1
|
Browne LP, Crespo A, Grubb MS. Rapid presynaptic maturation in naturally regenerating axons of the adult mouse olfactory nerve. Cell Rep 2022; 41:111750. [PMID: 36476871 DOI: 10.1016/j.celrep.2022.111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/26/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Successful neuronal regeneration requires the reestablishment of synaptic connectivity. This process requires the reconstitution of presynaptic neurotransmitter release, which we investigate here in a model of entirely natural regeneration. After toxin-induced injury, olfactory sensory neurons in the adult mouse olfactory epithelium can regenerate fully, sending axons via the olfactory nerve to reestablish synaptic contact with postsynaptic partners in the olfactory bulb. Using electrophysiological recordings in acute slices, we find that, after initial recontact, functional connectivity in this system is rapidly established. Reconnecting presynaptic terminals have almost mature functional properties, including high release probability and strong capacity for presynaptic inhibition. Release probability then matures quickly, rendering reestablished terminals functionally indistinguishable from controls just 1 week after initial contact. These data show that successful synaptic regeneration in the adult mammalian brain is almost a "plug-and-play" process, with presynaptic terminals undergoing a rapid phase of functional maturation as they reintegrate into target networks.
Collapse
Affiliation(s)
- Lorcan P Browne
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Andres Crespo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
2
|
Tufo C, Poopalasundaram S, Dorrego-Rivas A, Ford MC, Graham A, Grubb MS. Development of the mammalian main olfactory bulb. Development 2022; 149:274348. [PMID: 35147186 PMCID: PMC8918810 DOI: 10.1242/dev.200210] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammalian main olfactory bulb is a crucial processing centre for the sense of smell. The olfactory bulb forms early during development and is functional from birth. However, the olfactory system continues to mature and change throughout life as a target of constitutive adult neurogenesis. Our Review synthesises current knowledge of prenatal, postnatal and adult olfactory bulb development, focusing on the maturation, morphology, functions and interactions of its diverse constituent glutamatergic and GABAergic cell types. We highlight not only the great advances in the understanding of olfactory bulb development made in recent years, but also the gaps in our present knowledge that most urgently require addressing. Summary: This Review describes the morphological and functional maturation of cells in the mammalian main olfactory bulb, from embryonic development to adult neurogenesis.
Collapse
Affiliation(s)
- Candida Tufo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Subathra Poopalasundaram
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Marc C Ford
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Anthony Graham
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
3
|
Nguyen UP, Imamura F. Regional differences in mitral cell development in mouse olfactory bulb. J Comp Neurol 2019; 527:2233-2244. [PMID: 30864157 DOI: 10.1002/cne.24683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 11/09/2022]
Abstract
Olfactory sensory neurons (OSNs) located in the dorsomedial and ventromedial regions of the olfactory epithelium (OE) are distinguished from one another based on their molecular expression patterns. This difference is reflected in the separation of the glomerular layer of the olfactory bulb (OB) into dorsomedial and ventrolateral regions. However, it is unclear whether a complementary separation is also evident in the projection neurons that innervate the OB glomeruli. In this study, we compared the development of the OB between different regions by focusing on the transcription factor, Tbx21, which is expressed by mitral and tufted cells in the mature OB. Examining the OB at different developmental ages, we found that Tbx21 expression commenced in the anteromedial region called the tongue-shaped area, followed by the dorsomedial and then ventrolateral areas. We also showed that the tongue-shaped area was innervated by the OSNs located in the most dorsomedial part of the ventrolateral OE, the V-zone:DM. Interestingly, the generation of OSNs occurred first in the dorsomedial zone including the V-zone:DM, suggesting a correlation between the time course of OSN generation in the OE and Tbx21 expression in their target region of the OB. In contrast, expression of vGluT1, which is also found in all mitral cells in the mature OB, was first detected in the ventrolateral region during development. Our findings demonstrate that the development of projection neurons occurs in a compartmentalized manner in the OB; tongue-shaped, dorsomedial, and ventrolateral areas, and that not all projection neurons follow the same developmental pathway.
