatory responses to the fear + safety cue specifically, a separate group of neurons with excitatory responses to both the reward and fear + safety cues, and bidirectional neurons with excitation to the fear + safety cue and inhibition to the fear cue. Neural activity was also found to be negatively correlated with freezing during the fear + safety cue. Together, these data implicate the IL in encoding specific aspects of conditioned inhibitors when fear is being actively suppressed.
Collapse
Affiliation(s)
- Ka H Ng
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Susan Sangha
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
5
|
Cassaday HJ, Muir C, Stevenson CW, Bonardi C, Hock R, Waite L. From safety to frustration: The neural substrates of inhibitory learning in aversive and appetitive conditioning procedures. Neurobiol Learn Mem 2023; 202:107757. [PMID: 37044368 DOI: 10.1016/j.nlm.2023.107757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Inhibitory associative learning counters the effects of excitatory learning, whether appetitively or aversively motivated. Moreover, the affective responses accompanying the inhibitory associations are of opponent valence to the excitatory conditioned responses. Inhibitors for negative aversive outcomes (e.g. shock) signal safety, while inhibitors for appetitive outcomes (e.g. food reward) elicit frustration and/or disappointment. This raises the question as to whether studies using appetitive and aversive conditioning procedures should demonstrate the same neural substrates for inhibitory learning. We review the neural substrates of appetitive and aversive inhibitory learning as measured in different procedural variants and in the context of the underpinning excitatory conditioning on which it depends. The mesocorticolimbic dopamine pathways, retrosplenial cortex and hippocampus are consistently implicated in inhibitory learning. Further neural substrates identified in some procedural variants may be related to the specific motivation of the learning task and modalities of the learning cues. Finally, we consider the translational implications of our understanding of the neural substrates of inhibitory learning, for obesity and addictions as well as for anxiety disorders.
Collapse
Affiliation(s)
| | - C Muir
- School of Psychology, University of Nottingham; School of Physiology, Pharmacology, and Neuroscience, University of Bristol
| | | | - C Bonardi
- School of Psychology, University of Nottingham
| | - R Hock
- School of Psychology, University of Nottingham
| | - L Waite
- School of Psychology, University of Nottingham
| |
Collapse
|
6
|
Persistent disruption of overexpectation learning after inactivation of the lateral orbitofrontal cortex in male rats. Psychopharmacology (Berl) 2023; 240:501-511. [PMID: 35932299 DOI: 10.1007/s00213-022-06198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
RATIONALE AND OBJECTIVE Learning to inhibit acquired fear responses is fundamental to adaptive behavior. Two procedures that support such learning are extinction and overexpectation. In extinction, an expected outcome is omitted, whereas in overexpectation two individually trained cues are presented in compound to induce an expectation of a greater outcome than that delivered. Previously, we showed that inactivation of the lateral orbitofrontal cortex (lOFC) in experimentally naïve male rats causes a mild impairment in extinction learning but a profound one in overexpectation. The mild extinction impairment was also transient; that is, it was absent in a cohort of rats that had prior history of inhibitory training (overexpectation, extinction) and their associated controls. This raised the question whether lOFC involvement in overexpectation could likewise be attenuated by prior experience. METHODS Using a muscimol/baclofen cocktail, we inactivated the lOFC during overexpectation training in rats with prior associative learning history (extinction, overexpectation, control) and examined its contribution to reducing learned fear. RESULTS Inactivating the lOFC during compound training in overexpectation persistently disrupted fear reduction on test in naïve rats and regardless of prior experience. Additionally, we confirm that silencing the lOFC only resulted in a mild impairment in extinction learning in naïve rats. CONCLUSION We show that prior associative learning experience did not mitigate the deficit in overexpectation caused by lOFC inactivation. Our findings emphasize the importance of this region for this particular form of fear reduction and broaden our understanding of the conditions in which the lOFC modulates behavioral inhibition.
Collapse
|
7
|
Fam J, Chieng B, Westbrook RF, Laurent V, Holmes NM. Second-order fear conditioning involves formation of competing stimulus-danger and stimulus-safety associations. Cereb Cortex 2023; 33:1843-1855. [PMID: 35524718 DOI: 10.1093/cercor/bhac176] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022] Open
Abstract
How do animals process experiences that provide contradictory information? The present study addressed this question using second-order fear conditioning in rats. In second-order conditioning, rats are conditioned to fear a stimulus, S1, through its pairings with foot-shock (stage 1); and some days later, a second stimulus, S2, through its pairings with the already-conditioned S1 (stage 2). However, as foot-shock is never presented during conditioning to S2, we hypothesized that S2 simultaneously encodes 2 contradictory associations: one that drives fear to S2 (S2-danger) and another that reflects the absence of the expected unconditioned stimulus and partially masks that fear (e.g. S2-safety). We tested this hypothesis by manipulating the substrates of danger and safety learning in the brain (using a chemogenetic approach) and assessing the consequences for second-order fear to S2. Critically, silencing activity in the basolateral amygdala (important for danger learning) reduced fear to S2, whereas silencing activity in the infralimbic cortex (important for safety learning) enhanced fear to S2. These bidirectional changes are consistent with our hypothesis that second-order fear conditioning involves the formation of competing S2-danger and S2-safety associations. More generally, they show that a single set of experiences can produce contradictory associations and that the brain resolves the contradiction by encoding these associations in distinct brain regions.
Collapse
Affiliation(s)
- Justine Fam
- School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia
| | - Billy Chieng
- School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Vincent Laurent
- School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
8
|
Howland JG, Ito R, Lapish CC, Villaruel FR. The rodent medial prefrontal cortex and associated circuits in orchestrating adaptive behavior under variable demands. Neurosci Biobehav Rev 2022; 135:104569. [PMID: 35131398 PMCID: PMC9248379 DOI: 10.1016/j.neubiorev.2022.104569] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/17/2021] [Accepted: 02/01/2022] [Indexed: 11/28/2022]
Abstract
Emerging evidence implicates rodent medial prefrontal cortex (mPFC) in tasks requiring adaptation of behavior to changing information from external and internal sources. However, the computations within mPFC and subsequent outputs that determine behavior are incompletely understood. We review the involvement of mPFC subregions, and their projections to the striatum and amygdala in two broad types of tasks in rodents: 1) appetitive and aversive Pavlovian and operant conditioning tasks that engage mPFC-striatum and mPFC-amygdala circuits, and 2) foraging-based tasks that require decision making to optimize reward. We find support for region-specific function of the mPFC, with dorsal mPFC and its projections to the dorsomedial striatum supporting action control with higher cognitive demands, and ventral mPFC engagement in translating affective signals into behavior via discrete projections to the ventral striatum and amygdala. However, we also propose that defined mPFC subdivisions operate as a functional continuum rather than segregated functional units, with crosstalk that allows distinct subregion-specific inputs (e.g., internal, affective) to influence adaptive behavior supported by other subregions.
