1
|
Shen W, Wang X, Xiang H, Shichi S, Nakamoto H, Kimura S, Sugiyama K, Taketomi A, Kitamura H. IFN-γ-STAT1-mediated NK2R expression is involved in the induction of antitumor effector CD8 + T cells in vivo. Cancer Sci 2023; 114:1816-1829. [PMID: 36715504 PMCID: PMC10154869 DOI: 10.1111/cas.15738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The induction of antitumor effector T cells in the tumor microenvironment is a crucial event for cancer immunotherapy. Neurokinin receptor 2 (NK2R), a G protein-coupled receptor for neurokinin A (NKA), regulates diverse physiological functions. However, the precise role of NKA-NK2R signaling in antitumor immunity is unclear. Here, we found that an IFN-γ-STAT1 cascade augmented NK2R expression in CD8+ T cells, and NK2R-mediated NKA signaling was involved in inducing antitumor effector T cells in vivo. The administration of a synthetic analog of double-stranded RNA, polyinosinic-polycytidylic acid (poly I:C), into a liver cancer mouse model induced type I and type II IFNs and significantly suppressed the tumorigenesis of Hepa1-6 liver cancer cells in a STAT1-dependent manner. The reduction in tumor growth was diminished by the depletion of CD8+ T cells. IFN-γ stimulation significantly induced NK2R and tachykinin precursor 1 (encodes NKA) gene expression in CD8+ T cells. NKA stimulation combined with anti-CD3 monoclonal antibody (mAb) treatment significantly augmented IFN-γ and granzyme B production by CD8+ T cells compared with the anti-CD3 mAb alone in vitro. ERK1/2 phosphorylation and IκBα degradation in activated CD8+ T cells were suppressed under NK2R deficiency. Finally, we confirmed that tumor growth was significantly increased in NK2R-deficient mice compared with that in wild-type mice, and the antitumor effects of poly I:C were abolished by NK2R absence. These findings suggest that IFN-γ-STAT1-mediated NK2R expression is involved in the induction of antitumor effector T cells in the tumor microenvironment, which contributes to the suppression of cancer cell tumorigenesis in vivo. In this study, we revealed that IFN-γ-STAT1-mediated NK2R expression is involved in the induction of antitumor effector CD8+ T cells in the tumor microenvironment, which contributes to suppressing the tumorigenesis of liver cancer cells in vivo.
Collapse
Affiliation(s)
- Weidong Shen
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Xiangdong Wang
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Huihui Xiang
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shunsuke Shichi
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroki Nakamoto
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Saori Kimura
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ko Sugiyama
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hidemitsu Kitamura
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Pain in Hemophilia: Unexplored Role of Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11061113. [PMID: 35740010 PMCID: PMC9220316 DOI: 10.3390/antiox11061113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Hemophilia is the most common X-linked bleeding diathesis caused by the genetic deficiency of coagulation factors VIII or IX. Despite treatment advances and improvements in clinical management to prevent bleeding, management of acute and chronic pain remains to be established. Repeated bleeding of the joints leads to arthropathy, causing pain in hemophilia. However, mechanisms underlying the pathogenesis of pain in hemophilia remain underexamined. Herein, we describe the novel perspectives on the role for oxidative stress in the periphery and the central nervous system that may contribute to pain in hemophilia. Specifically, we cross examine preclinical and clinical studies that address the contribution of oxidative stress in hemophilia and related diseases that affect synovial tissue to induce acute and potentially chronic pain. This understanding would help provide potential treatable targets using antioxidants to ameliorate pain in hemophilia.
Collapse
|
3
|
Barragan-Iglesias P, Kunder N, Wanghzou A, Black B, Ray PR, Lou TF, de la Peña JB, Atmaramani R, Shukla T, Pancrazio JJ, Price TJ, Campbell ZT. A peptide encoded within a 5' untranslated region promotes pain sensitization in mice. Pain 2021; 162:1864-1875. [PMID: 33449506 PMCID: PMC8119312 DOI: 10.1097/j.pain.0000000000002191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022]
Abstract
ABSTRACT Translational regulation permeates neuronal function. Nociceptors are sensory neurons responsible for the detection of harmful stimuli. Changes in their activity, termed plasticity, are intimately linked to the persistence of pain. Although inhibitors of protein synthesis robustly attenuate pain-associated behavior, the underlying targets that support plasticity are largely unknown. Here, we examine the contribution of protein synthesis in regions of RNA annotated as noncoding. Based on analyses of previously reported ribosome profiling data, we provide evidence for widespread translation in noncoding transcripts and regulatory regions of mRNAs. We identify an increase in ribosome occupancy in the 5' untranslated regions of the calcitonin gene-related peptide (CGRP/Calca). We validate the existence of an upstream open reading frame (uORF) using a series of reporter assays. Fusion of the uORF to a luciferase reporter revealed active translation in dorsal root ganglion neurons after nucleofection. Injection of the peptide corresponding to the calcitonin gene-related peptide-encoded uORF resulted in pain-associated behavioral responses in vivo and nociceptor sensitization in vitro. An inhibitor of heterotrimeric G protein signaling blocks both effects. Collectively, the data suggest pervasive translation in regions of the transcriptome annotated as noncoding in dorsal root ganglion neurons and identify a specific uORF-encoded peptide that promotes pain sensitization through GPCR signaling.
Collapse
Affiliation(s)
- Paulino Barragan-Iglesias
- University of Texas at Dallas, School of Behavioral and
Brain Sciences, Richardson, TX, 75080, USA
- Department of Physiology and Pharmacology, Center for Basic
Sciences, Autonomous University of Aguascalientes, Aguascalientes, 20130,
Mexico
| | - Nikesh Kunder
- University of Texas at Dallas, Department of Biological
Sciences, Richardson, TX, 75080, USA
| | - Andi Wanghzou
- University of Texas at Dallas, School of Behavioral and
Brain Sciences, Richardson, TX, 75080, USA
| | - Bryan Black
- University of Texas at Dallas, Department of
Bioengineering, Richardson, TX, 75080, USA
| | - Pradipta R. Ray
- University of Texas at Dallas, School of Behavioral and
Brain Sciences, Richardson, TX, 75080, USA
| | - Tzu-Fang Lou
- University of Texas at Dallas, Department of Biological
Sciences, Richardson, TX, 75080, USA
| | - June Bryan de la Peña
- University of Texas at Dallas, Department of Biological
Sciences, Richardson, TX, 75080, USA
| | - Rahul Atmaramani
- University of Texas at Dallas, Department of
Bioengineering, Richardson, TX, 75080, USA
| | - Tarjani Shukla
- University of Texas at Dallas, Department of Biological
Sciences, Richardson, TX, 75080, USA
| | - Joseph J. Pancrazio
- University of Texas at Dallas, Department of
Bioengineering, Richardson, TX, 75080, USA
- Center for Advanced Pain Studies, University of Texas at
Dallas, Richardson, TX, 75080, USA
| | - Theodore J. Price
- University of Texas at Dallas, School of Behavioral and
Brain Sciences, Richardson, TX, 75080, USA
- Center for Advanced Pain Studies, University of Texas at
Dallas, Richardson, TX, 75080, USA
| | - Zachary T. Campbell
- University of Texas at Dallas, Department of Biological
Sciences, Richardson, TX, 75080, USA
- Center for Advanced Pain Studies, University of Texas at
Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
4
|
Lei S, Hu B, Rezagholizadeh N. Activation of V 1a vasopressin receptors excite subicular pyramidal neurons by activating TRPV1 and depressing GIRK channels. Neuropharmacology 2021; 190:108565. [PMID: 33891950 DOI: 10.1016/j.neuropharm.2021.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 11/25/2022]
Abstract
Arginine vasopressin (AVP) is a nonapeptide that serves as a neuromodulator in the brain and a hormone in the periphery that regulates water homeostasis and vasoconstriction. The subiculum is the major output region of the hippocampus and an integral component in the networks that processes sensory and motor cues to form a cognitive map encoding spatial, contextual, and emotional information. Whereas the subiculum expresses high densities of AVP-binding sites and AVP has been shown to increase the synaptic excitability of subicular pyramidal neurons, the underlying cellular and molecular mechanisms have not been determined. We found that activation of V1a receptors increased the excitability of subicular pyramidal neurons via activation of TRPV1 channels and depression of the GIRK channels. V1a receptor-induced excitation of subicular pyramidal neurons required the function of phospholipase Cβ, but was independent of intracellular Ca2+ release. Protein kinase C was responsible for AVP-mediated depression of GIRK channels, whereas degradation of phosphatidylinositol 4,5-bisphosphate was involved in V1a receptor-elicited activation of TRPV1 channels. Our results may provide one of the cellular and molecular mechanisms to explain the physiological functions of AVP in the brain.
Collapse
Affiliation(s)
- Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| | - Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Neda Rezagholizadeh
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| |
Collapse
|
5
|
Hu B, Boyle CA, Lei S. Activation of Oxytocin Receptors Excites Subicular Neurons by Multiple Signaling and Ionic Mechanisms. Cereb Cortex 2020; 31:2402-2415. [PMID: 33341872 DOI: 10.1093/cercor/bhaa363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Oxytocin (OXT) is a nonapeptide that serves as a neuromodulator in the brain and a hormone participating in parturition and lactation in the periphery. The subiculum is the major output region of the hippocampus and an integral component in the networks that process sensory and motor cues to form a cognitive map encoding spatial, contextual, and emotional information. Whilst the subiculum expresses the highest OXT-binding sites and is the first brain region to be activated by peripheral application of OXT, the precise actions of OXT in the subiculum have not been determined. Our results demonstrate that application of the selective OXT receptor (OXTR) agonist, [Thr4,Gly7]-oxytocin (TGOT), excited subicular neurons via activation of TRPV1 channels, and depression of K+ channels. The OXTR-mediated excitation of subicular neurons required the functions of phospholipase Cβ, protein kinase C, and degradation of phosphatidylinositol 4,5-bisphosphate (PIP2). OXTR-elicited excitation of subicular neurons enhanced long-term potentiation via activation of TRPV1 channels. Our results provide a cellular and molecular mechanism to explain the physiological functions of OXT in the brain.
