1
|
Yu S, Shen Z, Xu H, Xia Z, Peng W, Hu Y, Feng F, Zeng F. Top-down and bottom-up alterations of connectivity patterns of the suprachiasmatic nucleus in chronic insomnia disorder. Eur Arch Psychiatry Clin Neurosci 2024; 274:245-254. [PMID: 36811711 DOI: 10.1007/s00406-022-01534-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/16/2022] [Indexed: 02/24/2023]
Abstract
The importance of the suprachiasmatic nucleus (SCN, also called the master circadian clock) in regulating sleep and wakefulness has been confirmed by multiple animal research. However, human studies of SCN in vivo are still nascent. Recently, the development of resting-state functional magnetic resonance imaging (fMRI) has made it possible to study SCN-related connectivity changes in patients with chronic insomnia disorder (CID). Hence, this study aimed to explore whether sleep-wake circuitry (i.e., communication between the SCN and other brain regions) is disrupted in human insomnia. Forty-two patients with CID and 37 healthy controls (HCs) underwent fMRI scanning. Resting-state functional connectivity (rsFC) and Granger causality analysis (GCA) were performed to find abnormal functional and causal connectivity of the SCN in CID patients. In addition, correlation analyses were conducted to detect associations between features of disrupted connectivity and clinical symptoms. Compared to HCs, CID patients showed enhanced rsFC of the SCN-left dorsolateral prefrontal cortex (DLPFC), as well as reduced rsFC of the SCN-bilateral medial prefrontal cortex (MPFC); these altered cortical regions belong to the "top-down" circuit. Moreover, CID patients exhibited disrupted functional and causal connectivity between the SCN and the locus coeruleus (LC) and the raphe nucleus (RN); these altered subcortical regions constitute the "bottom-up" pathway. Importantly, the decreased causal connectivity from the LC-to-SCN was associated with the duration of disease in CID patients. These findings suggest that the disruption of the SCN-centered "top-down" cognitive process and "bottom-up" wake-promoting pathway may be intimately tied to the neuropathology of CID.
Collapse
Affiliation(s)
- Siyi Yu
- Department of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhifu Shen
- Department of Traditional Chinese Medicine, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Traditional Chinese and Western Medicine, North Sichuan Medical College, Nanchong, China
| | - Hao Xu
- Department of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Xia
- Department of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- Department of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youping Hu
- Department of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fen Feng
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Zeng
- Department of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Mason SL, Junges L, Woldman W, Facer-Childs ER, de Campos BM, Bagshaw AP, Terry JR. Classification of human chronotype based on fMRI network-based statistics. Front Neurosci 2023; 17:1147219. [PMID: 37342462 PMCID: PMC10277557 DOI: 10.3389/fnins.2023.1147219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Chronotype-the relationship between the internal circadian physiology of an individual and the external 24-h light-dark cycle-is increasingly implicated in mental health and cognition. Individuals presenting with a late chronotype have an increased likelihood of developing depression, and can display reduced cognitive performance during the societal 9-5 day. However, the interplay between physiological rhythms and the brain networks that underpin cognition and mental health is not well-understood. To address this issue, we use rs-fMRI collected from 16 people with an early chronotype and 22 people with a late chronotype over three scanning sessions. We develop a classification framework utilizing the Network Based-Statistic methodology, to understand if differentiable information about chronotype is embedded in functional brain networks and how this changes throughout the day. We find evidence of subnetworks throughout the day that differ between extreme chronotypes such that high accuracy can occur, describe rigorous threshold criteria for achieving 97.3% accuracy in the Evening and investigate how the same conditions hinder accuracy for other scanning sessions. Revealing differences in functional brain networks based on extreme chronotype suggests future avenues of research that may ultimately better characterize the relationship between internal physiology, external perturbations, brain networks, and disease.