Collapse
Affiliation(s)
- Uyen P Nguyen
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
4
|
Schreiber S, Petrasch-Parwez E, Porrmann-Kelterbaum E, Förster E, Epplen JT, Gerding WM. Neurodegeneration in the olfactory bulb and olfactory deficits in the Ccdc66 -/- mouse model for retinal degeneration. IBRO Rep 2018; 5:43-53. [PMID: 30211337 PMCID: PMC6132079 DOI: 10.1016/j.ibror.2018.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
The Ccdc66-deficient (Ccdc66 -/-) mouse model exhibits slow progressive retinal degeneration. It is unclear whether CCDC66 protein also plays a role in the wildtype (WT; Ccdc66 +/+) mouse brain and whether the lack of Ccdc66 gene expression in the Ccdc66 -/- mouse brain may result in morphological and behavioral alterations. CCDC66 protein expression in different brain regions of the adult WT mouse and in whole brain during postnatal development was quantified by SDS-PAGE and Western blot. Ccdc66 reporter gene expression was visualized by X-gal staining. Selected brain regions were further analyzed by light and electron microscopy. In order to correlate anatomical with behavioral data, an olfactory habituation/dishabituation test was performed. CCDC66 protein was expressed throughout the early postnatal development in the WT mouse brain. In adult mice, the main olfactory bulb exhibited high CCDC66 protein levels comparable to the expression in the retina. Additionally, the Ccdc66 -/- mouse brain showed robust Ccdc66 reporter gene expression especially in adult olfactory bulb glomeruli, the olfactory nerve layer and the olfactory epithelium. Degeneration was detected in the Ccdc66 -/- olfactory bulb glomeruli at advanced age. This degeneration was also reflected in behavioral alterations; compared to the WT, Ccdc66 -/- mice spent significantly less time sniffing at the initial presentation of unknown, neutral odors and barely responded to social odors. Ccdc66 -/- mice develop substantial olfactory nerve fiber degeneration and alteration of olfaction-related behavior at advanced age. Thus, the Ccdc66 -/- mouse model for retinal degeneration adds the possibility to study mechanisms of central nervous system degeneration.
Collapse
Key Words
- AG, astroglia
- CTX, cortex
- Ccdc66
- Ccdc66 +/+, WT, wildtype
- Ccdc66 -/-, Ccdc66-deficient
- De, dendrite
- EPL, external plexiform layer
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GL, glomerular layer
- IPL, internal plexiform layer
- M, mitochondrion
- ML, mitral cell layer
- MOB, main olfactory bulb
- Mouse model
- Neurodegeneration
- OE, olfactory epithelium
- ONF, olfactory nerve fibers
- ONL, olfactory nerve layer
- ORN, olfactory receptor neuron(s)
- Olfactory bulb
- P, postnatal day
- PBS, phosphate-buffered saline
- PG, periglomerular cells
- RIPA, radioimmunoprecipitation assay
- RMS, rostral migratory stream
- RP, retinitis pigmentosa
- Retinitis pigmentosa
- SC, supporting cell
- SEZ, subependymal zone
- SVZ, subventricular zone
- gPRA, generalized progressive retinal atrophy
- ioD, integrated optic density
- m, month/s
Collapse
Affiliation(s)
- Sabrina Schreiber
- Department of Human Genetics, Ruhr-University, 44780 Bochum, Germany
| | | | | | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University, 44780 Bochum, Germany
| | - Jörg T. Epplen
- Department of Human Genetics, Ruhr-University, 44780 Bochum, Germany
- Department of Biochemistry and Molecular Medicine, University of Witten-Herdecke, ZBAF, 58453 Witten, Germany
| | - Wanda M. Gerding
- Department of Human Genetics, Ruhr-University, 44780 Bochum, Germany
| |
Collapse
|
5
|
Álvarez-Hernán G, Sánchez-Resino E, Hernández-Núñez I, Marzal A, Rodríguez-León J, Martín-Partido G, Francisco-Morcillo J. Retinal histogenesis in an altricial avian species, the zebra finch (Taeniopygia guttata, Vieillot 1817). J Anat 2018; 233:106-120. [PMID: 29582431 DOI: 10.1111/joa.12809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2018] [Indexed: 01/11/2023] Open
Abstract
Comparative developmental studies have shown that the retina of altricial fish and mammals is incompletely developed at birth, and that, during the first days of life, maturation proceeds rapidly. In contrast, precocial fish and mammals are born with fully differentiated retinas. Concerning birds, knowledge about retinal development is generally restricted to a single order of precocial birds, Galliformes, due to the fact that both the chicken and the Japanese quail are considered model systems. However, comparison of embryonic pre-hatchling retinal development between altricial and precocial birds has been poorly explored. The purpose of this study was to examine the morphogenesis and histogenesis of the retina in the altricial zebra finch (Taeniopygia guttata, Vieillot 1817) and compare the results with those from previous studies in the precocial chicken. Several maturational features (morphogenesis of the optic vesicle and optic cup, appearance of the first differentiated neurons, the period in which the non-apical cell divisions are observable, and the emergence of the plexiform layers) were found to occur at later stages in the zebra finch than in the chicken. At hatching, the retina of T. guttata showed the typical cytoarchitecture of the mature tissue, although features of immaturity were still observable, such as a ganglion cell layer containing many thick cells, very thin plexiform layers, and poorly developed photoreceptors. Moreover, abundant mitotic activity was detected in the entire retina, even in the regions where the layering was complete. The circumferential marginal zone was very prominent and showed abundant mitotic activity. The partially undifferentiated stage of maturation at hatching makes the T. guttata retina an appropriate model with which to study avian postnatal retinal neurogenesis.