Collapse
Affiliation(s)
- John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Rutsuko Ito
- Department of Psychology, University of Toronto-Scarborough, Toronto, ON, Canada.
| | - Christopher C Lapish
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Franz R Villaruel
- Department of Psychology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Giacomini JL, Geiduschek E, Selleck RA, Sadeghian K, Baldo BA. Dissociable control of μ-opioid-driven hyperphagia vs. food impulsivity across subregions of medial prefrontal, orbitofrontal, and insular cortex. Neuropsychopharmacology 2021; 46:1981-1989. [PMID: 34226656 PMCID: PMC8429588 DOI: 10.1038/s41386-021-01068-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022]
Abstract
This study explored potentially dissociable functions of mu-opioid receptor (µ-OR) signaling across different cortical territories in the control of anticipatory activity directed toward palatable food, consumption, and impulsive food-seeking behavior in male rats. The µ-OR agonist, DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin), was infused into infralimbic cortex (ILC), prelimbic cortex (PrL), medial and lateral ventral orbitofrontal cortices (VMO, VLO), and agranular/dysgranular insular (AI/DI) cortex of rats. Intra-ILC DAMGO markedly enhanced contact with a see-through screen behind which sucrose pellets were sequestered; in addition, rats having received intra-ILC and intra-VMO DAMGO exhibited locomotor hyperactivity while the screen was in place. Upon screen removal, intra-ILC and -VMO-treated rats emitted numerous, brief sucrose-intake bouts (yielding increased overall intake) interspersed with significant hyperactivity. In contrast, intra-AI/DI-treated rats consumed large amounts of sucrose in long, uninterrupted bouts with no anticipatory hyperactivity pre-screen removal. Intra-PrL and intra-VLO DAMGO altered neither pre-screen behavior nor sucrose intake. Finally, all rats were tested in a sucrose-reinforced differential reinforcement of low rates (DRL) task, which assesses the ability to advantageously withhold premature responses. DAMGO affected (impaired) DRL performance when infused into ILC only. These site-based dissociations reveal differential control of µ-OR-modulated appetitive/approach vs. consummatory behaviors by ventromedial/orbitofrontal and insular networks, respectively, and suggest a unique role of ILC µ-ORs in modulating inhibitory control.
Collapse
Affiliation(s)
- Juliana L. Giacomini
- grid.14003.360000 0001 2167 3675Graduate Program in Cellular and Molecular Biology, Physiology Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Emma Geiduschek
- grid.14003.360000 0001 2167 3675Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Ryan A. Selleck
- grid.252000.50000 0001 0728 549XDepartment of Psychological Science, Albion College, Albion, MI USA
| | - Ken Sadeghian
- grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA
| | - Brian A. Baldo
- grid.14003.360000 0001 2167 3675Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
10
|
Roughley S, Killcross S. The role of the infralimbic cortex in decision making processes. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Odriozola P, Gee DG. Learning About Safety: Conditioned Inhibition as a Novel Approach to Fear Reduction Targeting the Developing Brain. Am J Psychiatry 2021; 178:136-155. [PMID: 33167673 PMCID: PMC7951569 DOI: 10.1176/appi.ajp.2020.20020232] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adolescence is a peak time for the onset of psychiatric disorders, with anxiety disorders being the most common and affecting as many as 30% of youths. A core feature of anxiety disorders is difficulty regulating fear, with evidence suggesting deficits in extinction learning and corresponding alterations in frontolimbic circuitry. Despite marked changes in this neural circuitry and extinction learning throughout development, interventions for anxious youths are largely based on principles of extinction learning studied in adulthood. Safety signal learning, based on conditioned inhibition of fear in the presence of a cue that indicates safety, has been shown to effectively reduce anxiety-like behavior in animal models and attenuate fear responses in healthy adults. Cross-species evidence suggests that safety signal learning involves connections between the ventral hippocampus and the prelimbic cortex in rodents or the dorsal anterior cingulate cortex in humans. Particularly because this pathway follows a different developmental trajectory than fronto-amygdala circuitry involved in traditional extinction learning, safety cues may provide a novel approach to reducing fear in youths. In this review, the authors leverage a translational framework to bring together findings from studies in animal models and humans and to bridge the gap between research on basic neuroscience and clinical treatment. The authors consider the potential application of safety signal learning for optimizing interventions for anxious youths by targeting the biological state of the developing brain. Based on the existing cross-species literature on safety signal learning, they propose that the judicious use of safety cues may be an effective and neurodevelopmentally optimized approach to enhancing treatment outcomes for youths with anxiety disorders.
Collapse
Affiliation(s)
| | - Dylan G. Gee
- Department of Psychology, Yale University, New Haven, Conn
| |
Collapse
|
12
|
Gonzalez ST, Fanselow MS. The role of the ventromedial prefrontal cortex and context in regulating fear learning and extinction. PSYCHOLOGY & NEUROSCIENCE 2020; 13:459-472. [PMID: 34504659 PMCID: PMC8425341 DOI: 10.1037/pne0000207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An organism's ability to learn about and respond to stimuli in its environment is crucial for survival, which can involve learning simple associations such as learning what stimuli predict danger. However, individuals must also be able to use contextual information to adapt to changing environmental demands. While the circuitry that supports fear conditioning has been extensively studied, the circuitry that allows individuals to regulate fear under different circumstance is less well understood. A view of ventromedial prefrontal cortex (vmPFC) function has emerged wherein the prelimbic region of the vmPFC supports fear expression, while the infralimbic region supports fear inhibition. However, despite a rich literature exploring the role of these regions in appetitive learning and memory suggesting a more nuanced function, there has been little integration of this literature with studies of the vmPFC in fear learning. In this review, we argue that the function of the vmPFC in fear learning is not restricted to fear inhibition versus expression per se. Instead, the vmPFC uses contextual information to guide behavior, particularly in situations of ambiguity or conflict.