Collapse
Affiliation(s)
- Sophie L. Mason
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - Leandro Junges
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - Wessel Woldman
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - Elise R. Facer-Childs
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
- Danny Frawley Centre for Health and Wellbeing, Melbourne, VIC, Australia
- Centre for Human Brain Health, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom
| | | | - Andrew P. Bagshaw
- Centre for Human Brain Health, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - John R. Terry
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Cao L, Feng R, Gao Y, Bao W, Zhou Z, Liang K, Hu X, Li H, Zhang L, Li Y, Zhuo L, Huang G, Huang X. Suprachiasmatic nucleus functional connectivity related to insomnia symptoms in adolescents with major depressive disorder. Front Psychiatry 2023; 14:1154095. [PMID: 37260759 PMCID: PMC10228684 DOI: 10.3389/fpsyt.2023.1154095] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
Background Insomnia is a commonly seen symptom in adolescents with major depressive disorder (MDD). The suprachiasmatic nucleus (SCN), which is the circadian rhythm regulation center, plays a crucial role in the regulation of sleep-wake circulation. Nevertheless, how SCN function contributes to the exact neural mechanisms underlying the associations between insomnia and depressive symptoms has not been explored in adolescents. In the current study, we aimed to explore the relationship between SCN functional connectivity (FC) and insomnia symptoms in adolescents with MDD using a seed-based FC method. Methods In the current study, we recruited sixty-eight first-episode drug-naïve adolescents with MDD and classified them into high insomnia (MDD-HI) and low insomnia (MDD-LI) groups according to the sleep disturbance subscale of the Hamilton Depression Rating Scale (HAMD-S). Forty-three age/gender-matched healthy controls (HCs) were also recruited. SCN FC maps were generally for all subjects and compared among three groups using one-way ANOVA with age, gender and adjusted HAMD score as covariates. We used partial correlations to explore associations between altered FC and clinical symptoms, including sleep quality scores. Results Adolescents with MDD showed worse sleep quality, which positively correlated with the severity of depression. Compared to MDD-LI and HCs, MDD-HI adolescents demonstrated significantly decreased FC between the right SCN and bilateral precuneus, and there was no significant difference between the MDD-LI and HC groups. The HAMD-S scores were negatively correlated with bilateral SCN-precuneus connectivity, and the retardation factor score of HAMD was negatively correlated with right SCN-precuneus connectivity. Conclusion The altered FC between the SCN and precuneus may underline the neural mechanism of sleep-related symptoms in depressive adolescents and provide potential targets for personalized treatment strategies.
Collapse
Affiliation(s)
- Lingling Cao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Ruohan Feng
- Department of Radiology, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Yingxue Gao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Weijie Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zilin Zhou
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Kaili Liang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xinyue Hu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hailong Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lianqing Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yang Li
- Department of Psychiatry, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Lihua Zhuo
- Department of Radiology, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Guoping Huang
- Department of Psychiatry, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
4
|
Craig T, Mathieu S, Morden C, Patel M, Matthews L. A prospective multicentre observational study to quantify nocturnal light exposure in intensive care. J Intensive Care Soc 2023; 24:133-138. [PMID: 37260432 PMCID: PMC10227891 DOI: 10.1177/17511437211045325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Background Disrupted circadian rhythms can have a major effect on human physiology and healthcare outcomes, with proven increases in ICU morbidity, mortality and length of stay. Methods We performed a multicentre observational study to study the nocturnal lux exposure of patients in 3 intensive care units. Results The median light intensity recorded was 1 lux over the 6-hour recording period; however, this is deceptive as it hides short periods of high lux. When looked at in shorter time segments of 30 minutes, there were significant periods of lux higher than a crude median, especially in higher acuity patients. There was a positive correlation between acuity (as estimated by SOFA score) and maximum lux (R = 0.479, p = .0001), median lux (R = 0.35, p = .006) and cumulative lux (R = 0.55, p = .000001). There was no relationship between neighbouring patient acuity and lux. Conclusions Clinicians should practice vigilance at night to provide optimal environmental conditions for patients to minimise potential harm.
Collapse
Affiliation(s)
- Thomas Craig
- Anaesthetics Speciality Registrar,
Addenbrookes Hospital, Cambridge University Hospitals NHS
Foundation Trust, Cambridgeshire, UK
| | - Steve Mathieu
- Intensive Care Consultant, Portsmouth University Hospitals NHS
Trust, Portsmouth, UK
| | - Clare Morden
- Emergency Medicine and Intensive
Care Speciality Registrar, Portsmouth University Hospitals NHS
Trust, Portsmouth, UK
| | - Mitul Patel
- Anaesthetics Trainee, Portsmouth University Hospitals NHS
Trust, Portsmouth, UK
| | | |
Collapse
|
5
|
Abstract
SignificanceThe function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but indirect measures in humans suggest blue light is key. We performed functional MRI studies in human subjects with unprecedented spatial resolution to investigate color sensitivity of our clock. Here, we show that narrowband blue, green, and orange light were all effective in changing neuronal activity of the clock. While the clock of nocturnal rodents is excited by light, the human clock responds with a decrease in neuronal activity as indicated by a negative BOLD response. The sensitivity of the clock to multiple colors should be integrated in light therapy aimed to strengthen our 24-h rhythms.