Collapse
Affiliation(s)
- Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Elena Sánchez-Resino
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Ismael Hernández-Núñez
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Alfonso Marzal
- Área de Zoología, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
6
|
Bolz F, Kasper S, Bufe B, Zufall F, Pyrski M. Organization and Plasticity of Sodium Channel Expression in the Mouse Olfactory and Vomeronasal Epithelia. Front Neuroanat 2017; 11:28. [PMID: 28420967 PMCID: PMC5376585 DOI: 10.3389/fnana.2017.00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
To understand the molecular basis of neuronal excitation in the mammalian olfactory system, we conducted a systematic analysis of the organization of voltage-gated sodium (Nav) channel subunits in the main olfactory epithelium (MOE) and vomeronasal organ (VNO) of adult mice. We also analyzed changes in Nav channel expression during development in these two systems and during regeneration of the MOE. Quantitative PCR shows that Nav1.7 is the predominant isoform in both adult MOE and VNO. We detected pronounced immunoreactivity for Nav1.7 and Nav1.3 in axons of olfactory and vomeronasal sensory neurons (VSNs). Analysis of Nav1.2 and Nav1.6 revealed an unexpected subsystem-specific distribution. In the MOE, these Nav channels are absent from olfactory sensory neurons (OSNs) but present in non-neuronal olfactory cell types. In the VNO, Nav1.2 and Nav1.6 are confined to VSNs, with Nav1.2-immunoreactive somata solely present in the basal layer of the VNO. The subcellular localization of Nav1.3 and Nav1.7 in OSNs can change dramatically during periods of heightened plasticity in the MOE. During the first weeks of development and during regeneration of the olfactory epithelium following chemical lesion, expression of Nav1.3 and Nav1.7 is transiently enhanced in the somata of mature OSNs. Our results demonstrate a highly complex organization of Nav channel expression in the mouse olfactory system, with specific commonalities but also differences between the MOE and the VNO. On the basis of their subcellular localization, Nav1.3 and Nav1.7 should play major roles in action potential propagation in both MOE and VNO, whereas Nav1.2 and Nav1.6 are specific to the function of VSNs. The plasticity of Nav channel expression in OSNs during early development and recovery from injury could reflect important physiological requirements in a variety of activity-dependent mechanisms.