Collapse
Affiliation(s)
- Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Cody A Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
6
|
Rodionova K, Veelken R, Hilgers KF, Paulus EM, Linz P, Fischer MJM, Schenker M, Reeh P, Tiegs G, Ott C, Schmieder R, Schiffer M, Amann K, Ditting T. Afferent renal innervation in anti-Thy1.1 nephritis in rats. Am J Physiol Renal Physiol 2020; 319:F822-F832. [PMID: 33017188 DOI: 10.1152/ajprenal.00063.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Afferent renal nerves exhibit a dual function controlling central sympathetic outflow via afferent electrical activity and influencing intrarenal immunological processes by releasing peptides such as calcitonin gene-related peptide (CGRP). We tested the hypothesis that increased afferent and efferent renal nerve activity occur with augmented release of CGRP in anti-Thy1.1 nephritis, in which enhanced CGRP release exacerbates inflammation. Nephritis was induced in Sprague-Dawley rats by intravenous injection of OX-7 antibody (1.75 mg/kg), and animals were investigated neurophysiologically, electrophysiologically, and pathomorphologically 6 days later. Nephritic rats exhibited proteinuria (169.3 ± 10.2 mg/24 h) with increased efferent renal nerve activity (14.7 ± 0.9 bursts/s vs. control 11.5 ± 0.9 bursts/s, n = 11, P < 0.05). However, afferent renal nerve activity (in spikes/s) decreased in nephritis (8.0 ± 1.8 Hz vs. control 27.4 ± 4.1 Hz, n = 11, P < 0.05). In patch-clamp recordings, neurons with renal afferents from nephritic rats showed a lower frequency of high activity following electrical stimulation (43.4% vs. 66.4% in controls, P < 0.05). In vitro assays showed that renal tissue from nephritic rats exhibited increased CGRP release via spontaneous (14 ± 3 pg/mL vs. 6.8 ± 2.8 pg/ml in controls, n = 7, P < 0.05) and stimulated mechanisms. In nephritic animals, marked infiltration of macrophages in the interstitium (26 ± 4 cells/mm2) and glomeruli (3.7 ± 0.6 cells/glomerular cross-section) occurred. Pretreatment with the CGRP receptor antagonist CGRP8-37 reduced proteinuria, infiltration, and proliferation. In nephritic rats, it can be speculated that afferent renal nerves lose their ability to properly control efferent sympathetic nerve activity while influencing renal inflammation through increased CGRP release.
Collapse
Affiliation(s)
- Kristina Rodionova
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Roland Veelken
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Karl F Hilgers
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Eva-Maria Paulus
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Peter Linz
- Department of Radiology, University of Erlangen, Erlangen, Germany
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Martina Schenker
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany.,Department of Physiology and Pathophysiology, University Erlangen, Erlangen, Germany
| | - Peter Reeh
- Department of Physiology and Pathophysiology, University Erlangen, Erlangen, Germany
| | - Gisa Tiegs
- Center of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Ott
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Roland Schmieder
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Mario Schiffer
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University of Erlangen, Erlangen, Germany
| | - Tilmann Ditting
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| |
Collapse
|
7
|
Nociceptor Signalling through ion Channel Regulation via GPCRs. Int J Mol Sci 2019; 20:ijms20102488. [PMID: 31137507 PMCID: PMC6566991 DOI: 10.3390/ijms20102488] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022] Open
Abstract
The prime task of nociceptors is the transformation of noxious stimuli into action potentials that are propagated along the neurites of nociceptive neurons from the periphery to the spinal cord. This function of nociceptors relies on the coordinated operation of a variety of ion channels. In this review, we summarize how members of nine different families of ion channels expressed in sensory neurons contribute to nociception. Furthermore, data on 35 different types of G protein coupled receptors are presented, activation of which controls the gating of the aforementioned ion channels. These receptors are not only targeted by more than 20 separate endogenous modulators, but can also be affected by pharmacotherapeutic agents. Thereby, this review provides information on how ion channel modulation via G protein coupled receptors in nociceptors can be exploited to provide improved analgesic therapy.
Collapse
|
8
|
Ion Channels Involved in Substance P-Mediated Nociception and Antinociception. Int J Mol Sci 2019; 20:ijms20071596. [PMID: 30935032 PMCID: PMC6479580 DOI: 10.3390/ijms20071596] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
Substance P (SP), an 11-amino-acid neuropeptide, has long been considered an effector of pain. However, accumulating studies have proposed a paradoxical role of SP in anti-nociception. Here, we review studies of SP-mediated nociception and anti-nociception in terms of peptide features, SP-modulated ion channels, and differential effector systems underlying neurokinin 1 receptors (NK1Rs) in differential cell types to elucidate the effect of SP and further our understanding of SP in anti-nociception. Most importantly, understanding the anti-nociceptive SP-NK1R pathway would provide new insights for analgesic drug development.
Collapse
|
9
|
Delvalle NM, Dharshika C, Morales-Soto W, Fried DE, Gaudette L, Gulbransen BD. Communication Between Enteric Neurons, Glia, and Nociceptors Underlies the Effects of Tachykinins on Neuroinflammation. Cell Mol Gastroenterol Hepatol 2018; 6:321-344. [PMID: 30116771 PMCID: PMC6091443 DOI: 10.1016/j.jcmgh.2018.05.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 05/18/2018] [Indexed: 12/18/2022]
Abstract
Background & Aims Tachykinins are involved in physiological and pathophysiological mechanisms in the gastrointestinal tract. The major sources of tachykinins in the gut are intrinsic enteric neurons in the enteric nervous system and extrinsic nerve fibers from the dorsal root and vagal ganglia. Although tachykinins are important mediators in the enteric nervous system, how they contribute to neuroinflammation through effects on neurons and glia is not fully understood. Here, we tested the hypothesis that tachykinins contribute to enteric neuroinflammation through mechanisms that involve intercellular neuron-glia signaling. Methods We used immunohistochemistry and quantitative real-time polymerase chain reaction, and studied cellular activity using transient-receptor potential vanilloid-1 (TRPV1)tm1(cre)Bbm/J::Polr2atm1(CAG-GCaMP5g,-tdTomato)Tvrd and Sox10CreERT2::Polr2atm1(CAG-GCaMP5g,-tdTomato)Tvrd mice or Fluo-4. We used the 2,4-di-nitrobenzene sulfonic acid (DNBS) model of colitis to study neuroinflammation, glial reactivity, and neurogenic contractility. We used Sox10::CreERT2+/-/Rpl22tm1.1Psam/J mice to selectively study glial transcriptional changes. Results Tachykinins are expressed predominantly by intrinsic neuronal varicosities whereas neurokinin-2 receptors (NK2Rs) are expressed predominantly by enteric neurons and TRPV1-positive neuronal varicosities. Stimulation of NK2Rs drives responses in neuronal varicosities that are propagated to enteric glia and neurons. Antagonizing NK2R signaling enhanced recovery from colitis and prevented the development of reactive gliosis, neuroinflammation, and enhanced neuronal contractions. Inflammation drove changes in enteric glial gene expression and function, and antagonizing NK2R signaling mitigated these changes. Neurokinin A-induced neurodegeneration requires glial connexin-43 hemichannel activity. Conclusions Our results show that tachykinins drive enteric neuroinflammation through a multicellular cascade involving enteric neurons, TRPV1-positive neuronal varicosities, and enteric glia. Therapies targeting components of this pathway could broadly benefit the treatment of dysmotility and pain after acute inflammation in the intestine.
Collapse
Key Words
- BzATP, 2’(3’)-O-(4-benzoylbenzoyl)adenosine 5’-triphosphate triethylammonium salt
- Ca2+, calcium
- Colitis
- Cx43, connexin-43
- DMEM, Dulbecco's modified Eagle medium
- DNBS, dinitrobenzene sulfonic acid
- EFS, electrical field stimulation
- ENS, enteric nervous system
- Enteric Nervous System
- FGID, functional gastrointestinal disorder
- GFAP, glial fibrillary acidic protein
- GI, gastrointestinal
- Glia
- HA, hemagglutinin
- IPAN, intrinsic primarily afferent neuron
- LMMP, longitudinal muscle–myenteric plexus
- MSU, Michigan State University
- NK1R, neurokinin-1 receptor
- NK2R, neurokinin-2 receptor
- NKA, neurokinin A
- Neurokinins
- SP, substance P
- TRPV1, transient receptor potential vanilloid-1
- mRNA, messenger RNA
Collapse
Affiliation(s)
| | - Christine Dharshika
- Genetics Program, Michigan State University, East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | | | - David E. Fried
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Lukas Gaudette
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Brian D. Gulbransen
- Neuroscience Program, Michigan State University, East Lansing, Michigan
- Department of Physiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
10
|
Tack J, Schumacher K, Tonini G, Scartoni S, Capriati A, Maggi CA. The neurokinin-2 receptor antagonist ibodutant improves overall symptoms, abdominal pain and stool pattern in female patients in a phase II study of diarrhoea-predominant IBS. Gut 2017; 66:1403-1413. [PMID: 27196574 DOI: 10.1136/gutjnl-2015-310683] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 03/01/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tachykinins have been implicated in the pathophysiology of IBS with diarrhoea (IBS-D). Our aim was to study the efficacy and safety of ibodutant, a selective neurokinin-2 (NK2) receptor antagonist, in patients with IBS-D. METHODS This multinational double-blind, placebo-controlled study recruited 559 patients with IBS-D according to Rome III criteria. After a 2-week treatment-free run-in, patients were randomised to ibodutant 1 mg, 3 mg, 10 mg or placebo once daily for eight consecutive weeks. Responders were those with a combined response of satisfactory relief (weekly binary question yes/no) of overall IBS symptoms and abdominal pain/discomfort on ≥75% weeks (primary end point). Secondary end points included abdominal pain and stool pattern. Data were also analysed according to US Food and Drug Administration (FDA)-approved interim end points (improvement of pain and stool consistency). Safety was assessed by monitoring adverse events and laboratory tests. Prespecified statistical analysis involved the whole group as well as gender subgroups. RESULTS Demographics and baseline characteristics were comparable for all treatment arms. In the overall population, responsiveness tended to increase with escalating ibodutant doses. In the prespecified analysis by gender, ibodutant 10 mg demonstrated significant superiority over placebo in females (p=0.003), while no significant effect occurred in males. This was confirmed for secondary end points and for the responder analysis according to FDA-approved end points. The tolerability and safety of ibodutant was excellent at all doses. CONCLUSIONS Ibodutant showed dose-dependent efficacy response in IBS-D, reaching statistical significance at the 10 mg dose in female patients. The safety and tolerability profile of ibodutant was similar to placebo. TRIAL REGISTRATION NUMBER NCT01303224.