Collapse
Affiliation(s)
- Sarah T Gonzalez
- Staglin Center for Brain & Behavioral Health, Department of Psychology, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095-1563
| | - Michael S Fanselow
- Staglin Center for Brain & Behavioral Health, Department of Psychology, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095-1563
| |
Collapse
|
13
|
Lay BPP, Pitaru AA, Boulianne N, Esber GR, Iordanova MD. Different methods of fear reduction are supported by distinct cortical substrates. eLife 2020; 9:e55294. [PMID: 32589138 PMCID: PMC7343386 DOI: 10.7554/elife.55294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding how learned fear can be reduced is at the heart of treatments for anxiety disorders. Tremendous progress has been made in this regard through extinction training in which the aversive outcome is omitted. However, current progress almost entirely rests on this single paradigm, resulting in a very specialized knowledgebase at the behavioural and neural level of analysis. Here, we used a dual-paradigm approach to show that different methods that lead to reduction in learned fear in rats are dissociated in the cortex. We report that the infralimbic cortex has a very specific role in fear reduction that depends on the omission of aversive events but not on overexpectation. The orbitofrontal cortex, a structure generally overlooked in fear, is critical for downregulating fear when novel predictions about upcoming aversive events are generated, such as when fear is inflated or overexpected, but less so when an expected aversive event is omitted.
Collapse
Affiliation(s)
- Belinda PP Lay
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia UniversityMontrealCanada
| | - Audrey A Pitaru
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia UniversityMontrealCanada
| | - Nathan Boulianne
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia UniversityMontrealCanada
| | - Guillem R Esber
- Department of Psychology, Brooklyn College of the City University of New YorkBrooklynUnited States
| | - Mihaela D Iordanova
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia UniversityMontrealCanada
| |
Collapse
|
14
|
Sex differences in auditory fear discrimination are associated with altered medial prefrontal cortex function. Sci Rep 2020; 10:6300. [PMID: 32286467 PMCID: PMC7156682 DOI: 10.1038/s41598-020-63405-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/28/2020] [Indexed: 01/05/2023] Open
Abstract
The increased prevalence of post-traumatic stress disorder (PTSD) that is observed in women may involve sex differences in learned fear inhibition and medial prefrontal cortex (mPFC) function. PTSD is characterized by fear overgeneralization involving impaired fear regulation by safety signals. We recently found that males show fear discrimination and females show fear generalization involving reduced safety signalling after extended fear discrimination training. Here we determined if these sex differences involve altered mPFC function. Male and female rats underwent three days of auditory fear discrimination training, where one tone (CS+) was paired with footshock and another tone (CS−) was presented alone. Local field potentials were recorded from prelimbic (PL) and infralimbic (IL) mPFC during retrieval. We found that males discriminated and females generalized based on cue-induced freezing at retrieval. This was accompanied by sex differences in basal theta and gamma oscillations in PL and IL. Importantly, males also showed PL/IL theta activation during safety signalling by the CS− and IL gamma activation in response to the threat-related CS+, both of which were absent in females. These results add to growing evidence indicating that sex differences in learned fear inhibition are associated with altered mPFC function.
Collapse
|
15
|
Loss of Hierarchical Control by Occasion Setters Following Lesions of the Prelimbic and Infralimbic Medial Prefrontal Cortex in Rats. Brain Sci 2019; 9:brainsci9030048. [PMID: 30813649 PMCID: PMC6468341 DOI: 10.3390/brainsci9030048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 11/17/2022] Open
Abstract
Recent work suggests complementary roles of the prelimbic and infralimbic regions of the rat medial prefrontal cortex in cognitive control processes, with the prelimbic cortex implicated in top-down modulation of associations and the infralimbic cortex playing a role in the inhibition of inappropriate responses. Following selective lesions made to prelimbic or infralimbic regions (or control sham-surgery) rats received simultaneous training on Pavlovian feature negative (A+, XA-) and feature positive (B-, YB+) discriminations designed to lead to hierarchical occasion-setting control by the features (X, Y) over their respective targets (A, B). Evidence for hierarchical control was assessed in a transfer test in which features and targets were swapped (YA, XB). All groups were able to learn the feature negative and feature positive discriminations. Whilst sham-lesioned animals showed no transfer of control by features to novel targets (a hallmark of hierarchical control), rats with lesions of prelimbic or infralimbic regions showed evidence of transfer from the positive feature (Y) to the negative target (A), and from the negative feature (X) to the positive target (B; although this only achieved significance in infralimbic-lesioned animals). These data indicate that damage to either of these regions disrupts hierarchical occasion-setting control, extending our knowledge of their role in cognitive control to encompass flexible behaviours dictated by discrete cues.
Collapse
|
16
|
Lay BPP, Nicolosi M, Usypchuk AA, Esber GR, Iordanova MD. Dissociation of Appetitive Overexpectation and Extinction in the Infralimbic Cortex. Cereb Cortex 2018; 29:3687-3701. [PMID: 30371757 DOI: 10.1093/cercor/bhy248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/03/2018] [Indexed: 01/05/2023] Open
Abstract
Abstract
Behavioral change is paramount to adaptive behavior. Two ways to achieve alterations in previously established behavior are extinction and overexpectation. The infralimbic (IL) portion of the medial prefrontal cortex controls the inhibition of previously established aversive behavioral responses in extinction. The role of the IL cortex in behavioral modification in appetitive Pavlovian associations remains poorly understood. Here, we seek to determine if the IL cortex modulates overexpectation and extinction of reward learning. Using overexpectation or extinction to achieve a reduction in behavior, the present findings uncover a dissociable role for the IL cortex in these paradigms. Pharmacologically inactivating the IL cortex left overexpectation intact. In contrast, pre-training manipulations in the IL cortex prior to extinction facilitated the reduction in conditioned responding but led to a disrupted extinction retrieval on test drug-free. Additional studies confirmed that this effect is restricted to the IL and not dependent on the dorsally-located prelimbic cortex. Together, these results show that the IL cortex underlies extinction but not overexpectation-driven reduction in behavior, which may be due to regulating the expression of conditioned responses influenced by stimulus–response associations rather than stimulus–stimulus associations.