Collapse
|
6
|
Chen Z, Zhao S, Tian S, Yan R, Wang H, Wang X, Zhu R, Xia Y, Yao Z, Lu Q. Diurnal mood variation symptoms in major depressive disorder associated with evening chronotype: Evidence from a neuroimaging study. J Affect Disord 2022; 298:151-159. [PMID: 34715183 DOI: 10.1016/j.jad.2021.10.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/16/2021] [Accepted: 10/23/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is often accompanied with classic diurnal mood variation (DMV) symptoms. Patients with DMV symptoms feel a mood improvement and prefer activities at dusk or in the evening, which is consistent with the evening chronotype. Their neural alterations are unclear. In this study, we aimed to explore the neuropathological mechanisms underlying the circadian rhythm of mood and the association with chronotype in MDD. METHODS A total of 126 depressed patients, including 48 with DMV, 78 without, and 67 age/gender-matched healthy controls (HC) were recruited and underwent a resting-state functional magnetic resonance imaging. Spontaneous neural activity was investigated using amplitude of low-frequency fluctuation (ALFF) and region of interest (ROI)-based functional connectivity (FC) analyses were conducted. The Morningness-Eveningness Questionnaire (MEQ) was utilized to evaluate participant chronotypes and Pearson correlations were calculated between altered ALFF/FC values and MEQ scores in patients with MDD. RESULTS Compared with NMV, DMV group exhibited lower MEQ scores, and increased ALFF values in the right orbital superior frontal gyrus (oSFG). We observed that increased FC between the left suprachiasmatic nucleus (SCN) and supramarginal gyrus (SMG). ALFF in the oSFG and FC of rSCN-SMG were negatively correlated with MEQ scores. LIMITATION Some people's chronotypes information is missing. CONCLUSION Patients with DMV tended to be evening type and exhibited abnormal brain functions in frontal lobes. The synergistic changes between frontotemporal lobe, SCN-SMG maybe the characteristic of patients with DMV symptoms.
Collapse
Affiliation(s)
- Zhilu Chen
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuai Zhao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shui Tian
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Rui Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Huan Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xumiao Wang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Rongxin Zhu
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yi Xia
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, 210096, China.
| |
Collapse
|
7
|
Wu X, Bai F, Wang Y, Zhang L, Liu L, Chen Y, Li H, Zhang T. Circadian Rhythm Disorders and Corresponding Functional Brain Abnormalities in Young Female Nurses: A Preliminary Study. Front Neurol 2021; 12:664610. [PMID: 33995261 PMCID: PMC8120025 DOI: 10.3389/fneur.2021.664610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Shift work is associated with a decrease in melatonin level and perturbation of the circadian rhythm; however, it is unknown if these lead to functional brain changes. In this study, we investigated whether circadian rhythm disorders caused by shift work are related to changes in brain functional connectivity (FC) and regional homogeneity (ReHo) using whole-brain resting-state functional magnetic resonance imaging (fMRI). Methods: This prospective case-control study included nine female night shift nurses and nine age-matched female day work nurses with normal sleep rhythms. To assess sleep quality and mood, participants were asked to complete questionnaires. Serum melatonin and cortisol levels were measured. ReHo of whole-brain resting-state function and seed-based FC of the bilateral hypothalamus were compared between groups. Variables that differed significantly between groups were used to examine the association between questionnaire scores and hormone levels and fMRI data. Results: The night shift nurses had significantly lower sleep quality and melatonin levels; lower ReHo activation in the bilateral cerebellar hemisphere and higher ReHo in the bilateral occipital lobe and left parietal lobe; and higher FC from the hypothalamus to the right cingulate gyrus, right putamen, and vermis than did the day shift nurses. Activation of the right cerebellar hemisphere left superior parietal gyrus, and the right superior occipital gyrus was correlated with sleep quality scores. Moreover, activation of the right cerebellar hemisphere (r = 0.583, P = 0.011) was correlated with melatonin levels, and higher sleepiness scores were associated with stronger FC between the hypothalamus and vermis (r = 0.501, P = 0.034). Conclusions: Circadian rhythm disorder caused by night shift work can lead to a decrease in sleep quality and melatonin level, as well as a series of changes in brain FC and ReHo.
Collapse
Affiliation(s)
- Xiaoli Wu
- Department of Neurorehabilitation, Rehabilitation Medicine of Capital Medical University, China Rehabilitation Research Centre, Beijing, China
| | - Fan Bai
- China Rehabilitation Science Institute of China Rehabilitation Research Centre, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yunlei Wang
- China Rehabilitation Science Institute of China Rehabilitation Research Centre, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Lu Zhang
- Department of Neurorehabilitation, Rehabilitation Medicine of Capital Medical University, China Rehabilitation Research Centre, Beijing, China
| | - Lixu Liu
- Department of Neurorehabilitation, Rehabilitation Medicine of Capital Medical University, China Rehabilitation Research Centre, Beijing, China
| | - Yudong Chen
- Department of Neurorehabilitation, Rehabilitation Medicine of Capital Medical University, China Rehabilitation Research Centre, Beijing, China
| | - Hanzhi Li
- Department of Neurorehabilitation, Rehabilitation Medicine of Capital Medical University, China Rehabilitation Research Centre, Beijing, China
| | - Tong Zhang
- Department of Neurorehabilitation, Rehabilitation Medicine of Capital Medical University, China Rehabilitation Research Centre, Beijing, China.,China Rehabilitation Science Institute of China Rehabilitation Research Centre, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
8
|