Collapse
Affiliation(s)
- J Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - K Schumacher
- Menarini Research & Business Service GmbH, Berlin, Germany
| | - G Tonini
- Menarini Ricerche S.p.A, Florence, Italy
| | - S Scartoni
- Menarini Ricerche S.p.A, Florence, Italy
| | - A Capriati
- Menarini Ricerche S.p.A, Florence, Italy
| | - C A Maggi
- Menarini Ricerche S.p.A, Florence, Italy
| | | |
Collapse
|
11
|
Widiapradja A, Chunduri P, Levick SP. The role of neuropeptides in adverse myocardial remodeling and heart failure. Cell Mol Life Sci 2017; 74:2019-2038. [PMID: 28097372 PMCID: PMC6339818 DOI: 10.1007/s00018-017-2452-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/05/2016] [Accepted: 01/02/2017] [Indexed: 12/25/2022]
Abstract
In addition to traditional neurotransmitters of the sympathetic and parasympathetic nervous systems, the heart also contains numerous neuropeptides. These neuropeptides not only modulate the effects of neurotransmitters, but also have independent effects on cardiac function. While in most cases the physiological actions of these neuropeptides are well defined, their contributions to cardiac pathology are less appreciated. Some neuropeptides are cardioprotective, some promote adverse cardiac remodeling and heart failure, and in the case of others their functions are unclear. Some have both cardioprotective and adverse effects depending on the specific cardiac pathology and progression of that pathology. In this review, we briefly describe the actions of several neuropeptides on normal cardiac physiology, before describing in more detail their role in adverse cardiac remodeling and heart failure. It is our goal to bring more focus toward understanding the contribution of neuropeptides to the pathogenesis of heart failure, and to consider them as potential therapeutic targets.
Collapse
Affiliation(s)
- Alexander Widiapradja
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Prasad Chunduri
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Scott P Levick
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
12
|
Kullmann FA, Katofiasc M, Thor KB, Marson L. Pharmacodynamic evaluation of Lys 5, MeLeu 9, Nle 10-NKA (4-10) prokinetic effects on bladder and colon activity in acute spinal cord transected and spinally intact rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 390:163-173. [PMID: 27889808 PMCID: PMC5512890 DOI: 10.1007/s00210-016-1317-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/14/2016] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to determine feasibility of a novel therapeutic approach to drug-induced voiding after spinal cord injury (SCI) using a well-characterized, peptide, neurokinin 2 receptor (NK2 receptor) agonist, Lys5, MeLeu9, Nle10-NKA(4-10) (LMN-NKA). Cystometry and colorectal pressure measurements were performed in urethane-anesthetized, intact, and acutely spinalized female rats. Bladder pressure and voiding were monitored in response to intravenous LMN-NKA given with the bladder filled to 70% capacity. LMN-NKA (0.1-300 μg/kg) produced dose-dependent, rapid (<60 s), short-duration (<15 min) increases in bladder pressure. In intact rats, doses above 0.3-1 μg/kg induced urine release (voiding efficiency of ~70% at ≥1 μg/kg). In spinalized rats, urine release required higher doses (≥10 μg/kg) and was less efficient (30-50%). LMN-NKA (0.1-100 μg/kg) also produced dose-dependent increases in colorectal pressure. No tachyphylaxis was observed, and the responses were blocked by an NK2 receptor antagonist (GR159897, 1 mg/kg i.v.). No obvious cardiorespiratory effects were noted. These results suggest that rapid-onset, short-duration, drug-induced voiding is possible in acute spinal and intact rats with intravenous administration of an NK2 receptor agonist. Future challenges remain in regard to finding alternative routes of administration that produce clinically significant voiding, multiple times per day, in animal models of chronic SCI.
Collapse
Affiliation(s)
- F Aura Kullmann
- Department of Medicine, Renal Division, University of Pittsburgh, 3500 Terrace St, Scaife A1220, Pittsburgh, PA, 15261, USA
| | - M Katofiasc
- Dignify Therapeutics LLC, 2 Davis Drive, PO Box 13169, Research Triangle Park, NC, 27709, USA
| | - K B Thor
- Dignify Therapeutics LLC, 2 Davis Drive, PO Box 13169, Research Triangle Park, NC, 27709, USA
| | - Lesley Marson
- Dignify Therapeutics LLC, 2 Davis Drive, PO Box 13169, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
13
|
Huang D, Huang S, Gao H, Liu Y, Qi J, Chen P, Wang C, Scragg JL, Vakurov A, Peers C, Du X, Zhang H, Gamper N. Redox-Dependent Modulation of T-Type Ca(2+) Channels in Sensory Neurons Contributes to Acute Anti-Nociceptive Effect of Substance P. Antioxid Redox Signal 2016; 25:233-51. [PMID: 27306612 PMCID: PMC4971421 DOI: 10.1089/ars.2015.6560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 05/26/2016] [Accepted: 06/14/2016] [Indexed: 02/05/2023]
Abstract
AIMS Neuropeptide substance P (SP) is produced and released by a subset of peripheral sensory neurons that respond to tissue damage (nociceptors). SP exerts excitatory effects in the central nervous system, but peripheral SP actions are still poorly understood; therefore, here, we aimed at investigating these peripheral mechanisms. RESULTS SP acutely inhibited T-type voltage-gated Ca(2+) channels in nociceptors. The effect was mediated by neurokinin 1 (NK1) receptor-induced stimulation of intracellular release of reactive oxygen species (ROS), as it can be prevented or reversed by the reducing agent dithiothreitol and mimicked by exogenous or endogenous ROS. This redox-mediated T-type Ca(2+) channel inhibition operated through the modulation of CaV3.2 channel sensitivity to ambient zinc, as it can be prevented or reversed by zinc chelation and mimicked by exogenous zinc. Elimination of the zinc-binding site in CaV3.2 rendered the channel insensitive to SP-mediated inhibition. Importantly, peripherally applied SP significantly reduced bradykinin-induced nociception in rats in vivo; knock-down of CaV3.2 significantly reduced this anti-nociceptive effect. This atypical signaling cascade shared the initial steps with the SP-mediated augmentation of M-type K(+) channels described earlier. INNOVATION Our study established a mechanism underlying the peripheral anti-nociceptive effect of SP whereby this neuropeptide produces ROS-dependent inhibition of pro-algesic T-type Ca(2+) current and concurrent enhancement of anti-algesic M-type K(+) current. These findings will lead to a better understanding of mechanisms of endogenous analgesia. CONCLUSION SP modulates T-type channel activity in nociceptors by a redox-dependent tuning of channel sensitivity to zinc; this novel modulatory pathway contributes to the peripheral anti-nociceptive effect of SP. Antioxid. Redox Signal. 25, 233-251.
Collapse
Affiliation(s)
- Dongyang Huang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Sha Huang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Haixia Gao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Yani Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Jinlong Qi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Pingping Chen
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Caixue Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Jason L. Scragg
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Alexander Vakurov
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Chris Peers
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Xiaona Du
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
14
|
Girard B, Peterson A, Malley S, Vizzard MA. Accelerated onset of the vesicovesical reflex in postnatal NGF-OE mice and the role of neuropeptides. Exp Neurol 2016; 285:110-125. [PMID: 27342083 DOI: 10.1016/j.expneurol.2016.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/30/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022]
Abstract
The mechanisms underlying the postnatal maturation of micturition from a somatovesical to a vesicovesical reflex are not known but may involve neuropeptides in the lower urinary tract. A transgenic mouse model with chronic urothelial overexpression (OE) of NGF exhibited increased voiding frequency, increased number of non-voiding contractions, altered morphology and hyperinnervation of the urinary bladder by peptidergic (e.g., Sub P and CGRP) nerve fibers in the adult. In early postnatal and adult NGF-OE mice we have now examined: (1) micturition onset using filter paper void assays and open-outlet, continuous fill, conscious cystometry; (2) innervation and neurochemical coding of the suburothelial plexus of the urinary bladder using immunohistochemistry and semi-quantitative image analyses; (3) neuropeptide protein and transcript expression in urinary bladder of postnatal and adult NGF-OE mice using Q-PCR and ELISAs and (4) the effects of intravesical instillation of a neurokinin (NK)-1 receptor antagonist on bladder function in postnatal and adult NGF-OE mice using conscious cystometry. Postnatal NGF-OE mice exhibit age-dependent (R2=0.996-0.998; p≤0.01) increases in Sub and CGRP expression in the urothelium and significantly (p≤0.01) increased peptidergic hyperinnervation of the suburothelial nerve plexus. By as early as P7, NGF-OE mice exhibit a vesicovesical reflex in response to intravesical instillation of saline whereas littermate WT mice require perigenital stimulation to elicit a micturition reflex until P13 when vesicovesical reflexes are first observed. Intravesical instillation of a NK-1 receptor antagonist, netupitant (0.1μg/ml), significantly (p≤0.01) increased void volume and the interval between micturition events with no effects on bladder pressure (baseline, threshold, peak) in postnatal NGF-OE mice; effects on WT mice were few. NGF-induced pleiotropic effects on neuropeptide (e.g., Sub P) expression in the urinary bladder contribute to the maturation of the micturition reflex and are excitatory to the micturition reflex in postnatal NGF-OE mice. These studies provide insight into the mechanisms that contribute to the postnatal development of the micturition reflex.