Collapse
Affiliation(s)
- Belinda P P Lay
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Melissa Nicolosi
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Alexandra A Usypchuk
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | - Guillem R Esber
- Department of Psychology, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - Mihaela D Iordanova
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
17
|
Lingawi NW, Holmes NM, Westbrook RF, Laurent V. The infralimbic cortex encodes inhibition irrespective of motivational significance. Neurobiol Learn Mem 2018. [PMID: 29518495 DOI: 10.1016/j.nlm.2018.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Evidence indicates that the infralimbic cortex (IL) encodes and retrieves the inhibitory memory produced by fear extinction. Recently, we have shown that the IL is also involved in the inhibitory memory generated by stimulus pre-exposure that causes latent inhibition. These results are surprising because a stimulus undergoing fear extinction carries aversive motivational value, whereas a pre-exposed stimulus is neutral. The present experiments tested the hypothesis that the IL encodes inhibition irrespective of the motivational information about the stimulus. Using rats, we first confirmed that IL activity during stimulus pre-exposure is required for latent inhibition. Then, we found that pharmacological stimulation of the IL facilitated aversive extinction to a stimulus that had been trained and extinguished as an appetitive stimulus. This facilitation was stimulus specific and required appetitive extinction. The same facilitation was found when appetitive extinction was replaced with random presentations of the stimulus and an appetitive outcome. Together, these findings indicate that non-reinforced stimulus presentations establish an inhibitory memory that is reactivated and strengthened in the IL during subsequent aversive extinction. This is consistent with the view that the IL encodes inhibition irrespective of motivational value, suggesting that this brain region plays a general role in inhibitory learning.
Collapse
Affiliation(s)
- Nura W Lingawi
- School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Nathan M Holmes
- School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - R Fredrick Westbrook
- School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Vincent Laurent
- School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
18
|
Connor DA, Kutlu MG, Gould TJ. Nicotine disrupts safety learning by enhancing fear associated with a safety cue via the dorsal hippocampus. J Psychopharmacol 2017; 31:934-944. [PMID: 28675115 PMCID: PMC5755391 DOI: 10.1177/0269881117695861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Learned safety, a learning process in which a cue becomes associated with the absence of threat, is disrupted in individuals with post-traumatic stress disorder (PTSD). A bi-directional relationship exists between smoking and PTSD and one potential explanation is that nicotine-associated changes in cognition facilitate PTSD emotional dysregulation by disrupting safety associations. Therefore, we investigated whether nicotine would disrupt learned safety by enhancing fear associated with a safety cue. In the present study, C57BL/6 mice were administered acute or chronic nicotine and trained over three days in a differential backward trace conditioning paradigm consisting of five trials of a forward conditioned stimulus (CS)+ (Light) co-terminating with a footshock unconditioned stimulus followed by a backward CS- (Tone) presented 20 s after cessation of the unconditioned stimulus. Summation testing found that acute nicotine disrupted learned safety, but chronic nicotine had no effect. Another group of animals administered acute nicotine showed fear when presented with the backward CS (Light) alone, indicating the formation of a maladaptive fear association with the backward CS. Finally, we investigated the brain regions involved by administering nicotine directly into the dorsal hippocampus, ventral hippocampus, and prelimbic cortex. Infusion of nicotine into the dorsal hippocampus disrupted safety learning.
Collapse
Affiliation(s)
- David A Connor
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Munir G Kutlu
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
19
|
Morè L, Künnecke B, Yekhlef L, Bruns A, Marte A, Fedele E, Bianchi V, Taverna S, Gatti S, D'Adamo P. Altered fronto-striatal functions in the Gdi1-null mouse model of X-linked Intellectual Disability. Neuroscience 2017; 344:346-359. [PMID: 28057534 PMCID: PMC5315088 DOI: 10.1016/j.neuroscience.2016.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/05/2016] [Accepted: 12/23/2016] [Indexed: 01/17/2023]
Abstract
RAB-GDP dissociation inhibitor 1 (GDI1) loss-of-function mutations are responsible for a form of non-specific X-linked Intellectual Disability (XLID) where the only clinical feature is cognitive impairment. GDI1 patients are impaired in specific aspects of executive functions and conditioned response, which are controlled by fronto-striatal circuitries. Previous molecular and behavioral characterization of the Gdi1-null mouse revealed alterations in the total number/distribution of hippocampal and cortical synaptic vesicles as well as hippocampal short-term synaptic plasticity, and memory deficits. In this study, we employed cognitive protocols with high translational validity to human condition that target the functionality of cortico-striatal circuitry such as attention and stimulus selection ability with progressive degree of complexity. We previously showed that Gdi1-null mice are impaired in some hippocampus-dependent forms of associative learning assessed by aversive procedures. Here, using appetitive-conditioning procedures we further investigated associative learning deficits sustained by the fronto-striatal system. We report that Gdi1-null mice are impaired in attention and associative learning processes, which are a key part of the cognitive impairment observed in XLID patients.
Collapse
Affiliation(s)
- Lorenzo Morè
- Molecular Genetics of Intellectual Disability Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Basil Künnecke
- pRED, Pharma Research & Early Development, NORD Neuroscience, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Switzerland
| | - Latefa Yekhlef
- Neuroimmunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andreas Bruns
- pRED, Pharma Research & Early Development, NORD Neuroscience, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Switzerland
| | - Antonella Marte
- Department of Pharmacy, Section of Pharmacology and Toxicology, Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Ernesto Fedele
- Department of Pharmacy, Section of Pharmacology and Toxicology, Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Veronica Bianchi
- Molecular Genetics of Intellectual Disability Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Taverna
- Neuroimmunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Gatti
- pRED, Pharma Research & Early Development, NORD Neuroscience, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Switzerland
| | - Patrizia D'Adamo
- Molecular Genetics of Intellectual Disability Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
20
|
Foilb AR, Flyer-Adams JG, Maier SF, Christianson JP. Posterior insular cortex is necessary for conditioned inhibition of fear. Neurobiol Learn Mem 2016; 134 Pt B:317-27. [PMID: 27523750 PMCID: PMC5424894 DOI: 10.1016/j.nlm.2016.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/01/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Veridical detection of safety versus danger is critical to survival. Learned signals for safety inhibit fear, and so when presented, reduce fear responses produced by danger signals. This phenomenon is termed conditioned inhibition of fear. Here, we report that CS+/CS- fear discrimination conditioning over 5 days in rats leads the CS- to become a conditioned inhibitor of fear, as measured by the classic tests of conditioned inhibition: summation and retardation of subsequent fear acquisition. We then show that NMDA-receptor antagonist AP5 injected to posterior insular cortex (IC) before training completely prevented the acquisition of a conditioned fear inhibitor, while intra-AP5 to anterior and medial IC had no effect. To determine if the IC contributes to the recall of learned fear inhibition, injections of the GABAA agonist muscimol were made to posterior IC before a summation test. This resulted in fear inhibition per se, which obscured inference to the effect of IC inactivation with recall of the safety cue. Control experiments sought to determine if the role of the IC in conditioned inhibition learning could be reduced to simpler fear discrimination function, but fear discrimination and recall were unaffected by AP5 or muscimol, respectively, in the posterior IC. These data implicate a role of posterior IC in the learning of conditioned fear inhibitors.