Chen Z, Tao S, Zhu R, Tian S, Sun Y, Wang H, Yan R, Shao J, Zhang Y, Zhang J, Yao Z, Lu Q. Aberrant functional connectivity between the suprachiasmatic nucleus and the superior temporal gyrus: Bridging RORA gene polymorphism with diurnal mood variation in major depressive disorder. J Psychiatr Res 2021; 132:123-130. [PMID: 33091686 DOI: 10.1016/j.jpsychires.2020.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
Diurnal mood variation (DMV), a common symptom of major depressive disorder (MDD), is associated with circadian related genes and dysregulation of the suprachiasmatic nucleus (SCN). Previous research confirmed that the RORA gene is involved in the regulation of circadian rhythms. In this study, we hypothesized that polymorphisms of RORA may affect DMV symptoms of MDD through functional changes in the SCN. A total of 208 patients diagnosed with depression and 120 control subjects were enrolled and underwent a resting-state functional magnetic resonance imaging (rs-fMRI). Blood samples were collected and genotyping of 9 RORA gene SNPs were performed using next-generation sequencing technology. Patients were categorized as an AA genotype or C allele carriers based on RORA rs72752802 polymorphism. SCN-seed functional connectivity (FC) was compared between the two groups and correlation with severity of DMV was analyzed. Finally, a mediation analysis was performed to further determine FC intermediary effects. We observed that rs72752802 was significantly associated with patients' DMV symptoms. C allele carriers of rs72752802 showed significantly decreased FC between the right SCN and right superior temporal gyrus (rSTG). This was also correlated with DMV symptoms. In addition, the rs72752802 SNP influenced DMV symptoms through intermediary effects of SCN-rSTG connectivity. The study presented here provides a neurological and genetic basis for understanding depressed patients experiencing DMV.
Collapse
Affiliation(s)
- Zhilu Chen
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shiwan Tao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Rongxin Zhu
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shui Tian
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, 210096, China
| | - Yurong Sun
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, 210096, China
| | - Huan Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, 210096, China
| | - Rui Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Junneng Shao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, 210096, China
| | - Yujie Zhang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, 210096, China
| | - Jie Zhang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, 210096, China.
| |
Collapse
|
9
|
Afsar B, Elsurer Afsar R, Sag AA, Kanbay A, Korkmaz H, Cipolla-Neto J, Covic A, Ortiz A, Kanbay M. Sweet dreams: therapeutic insights, targeting imaging and physiologic evidence linking sleep, melatonin and diabetic nephropathy. Clin Kidney J 2020; 13:522-530. [PMID: 32905249 PMCID: PMC7467577 DOI: 10.1093/ckj/sfz198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Melatonin is the main biochronologic molecular mediator of circadian rhythm and sleep. It is also a powerful antioxidant and has roles in other physiologic pathways. Melatonin deficiency is associated with metabolic derangements including glucose and cholesterol dysregulation, hypertension, disordered sleep and even cancer, likely due to altered immunity. Diabetic nephropathy (DN) is a key microvascular complication of both type 1 and 2 diabetes. DN is the end result of a complex combination of metabolic, haemodynamic, oxidative and inflammatory factors. Interestingly, these same factors have been linked to melatonin deficiency. This report will collate in a clinician-oriented fashion the mechanistic link between melatonin deficiency and factors contributing to DN.
Collapse
Affiliation(s)
- Baris Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Rengin Elsurer Afsar
- Division of Nephrology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Alan A Sag
- Division of Vascular and Interventional Radiology, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Asiye Kanbay
- Department of Pulmonary Medicine, Istanbul Medeniyet University School of Medicine, Istanbul, Turkey
| | - Hakan Korkmaz
- Division of Endocrinology, Department of Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - José Cipolla-Neto
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Adrian Covic
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Nephrology Clinic, Dialysis and Renal Transplant Center, ‘C.I. PARHON’ University Hospital and ‘Grigore T. Popa’ University of Medicine, Iasi, Romania
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
10
|
Liu M, Meng Y, Wei W, Li T. [Relationship between circadian rhythm related brain dysfunction and bipolar disorder]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:822-827. [PMID: 32895204 DOI: 10.12122/j.issn.1673-4254.2020.06.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the changes of functional connectivity (FC) in the suprachiasmatic nucleus (SCN) of patients with bipolar disorder and perform a cluster analysis of patients with bipolar disorder based on FC. METHODS The study recruited 138 patients with bipolar disorder (BD) diagnosed according to the 4th edition of Diagnostic and Statistical Manual of Mental Disorders IV (DSM-IV) and 150 healthy control subjects. All the participants underwent resting-state functional magnetic resonance brain scans. DPARSF software was used to generate the FC diagram of the SCN. Based on the FC data, principal components analysis (PCA) and k-means in scikit-learn 0.20.1 were used for cluster analysis of the patients with bipolar disorder. RESULTS Compared with the healthy controls, the patients showed enhanced functional connections between the SCN and the paraventricular nucleus and between the SCN and the dorsomedial hypothalamus nucleus. Based on these FC values, the optimal cluster of unsupervised k-means machine learning for bipolar disorder was 2, and the Silhouette coefficient was 0.49. CONCLUSIONS Patients with bipolar disorder have changes in the FC of the SCN, and the FC of the rhythm pathway can divide bipolar disorder into two subtypes, suggesting that biological rhythm is one of the potential biomarkers of bipolar disorder.