Collapse
Affiliation(s)
- Beatrice Girard
- University of Vermont College of Medicine, Department of Neurological Sciences, Burlington, VT 05405, USA
| | - Abbey Peterson
- University of Vermont College of Medicine, Department of Neurological Sciences, Burlington, VT 05405, USA
| | - Susan Malley
- University of Vermont College of Medicine, Department of Neurological Sciences, Burlington, VT 05405, USA
| | - Margaret A Vizzard
- University of Vermont College of Medicine, Department of Neurological Sciences, Burlington, VT 05405, USA.
| |
Collapse
|
15
|
Devos FC, Boonen B, Alpizar YA, Maes T, Hox V, Seys S, Pollaris L, Liston A, Nemery B, Talavera K, Hoet PHM, Vanoirbeek JAJ. Neuro-immune interactions in chemical-induced airway hyperreactivity. Eur Respir J 2016; 48:380-92. [PMID: 27126687 DOI: 10.1183/13993003.01778-2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/02/2016] [Indexed: 01/07/2023]
Abstract
Asthma may be induced by chemical sensitisers, via mechanisms that are still poorly understood. This type of asthma is characterised by airway hyperreactivity (AHR) and little airway inflammation. Since potent chemical sensitisers, such as toluene-2,4-diisocyanate (TDI), are also sensory irritants, it is suggested that chemical-induced asthma relies on neuro-immune mechanisms.We investigated the involvement of transient receptor potential channels (TRP) A1 and V1, major chemosensors in the airways, and mast cells, known for their ability to communicate with sensory nerves, in chemical-induced AHR.In vitro intracellular calcium imaging and patch-clamp recordings in TRPA1- and TRPV1-expressing Chinese hamster ovarian cells showed that TDI activates murine TRPA1, but not TRPV1. Using an in vivo model, in which an airway challenge with TDI induces AHR in TDI-sensitised C57Bl/6 mice, we demonstrated that AHR does not develop, despite successful sensitisation, in Trpa1 and Trpv1 knockout mice, and wild-type mice pretreated with a TRPA1 blocker or a substance P receptor antagonist. TDI-induced AHR was also abolished in mast cell deficient Kit(Wsh) (/Wsh) mice, and in wild-type mice pretreated with the mast cell stabiliser ketotifen, without changes in immunological parameters.These data demonstrate that TRPA1, TRPV1 and mast cells play an indispensable role in the development of TDI-elicited AHR.
Collapse
Affiliation(s)
- Fien C Devos
- Centre for Environment and Health, Dept of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Brett Boonen
- Laboratory for Ion Channel Research and TRP Research Platform (TRPLe), Dept of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory for Ion Channel Research and TRP Research Platform (TRPLe), Dept of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Tania Maes
- Laboratory of Pneumology, Dept of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Valérie Hox
- Laboratory of Clinical Immunology, Dept of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Sven Seys
- Laboratory of Clinical Immunology, Dept of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Lore Pollaris
- Centre for Environment and Health, Dept of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Laboratory of Genetics of Autoimmunity, Dept of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Benoit Nemery
- Centre for Environment and Health, Dept of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Karel Talavera
- Laboratory for Ion Channel Research and TRP Research Platform (TRPLe), Dept of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Peter H M Hoet
- Centre for Environment and Health, Dept of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jeroen A J Vanoirbeek
- Centre for Environment and Health, Dept of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Ditting T, Freisinger W, Rodionova K, Schatz J, Lale N, Heinlein S, Linz P, Ott C, Schmieder RE, Scrogin KE, Veelken R. Impaired excitability of renal afferent innervation after exposure to the inflammatory chemokine CXCL1. Am J Physiol Renal Physiol 2015; 310:F364-71. [PMID: 26697980 DOI: 10.1152/ajprenal.00189.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 12/15/2015] [Indexed: 01/06/2023] Open
Abstract
Recently, we showed that renal afferent neurons exhibit a unique firing pattern, i.e., predominantly sustained firing, upon stimulation. Pathological conditions such as renal inflammation likely alter excitability of renal afferent neurons. Here, we tested whether the proinflammatory chemokine CXCL1 alters the firing pattern of renal afferent neurons. Rat dorsal root ganglion neurons (Th11-L2), retrogradely labeled with dicarbocyanine dye, were incubated with CXCL1 (20 h) or vehicle before patch-clamp recording. The firing pattern of neurons was characterized as tonic, i.e., sustained action potential (AP) firing, or phasic, i.e., <5 APs following current injection. Of the labeled renal afferents treated with vehicle, 58.9% exhibited a tonic firing pattern vs. 7.8%, in unlabeled, nonrenal neurons (P < 0.05). However, after exposure to CXCL1, significantly more phasic neurons were found among labeled renal neurons; hence the occurrence of tonic neurons with sustained firing upon electrical stimulation decreased (35.6 vs. 58.9%, P < 0.05). The firing frequency among tonic neurons was not statistically different between control and CXCL1-treated neurons. However, the lower firing frequency of phasic neurons was even further decreased with CXCL1 exposure [control: 1 AP/600 ms (1-2) vs. CXCL1: 1 AP/600 ms (1-1); P < 0.05; median (25th-75th percentile)]. Hence, CXCL1 shifted the firing pattern of renal afferents from a predominantly tonic to a more phasic firing pattern, suggesting that CXCL1 reduced the sensitivity of renal afferent units upon stimulation.
Collapse
Affiliation(s)
- Tilmann Ditting
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany
| | - Wolfgang Freisinger
- Department of Internal Medicine 1, Nephrology Johannes-Guttenberg University, Mainz, Germany
| | - Kristina Rodionova
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany
| | - Johannes Schatz
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany
| | - Nena Lale
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany
| | - Sonja Heinlein
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany
| | - Peter Linz
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany
| | - Christian Ott
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany
| | - Roland E Schmieder
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany
| | - Karie E Scrogin
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois
| | - Roland Veelken
- Department of Internal Medicine 4, Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany;
| |
Collapse
|
17
|
Fang W, Fu C, Chen X, Mou X, Liu F, Qian J, Zhao P, Zheng Y, Zheng YI, Deng J, Ye P, Wang Y, Zheng S. Neurokinin-2 receptor polymorphism predicts lymph node metastasis in colorectal cancer patients. Oncol Lett 2015; 9:2003-2006. [PMID: 26137002 DOI: 10.3892/ol.2015.3016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 01/16/2015] [Indexed: 11/05/2022] Open
Abstract
To analyze the single nucleotide polymorphisms (SNPs) of two subtypes of neurokinin (NK) receptors, NK1R and NK2R (also known as TAC1R and TAC2R), in colorectal cancer (CRC), peripheral blood samples were collected from 199 CRC patients. Direct-sequencing was performed to identify the NK1R rs10198644 and NK2R rs4644560 SNPs. Genotype results were correlated with clinical factors. The allele frequencies of NK1R rs10198644 GC, CC and GG were 52, 17 and 31%, respectively, while that of NK2R rs4644560 GC, CC, and GG were 36, 50 and 14%, respectively. Patients with NK2R rs4644560 GC exhibited more positive lymph nodes than those with CC (mean, 2.2 vs. 1.3; P=0.016). Further analysis highlighted that the number of positive lymph nodes was also increased in the NK2R rs4644560 GC/NK1R rs10198644 GG group compared with the NK2R rs4644560 GG/NK1R rs10198644 GG group (mean, 2.2 vs. 0.9; P=0.04). These data suggested that the NK2R rs4644560 GC polymorphism alone or combination with NK1R rs10198644 GG may be a promising prognostic marker of lymph node metastasis in CRC patients.