Collapse
Affiliation(s)
- Allison R Foilb
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| | - Johanna G Flyer-Adams
- Department of Psychology and Neuroscience, Center of Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center of Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - John P Christianson
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA; Department of Psychology and Neuroscience, Center of Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| |
Collapse
|
21
|
Meyer HC, Bucci DJ. The contribution of medial prefrontal cortical regions to conditioned inhibition. Behav Neurosci 2014; 128:644-53. [PMID: 25285456 DOI: 10.1037/bne0000023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Few studies have considered the process by which individuals learn to omit a response, which is an essential aspect of adaptive behavior. Several lines of evidence indicate that two regions of the medial prefrontal cortex have disparate roles in behavioral flexibility. In particular, the prelimbic cortex (PL) is thought to facilitate the generation of a strategy to inhibit a prepotent response, whereas the infralimbic cortex (IL) appears to be more important for maintaining extensively trained inhibitory behaviors. The present experiments were designed to elucidate the contributions of PL and IL to the acquisition and maintenance of Pavlovian conditioned inhibition. In Experiment 1, damage to PL before training in a compound feature negative discrimination task impaired inhibitory learning. By comparison, lesions of IL had little effect. In Experiment 2, lesions of PL or IL occurred after overtraining, and damage to IL significantly impaired subsequent performance in the task, suggesting that this region is involved in the continued expression of Pavlovian conditioned inhibition after thorough training. PL may also be involved in maintaining inhibition, as evidenced by a marginally significant lesion-induced performance deficit. These data support the notion that PL and IL have distinguishable roles in modulating inhibition, while contributing important information about the specific role for PL in acquisition of an inhibitory response and IL in performance.
Collapse
Affiliation(s)
- Heidi C Meyer
- Department of Psychological and Brain Sciences, Dartmouth College
| | - David J Bucci
- Department of Psychological and Brain Sciences, Dartmouth College
| |
Collapse
|
22
|
Fitoussi A, Le Moine C, De Deurwaerdère P, Laqui M, Rivalan M, Cador M, Dellu-Hagedorn F. Prefronto-subcortical imbalance characterizes poor decision-making: neurochemical and neural functional evidences in rats. Brain Struct Funct 2014; 220:3485-96. [PMID: 25134683 DOI: 10.1007/s00429-014-0868-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/30/2014] [Indexed: 01/28/2023]
Abstract
A major challenge of decision-making research in recent years has been to develop models of poor decision-making to identify its neural bases. Toward this goal, we developed a Rat Gambling Task that discerns good and poor decision-makers in a complex and conflicting situation such as the human Iowa Gambling Task. Nothing is known about the role of the monoaminergic modulatory systems in shaping these phenotypes. Moreover, functional and temporal contributions of brain areas during poor compared to good decision-making remains elusive. Good and poor decision-makers were identified in the Rat Gambling Task. We investigated neurobiological correlates of decision-making capacities in (1) dopamine and serotonin turnovers using post-mortem tissue measurements, (2) the neural circuits differentially recruited during decision-making within the prefronto-subcortical network using cellular Fos immunodetection. Imbalance in monoamine metabolism was revealed in poor decision-makers, i.e. a higher infralimbic vs. lower amygdala serotonergic metabolism. Moreover, good decision-making recruited a wide prefronto-subcortical network but once good choices had been made, a disengagement of key prefrontal areas (insular and infralimbic cortices notably) and the amygdala was observed. By contrast, poor decision-making was associated with a strikingly low recruitment of the prefronto-subcortical network, together with sustained amygdala activity. Our results identify two complementary neurobiological substrates characterizing poor decision-makers: imbalanced monoaminergic systems at rest, congruent with their previously identified complex behavioral phenotype, and an aberrant low recruitment of key brain areas for executive functions and affective valence during the process of decision-making. These biomarkers could sustain vulnerability to developing poor decision-making related disorders.
Collapse
Affiliation(s)
- Aurélie Fitoussi
- University of Bordeaux, INCIA, CNRS UMR 5287, PB. 31, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,CNRS, University of Bordeaux, INCIA, UMR 5287, 33000, Bordeaux, France
| | - Catherine Le Moine
- University of Bordeaux, INCIA, CNRS UMR 5287, PB. 31, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,CNRS, University of Bordeaux, INCIA, UMR 5287, 33000, Bordeaux, France
| | - Philippe De Deurwaerdère
- University of Bordeaux, INCIA, CNRS UMR 5287, PB. 31, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,CNRS, University of Bordeaux, IMN, UMR 5293, 33000, Bordeaux, France
| | - Matéo Laqui
- University of Bordeaux, INCIA, CNRS UMR 5287, PB. 31, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,CNRS, University of Bordeaux, INCIA, UMR 5287, 33000, Bordeaux, France
| | - Marion Rivalan
- University of Bordeaux, INCIA, CNRS UMR 5287, PB. 31, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,CNRS, University of Bordeaux, INCIA, UMR 5287, 33000, Bordeaux, France.,Institut of Cognitive Neurobiology, Humboldt University Berlin, Berlin, Germany
| | - Martine Cador
- University of Bordeaux, INCIA, CNRS UMR 5287, PB. 31, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.,CNRS, University of Bordeaux, INCIA, UMR 5287, 33000, Bordeaux, France
| | - Françoise Dellu-Hagedorn
- University of Bordeaux, INCIA, CNRS UMR 5287, PB. 31, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France. .,CNRS, University of Bordeaux, INCIA, UMR 5287, 33000, Bordeaux, France.
