1
|
Giustiniani A, Quartarone A. Defining the concept of reserve in the motor domain: a systematic review. Front Neurosci 2024; 18:1403065. [PMID: 38745935 PMCID: PMC11091373 DOI: 10.3389/fnins.2024.1403065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
A reserve in the motor domain may underlie the capacity exhibited by some patients to maintain motor functionality in the face of a certain level of disease. This form of "motor reserve" (MR) could include cortical, cerebellar, and muscular processes. However, a systematic definition has not been provided yet. Clarifying this concept in healthy individuals and patients would be crucial for implementing prevention strategies and rehabilitation protocols. Due to its wide application in the assessment of motor system functioning, non-invasive brain stimulation (NIBS) may support such definition. Here, studies focusing on reserve in the motor domain and studies using NIBS were revised. Current literature highlights the ability of the motor system to create a reserve and a possible role for NIBS. MR could include several mechanisms occurring in the brain, cerebellum, and muscles, and NIBS may support the understanding of such mechanisms.
Collapse
|
2
|
Arleo A, Bareš M, Bernard JA, Bogoian HR, Bruchhage MMK, Bryant P, Carlson ES, Chan CCH, Chen LK, Chung CP, Dotson VM, Filip P, Guell X, Habas C, Jacobs HIL, Kakei S, Lee TMC, Leggio M, Misiura M, Mitoma H, Olivito G, Ramanoël S, Rezaee Z, Samstag CL, Schmahmann JD, Sekiyama K, Wong CHY, Yamashita M, Manto M. Consensus Paper: Cerebellum and Ageing. CEREBELLUM (LONDON, ENGLAND) 2024; 23:802-832. [PMID: 37428408 PMCID: PMC10776824 DOI: 10.1007/s12311-023-01577-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Given the key roles of the cerebellum in motor, cognitive, and affective operations and given the decline of brain functions with aging, cerebellar circuitry is attracting the attention of the scientific community. The cerebellum plays a key role in timing aspects of both motor and cognitive operations, including for complex tasks such as spatial navigation. Anatomically, the cerebellum is connected with the basal ganglia via disynaptic loops, and it receives inputs from nearly every region in the cerebral cortex. The current leading hypothesis is that the cerebellum builds internal models and facilitates automatic behaviors through multiple interactions with the cerebral cortex, basal ganglia and spinal cord. The cerebellum undergoes structural and functional changes with aging, being involved in mobility frailty and related cognitive impairment as observed in the physio-cognitive decline syndrome (PCDS) affecting older, functionally-preserved adults who show slowness and/or weakness. Reductions in cerebellar volume accompany aging and are at least correlated with cognitive decline. There is a strongly negative correlation between cerebellar volume and age in cross-sectional studies, often mirrored by a reduced performance in motor tasks. Still, predictive motor timing scores remain stable over various age groups despite marked cerebellar atrophy. The cerebello-frontal network could play a significant role in processing speed and impaired cerebellar function due to aging might be compensated by increasing frontal activity to optimize processing speed in the elderly. For cognitive operations, decreased functional connectivity of the default mode network (DMN) is correlated with lower performances. Neuroimaging studies highlight that the cerebellum might be involved in the cognitive decline occurring in Alzheimer's disease (AD), independently of contributions of the cerebral cortex. Grey matter volume loss in AD is distinct from that seen in normal aging, occurring initially in cerebellar posterior lobe regions, and is associated with neuronal, synaptic and beta-amyloid neuropathology. Regarding depression, structural imaging studies have identified a relationship between depressive symptoms and cerebellar gray matter volume. In particular, major depressive disorder (MDD) and higher depressive symptom burden are associated with smaller gray matter volumes in the total cerebellum as well as the posterior cerebellum, vermis, and posterior Crus I. From the genetic/epigenetic standpoint, prominent DNA methylation changes in the cerebellum with aging are both in the form of hypo- and hyper-methylation, and the presumably increased/decreased expression of certain genes might impact on motor coordination. Training influences motor skills and lifelong practice might contribute to structural maintenance of the cerebellum in old age, reducing loss of grey matter volume and therefore contributing to the maintenance of cerebellar reserve. Non-invasive cerebellar stimulation techniques are increasingly being applied to enhance cerebellar functions related to motor, cognitive, and affective operations. They might enhance cerebellar reserve in the elderly. In conclusion, macroscopic and microscopic changes occur in the cerebellum during the lifespan, with changes in structural and functional connectivity with both the cerebral cortex and basal ganglia. With the aging of the population and the impact of aging on quality of life, the panel of experts considers that there is a huge need to clarify how the effects of aging on the cerebellar circuitry modify specific motor, cognitive, and affective operations both in normal subjects and in brain disorders such as AD or MDD, with the goal of preventing symptoms or improving the motor, cognitive, and affective symptoms.
Collapse
Affiliation(s)
- Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Martin Bareš
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's Teaching Hospital, Brno, Czech Republic
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Hannah R Bogoian
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Muriel M K Bruchhage
- Department of Psychology, Stavanger University, Institute of Social Sciences, Kjell Arholms Gate 41, 4021, Stavanger, Norway
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Centre for Neuroimaging Sciences, Box 89, De Crespigny Park, London, PO, SE5 8AF, UK
- Rhode Island Hospital, Department for Diagnostic Imaging, 1 Hoppin St, Providence, RI, 02903, USA
- Department of Paediatrics, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Patrick Bryant
- Freie Universität Berlin, Fachbereich Mathematik und Informatik, Arnimallee 12, 14195, Berlin, Germany
| | - Erik S Carlson
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Chetwyn C H Chan
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Center for Geriatric and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital), Taipei, Taiwan
| | - Chih-Ping Chung
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Gerontology Institute, Georgia State University, Atlanta, GA, USA
| | - Pavel Filip
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Xavier Guell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christophe Habas
- CHNO Des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012, Paris, France
- Université Versailles St Quentin en Yvelines, Paris, France
| | - Heidi I L Jacobs
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Maria Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- Université Côte d'Azur, LAMHESS, Nice, France
| | - Zeynab Rezaee
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, USA
| | - Colby L Samstag
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ataxia Center, Cognitive Behavioural neurology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaoru Sekiyama
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Clive H Y Wong
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Masatoshi Yamashita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium.