Collapse
Affiliation(s)
- Weijia Fang
- Biotherapy Center, Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Caiyun Fu
- Lab of Proteomics and Molecular Enzymology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China ; Institute for Cell-based Drug Development of Zhejiang Province, Hangzhou, Zhejiang 310058, P.R. China
| | - Xiaogang Chen
- Biotherapy Center, Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaozhou Mou
- Biotherapy Center, Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China ; Institute for Cell-based Drug Development of Zhejiang Province, Hangzhou, Zhejiang 310058, P.R. China
| | - Fanlong Liu
- Biotherapy Center, Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jiong Qian
- Biotherapy Center, Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Peng Zhao
- Biotherapy Center, Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yulong Zheng
- Biotherapy Center, Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Y I Zheng
- Biotherapy Center, Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jing Deng
- Biotherapy Center, Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Pingjiang Ye
- Department of Anorectum, People's Hospital of Shaoxing, Shaoxing, Zhejiang 312000, P.R. China
| | - Yifei Wang
- Second People's Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| | - Shusen Zheng
- Biotherapy Center, Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
18
|
Zhang X, Beckel JM, Daugherty SL, Wang T, Woodcock SR, Freeman BA, de Groat WC. Activation of TRPC channels contributes to OA-NO2-induced responses in guinea-pig dorsal root ganglion neurons. J Physiol 2014; 592:4297-312. [PMID: 25128576 DOI: 10.1113/jphysiol.2014.271783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Effects of nitro-oleic acid (OA-NO2) on TRP channels were examined in guinea-pig dissociated dorsal root ganglia (DRG) neurons using calcium imaging and patch clamp techniques. OA-NO2 increased intracellular Ca(2+) in 60-80% DRG neurons. 1-Oleoyl-2acetyl-sn-glycerol (OAG), a TRPC agonist, elicited responses in 36% of OA-NO2-sensitive neurons while capsaicin (TRPV1 agonist) or allyl-isothiocyanate (AITC, TRPA1 agonist) elicited responses in only 16% and 10%, respectively, of these neurons. A TRPV1 antagonist (diarylpiperazine, 5 μm) in combination with a TRPA1 antagonist (HC-030031, 30 μm) did not change the amplitude of the Ca(2+) transients or percentage of neurons responding to OA-NO2; however, a reducing agent DTT (50 mm) or La(3+) (50 μm) completely abolished OA-NO2 responses. OA-NO2 also induced a transient inward current associated with a membrane depolarization followed by a prolonged outward current and hyperpolarization in 80% of neurons. The reversal potentials of inward and outward currents were approximately -20 mV and -60 mV, respectively. Inward current was reduced when extracellular Na(+) was absent, but unchanged by niflumic acid (100 μm), a Cl(-) channel blocker. Outward current was abolished in the absence of extracellular Ca(2+) or a combination of two Ca(2+)-activated K(+) channel blockers (iberiotoxin, 100 nm and apamin, 1 μm). BTP2 (1 or 10 μm), a broad spectrum TRPC antagonist, or La(3+) (50 μm) completely abolished OA-NO2 currents. RT-PCR performed on mRNA extracted from DRGs revealed the expression of all seven subtypes of TRPC channels. These results support the hypothesis that OA-NO2 activates TRPC channels other than the TRPV1 and TRPA1 channels already known to be targets in rat and mouse sensory neurons and challenge the prevailing view that electrophilic compounds act specifically on TRPA1 or TRPV1 channels. The modulation of sensory neuron excitability via actions on multiple TRP channels can contribute to the anti-inflammatory effect of OA-NO2.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Jonathan M Beckel
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Stephanie L Daugherty
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Ting Wang
- Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Stephen R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
19
|
Pathak NN, Balaganur V, Lingaraju MC, Kant V, Latief N, More AS, Kumar D, Kumar D, Tandan SK. Atorvastatin attenuates neuropathic pain in rat neuropathy model by down-regulating oxidative damage at peripheral, spinal and supraspinal levels. Neurochem Int 2014; 68:1-9. [DOI: 10.1016/j.neuint.2014.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 01/06/2023]
|
20
|
Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 2014; 94:265-301. [PMID: 24382888 DOI: 10.1152/physrev.00031.2013] [Citation(s) in RCA: 435] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists.
Collapse
|
21
|
Rofes L, Arreola V, Martin A, Clavé P. Natural capsaicinoids improve swallow response in older patients with oropharyngeal dysphagia. Gut 2013; 62:1280-7. [PMID: 22722616 DOI: 10.1136/gutjnl-2011-300753] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE There is no pharmacological treatment for oropharyngeal dysphagia (OD). The aim of this study was to compare the therapeutic effect of stimulation of oropharyngeal transient receptor potential vanilloid type 1 (TRPV1) with that of thickeners in older patients with OD. DESIGN A clinical videofluoroscopic non-randomised study was performed to assess the signs of safety and efficacy of swallow and the swallow response in (1) 33 patients with OD (75.94 ± 1.88 years) while swallowing 5, 10 and 20 ml of liquid (20.4 mPa.s), nectar (274.4 mPa.s), and pudding (3930 mPa.s) boluses; (2) 33 patients with OD (73.94 ± 2.23 years) while swallowing 5, 10 and 20 ml nectar boluses, and two series of nectar boluses with 150 μM capsaicinoids and (3) 8 older controls (76.88 ± 1.51 years) while swallowing 5, 10 and 20 ml nectar boluses. RESULTS Increasing bolus viscosity reduced the prevalence of laryngeal penetrations by 72.03% (p < 0.05), increased pharyngeal residue by 41.37% (p < 0.05), delayed the upper esophageal sphincter opening time and the larynx movement and did not affect the laryngeal vestibule closure time and maximal hyoid displacement. Treatment with capsaicinoids reduced both, penetrations by 50.% (p < 0.05) and pharyngeal residue by 50.% (p < 0.05), and shortened the time of laryngeal vestibule closure (p < 0.001), upper esophageal sphincter opening (p < 0.05) and maximal hyoid and laryngeal displacement. CONCLUSION Stimulation of TRPV1 by capsaicinoids strongly improved safety and efficacy of swallow and shortened the swallow response in older patients with OD. Stimulation of TRPV1 might become a pharmacologic strategy to treat OD.
Collapse
Affiliation(s)
- Laia Rofes
- Centro de Investigación Biomedica en Red de enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | | | | | | |
Collapse
|
22
|
Mogg AJ, Mill CEJ, Folly EA, Beattie RE, Blanco MJ, Beck JP, Broad LM. Altered pharmacology of native rodent spinal cord TRPV1 after phosphorylation. Br J Pharmacol 2013; 168:1015-29. [PMID: 23062150 DOI: 10.1111/bph.12005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/06/2012] [Accepted: 09/14/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Evidence suggests that phosphorylation of TRPV1 is an important component underlying its aberrant activation in pathological pain states. To date, the detailed pharmacology of diverse TRPV1 receptor agonists and antagonists has yet to be reported for native TRPV1 under phosphorylating conditions. Our goal was to optimize a relatively high-throughput methodology to allow pharmacological characterization of the native TRPV1 receptor using a spinal cord neuropeptide release assay under naive and phosphorylating states. EXPERIMENTAL APPROACH Herein, we describe characterization of rodent TRPV1 by measurement of CGRP release from acutely isolated lumbar (L1-L6) spinal cord using a 96-well technique that combines use of native, adult tissue with quantitation of CGRP release by ELISA. KEY RESULTS We have studied a diverse panel of TRPV1 agonists and antagonists under basal and phosphorylating conditions. We show that TRPV1-mediated CGRP release is evoked, in a temperature-dependent manner, by a PKC activator, phorbol 12,13-dibutyrate (PDBu); and that treatment with PDBu increases the potency and efficacy of known TRPV1 chemical agonists, in an agonist-specific manner. We also show that the pharmacological profile of diverse TRPV1 antagonists is dependent on whether the stimulus is PDBu or capsaicin. Of note, HPPB was identified as an antagonist of capsaicin-evoked, but a potentiator of PDBu-evoked, CGRP release. CONCLUSIONS AND IMPLICATIONS Our findings indicate that both TRPV1 agonist and antagonist profiles can be differentially altered by PKC activation. These findings may offer new insights for targeting TRPV1 in pain states.
Collapse
Affiliation(s)
- A J Mogg
- Neuroscience Research Division, Lilly Research Centre, Eli Lilly & Co. Ltd, Windlesham, Surrey, UK.
| | | | | | | | | | | | | |
Collapse
|
23
|
Poole DP, Amadesi S, Veldhuis NA, Abogadie FC, Lieu T, Darby W, Liedtke W, Lew MJ, McIntyre P, Bunnett NW. Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. J Biol Chem 2013; 288:5790-802. [PMID: 23288842 DOI: 10.1074/jbc.m112.438184] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors of nociceptive neurons can sensitize transient receptor potential (TRP) ion channels, which amplify neurogenic inflammation and pain. Protease-activated receptor 2 (PAR(2)), a receptor for inflammatory proteases, is a major mediator of neurogenic inflammation and pain. We investigated the signaling mechanisms by which PAR(2) regulates TRPV4 and determined the importance of tyrosine phosphorylation in this process. Human TRPV4 was expressed in HEK293 cells under control of a tetracycline-inducible promoter, allowing controlled and graded channel expression. In cells lacking TRPV4, the PAR(2) agonist stimulated a transient increase in [Ca(2+)](i). TRPV4 expression led to a markedly sustained increase in [Ca(2+)](i). Removal of extracellular Ca(2+) and treatment with the TRPV4 antagonists Ruthenium Red or HC067047 prevented the sustained response. Inhibitors of phospholipase A(2) and cytochrome P450 epoxygenase attenuated the sustained response, suggesting that PAR(2) generates arachidonic acid-derived lipid mediators, such as 5',6'-EET, that activate TRPV4. Src inhibitor 1 suppressed PAR(2)-induced activation of TRPV4, indicating the importance of tyrosine phosphorylation. The TRPV4 tyrosine mutants Y110F, Y805F, and Y110F/Y805F were expressed normally at the cell surface. However, PAR(2) was unable to activate TRPV4 with the Y110F mutation. TRPV4 antagonism suppressed PAR(2) signaling to primary nociceptive neurons, and TRPV4 deletion attenuated PAR(2)-stimulated neurogenic inflammation. Thus, PAR(2) activation generates a signal that induces sustained activation of TRPV4, which requires a key tyrosine residue (TRPV4-Tyr-110). This mechanism partly mediates the proinflammatory actions of PAR(2).