| |
Collapse
|
23
|
Kong E, Monje FJ, Hirsch J, Pollak DD. Learning not to fear: neural correlates of learned safety. Neuropsychopharmacology 2014; 39:515-27. [PMID: 23963118 PMCID: PMC3895233 DOI: 10.1038/npp.2013.191] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/05/2013] [Accepted: 07/13/2013] [Indexed: 12/16/2022]
Abstract
The ability to recognize and properly respond to instances of protection from impending danger is critical for preventing chronic stress and anxiety-central symptoms of anxiety and affective disorders afflicting large populations of people. Learned safety encompasses learning processes, which lead to the identification of episodes of security and regulation of fear responses. On the basis of insights into the neural circuitry and molecular mechanisms involved in learned safety in mice and humans, we describe learned safety as a tool for understanding neural mechanisms involved in the pathomechanisms of specific affective disorders. This review summarizes our current knowledge on the neurobiological underpinnings of learned safety and discusses potential applications in basic and translational neurosciences.
Collapse
Affiliation(s)
- Eryan Kong
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Francisco J Monje
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Joy Hirsch
- Department of Neuroscience, Columbia University, New York, NY, USA
- fMRI Research Center, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
- Department of Psychology, Columbia University, New York, NY, USA
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Mihindou C, Guillem K, Navailles S, Vouillac C, Ahmed SH. Discriminative inhibitory control of cocaine seeking involves the prelimbic prefrontal cortex. Biol Psychiatry 2013; 73:271-9. [PMID: 22985696 DOI: 10.1016/j.biopsych.2012.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Recent neuroimaging studies have shown that people with cocaine addiction retain some degree of control over drug craving that correlates with neural activity in the lateral prefrontal cortex (PFC). Here, we report similar findings in a rat model of inhibitory control of cocaine seeking. METHODS Rats actively responding for cocaine were trained to stop responding when presented with a discriminative stimulus that signaled lack of reinforcement. Rats were then tested for inhibitory control of cocaine seeking in novel behavioral contexts and in circumstances when cocaine seeking is particularly intense (e.g., following drug priming). The role of neuronal activity in different subregions of the PFC was assessed using local pharmacologic inactivation and c-Fos immunohistochemistry. RESULTS Rats progressively acquired the ability to stop cocaine seeking, even during drug intoxication and after a long history of cocaine self-administration. Inhibitory control of cocaine seeking was flexible, sufficiently strong to block cocaine-primed reinstatement, and selectively depended on increased neuronal activity within the prelimbic PFC, which is considered the rodent functional homolog of the human lateral PFC. CONCLUSIONS Parallel evidence in both animal models and humans indicate that recruitment of prefrontal inhibitory control of drug seeking is still functional after prolonged cocaine use. Preclinical investigation of the mechanisms underlying this capacity may contribute to designing new behavioral and/or pharmacologic strategies to promote its use for the prevention of relapse in addiction.
Collapse
Affiliation(s)
- Claudia Mihindou
- Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, Bordeaux, France
| | | | | | | | | |
Collapse
|
25
|
He Z, Cassaday HJ, Park SBG, Bonardi C. When to hold that thought: an experimental study showing reduced inhibition of pre-trained associations in schizophrenia. PLoS One 2012; 7:e42175. [PMID: 22860074 PMCID: PMC3408477 DOI: 10.1371/journal.pone.0042175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 07/03/2012] [Indexed: 11/19/2022] Open
Abstract
Schizophrenia encompasses a wide variety of cognitive dysfunctions, a number of which can be understood as deficits of inhibition. To date, no research has examined ‘conditioned inhibition’ in schizophrenia - the ability of a stimulus that signals the absence of an expected outcome to counteract the conditioned response produced by a signal for that outcome (a conditioned excitor). A computer-based task was used to measure conditioned excitation and inhibition in the same discrimination procedure, in 25 patients with a confirmed diagnosis of schizophrenia and a community-based comparison sample. Conditioned inhibition was measured by a ratio score, which compared the degree to which the inhibitory stimulus and a neutral control stimulus reduced conditioned responding to the excitatory cue: the lower the ratio, the greater the inhibitory learning. At test the ratios were 0.45 and 0.39 for patient and control groups respectively, and the relevant interaction term of the ANOVA confirmed that the degree of inhibition was reduced in the patient group, with an effect size of r = 0.28. These results demonstrate for the first time that inhibitory learning is impaired in schizophrenia. Such an impairment provides an attractive framework for the interpretation of the positive symptoms of schizophrenia. However, we were unable to demonstrate any relationship between the level of conditioned inhibition and medication. Similarly, in the present study it must be emphasised that the available data did not demonstrate any relationship between individual variation in inhibitory learning and the level of positive symptoms as measured by the PANSS. In fact inhibitory learning impairment was relatively greater in participants with a predominantly negative symptom profile and their excitatory learning was also reduced. Accordingly the next step will be to investigate such relationships in a larger sample with a priori defined sub-groups displaying predominantly positive versus predominantly negative symptoms.