Collapse
Affiliation(s)
- Florian Bolz
- Center for Integrative Physiology and Molecular Medicine, Saarland UniversityHomburg, Germany
| | - Stephanie Kasper
- Center for Integrative Physiology and Molecular Medicine, Saarland UniversityHomburg, Germany
| | - Bernd Bufe
- Center for Integrative Physiology and Molecular Medicine, Saarland UniversityHomburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland UniversityHomburg, Germany
| | - Martina Pyrski
- Center for Integrative Physiology and Molecular Medicine, Saarland UniversityHomburg, Germany
| |
Collapse
|
7
|
Muroyama Y, Baba A, Kitagawa M, Saito T. Olfactory Sensory Neurons Control Dendritic Complexity of Mitral Cells via Notch Signaling. PLoS Genet 2016; 12:e1006514. [PMID: 28027303 PMCID: PMC5189955 DOI: 10.1371/journal.pgen.1006514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/29/2016] [Indexed: 11/29/2022] Open
Abstract
Mitral cells (MCs) of the mammalian olfactory bulb have a single primary dendrite extending into a single glomerulus, where they receive odor information from olfactory sensory neurons (OSNs). Molecular mechanisms for controlling dendritic arbors of MCs, which dynamically change during development, are largely unknown. Here we found that MCs displayed more complex dendritic morphologies in mouse mutants of Maml1, a crucial gene in Notch signaling. Similar phenotypes were observed by conditionally misexpressing a dominant negative form of MAML1 (dnMAML1) in MCs after their migration. Conversely, conditional misexpression of a constitutively active form of Notch reduced their dendritic complexity. Furthermore, the intracellular domain of Notch1 (NICD1) was localized to nuclei of MCs. These findings suggest that Notch signaling at embryonic stages is involved in the dendritic complexity of MCs. After the embryonic misexpression of dnMAML1, many MCs aberrantly extended dendrites to more than one glomerulus at postnatal stages, suggesting that Notch signaling is essential for proper formation of olfactory circuits. Moreover, dendrites in cultured MCs were shortened by Jag1-expressing cells. Finally, blocking the activity of Notch ligands in OSNs led to an increase in dendritic complexity as well as a decrease in NICD1 signals in MCs. These results demonstrate that the dendritic complexity of MCs is controlled by their presynaptic partners, OSNs. Olfactory circuits are critical for the survival of many animals. Odor information is transmitted from olfactory sensory neurons (OSNs) to relay neurons, the morphology of which is crucial for processing of the information and similar among species. The major relay neurons, mitral cells (MCs) in mammals and projection neurons in flies, have a single primary dendrite at the mature stage. Molecular mechanisms to control the formation of the dendrite are largely unknown. MCs dynamically change their dendrites during development. In this study, we show that the dendritic morphologies of MCs are controlled by Notch signaling, many factors of which are well conserved among species. Moreover, we have found that Notch signaling in MCs is activated by OSNs, and that Notch operates in the relay neurons in the mouse olfactory system, in contrast to the fly system, where Notch functions in OSNs. Therefore, our study has revealed a novel step for shaping the dendritic morphologies of MCs.
Collapse
Affiliation(s)
- Yuko Muroyama
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Baba
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Motoo Kitagawa
- Department of Molecular and Tumor Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuichiro Saito
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
- * E-mail:
| |
Collapse
|
8
|
Cheetham CEJ, Park U, Belluscio L. Rapid and continuous activity-dependent plasticity of olfactory sensory input. Nat Commun 2016; 7:10729. [PMID: 26898529 PMCID: PMC4764868 DOI: 10.1038/ncomms10729] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/15/2016] [Indexed: 02/01/2023] Open
Abstract
Incorporation of new neurons enables plasticity and repair of circuits in the adult brain. Adult neurogenesis is a key feature of the mammalian olfactory system, with new olfactory sensory neurons (OSNs) wiring into highly organized olfactory bulb (OB) circuits throughout life. However, neither when new postnatally generated OSNs first form synapses nor whether OSNs retain the capacity for synaptogenesis once mature, is known. Therefore, how integration of adult-born OSNs may contribute to lifelong OB plasticity is unclear. Here, we use a combination of electron microscopy, optogenetic activation and in vivo time-lapse imaging to show that newly generated OSNs form highly dynamic synapses and are capable of eliciting robust stimulus-locked firing of neurons in the mouse OB. Furthermore, we demonstrate that mature OSN axons undergo continuous activity-dependent synaptic remodelling that persists into adulthood. OSN synaptogenesis, therefore, provides a sustained potential for OB plasticity and repair that is much faster than OSN replacement alone.