Collapse
Affiliation(s)
- Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Freisinger W, Schatz J, Ditting T, Lampert A, Heinlein S, Lale N, Schmieder R, Veelken R. Sensory renal innervation: a kidney-specific firing activity due to a unique expression pattern of voltage-gated sodium channels? Am J Physiol Renal Physiol 2013; 304:F491-7. [PMID: 23283993 DOI: 10.1152/ajprenal.00011.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sensory neurons with afferent axons from the kidney are extraordinary in their response to electrical stimulation. More than 50% exhibit a tonic firing pattern, i.e., sustained action potential firing throughout depolarizing, pointing to an increased excitability, whereas nonrenal neurons show mainly a phasic response, i.e., less than five action potentials. Here we investigated whether these peculiar firing characteristics of renal afferent neurons are due to differences in the expression of voltage-gated sodium channels (Navs). Dorsal root ganglion (DRG) neurons from rats (Th11-L2) were recorded by the current-clamp technique and distinguished as "tonic" or "phasic." In voltage-clamp recordings, Navs were characterized by their tetrodotoxoxin (TTX) sensitivity, and their molecular identity was revealed by RT-PCR. The firing pattern of 66 DRG neurons (41 renal and 25 nonrenal) was investigated. Renal neurons exhibited more often a tonic firing pattern (56.1 vs. 12%). Tonic neurons showed a more positive threshold (-21.75 ± 1.43 vs.-29.33 ± 1.63 mV; P < 0.05), a higher overshoot (56.74 [53.6-60.96] vs. 46.79 mV [38.63-54.75]; P < 0.05) and longer action potential duration (4.61 [4.15-5.85] vs. 3.35 ms [2.12-5.67]; P < 0.05). These findings point to an increased presence of the TTX-resistant Navs 1.8 and 1.9. Furthermore, tonic neurons exhibited a relatively higher portion of TTX-resistant sodium currents. Interestingly, mRNA expression of TTX-resistant sodium channels was significantly increased in renal, predominantly tonic, DRG neurons. Hence, under physiological conditions, renal sensory neurons exhibit predominantly a firing pattern associated with higher excitability. Our findings support that this is due to an increased expression and activation of TTX-resistant Navs.
Collapse
Affiliation(s)
- Wolfgang Freisinger
- Dept. of Medicine 4, Univ. of Erlangen-Nürnberg, Loschgestraβe 8, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang X, Pietra C, Lovati E, de Groat WC. Activation of neurokinin-1 receptors increases the excitability of guinea pig dorsal root ganglion cells. J Pharmacol Exp Ther 2012; 343:44-52. [PMID: 22736506 DOI: 10.1124/jpet.112.196113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The suppression of overactive bladder symptoms in patients and overactive bladder reflexes in animal models by neurokinin (NK)-1 receptor antagonists raises the possibility that these drugs target sensory neurons. This mechanism was evaluated by examining the interactions between a specific NK-1 agonist, [Sar(9),Met(O(2))(11)]-substance P (Sar-Met-SP), and a potent NK-1 antagonist, netupitant (NTP), on small size (20-30 μm) dissociated L6 and S1 dorsal root ganglion (DRG) neurons from female guinea pigs. Current-clamp recording revealed that Sar-Met-SP (1 μM) elicited membrane depolarization (average 8.05 ± 1.38 mV) in 27% (18 of 65) of DRG neurons. In 74% of the remaining neurons (35 of 47) Sar-Met-SP decreased the rheobase for action potential (AP) generation and increased the response to a suprathreshold stimulus (3 times rheobase) without changing the membrane potential. Sar-Met-SP also induced changes in the action potential (AP) wave form, including 1) an increase in overshoot (average 5 mV, n = 35 neurons), 2) a prolongation of AP duration (from 4.64 to 5.29 ms, n = 34), and 3) a reduction in the maximal rate of AP repolarization. NTP (200 nM) reversed the Sar-Met-SP-induced changes. Ca(2+) imaging showed that application of Sar-Met-SP (1 μM) decreased the tachyphylaxis induced by repeated application of capsaicin (0.5 μM), an effect blocked by pretreatment with NTP (200 nM). These results raise the possibility that activation of NK-1 receptors in primary sensory neurons plays a role in the generation of overactive bladder and that block of NK-1 receptors in these neurons may contribute to efficacy of NK-1 antagonists in the treatment of overactive bladder symptoms.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA.
| | | | | | | |
Collapse
|
26
|
Reactive oxygen species are second messengers of neurokinin signaling in peripheral sensory neurons. Proc Natl Acad Sci U S A 2012; 109:E1578-86. [PMID: 22586118 DOI: 10.1073/pnas.1201544109] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Substance P (SP) is a prominent neuromodulator, which is produced and released by peripheral damage-sensing (nociceptive) neurons; these neurons also express SP receptors. However, the mechanisms of peripheral SP signaling are poorly understood. We report a signaling pathway of SP in nociceptive neurons: Acting predominantly through NK1 receptors and G(i/o) proteins, SP stimulates increased release of reactive oxygen species from the mitochondrial electron transport chain. Reactive oxygen species, functioning as second messengers, induce oxidative modification and augment M-type potassium channels, thereby suppressing excitability. This signaling cascade requires activation of phospholipase C but is largely uncoupled from the inositol 1,4,5-trisphosphate sensitive Ca(2+) stores. In rats SP causes sensitization of TRPV1 and produces thermal hyperalgesia. However, the lack of coupling between SP signaling and inositol 1,4,5-trisphosphate sensitive Ca(2+) stores, together with the augmenting effect on M channels, renders the SP pathway ineffective to excite nociceptors acutely and produce spontaneous pain. Our study describes a mechanism for neurokinin signaling in sensory neurons and provides evidence that spontaneous pain and hyperalgesia can have distinct underlying mechanisms within a single nociceptive neuron.
Collapse
|
27
|
Kitamura H, Kobayashi M, Wakita D, Nishimura T. Neuropeptide signaling activates dendritic cell-mediated type 1 immune responses through neurokinin-2 receptor. THE JOURNAL OF IMMUNOLOGY 2012; 188:4200-8. [PMID: 22474018 DOI: 10.4049/jimmunol.1102521] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurokinin A (NKA), a neurotransmitter distributed in the central and peripheral nervous system, strictly controls vital responses, such as airway contraction, by intracellular signaling through neurokinin-2 receptor (NK2R). However, the function of NKA-NK2R signaling on involvement in immune responses is less-well defined. We demonstrate that NK2R-mediated neuropeptide signaling activates dendritic cell (DC)-mediated type 1 immune responses. IFN-γ stimulation significantly induced NK2R mRNA and remarkably enhanced surface protein expression levels of bone marrow-derived DCs. In addition, the DC-mediated NKA production level was significantly elevated after IFN-γ stimulation in vivo and in vitro. We found that NKA treatment induced type 1 IFN mRNA expressions in DCs. Transduction of NK2R into DCs augmented the expression level of surface MHC class II and promoted Ag-specific IL-2 production by CD4(+) T cells after NKA stimulation. Furthermore, blockade of NK2R by an antagonist significantly suppressed IFN-γ production by both CD4(+) T and CD8(+) T cells stimulated with the Ag-loaded DCs. Finally, we confirmed that stimulation with IFN-γ or TLR3 ligand (polyinosinic-polycytidylic acid) significantly induced both NK2R mRNA and surface protein expression of human PBMC-derived DCs, as well as enhanced human TAC1 mRNA, which encodes NKA and Substance P. Thus, these findings indicate that NK2R-dependent neuropeptide signaling regulates Ag-specific T cell responses via activation of DC function, suggesting that the NKA-NK2R cascade would be a promising target in chronic inflammation caused by excessive type 1-dominant immunity.
Collapse
Affiliation(s)
- Hidemitsu Kitamura
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | | | | | | |
Collapse
|
28
|
Niyom S, Mama KR, De Rezende ML. Comparison of the analgesic efficacy of oral ABT-116 administration with that of transmucosal buprenorphine administration in dogs. Am J Vet Res 2012; 73:476-81. [DOI: 10.2460/ajvr.73.4.476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Janes K, Neumann WL, Salvemini D. Anti-superoxide and anti-peroxynitrite strategies in pain suppression. Biochim Biophys Acta Mol Basis Dis 2011; 1822:815-21. [PMID: 22200449 DOI: 10.1016/j.bbadis.2011.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 02/08/2023]
Abstract
Superoxide (SO, O(2)·(-)) and its reaction product peroxynitrite (PN, ONOO(-)) have been shown to be important in the development of pain of several etiologies. While significant progress has been made in teasing out the relative contribution of SO and PN peripherally, spinally, and supraspinally during the development and maintenance of central sensitization and pain, there is still a considerable void in our understanding. Further research is required in order to develop improved therapeutic strategies for selectively eliminating SO and/or PN. Furthermore, it may be that PN is a more attractive target, in that unlike SO it has no currently known beneficial role. Our group has been at the forefront of research concerning the role of SO and PN in pain, and our current findings have led to the development of two new classes of orally active catalysts which are selective for PN decomposition while sparing SO. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- Kali Janes
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | | | | |
Collapse
|
30
|
Salvemini D, Little JW, Doyle T, Neumann WL. Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 2011; 51:951-66. [PMID: 21277369 PMCID: PMC3134634 DOI: 10.1016/j.freeradbiomed.2011.01.026] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 02/07/2023]
Abstract
Peroxynitrite (PN; ONOO⁻) and its reactive oxygen precursor superoxide (SO; O₂•⁻) are critically important in the development of pain of several etiologies including pain associated with chronic use of opiates such as morphine (also known as opiate-induced hyperalgesia and antinociceptive tolerance). This is now an emerging field in which considerable progress has been made in terms of understanding the relative contributions of SO, PN, and nitroxidative stress in pain signaling at the molecular and biochemical levels. Aggressive research in this area is poised to provide the pharmacological basis for development of novel nonnarcotic analgesics that are based upon the unique ability to selectively eliminate SO and/or PN. As we have a better understanding of the roles of SO and PN in pathophysiological settings, targeting PN may be a better therapeutic strategy than targeting SO. This is because, unlike PN, which has no currently known beneficial role, SO may play a significant role in learning and memory. Thus, the best approach may be to spare SO while directly targeting its downstream product, PN. Over the past 15 years, our team has spearheaded research concerning the roles of SO and PN in pain and these results are currently leading to the development of solid therapeutic strategies in this important area.