Collapse
Affiliation(s)
- Manli Liu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yajing Meng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Wei
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tao Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Duda M, Domagalik A, Orlowska-Feuer P, Krzysztynska-Kuleta O, Beldzik E, Smyk MK, Stachurska A, Oginska H, Jeczmien-Lazur JS, Fafrowicz M, Marek T, Lewandowski MH, Sarna T. Melanopsin: From a small molecule to brain functions. Neurosci Biobehav Rev 2020; 113:190-203. [DOI: 10.1016/j.neubiorev.2020.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/29/2022]
|
12
|
Abstract
Circadian rhythms are driven by a transcription-translation feedback loop that separates anabolic and catabolic processes across the Earth's 24-h light-dark cycle. Central pacemaker neurons that perceive light entrain a distributed clock network and are closely juxtaposed with hypothalamic neurons involved in regulation of sleep/wake and fast/feeding states. Gaps remain in identifying how pacemaker and extrapacemaker neurons communicate with energy-sensing neurons and the distinct role of circuit interactions versus transcriptionally driven cell-autonomous clocks in the timing of organismal bioenergetics. In this review, we discuss the reciprocal relationship through which the central clock drives appetitive behavior and metabolic homeostasis and the pathways through which nutrient state and sleep/wake behavior affect central clock function.
Collapse
Affiliation(s)
- Jonathan Cedernaes
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Nathan Waldeck
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Joseph Bass
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
13
|
McGlashan EM, Poudel GR, Vidafar P, Drummond SPA, Cain SW. Imaging Individual Differences in the Response of the Human Suprachiasmatic Area to Light. Front Neurol 2018; 9:1022. [PMID: 30555405 PMCID: PMC6281828 DOI: 10.3389/fneur.2018.01022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/13/2018] [Indexed: 01/10/2023] Open
Abstract
Circadian disruption is associated with poor health outcomes, including sleep and mood disorders. The suprachiasmatic nucleus (SCN) of the anterior hypothalamus acts as the master biological clock in mammals, regulating circadian rhythms throughout the body. The clock is synchronized to the day/night cycle via retinal light exposure. The BOLD-fMRI response of the human suprachiasmatic area to light has been shown to be greater in the night than in the day, consistent with the known sensitivity of the clock to light at night. Whether the BOLD-fMRI response of the human suprachiasmatic area to light is related to a functional outcome has not been demonstrated. In a pilot study (n = 10), we investigated suprachiasmatic area activation in response to light in a 30 s block-paradigm of lights on (100 lux) and lights off (< 1 lux) using the BOLD-fMRI response, compared to each participant's melatonin suppression response to moderate indoor light (100 lux). We found a significant correlation between activation in the suprachiasmatic area in response to light in the scanner and melatonin suppression, with increased melatonin suppression being associated with increased suprachiasmatic area activation in response to the same light level. These preliminary findings are a first step toward using imaging techniques to measure individual differences in circadian light sensitivity, a measure that may have clinical relevance in understanding vulnerability in disorders that are influenced by circadian disruption.
Collapse
Affiliation(s)
- Elise M McGlashan
- Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Govinda R Poudel
- Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia.,Sydney Imaging, The University of Sydney, Camperdown, NSW, Australia.,Mary Mackillop Institute of Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Parisa Vidafar
- Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Sean P A Drummond
- Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Sean W Cain
- Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Tao S, Chattun MR, Yan R, Geng J, Zhu R, Shao J, Lu Q, Yao Z. TPH-2 Gene Polymorphism in Major Depressive Disorder Patients With Early-Wakening Symptom. Front Neurosci 2018; 12:827. [PMID: 30519155 PMCID: PMC6251472 DOI: 10.3389/fnins.2018.00827] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Sleep disturbances, such as early wakening, are frequently observed in patients with major depressive disorder (MDD). The suprachiasmatic nuclei (SCN), which controls circadian rhythm, is innervated by the raphe nucleus, a region where Tryptophan hydroxylase-2 (TPH-2) gene is primarily expressed. Although TPH-2 is often implicated in the pathophysiology of depression, few studies have applied a genetic and imaging technique to investigate the mechanism of early wakening symptom in MDD. We hypothesized that TPH-2 variants could influence the function of SCN in MDD patients with early wakening symptom. Methods: One hundred and eighty five MDD patients (62 patients without early wakening and 123 patients with early wakening) and 64 healthy controls participated in this study. Blood samples were collected and genotyping of rs4290270, rs4570625, rs11178998, rs7305115, rs41317118, and rs17110747 were performed by next-generation sequencing (NGS) technology. Logistic regression model was employed for genetic data analysis using the PLINK software. Based on the allele type, rs4290270, which was significant in the early wakening MDD group, participants were categorized into two groups (A allele and T carrier). All patients underwent whole brain resting-state functional magnetic resonance imaging (rs-fMRI) scanning and a voxel-wise functional connectivity comparison was performed between the groups. Results: rs4290270 was significantly linked to MDD patients who exhibited early wakening symptom. The functional connectivities of the right SCN with the right fusiform gyrus and right middle frontal gyrus were increased in the T carrier group compared to the A allele group. In addition, the functional connectivities of the left SCN with the right lingual gyrus and left calcarine sulcus were decreased in the T carrier group compared to the A allele group. Conclusion: These findings suggested that the TPH-2 gene variant, rs4290270, affected the circadian regulating function of SCN. The altered functional connectivities, observed between the SCN and right fusiform gyrus, right middle frontal gyrus, the right lingual gyrus and left calcarine sulcus, could highlight the neural mechanism by which SCN induces sleep-related circadian disruption in T carrier MDD patients. Hence, rs4290270 could potentially serve as a reliable biomarker to identify MDD patients with early wakening symptom.