Collapse
Affiliation(s)
- Claire E. J. Cheetham
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, Maryland 20892, USA
| | - Una Park
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, Maryland 20892, USA
| | - Leonardo Belluscio
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
9
|
Islet-1 immunoreactivity in the developing retina of Xenopus laevis. ScientificWorldJournal 2013; 2013:740420. [PMID: 24348185 PMCID: PMC3844241 DOI: 10.1155/2013/740420] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/22/2013] [Indexed: 01/09/2023] Open
Abstract
The LIM-homeodomain transcription factor Islet1 (Isl1) has been widely used as a marker of neuronal differentiation in the developing visual system of different classes of vertebrates, including mammals, birds, reptiles, and fish. In the present study, we analyzed the spatial and temporal distribution of Isl1-immunoreactive cells during Xenopus laevis retinal development and its relation to the formation of the retinal layers, and in combination with different markers of cell differentiation. The earliest Isl1 expression appeared at St29-30 in the cell nuclei of sparse differentiating neuroblasts located in the vitreal surface of the undifferentiated retina. At St35-36, abundant Isl1-positive cells accumulated at the vitreal surface of the neuroepithelium. As development proceeded and through the postmetamorphic juveniles, Isl1 expression was identified in subpopulations of ganglion cells and in subsets of amacrine, bipolar, and horizontal cells. These data together suggest a possible role for Isl1 in the early differentiation and maintenance of different retinal cell types, and Isl1 can serve as a specific molecular marker for the study of retinal cell specification in X. laevis.
Collapse
|
10
|
Díaz-Guerra E, Pignatelli J, Nieto-Estévez V, Vicario-Abejón C. Transcriptional Regulation of Olfactory Bulb Neurogenesis. Anat Rec (Hoboken) 2013; 296:1364-82. [DOI: 10.1002/ar.22733] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/13/2012] [Accepted: 12/08/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Eva Díaz-Guerra
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| | - Jaime Pignatelli
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| | - Vanesa Nieto-Estévez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| | - Carlos Vicario-Abejón
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| |
Collapse
|
11
|
Lam RS, Mombaerts P. Odorant responsiveness of embryonic mouse olfactory sensory neurons expressing the odorant receptors S1 or MOR23. Eur J Neurosci 2013; 38:2210-7. [PMID: 23682908 DOI: 10.1111/ejn.12240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/27/2013] [Accepted: 03/31/2013] [Indexed: 10/26/2022]
Abstract
The mammalian olfactory system has developed some functionality by the time of birth. There is behavioral and limited electrophysiological evidence for prenatal olfaction in various mammalian species. However, there have been no reports, in any mammalian species, of recordings from prenatal olfactory sensory neurons (OSNs) that express a given odorant receptor (OR) gene. Here we have performed patch-clamp recordings from mouse OSNs that express the OR gene S1 or MOR23, using the odorous ligands 2-phenylethyl alcohol or lyral, respectively. We found that, out of a combined total of 20 OSNs from embryos of these two strains at embryonic day (E)16.5 or later, all responded to a cognate odorous ligand. By contrast, none of six OSNs responded to the ligand at E14.5 or E15.5. The kinetics of the odorant-evoked electrophysiological responses of prenatal OSNs are similar to those of postnatal OSNs. The S1 and MOR23 glomeruli in the olfactory bulb are formed postnatally, but the axon terminals of OSNs expressing these OR genes may be synaptically active in the olfactory bulb at embryonic stages. The upper limit of the acquisition of odorant responsiveness for S1 and MOR23 OSNs at E16.5 is consistent with the developmental expression patterns of components of the olfactory signaling pathway.
Collapse
Affiliation(s)
- Rebecca S Lam
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, D-60438, Frankfurt, Germany
| | | |
Collapse
|
12
|
Gribaudo S, Bovetti S, Friard O, Denorme M, Oboti L, Fasolo A, De Marchis S. Transitory and activity-dependent expression of neurogranin in olfactory bulb tufted cells during mouse postnatal development. J Comp Neurol 2013; 520:3055-69. [PMID: 22592880 DOI: 10.1002/cne.23150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurogranin (Ng) is a brain-specific postsynaptic calmodulin-binding protein involved in synaptic activity-dependent plasticity. In the adult olfactory bulb (OB), Ng is expressed by a large population of GABAergic interneurons in the granule cell layer. We show here that, during postnatal development, Ng is also expressed by OB neurons in the superficial external plexiform layer (sEPL) and glomerular layer (GL). These Ng-positive neurons display morphological and neurochemical features of superficial and external tufted cells. Ng expression in these cells is transient during OB development: few elements express Ng at postnatal day (P) 5, increasing in number and reaching a peak at P10, then progressively decreasing. At P30, Ng is rarely detectable in these neurons. Ng expression in developing tufted cells is also modulated at the cellular level: at earlier stages, Ng labeling is distributed throughout the cell body and dendritic arborization in the GL, but, at P20, when the glomerular circuits are fully matured, Ng becomes restricted to the soma and proximal portion of tufted cell apical dendrites. We show that olfactory deprivation at early postnatal stages induces a strong increase in Ng-positive tufted cells from P10 to P20, whereas no changes have been observed following olfactory deprivation in adult mice. These findings demonstrate that Ng expression in sEPL-GL is restricted to developmental stages and indicate its activity-dependent regulation in a time window critical for glomerular circuit development, suggesting a role for Ng in maturation and dendritic remodeling of tufted cells.