Collapse
Affiliation(s)
- Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | | | | | | |
Collapse
|
31
|
Chen Y, Tian Q. The role of protein kinase C epsilon in neural signal transduction and neurogenic diseases. Front Med 2011; 5:70-6. [PMID: 21681677 DOI: 10.1007/s11684-011-0119-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/11/2011] [Indexed: 01/02/2023]
Abstract
Protein kinase C epsilon (PKC ɛ) is one of major isoforms in novel PKC family. Although it has been extensively characterized in the past decade, the role of PKC ɛ in neuron is still not well understood. Advances in molecular biology have now removed significant barriers to the direct investigation of PKC ɛ functions in vivo, and PKC ɛ has been increasingly implicated in the neural biological functions and associated neurogenic diseases. Recent studies have provided important insights into the influence of PKC ɛ on cortical processing at both the single cell level and network level. These studies provide compelling evidence that PKC ɛ could regulate distinct aspects of neural signal transduction and suggest that the coordinated actions of a number of molecular signals contribute to the specification and differentiation of PKC ɛ signal pathway in the developing brain.
Collapse
Affiliation(s)
- Yuan Chen
- Neurobiology Research Center, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, 510080, China.
| | | |
Collapse
|
32
|
Castillo C, Norcini M, Baquero-Buitrago J, Levacic D, Medina R, Montoya-Gacharna JV, Blanck TJJ, Dubois M, Recio-Pinto E. The N-methyl-D-aspartate-evoked cytoplasmic calcium increase in adult rat dorsal root ganglion neuronal somata was potentiated by substance P pretreatment in a protein kinase C-dependent manner. Neuroscience 2011; 177:308-20. [PMID: 21215796 DOI: 10.1016/j.neuroscience.2010.12.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/16/2010] [Accepted: 12/21/2010] [Indexed: 12/27/2022]
Abstract
The involvement of substance P (SP) in neuronal sensitization through the activation of the neurokinin-1-receptor (NK1r) in postsynaptic dorsal horn neurons has been well established. In contrast, the role of SP and NK1r in primary sensory dorsal root ganglion (DRG) neurons, in particular in the soma, is not well understood. In this study, we evaluated whether SP modulated the NMDA-evoked transient increase in cytoplasmic Ca2+ ([Ca2+]cyt) in the soma of dissociated adult DRG neurons. Cultures were treated with nerve growth factor (NGF), prostaglandin E2 (PGE2) or both NGF+PGE2. Treatment with NGF+PGE2 increased the percentage of N-methyl-D-aspartate (NMDA) responsive neurons. There was no correlation between the percentage of NMDA responsive neurons and the level of expression of the NR1 and NR2B subunits of the NMDA receptor or of the NK1r. Pretreatment with SP did not alter the percentage of NMDA responsive neurons; while it potentiated the NMDA-evoked [Ca2+]cyt transient by increasing its magnitude and by prolonging the period during which small- and some medium-sized neurons remained NMDA responsive. The SP-mediated potentiation was blocked by the SP-antagonist ([D-Pro4, D-Trp7,9]-SP (4-11)) and by the protein kinase C (PKC) blocker bisindolylmaleimide I (BIM); and correlated with the phosphorylation of PKCε. The Nk1r agonist [Sar9, Met(O2)11]-SP (SarMet-SP) also potentiated the NMDA-evoked [Ca2+]cyt transient. Exposure to SP or SarMet-SP produced a rapid increase in the labeling of phosphorylated-PKCε. In none of the conditions we detected phosphorylation of the NR2B subunit at Ser-1303. Phosphorylation of the NR2B subunit at Tyr1472 was enhanced to a similar extent in cells exposed to NMDA, SP or NMDA+SP, and that enhancement was blocked by BIM. Our findings suggest that NGF and PGE2 may contribute to the injury-evoked sensitization of DRG neurons in part by enhancing their NMDA-evoked [Ca2+]cyt transient in all sized DRG neurons; and that SP may further contribute to the DRG sensitization by enhancing and prolonging the NMDA-evoked increase in [Ca2+]cyt in small- and medium-sized DRG neurons.
Collapse
Affiliation(s)
- C Castillo
- Department of Anesthesiology, New York University (NYU) Langone Medical Center, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang X, Daugherty SL, de Groat WC. Activation of CaMKII and ERK1/2 contributes to the time-dependent potentiation of Ca2+ response elicited by repeated application of capsaicin in rat DRG neurons. Am J Physiol Regul Integr Comp Physiol 2010; 300:R644-54. [PMID: 21178121 DOI: 10.1152/ajpregu.00672.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When capsaicin is applied repeatedly to dorsal root ganglion (DRG) neurons for brief periods (10-15 s) at short intervals (5-10 min), the evoked responses rapidly decline, a phenomenon termed tachyphylaxis. In addition to this phenomenon, the present study using Ca(2+) imaging revealed that repeated application of capsaicin to rat dissociated DRG neurons at longer intervals (20-40 min) or during multiple applications at short intervals elicited an enhancement of the responses, termed potentiation. The potentiation occurred in 50-60% of the capsaicin-responsive cells, on average representing a 20- to 30% increase in the peak amplitude of the Ca(2+) signal, and was maximal at a 40-min application interval. An analysis of the mechanisms underlying potentiation revealed that it was suppressed by block of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) with 5 μM KN-93 or block of the activation of extracellular signal-regulated kinase (ERK) 1/2 with 2 μM U-0126. Lowering the extracellular Ca(2+) concentration from 2 to 1 mM or pretreatment with deltamethrin (1 μM), which blocks calcineurin and tachyphylaxis, enhanced potentiation. Potentiation was not affected by: 1) inhibition of protein kinase C or protein kinase A, 2) block of the three subtypes of neurokinin receptors, or 3) block of the trafficking of transient receptor potential V1 channel to the membrane. These results indicate that the potentiation is a slowly developing Ca(2+)-modulated process that is mediated by a complex intracellular signaling pathway involving activation of CaMKII and ERK1/2. Potentiation may be an important peripheral autosensitization mechanism that occurs independently of the pronociceptive effects of inflammatory mediators and neurotrophic factors.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, Pennsylvania, USA.
| | | | | |
Collapse
|
34
|
Sculptoreanu A, Kullmann FA, Artim DE, Bazley FA, Schopfer F, Woodcock S, Freeman BA, de Groat WC. Nitro-oleic acid inhibits firing and activates TRPV1- and TRPA1-mediated inward currents in dorsal root ganglion neurons from adult male rats. J Pharmacol Exp Ther 2010; 333:883-95. [PMID: 20304940 DOI: 10.1124/jpet.109.163154] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitro-oleic acid (OA-NO(2)), an electrophilic fatty acid by-product of nitric oxide and nitrite reactions, is present in normal and inflamed mammalian tissues at up to micromolar concentrations and exhibits anti-inflammatory signaling actions. The effects of OA-NO(2) on cultured dorsal root ganglion (DRG) neurons were examined using fura-2 Ca(2+) imaging and patch clamping. OA-NO(2) (3.5-35 microM) elicited Ca(2+) transients in 20 to 40% of DRG neurons, the majority (60-80%) of which also responded to allyl isothiocyanate (AITC; 1-50 microM), a TRPA1 agonist, and to capsaicin (CAPS; 0.5 microM), a TRPV1 agonist. The OA-NO(2)-evoked Ca(2+) transients were reduced by the TRPA1 antagonist 2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopropylphenyl) acetamide (HC-030031; 5-50 microM) and the TRPV1 antagonist capsazepine (10 microM). Patch-clamp recording revealed that OA-NO(2) depolarized and induced inward currents in 62% of neurons. The effects of OA-NO(2) were elicited by concentrations >or=5 nM and were blocked by 10 mM dithiothreitol. Concentrations of OA-NO(2) >or=5 nM reduced action potential (AP) overshoot, increased AP duration, inhibited firing induced by depolarizing current pulses, and inhibited Na(+) currents. The effects of OA-NO(2) were not prevented or reversed by the NO-scavenger carboxy-2-phenyl-4,4,5,5-tetramethylimidazolineoxyl-1-oxyl-3-oxide. A large percentage (46-57%) of OA-NO(2)-responsive neurons also responded to CAPS (0.5 microM) or AITC (0.5 microM). OA-NO(2) currents were reduced by TRPV1 (diarylpiperazine; 5 microM) or TRPA1 (HC-030031; 5 microM) antagonists. These data reveal that endogenous OA-NO(2) generated at sites of inflammation may initially activate transient receptor potential channels on nociceptive afferent nerves, contributing to the initiation of afferent nerve activity, and later suppresses afferent firing.