Collapse
Affiliation(s)
- Shiwan Tao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Mohammad Ridwan Chattun
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Yan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiting Geng
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Rongxin Zhu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Junneng Shao
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science, Southeast University, Nanjing, China
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science, Southeast University, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Medical School of Nanjing University, Nanjing Brain Hospital, Nanjing, China
| |
Collapse
|
15
|
Pagel JF, Pandi-Perumal SR, Monti JM. Treating insomnia with medications. SLEEP SCIENCE AND PRACTICE 2018. [DOI: 10.1186/s41606-018-0025-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
16
|
Craig T, Mathieu S. CANDLE: The critical analysis of the nocturnal distribution of light exposure - A prospective pilot study quantifying the nocturnal light intensity on a critical care unit. J Intensive Care Soc 2017; 19:196-200. [PMID: 30159010 DOI: 10.1177/1751143717748095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Patients with critical illness have disrupted circadian rhythms, which can lead to increased morbidity, mortality and length of intensive care unit stay. Light intensity within the intensive care unit influences the circadian rhythm and may therefore impact on patient outcome. We performed an observational single-centre pilot study monitoring nocturnal light exposure of intensive care unit patients between November and December 2016. As there are currently no medical guidance on recommended light levels, we audited our findings against building regulation standards. The median light intensity was 1.5 lux, which is below the 20 lux standards; however, there were significant outliers. There was positive correlation between patient illness severity based on SOFA score and maximum lux (R = 0.45, P = 0.026); however, there was no relationship between patient illness severity and median lux exposure (R = 0.23, P = 0.28). As illness severity increased so did the time spent greater than 20 lux (R = 0.59, P = 0.0021), and the individual occasions where lux breached the 20 lux limit (R = 0.52, P = 0.009). There was no relationship between illness severity of neighbouring patients and maximum lux (R = -0.11, P = 0.69) or neighbouring illness severity and median lux (R = -0.04, P = 0.87). This preliminary work will form the basis of future projects, including national guidance and evaluating the impact of environmental light on patient-centred outcomes.
Collapse
|
17
|
Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus. Neural Plast 2017; 2017:1504507. [PMID: 29230328 PMCID: PMC5694588 DOI: 10.1155/2017/1504507] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/28/2022] Open
Abstract
Circadian rhythm disturbances are a common symptom among individuals with mood disorders. The suprachiasmatic nucleus (SCN), in the ventral part of the anterior hypothalamus, orchestrates physiological and behavioral circadian rhythms. The SCN consists of self-sustaining oscillators and receives photic and nonphotic cues, which entrain the SCN to the external environment. In turn, through synaptic and hormonal mechanisms, the SCN can drive and synchronize circadian rhythms in extra-SCN brain regions and peripheral tissues. Thus, genetic or environmental perturbations of SCN rhythms could disrupt brain regions more closely related to mood regulation and cause mood disturbances. Here, we review clinical and preclinical studies that provide evidence both for and against a causal role for the SCN in mood disorders.
Collapse
|
18
|
Kyeong S, Choi SH, Eun Shin J, Lee WS, Yang KH, Chung TS, Kim JJ. Functional connectivity of the circadian clock and neural substrates of sleep-wake disturbance in delirium. Psychiatry Res Neuroimaging 2017; 264:10-12. [PMID: 28390292 DOI: 10.1016/j.pscychresns.2017.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 01/06/2023]
Abstract
A possible mechanism of disrupted circadian rhythms in delirium was identified using resting-state functional connectivity. Thirty-four delirious patients and 38 non-delirious controls were scanned for resting-state functional MRI. Seed-based connectivity of the suprachiasmatic nucleus was compared between the groups. In delirious patients functional connectivity from the circadian clock was increased to the dorsal anterior cingulate cortex and decreased to the posterior cingulate cortex, parahippocampal gyrus, cerebellum, and thalamus. A dysregulation of the default mode network and mental coordination processing areas by the circadian clock may be the underlying pathophysiology of sleep-wake cycle disturbance and symptom fluctuation in delirium.