Collapse
Affiliation(s)
- Zhimin He
- Division of Psychiatry, School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Helen J. Cassaday
- Division of Psychiatry, School of Psychology, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| | - S. Bert G. Park
- Division of Psychiatry, School of Community Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Charlotte Bonardi
- Division of Psychiatry, School of Psychology, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
26
|
Haddon J, Killcross S. Inactivation of the infralimbic prefrontal cortex in rats reduces the influence of inappropriate habitual responding in a response-conflict task. Neuroscience 2011; 199:205-12. [DOI: 10.1016/j.neuroscience.2011.09.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/12/2011] [Accepted: 09/29/2011] [Indexed: 10/16/2022]
|
27
|
Green JT, Chess AC, Conquest CJ, Yegla BA. Conditioned inhibition in a rodent model of attention-deficit/hyperactivity disorder. Behav Neurosci 2011; 125:979-87. [PMID: 22004263 DOI: 10.1037/a0025921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A deficit in inhibition may underlie some of the symptoms of attention-deficit/hyperactivity disorder (ADHD), particularly impulsivity. However, the data on inhibitory deficits in children with ADHD are mixed. Moreover, there has been little characterization of inhibitory processes in animal models of ADHD. Pavlov's conditioned inhibition procedure allows a direct assessment of the inhibitory status of a stimulus via summation and retardation tests. Therefore, in the current study, we examined conditioned inhibition in spontaneously hypertensive rats (SHRs), the most well-validated animal model of ADHD. SHRs and Wistar rats were trained in a simultaneous feature-negative discrimination in eyeblink conditioning. Each session consisted of a mixture of 2 trial types: a tone paired with a periocular stimulation (A+) or a tone and light presented simultaneously without a periocular stimulation (XA-). Both SHRs and Wistars were able to discriminate A+ from XA- trials. In subsequent summation (X presented simultaneously with a different conditioned excitor, B) and retardation (X paired with the periocular stimulation) tests, the presence of inhibition to X was confirmed in both SHRs and Wistars: X reduced responding to B, and X was slow to develop excitation when paired with periocular stimulation. These results are the first to demonstrate Pavlovian conditioned inhibition in SHRs and to use summation and retardation tests to confirm X as a conditioned inhibitor. The data indicate that conditioned inhibition is intact in SHRs; thus, inhibitory processes that do not require prefrontal cortex or cerebellum may be normal in this strain.
Collapse
Affiliation(s)
- John T Green
- Department of Psychology, University of Vermont, Burlington, VT 05405-0134, USA.
| | | | | | | |
Collapse
|
28
|
Maddux JM, Holland PC. Dissociations between medial prefrontal cortical subregions in the modulation of learning and action. Behav Neurosci 2011; 125:383-95. [PMID: 21517147 DOI: 10.1037/a0023515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The medial prefrontal cortex (mPFC) has been implicated in various attentional functions. This experiment examined the involvement of mPFC subregions in the allocation of attention in learning and action as a function of the predictive accuracy of cues. Rats with dorsal (encompassing anterior cingulate, prelimbic, and infralimbic cortices) or ventral (encompassing mainly infralimbic and dorsopeduncular cortices and tenia tecta) mPFC lesions were trained in a multiple-choice discrimination task in which operant nosepoke responses to some visual cues were consistently (100%) reinforced (CRF) with food, whereas responses to other visual cues were partially (50%) reinforced (PRF). In challenge tests designed to assess attention in the control of action, responding was directed more to CRF cues than to PRF cues in sham and dorsal mPFC-lesioned rats, but ventral mPFC-lesioned rats showed similar levels of responding to both CRF and PRF cues. Nevertheless, when given a choice between simultaneously presented CRF and PRF cues in a cue competition test, all groups responded more to CRF cues. In a subsequent Pavlovian overshadowing phase designed to assess attention in the acquisition of new learning, previously trained CRF cues overshadowed conditioning to novel auditory cues more than did PRF cues in dorsal mPFC-lesioned rats, whereas the opposite pattern was observed in sham and ventral mPFC-lesioned rats. These results suggest a dissociation within the mPFC in the use of reinforcement prediction information to allocate attention for new learning and for the control of action.
Collapse
Affiliation(s)
- Jean-Marie Maddux
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
29
|
Groblewski PA, Ryabinin AE, Cunningham CL. Activation and role of the medial prefrontal cortex (mPFC) in extinction of ethanol-induced associative learning in mice. Neurobiol Learn Mem 2011; 97:37-46. [PMID: 21951632 DOI: 10.1016/j.nlm.2011.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/27/2011] [Accepted: 09/07/2011] [Indexed: 12/19/2022]
Abstract
Although the medial prefrontal cortex (mPFC) has been shown to be integrally involved in extinction of a number of associative behaviors, its role in extinction of alcohol (ethanol)-induced associative learning has received little attention. Previous reports have provided evidence supporting a role for the mPFC in acquisition and extinction of amphetamine-induced conditioned place preference (CPP) in rats, however, it remains unknown if this region is necessary for extinction of ethanol (EtOH)-induced associative learning in mice. Using immunohistochemical analysis of phosphorylated and unphosphorylated cAMP response element-binding protein (CREB), the current set of experiments first showed that the prelimbic (PL) and infralimbic (IL) subregions of the mPFC exhibited dynamic responses in phosphorylation of CREB to a Pavlovian-conditioned, EtOH-paired cue. Interestingly, CREB phosphorylation within these regions was sensitive to manipulations of the EtOH-cue contingency-that is, the cue-induced increase of pCREB in both the PL and IL was absent following extinction. In order to confirm a functional role of the mPFC in regulating the extinction process, we then showed that electrolytic lesions of the mPFC following acquisition blocked subsequent extinction of EtOH-CPP. Together, these experiments indicate a role for the PL and IL subregions of the mPFC in processing changes of the EtOH-cue contingency, as well as in regulating extinction of EtOH-induced associative learning in mice.
Collapse
Affiliation(s)
- Peter A Groblewski
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
30
|
Retrospective revaluation and its neural circuit in rats. Behav Brain Res 2011; 223:262-70. [PMID: 21539862 DOI: 10.1016/j.bbr.2011.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/11/2011] [Accepted: 04/16/2011] [Indexed: 11/21/2022]
Abstract
Contingency learning is essential for establishing predictive or causal judgements. Retrospective revaluation captures essential aspects of the updating of this knowledge, according to new experience. In the present study, retrospective revaluation and its neural substrate was investigated in a rat conditioned magazine approach. One element of a previously food-reinforced Tone-Light compound stimulus was either further reinforced (inflation) or extinguished (extinction). These treatments affected the predictive value of the alternate stimulus (target), but only when the target was a weakly salient stimulus such as a Light, and the inflation/extinction procedure concerned the more salient element, that is the Tone. As the predictive value of the Light was decreased in comparison with a relevant control group, this revaluation was interpreted as backward blocking, and not unovershadowing. This observation challenges retrospective revaluation models focused on acquisition and prediction error detection, and is better accounted for by retrieval-based associative theories such as the comparator model (Miller and Matzel) [5]. Immunohistochemical detection of the Fos protein after the test phase revealed activation of the orbitofrontal and infralimbic cortices as well as nucleus accumbens core and shell, in rats that exhibited retrospective revaluation. Our results suggest that rats integrate successive experiences at the retrieval stage of retrospective revaluation, and that prefronto-accumbal interactions are involved in this function.