Collapse
Affiliation(s)
- S Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
Morita S, Miyata S. Synaptic localization of growth-associated protein 43 in cultured hippocampal neurons during synaptogenesis. Cell Biochem Funct 2012; 31:400-11. [PMID: 23055398 DOI: 10.1002/cbf.2914] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 11/07/2022]
Abstract
Growth-associated protein 43 (GAP-43), a novel axonal phosphoprotein, is originally identified as a growth-cone-specific protein of developing neurons in vitro. The expression of GAP-43 is also shown to be up-regulated concomitant with increased synaptic plasticity in the brains in vivo, but how GAP-43 is concerned with synaptic plasticity is not well understood. In the present study, therefore, we aimed to elucidate subcellular localization of GAP-43 as culture development of rat hippocampal neurons. Western blotting showed that the expression of GAP-43 in the cerebral and hippocampal tissues was prominently high at postnatal days 14 and 21 or the active period of synaptogenesis. Double-labelling immunohistochemistry with an axonal marker Tau revealed that the immunoreactivity of GAP-43 was seen throughout axons of cultured hippocampal neurons but stronger at axonal puncta of developing neurons than axonal processes. Double-labelling immunohistochemistry with presynaptic terminal markers of synapsin and synaptotagmin revealed that the immunoreactivity of GAP-43 was observed mostly at weak synapsin- and synaptotagmin-positive puncta rather than strong ones. The quantitative analysis of immunofluorescent intensity showed a clear inverse correlation between GAP-43 and either synapsin or synaptotagmin expression. These data indicate that GAP-43 is highly expressed at immature growing axonal terminals and its expression is decreased along with the maturation of synaptogenesis.
Collapse
Affiliation(s)
- Shoko Morita
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | |
Collapse
|
14
|
Hovis KR, Ramnath R, Dahlen JE, Romanova AL, LaRocca G, Bier ME, Urban NN. Activity regulates functional connectivity from the vomeronasal organ to the accessory olfactory bulb. J Neurosci 2012; 32:7907-16. [PMID: 22674266 PMCID: PMC3483887 DOI: 10.1523/jneurosci.2399-11.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 03/14/2012] [Accepted: 04/19/2012] [Indexed: 12/14/2022] Open
Abstract
The mammalian accessory olfactory system is specialized for the detection of chemicals that identify kin and conspecifics. Vomeronasal sensory neurons (VSNs) residing in the vomeronasal organ project axons to the accessory olfactory bulb (AOB), where they form synapses with principal neurons known as mitral cells. The organization of this projection is quite precise and is believed to be essential for appropriate function of this system. However, how this precise connectivity is established is unknown. We show here that in mice the vomeronasal duct is open at birth, allowing external chemical stimuli access to sensory neurons, and that these sensory neurons are capable of releasing neurotransmitter to downstream neurons as early as the first postnatal day (P). Using major histocompatibility complex class I peptides to activate a selective subset of VSNs during the first few postnatal days of development, we show that increased activity results in exuberant VSN axonal projections and a delay in axonal coalescence into well defined glomeruli in the AOB. Finally, we show that mitral cell dendritic refinement occurs just after the coalescence of presynaptic axons. Such a mechanism may allow the formation of precise connectivity with specific glomeruli that receive input from sensory neurons expressing the same receptor type.