Collapse
Affiliation(s)
- Sunghyon Kyeong
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo-Hee Choi
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Eun Shin
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woo Suk Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyu Hyun Yang
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Sub Chung
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Jin Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Fang Z, Rao H. Imaging homeostatic sleep pressure and circadian rhythm in the human brain. J Thorac Dis 2017; 9:E495-E498. [PMID: 28616320 PMCID: PMC5465131 DOI: 10.21037/jtd.2017.03.168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/17/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Zhuo Fang
- Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai 200000, China
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hengyi Rao
- Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai 200000, China
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Yamanaka Y, Hashimoto S, Masubuchi S, Natsubori A, Nishide SY, Honma S, Honma KI. Differential regulation of circadian melatonin rhythm and sleep-wake cycle by bright lights and nonphotic time cues in humans. Am J Physiol Regul Integr Comp Physiol 2014; 307:R546-57. [PMID: 24944250 DOI: 10.1152/ajpregu.00087.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous study demonstrated that physical exercise under dim lights (<10 lux) accelerated reentrainment of the sleep-wake cycle but not the circadian melatonin rhythm to an 8-h phase-advanced sleep schedule, indicating differential effects of physical exercise on the human circadian system. The present study examined the effects of bright light (>5,000 lux) on exercise-induced acceleration of reentrainment because timed bright lights are known to reset the circadian pacemaker. Fifteen male subjects spent 12 days in temporal isolation. The sleep schedule was advanced from habitual sleep times by 8 h for 4 days, which was followed by a free-run session. In the shift session, bright lights were given during the waking time. Subjects in the exercise group performed 2-h bicycle running twice a day. Subjects in the control kept quiet. As a result, the sleep-wake cycle was fully entrained by the shift schedule in both groups. Bright light may strengthen the resetting potency of the shift schedule. By contrast, the circadian melatonin rhythm was phase-advanced by 6.9 h on average in the exercise group but only by 2.0 h in the control. Thus physical exercise prevented otherwise unavoidable internal desynchronization. Polysomnographical analyses revealed that deterioration of sleep quality by shift schedule was protected by physical exercise under bright lights. These findings indicate differential regulation of sleep-wake cycle and circadian melatonin rhythm by physical exercise in humans. The melatonin rhythm is regulated primarily by bright lights, whereas the sleep-wake cycle is by nonphotic time cues, such as physical exercise and shift schedule.
Collapse
Affiliation(s)
| | - Satoko Hashimoto
- Research Center for Cooperative Projects, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoru Masubuchi
- Research Center for Cooperative Projects, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
21
|
Abstract
Light has profoundly influenced the evolution of life on earth. As widely appreciated, light enables us to generate images of our environment. However, light - through intrinsically photosensitive retinal ganglion cells (ipRGCs) - also influences behaviours that are essential for our health and quality of life but are independent of image formation. These include the synchronization of the circadian clock to the solar day, tracking of seasonal changes and the regulation of sleep. Irregular light environments lead to problems in circadian rhythms and sleep, which eventually cause mood and learning deficits. Recently, it was found that irregular light can also directly affect mood and learning without producing major disruptions in circadian rhythms and sleep. In this Review, we discuss the indirect and direct influence of light on mood and learning, and provide a model for how light, the circadian clock and sleep interact to influence mood and cognitive functions.
Collapse
|
22
|
Goel N, Basner M, Rao H, Dinges DF. Circadian rhythms, sleep deprivation, and human performance. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:155-90. [PMID: 23899598 DOI: 10.1016/b978-0-12-396971-2.00007-5] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Much of the current science on, and mathematical modeling of, dynamic changes in human performance within and between days is dominated by the two-process model of sleep-wake regulation, which posits a neurobiological drive for sleep that varies homeostatically (increasing as a saturating exponential during wakefulness and decreasing in a like manner during sleep), and a circadian process that neurobiologically modulates both the homeostatic drive for sleep and waking alertness and performance. Endogenous circadian rhythms in neurobehavioral functions, including physiological alertness and cognitive performance, have been demonstrated using special laboratory protocols that reveal the interaction of the biological clock with the sleep homeostatic drive. Individual differences in circadian rhythms and genetic and other components underlying such differences also influence waking neurobehavioral functions. Both acute total sleep deprivation and chronic sleep restriction increase homeostatic sleep drive and degrade waking neurobehavioral functions as reflected in sleepiness, attention, cognitive speed, and memory. Recent evidence indicating a high degree of stability in neurobehavioral responses to sleep loss suggests that these trait-like individual differences are phenotypic and likely involve genetic components, including circadian genes. Recent experiments have revealed both sleep homeostatic and circadian effects on brain metabolism and neural activation. Investigation of the neural and genetic mechanisms underlying the dynamically complex interaction between sleep homeostasis and circadian systems is beginning. A key goal of this work is to identify biomarkers that accurately predict human performance in situations in which the circadian and sleep homeostatic systems are perturbed.