Collapse
Affiliation(s)
- A Sculptoreanu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ditting T, Tiegs G, Rodionova K, Reeh PW, Neuhuber W, Freisinger W, Veelken R. Do distinct populations of dorsal root ganglion neurons account for the sensory peptidergic innervation of the kidney? Am J Physiol Renal Physiol 2009; 297:F1427-34. [DOI: 10.1152/ajprenal.90599.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peptidergic afferent renal nerves (PARN) have been linked to kidney damage in hypertension and nephritis. Neither the receptors nor the signals controlling local release of neurokinines [calcitonin gene-related peptide (CGRP) and substance P (SP)] and signal transmission to the brain are well-understood. We tested the hypothesis that PARN, compared with nonrenal afferents (Non-RN), are more sensitive to acidic stimulation via transient receptor potential vanilloid type 1 (TRPV1) channels and exhibit a distinctive firing pattern. PARN were distinguished from Non-RN by fluorescent labeling (DiI) and studied by in vitro patch-clamp techniques in dorsal root ganglion neurons (DRG; T11-L2). Acid-induced currents or firing due to current injection or acidic superfusion were studied in 252 neurons, harvested from 12 Sprague-Dawley rats. PARN showed higher acid-induced currents than Non-RN (transient: 15.9 ± 5.1 vs. 0.4 ± 0.2* pA/pF at pH 6; sustained: 20.0 ± 4.5 vs. 6.2 ± 1.2* pA/pF at pH 5; * P < 0.05). The TRPV1 antagonist capsazepine inhibited sustained, amiloride-transient currents. Forty-eight percent of PARN were classified as tonic neurons (TN = sustained firing during current injection), and 52% were phasic (PN = transient firing). Non-RN were rarely tonic (15%), but more frequently phasic (85%), than PARN ( P < 0.001). TN were more frequently acid-sensitive than PN (50–70 vs. 2–20%, P < 0.01). Furthermore, renal PN were more frequently acid-sensitive than nonrenal PN (20 vs. 2%, P < 0.01). Confocal microscopy revealed innervation of renal vessels, tubules, and glomeruli by CGRP- and partly SP-positive fibers coexpressing TRPV1. Our data show that PARN are represented by a very distinct population of small-to-medium sized DRG neurons exhibiting more frequently tonic firing and TRPV1-mediated acid sensitivity. These very distinct DRG neurons might play a pivotal role in renal physiology and disease.
Collapse
Affiliation(s)
- Tilmann Ditting
- Department of Internal Medicine 4, Nephrology, and Hypertension,
| | - Gisa Tiegs
- Division of Experimental Immunology and Hepatology, Center of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | - Roland Veelken
- Department of Internal Medicine 4, Nephrology, and Hypertension,
| |
Collapse
|
36
|
Feng B, Strichartz G. Endothelin-1 raises excitability and reduces potassium currents in sensory neurons. Brain Res Bull 2009; 79:345-50. [PMID: 19409452 PMCID: PMC2703700 DOI: 10.1016/j.brainresbull.2009.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 03/29/2009] [Accepted: 04/23/2009] [Indexed: 01/08/2023]
Abstract
Exposure to endothelin-1 (ET-1, 50 nM) of sensory neurons, acutely isolated from rat dorsal root ganglia (DRG), results in an increase in the number of action potentials elicited by a linear ramp of stimulating current. The changes are complete in 5 min after ET-1 treatment and do not reverse in 5-10 min after ET-1's removal. Neither the resting potential, nor the threshold potential for the first or second action potentials, nor their rate-of-rise or decay, are changed by ET-1 exposure, but the slow depolarizations which occur before the first and second action potentials during the current ramp are increased by ca. 50% by ET-1. The delayed rectifier type of K(+) currents (I(K)), measured under whole-cell voltage clamp, are depressed by approximately 30% during such exposure to ET-1. The voltage-dependent gating of steady-state I(K) and the current kinetics are unchanged by ET-1, leaving the sole effect as a drop in the number of available channels. I(K) is affected by ET-1 only in Isolectin B(4)-positive cells, suggesting that there may be a selective action in enhancing impulse activity on this class of nociceptive neuron. This decrease in I(K) will potentiate the excitability-inducing actions of the previously reported negative shift in tetrodotoxin-resistant Na(+) channel gating in such neurons.
Collapse
Affiliation(s)
- Bihua Feng
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
37
|
Sculptoreanu A, Artim DE, de Groat WC. Neurokinins inhibit low threshold inactivating K+ currents in capsaicin responsive DRG neurons. Exp Neurol 2009; 219:562-73. [PMID: 19631644 DOI: 10.1016/j.expneurol.2009.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
Neurokinins (NK) released from terminals of dorsal root ganglion (DRG) neurons may control firing of these neurons by an autofeedback mechanism. In this study we used patch clamp recording techniques to determine if NKs alter excitability of rat L4-S3 DRG neurons by modulating K(+) currents. In capsaicin (CAPS)-responsive phasic neurons substance P (SP) lowered action potential (AP) threshold and increased the number of APs elicited by depolarizing current pulses. SP and a selective NK(2) agonist, [betaAla(8)]-neurokinin A (4-10) also inhibited low threshold inactivating K(+) currents isolated by blocking non-inactivating currents with a combination of high TEA, (-) verapamil and nifedipine. Currents recorded under these conditions were heteropodatoxin-sensitive (Kv4 blocker) and alpha-dendrotoxin-insensitive (Kv1.1 and Kv1.2 blocker). SP and NKA elicited a >10 mV positive shift of the voltage dependence of activation of the low threshold currents. This effect was absent in CAPS-unresponsive neurons. The effect of SP or NKA on K(+) currents in CAPS-responsive phasic neurons was fully reversed by an NK(2) receptor antagonist (MEN10376) but only partially reversed by a PKC inhibitor (bisindolylmaleimide). An NK(1) selective agonist ([Sar(9), Met(11)]-substance P) or direct activation of PKC with phorbol 12,13-dibutyrate, did not change firing in CAPS-responsive neurons, but did inhibit various types of K(+) currents that activated over a wide range of voltages. These data suggest that the excitability of CAPS-responsive phasic afferent neurons is increased by activation of NK(2) receptors and that this is due in part to inhibition and a positive voltage shift in the activation of heteropodatoxin-sensitive Kv4 channels.
Collapse
Affiliation(s)
- Adrian Sculptoreanu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
38
|
Zagorodnyuk VP, Brookes SJH, Spencer NJ, Gregory S. Mechanotransduction and chemosensitivity of two major classes of bladder afferents with endings in the vicinity to the urothelium. J Physiol 2009; 587:3523-38. [PMID: 19470774 DOI: 10.1113/jphysiol.2009.172577] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The guinea pig bladder is innervated by at least five distinct major classes of extrinsic sensory neurons. In this study, we have examined the mechanisms of mechanotransduction and chemosensitivity of two classes of bladder afferents that have their endings in the vicinity of the urothelium: stretch-sensitive muscle-mucosal mechanoreceptors and stretch-insensitive, mucosal high-responding afferents. The non-selective P2 purinoreceptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid did not affect stretch- or stroking-induced firing of these afferents but significantly reduced the excitatory action of alpha,beta-methylene ATP. Blocking synaptic transmission in Ca(2+)-free solution did not affect stretch-evoked firing but slightly reduced stretch-induced tension responses. Stroking-induced firing of both classes of afferents was also not affected in Ca(2+)-free solution. Of blockers of mechano-gated channels, benzamil (100 microM), but not amiloride (100 microM), Gd(3+) (100 microM) or SKF 96365 (50 microM), inhibited stretch- and stroking-induced firing. Serotonin (100 microM) applied directly onto receptive fields predominantly activated muscle-mucosal afferents. Muscarine (100 microM) and substance P (100 microM) in 24% and 36% cases activated only mucosal high-responding units. Bradykinin (10 microM), but not prostaglandin E2 (10 microM), excites predominantly mucosal units. High (80 mM) K(+) solution activated both afferent classes, but responses of mucosal units were 4 times greater. In contrast to muscle-mucosal units, most mucosal high-responding units were activated by hot Krebs solution (45-46 degrees C), low pH (pH 4) and capsaicin (3 microm). TRPV1 antagonist, capsazepine (10 microM) was without effect on mechanotransduction by mucosal high-responding afferents. The results show that mechanotransduction of these two types of afferents are not dependant upon Ca(2+)-dependent exocytotic release of mediators, or ATP, and it is likely that benzamil-sensitive stretch-activated ion channels on their endings are involved in direct mechanotransduction. The chemosensitivity to agonists and noxious stimuli differs significantly between these two major classes of bladder afferents that reflects their different physiological and pathophysiological roles in the bladder.
Collapse
Affiliation(s)
- Vladimir P Zagorodnyuk
- Department of Human Physiology, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia.
| | | | | | | |
Collapse
|
39
|
Lázár J, Gharat L, Khairathkar-Joshi N, Blumberg PM, Szallasi A. Screening TRPV1 antagonists for the treatment of pain: lessons learned over a decade. Expert Opin Drug Discov 2009; 4:159-80. [DOI: 10.1517/17460440802681300] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Srinivasan R, Wolfe D, Goss J, Watkins S, de Groat WC, Sculptoreanu A, Glorioso JC. Protein kinase C epsilon contributes to basal and sensitizing responses of TRPV1 to capsaicin in rat dorsal root ganglion neurons. Eur J Neurosci 2009; 28:1241-54. [PMID: 18973552 DOI: 10.1111/j.1460-9568.2008.06438.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphorylation of the vanilloid receptor (TRPV1) by protein kinase C epsilon (PKCepsilon) plays an important role in the development of chronic pain. Here, we employ a highly defective herpes simplex virus vector (vHDNP) that expresses dominant negative PKCepsilon (DNPKCepsilon) as a strategy to demonstrate that PKCepsilon is essential for: (i) maintenance of basal phosphorylation and normal TRPV1 responses to capsaicin (CAPS), a TRPV1 agonist and (ii) enhancement of TRPV1 responses by phorbol esters. Phorbol esters induced translocation of endogenous PKCepsilon to the plasma membrane and thereby enhanced CAPS currents. These results were extended to an in-vivo pain model in which vHDNP delivery to dorsal root ganglion neurons caused analgesia in CAPS-treated, acutely inflamed rat hind paws. These findings support the conclusion that in addition to receptor sensitization, PKCepsilon is essential for normal TRPV1 responses in vitro and in vivo.
Collapse
Affiliation(s)
- Rahul Srinivasan
- Department of Microbiology and Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|