Collapse
Affiliation(s)
- Kenneth R Hovis
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Martín-López E, Corona R, López-Mascaraque L. Postnatal characterization of cells in the accessory olfactory bulb of wild type and reeler mice. Front Neuroanat 2012; 6:15. [PMID: 22661929 PMCID: PMC3357593 DOI: 10.3389/fnana.2012.00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/03/2012] [Indexed: 11/19/2022] Open
Abstract
Olfaction is the most relevant chemosensory sense of the rodents. General odors are primarily detected by the main olfactory system while most pheromonal signals are received by the accessory olfactory system. The first relay in the brain occurs in the olfactory bulb, which is subdivided in the main and accessory olfactory bulb (MOB/AOB). Given that the cell generation time is different between AOB and MOB, and the cell characterization of AOB remains limited, the goal of this work was first, the definition of the layering of AOB/MOB and second, the determination of cellular phenotypes in the AOB in a time window corresponding to the early postnatal development. Moreover, since reelin (Reln) deficiency has been related to olfactory learning deficits, we analyzed reeler mice. First, we compared the layering between AOB and MOB at early embryonic stages. Then, cell phenotypes were established using specific neuronal and glial markers as well as the Reln adaptor protein Dab1 to analyse differences in both genetic backgrounds. There was no apparent difference in the cell phenotypes among AOB and MOB or between wild type (wt) and reeler animals. However, a disruption in the granular cell layer of reeler with respect to wt mice was observed. In conclusion, the AOB in Reln-deficient mice showed similar neuronal and glial cell types being only affected the organization of granular neurons.
Collapse
Affiliation(s)
- Eduardo Martín-López
- Department of Molecular, Cellular, and Developmental Neurobiology, Instituto Cajal (CSIC) Madrid, Spain
| | | | | |
Collapse
|
16
|
Timing of neurogenesis is a determinant of olfactory circuitry. Nat Neurosci 2011; 14:331-7. [PMID: 21297629 PMCID: PMC3046046 DOI: 10.1038/nn.2754] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 01/11/2011] [Indexed: 02/07/2023]
Abstract
An odorant receptor map in mammals, that is constructed by the glomerular coalescence of sensory neuron axons in the olfactory bulb, is essential for proper odor information processing. However, how this map is linked with olfactory cortex is unknown. Here, we use a battery of methods, including various markers of cell division in combination with tracers of neuronal connections and time-lapse live imaging, to show that early- and late-generated mouse mitral cells become differentially distributed within the dorsal and ventral subdivisions of the odorant receptor map. In addition, we demonstrate that the late-generated mitral cells extend significantly stronger projections to the olfactory tubercle than the early-generated. Together, these data indicate that the odorant receptor map is developmentally linked to the olfactory cortices in part by the birthdate of mitral cells. This endows different olfactory cortical regions a role to process information from distinct regions of odorant receptor map.
Collapse
|
17
|
Abstract
AbstractThe olfactory system represents a perfect model to study the interactions between the central and peripheral nervous systems in order to establish a neural circuit during early embryonic development. In addition, another important feature of this system is the capability to integrate new cells generated in two neurogenic zones: the olfactory epithelium in the periphery and the wall of the lateral ventricles in the CNS, both during development and adulthood. In all these processes the combination and sequence of specific molecular signals plays a critical role in the wiring of the olfactory axons, as well as the precise location of the incoming cell populations to the olfactory bulb. The purpose of this review is to summarize recent insights into the cellular and molecular events that dictate cell settling position and axonal trajectories from their origin in the olfactory placode to the formation of synapses in the olfactory bulb to ensure rapid and reliable transmission of olfactory information from the nose to the brain.