Collapse
|
31
|
Murray E, Wise S, Rhodes S. What Can Different Brains Do with Reward? NEUROBIOLOGY OF SENSATION AND REWARD 2011. [DOI: 10.1201/b10776-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Davis JF, Loos M, Di Sebastiano AR, Brown JL, Lehman MN, Coolen LM. Lesions of the medial prefrontal cortex cause maladaptive sexual behavior in male rats. Biol Psychiatry 2010; 67:1199-204. [PMID: 20346444 PMCID: PMC2908911 DOI: 10.1016/j.biopsych.2009.12.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 10/19/2022]
Abstract
BACKGROUND An inability to inhibit behaviors once they become maladaptive is a component of several psychiatric illnesses, and the medial prefrontal cortex (mPFC) was identified as a potential mediator of behavioral inhibition. The current study tested if the mPFC is involved in inhibition of sexual behavior when associated with aversive outcomes. METHODS Using male rats, effects of lesions of the infralimbic and prelimbic areas of the mPFC on expression of sexual behavior and ability to inhibit mating were tested using a paradigm of copulation-contingent aversion. RESULTS Medial prefrontal cortex lesions did not alter expression of sexual behavior. In contrast, mPFC lesions completely blocked the acquisition of sex-aversion conditioning and lesioned animals continued to mate, in contrast to the robust behavioral inhibition toward copulation in mPFC intact male animals, resulting in only 22% of intact male animals continuing to mate. However, rats with mPFC lesions were capable of forming a conditioned place preference to sexual reward and conditioned place aversion for lithium chloride, suggesting that these lesions did not alter associative learning or sensitivity for lithium chloride. CONCLUSIONS The current study indicates that animals with mPFC lesions are likely capable of forming the associations with aversive outcomes of their behavior but lack the ability to suppress seeking of sexual reward in the face of aversive consequences. These data may contribute to a better understanding of a common pathology underlying impulse control disorders, as compulsive sexual behavior has a high prevalence of comorbidity with psychiatric disorders and Parkinson's disease.
Collapse
Affiliation(s)
- Jon F. Davis
- Department of Cell Biology, Neurobiology, and Anatomy; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Maarten Loos
- Department of Cell Biology, Neurobiology, and Anatomy; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andrea R. Di Sebastiano
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Jennifer L. Brown
- Department of Cell Biology, Neurobiology, and Anatomy; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael N. Lehman
- Department of Cell Biology, Neurobiology, and Anatomy; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA, Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Lique M. Coolen
- Department of Cell Biology, Neurobiology, and Anatomy; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA, Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada, Department of Physiology& Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
33
|
Kimchi EY, Laubach M. The dorsomedial striatum reflects response bias during learning. J Neurosci 2009; 29:14891-902. [PMID: 19940185 PMCID: PMC6666004 DOI: 10.1523/jneurosci.4060-09.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/29/2009] [Accepted: 10/14/2009] [Indexed: 11/21/2022] Open
Abstract
Previous studies have established that neurons in the dorsomedial striatum track the behavioral significance of external stimuli, are sensitive to contingencies between actions and outcomes, and show rapid flexibility in representing task-related information. Here, we describe how neural activity in the dorsomedial striatum changes during the initial acquisition of a Go/NoGo task and during an initial reversal of stimulus-response contingencies. Rats made nosepoke responses over delay periods and then received one of two acoustic stimuli. Liquid rewards were delivered after one stimulus (S+) if the rats made a Go response (entering a reward port on the opposite wall of the chamber). If a Go response was made to other stimulus (S-), rats experienced a timeout. On 10% of trials, no stimulus was presented. These trials were used to assess response bias, the animals' tendency to collect reward independent of the stimulus. Response bias increased during the reversal, corresponding to the animals' uncertainty about the stimulus-response contingencies. Most task-modulated neurons fired during the response at the end of the delay period. The fraction of response-modulated neurons was correlated with response bias and neural activity was sensitive to the behavioral response made on the previous trial. During initial task acquisition and initial reversal learning, there was a remarkable change in the percentages of neurons that fired in relation to the task events, especially during withdrawal from the nosepoke aperture. These results suggest that changes in task-related activity in the dorsomedial striatum during learning are driven by the animal's bias to collect rewards.
Collapse
Affiliation(s)
- Eyal Y. Kimchi
- The John B. Pierce Laboratory, New Haven, Connecticut 06519, and
- Interdepartmental Neuroscience Program and
| | - Mark Laubach
- The John B. Pierce Laboratory, New Haven, Connecticut 06519, and
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
34
|
A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry 2008; 13:829, 833-57. [PMID: 18574483 PMCID: PMC2745893 DOI: 10.1038/mp.2008.65] [Citation(s) in RCA: 880] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability to regulate emotions is an important part of adaptive functioning in society. Advances in cognitive and affective neuroscience and biological psychiatry have facilitated examination of neural systems that may be important for emotion regulation. In this critical review we first develop a neural model of emotion regulation that includes neural systems implicated in different voluntary and automatic emotion regulatory subprocesses. We then use this model as a theoretical framework to examine functional neural abnormalities in these neural systems that may predispose to the development of a major psychiatric disorder characterized by severe emotion dysregulation, bipolar disorder.
Collapse
|
35
|
Uncoupling of behavioral and autonomic responses after lesions of the primate orbitofrontal cortex. Proc Natl Acad Sci U S A 2008; 105:9787-92. [PMID: 18621690 DOI: 10.1073/pnas.0800417105] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Successful adaptation to changes in an animal's emotional and motivational environment depends on behavioral flexibility accompanied by changes in bodily responses, e.g., autonomic and endocrine, which support the change in behavior. Here, we identify the orbitofrontal cortex (OFC) as pivotal in the flexible regulation and coordination of behavioral and autonomic responses during adaptation. Using an appetitive Pavlovian task, we demonstrate that OFC lesions in the marmoset (i) impair an animal's ability to rapidly suppress its appetitive cardiovascular arousal upon termination of a conditioned stimulus and (ii) cause an uncoupling of the behavioral and autonomic components of the adaptive response after reversal of the reward contingencies. These findings highlight the role of the OFC in emotional regulation and are highly relevant to our understanding of disorders such as schizophrenia and autism in which uncoupling of emotional responses may contribute to the experiential distress and disadvantageous behavior associated with these disorders.
Collapse
|