Collapse
Affiliation(s)
- Namni Goel
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
23
|
Phillips AJK, Robinson PA, Klerman EB. Arousal state feedback as a potential physiological generator of the ultradian REM/NREM sleep cycle. J Theor Biol 2012; 319:75-87. [PMID: 23220346 DOI: 10.1016/j.jtbi.2012.11.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
Abstract
Human sleep episodes are characterized by an approximately 90-min ultradian oscillation between rapid eye movement (REM) and non-REM (NREM) sleep stages. The source of this oscillation is not known. Pacemaker mechanisms for this rhythm have been proposed, such as a reciprocal interaction network, but these fail to account for documented homeostatic regulation of both sleep stages. Here, two candidate mechanisms are investigated using a simple model that has stable states corresponding to Wake, REM sleep, and NREM sleep. Unlike other models of the ultradian rhythm, this model of sleep dynamics does not include an ultradian pacemaker, nor does it invoke a hypothetical homeostatic process that exists purely to drive ultradian rhythms. Instead, only two inputs are included: the homeostatic drive for Sleep and the circadian drive for Wake. These two inputs have been the basis for the most influential Sleep/Wake models, but have not previously been identified as possible ultradian rhythm generators. Using the model, realistic ultradian rhythms are generated by arousal state feedback to either the homeostatic or circadian drive. For the proposed 'homeostatic mechanism', homeostatic pressure increases in Wake and REM sleep, and decreases in NREM sleep. For the proposed 'circadian mechanism', the circadian drive is up-regulated in Wake and REM sleep, and is down-regulated in NREM sleep. The two mechanisms are complementary in the features they capture. The homeostatic mechanism reproduces experimentally observed rebounds in NREM sleep duration and intensity following total sleep deprivation, and rebounds in both NREM sleep intensity and REM sleep duration following selective REM sleep deprivation. The circadian mechanism does not reproduce sleep state rebounds, but more accurately reproduces the temporal patterns observed in a normal night of sleep. These findings have important implications in terms of sleep physiology and they provide a parsimonious explanation for the observed ultradian rhythm of REM/NREM sleep.
Collapse
Affiliation(s)
- A J K Phillips
- Division of Sleep Medicine, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave., Suite 438, Boston, MA 02115, USA.
| | | | | |
Collapse
|
24
|
Bókkon I, Vimal RLP, Wang C, Dai J, Salari V, Grass F, Antal I. Visible light induced ocular delayed bioluminescence as a possible origin of negative afterimage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 103:192-9. [PMID: 21463953 DOI: 10.1016/j.jphotobiol.2011.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 02/24/2011] [Accepted: 03/15/2011] [Indexed: 12/11/2022]
Abstract
The delayed luminescence of biological tissues is an ultraweak reemission of absorbed photons after exposure to external monochromatic or white light illumination. Recently, Wang, Bókkon, Dai and Antal (2011) [10] presented the first experimental proof of the existence of spontaneous ultraweak biophoton emission and visible light induced delayed ultraweak photon emission from in vitro freshly isolated rat's whole eye, lens, vitreous humor and retina. Here, we suggest that the photobiophysical source of negative afterimage can also occur within the eye by delayed bioluminescent photons. In other words, when we stare at a colored (or white) image for few seconds, external photons can induce excited electronic states within different parts of the eye that is followed by a delayed reemission of absorbed photons for several seconds. Finally, these reemitted photons can be absorbed by non-bleached photoreceptors that produce a negative afterimage. Although this suggests the photobiophysical source of negative afterimages is related retinal mechanisms, cortical neurons have also essential contribution in the interpretation and modulation of negative afterimages.
Collapse
Affiliation(s)
- I Bókkon
- Doctoral School of Pharmaceutical and Pharmacological Sciences, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
25
|
Lemaire JJ, Frew AJ, McArthur D, Gorgulho AA, Alger JR, Salomon N, Chen C, Behnke EJ, De Salles AAF. White matter connectivity of human hypothalamus. Brain Res 2011; 1371:43-64. [PMID: 21122799 DOI: 10.1016/j.brainres.2010.11.072] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 11/02/2010] [Accepted: 11/19/2010] [Indexed: 11/28/2022]
Affiliation(s)
- Jean-Jacques Lemaire
- Univ Clermont 1, UFR Médecine, EA3295, Equipe de Recherche en signal et Imagerie Médicale, Clermont-Ferrand, F-63001, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pandi-Perumal SR, Spence DW, Brown GM, Thorpy MJ. Great challenges to sleep medicine: problems and paradigms. Front Neurol 2010; 1:7. [PMID: 21206765 PMCID: PMC3009452 DOI: 10.3389/fneur.2010.00007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 03/30/2010] [Indexed: 11/13/2022] Open
|