Collapse
|
18
|
Bejarano-Escobar R, Blasco M, DeGrip WJ, Oyola-Velasco JA, Martín-Partido G, Francisco-Morcillo J. Eye development and retinal differentiation in an altricial fish species, the senegalese sole (Solea senegalensis, Kaup 1858). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:580-605. [DOI: 10.1002/jez.b.21363] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/10/2010] [Accepted: 05/17/2010] [Indexed: 12/19/2022]
|
19
|
Marcucci F, Zou DJ, Firestein S. Sequential onset of presynaptic molecules during olfactory sensory neuron maturation. J Comp Neurol 2009; 516:187-98. [PMID: 19598283 DOI: 10.1002/cne.22094] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Differentiated olfactory sensory neurons express specific presynaptic proteins, including enzymes involved in neurotransmitter transport and proteins involved in the trafficking and release of synaptic vesicles. Studying the regulation of these presynaptic proteins will help to elucidate the presynaptic differentiation process that ultimately leads to synapse formation. It has been postulated that the formation of a synapse between the axons of the sensory neurons and the dendrites of second order neurons in the olfactory bulb is a critical step in the processes of sensory neuron maturation. One approach to study the relationship between synaptogenesis and sensory neuron maturation is to examine the expression patterns of synaptic molecules through the olfactory neuron lineage. To this end we designed specific in situ hybridization probes to target messengers for proteins involved in presynaptic vesicle release. Our findings show that, as they mature, mouse olfactory neurons sequentially express specific presynaptic genes. Furthermore, the different patterns of expression of these presynaptic genes suggest the existence of discrete steps in presynaptic development: genes encoding proteins involved in scaffolding show an early onset of expression, whereas expression of genes encoding proteins involved in the regulation of vesicle release starts later. In particular, the signature molecule for glutamatergic neurons vesicle glutamate transporter 2 shows the latest onset of expression. In addition, contact with the targets in the olfactory bulb is not controlling presynaptic protein gene expression, suggesting that olfactory sensory neurons follow an intrinsic program of development.
Collapse
Affiliation(s)
- Florencia Marcucci
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
20
|
Does the brain connect before the periphery can direct? A comparison of three sensory systems in mice. Brain Res 2009; 1277:115-29. [PMID: 19272365 DOI: 10.1016/j.brainres.2009.02.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/15/2009] [Accepted: 02/23/2009] [Indexed: 12/13/2022]
Abstract
The development of peripheral to central neural connections within the auditory, visual, and olfactory systems of mice is reviewed to address whether peripheral signaling may play an instructive role during initial synapse formation. For each sensory system, developmental times of histogenesis and the earliest ages of innervation and function are considered for peripheral and selected central relays. For the auditory and visual system, anatomical and functional reports indicate that central connections may form prior to synapse formation in the periphery. However, evidence from the olfactory system suggests that the peripheral olfactory sensory neurons form synaptic connections before more central olfactory connections are established. We find that significant gaps in knowledge exist for embryonic development of these systems in mice and that genetic tools have not yet been systematically directed to address these issues.
Collapse
|
21
|
Richard M, Sacquet J, Jourdan F, Pellier-Monnin V. Spatio-temporal expression pattern of receptors for myelin-associated inhibitors in the developing rat olfactory system. Brain Res 2008; 1252:52-65. [PMID: 19063867 DOI: 10.1016/j.brainres.2008.11.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 11/03/2008] [Accepted: 11/10/2008] [Indexed: 12/11/2022]
Abstract
The myelin-associated inhibitory proteins (Nogo-A, MAG and OMgp) that prevent axon regeneration in adult CNS, mediate their effects via a receptor referred as NgR1. Beside their inhibitory role in the adult CNS, Nogo-A and NgR1 might also be functionally involved in the developing nervous system. At the present time, no detailed study is available regarding either the onset of NgR1 expression during development or its spatio-temporal pattern of expression relative to the presence of Nogo-A. Two homologs of NgR1, NgR2 and NgR3, have been recently identified, but their function in the nervous system is still unknown in adult as well as during development. We have examined the spatio-temporal expression pattern of both NgR1, NgR2 and NgR3 mRNAs and corresponding proteins in the developing rat olfactory system using in situ hybridization and immunohistochemistry. From E15-E16 onwards, NgR1 mRNA was expressed by differentiating neurons in both the olfactory epithelium and the olfactory bulb. At all developmental stages, including adult animals, NgR1 protein was preferentially targeted to olfactory axons emerging from the olfactory epithelium. Using double-immunostainings in the postnatal olfactory mucosa, we confirm the neuronal localization of NgR1 and its preferential distribution along the olfactory axons. The NgR2 and NgR3 transcripts and their proteins display similar expression profiles in the olfactory system. Together, our data suggest that, in non-pathological conditions, NgR1 and its homologs may play a role in axon outgrowth in the rat olfactory system and may be relevant for the confinement of neural projections within the developing olfactory bulb.
Collapse
Affiliation(s)
- Marion Richard
- Laboratoire Neurosciences Sensorielles, Comportement, Cognition, CNRS-UMR 5020, Université de Lyon, Lyon 1, F-69366, France.
| | | | | | | |
Collapse
|