- Service des Neurosciences, University of Mons, Mons, Belgium.
| |
Collapse
|
3
|
Zeller D, Hiew S, Odorfer T, Nguemeni C. Considering the response in addition to the challenge - a narrative review in appraisal of a motor reserve framework. Aging (Albany NY) 2024; 16:5772-5791. [PMID: 38499388 PMCID: PMC11006496 DOI: 10.18632/aging.205667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/04/2024] [Indexed: 03/20/2024]
Abstract
The remarkable increase in human life expectancy over the past century has been achieved at the expense of the risk of age-related impairment and disease. Neurodegeneration, be it part of normal aging or due to neurodegenerative disorders, is characterized by loss of specific neuronal populations, leading to increasing clinical impairment. The individual course may be described as balance between aging- or disease-related pathology and intrinsic mechanisms of adaptation. There is plenty of evidence that the human brain is provided with exhaustible resources to maintain function in the face of adverse conditions. While a reserve concept has mainly been coined in cognitive neuroscience, emerging evidence suggests similar mechanisms to underlie individual differences of adaptive capacity within the motor system. In this narrative review, we summarize what has been proposed to date about a motor reserve (mR) framework. We present current evidence from research in aging subjects and people with neurological conditions, followed by a description of what is known about potential neuronal substrates of mR so far. As there is no gold standard of mR quantification, we outline current approaches which describe various indicators of mR. We conclude by sketching out potential future directions of research. Expediting our understanding of differences in individual motor resilience towards aging and disease will eventually contribute to new, individually tailored therapeutic strategies. Provided early diagnosis, enhancing the individual mR may be suited to postpone disease onset by years and may be an efficacious contribution towards healthy aging, with an increased quality of life for the elderly.
Collapse
Affiliation(s)
- Daniel Zeller
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Shawn Hiew
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Thorsten Odorfer
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| | - Carine Nguemeni
- Department of Neurology, University Hospital Würzburg, Würzburg 97080, Germany
| |
Collapse
|
4
|
Johansson ME, Toni I, Kessels RPC, Bloem BR, Helmich RC. Clinical severity in Parkinson's disease is determined by decline in cortical compensation. Brain 2024; 147:871-886. [PMID: 37757883 PMCID: PMC10907095 DOI: 10.1093/brain/awad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Dopaminergic dysfunction in the basal ganglia, particularly in the posterior putamen, is often viewed as the primary pathological mechanism behind motor slowing (i.e. bradykinesia) in Parkinson's disease. However, striatal dopamine loss fails to account for interindividual differences in motor phenotype and rate of decline, implying that the expression of motor symptoms depends on additional mechanisms, some of which may be compensatory in nature. Building on observations of increased motor-related activity in the parieto-premotor cortex of Parkinson patients, we tested the hypothesis that interindividual differences in clinical severity are determined by compensatory cortical mechanisms and not just by basal ganglia dysfunction. Using functional MRI, we measured variability in motor- and selection-related brain activity during a visuomotor task in 353 patients with Parkinson's disease (≤5 years disease duration) and 60 healthy controls. In this task, we manipulated action selection demand by varying the number of possible actions that individuals could choose from. Clinical variability was characterized in two ways. First, patients were categorized into three previously validated, discrete clinical subtypes that are hypothesized to reflect distinct routes of α-synuclein propagation: diffuse-malignant (n = 42), intermediate (n = 128) or mild motor-predominant (n = 150). Second, we used the scores of bradykinesia severity and cognitive performance across the entire sample as continuous measures. Patients showed motor slowing (longer response times) and reduced motor-related activity in the basal ganglia compared with controls. However, basal ganglia activity did not differ between clinical subtypes and was not associated with clinical scores. This indicates a limited role for striatal dysfunction in shaping interindividual differences in clinical severity. Consistent with our hypothesis, we observed enhanced action selection-related activity in the parieto-premotor cortex of patients with a mild-motor predominant subtype, both compared to patients with a diffuse-malignant subtype and controls. Furthermore, increased parieto-premotor activity was related to lower bradykinesia severity and better cognitive performance, which points to a compensatory role. We conclude that parieto-premotor compensation, rather than basal ganglia dysfunction, shapes interindividual variability in symptom severity in Parkinson's disease. Future interventions may focus on maintaining and enhancing compensatory cortical mechanisms, rather than only attempting to normalize basal ganglia dysfunction.
Collapse
Affiliation(s)
- Martin E Johansson
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Centre of Expertise for Parkinson & Movement Disorders, 6525 EN Nijmegen, The Netherlands
| | - Ivan Toni
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Roy P C Kessels
- Department of Medical Psychology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Radboudumc Alzheimer Center, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Vincent van Gogh Institute for Psychiatry, 5803 AC Venray, The Netherlands
| | - Bastiaan R Bloem
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Centre of Expertise for Parkinson & Movement Disorders, 6525 EN Nijmegen, The Netherlands
| | - Rick C Helmich
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Centre of Expertise for Parkinson & Movement Disorders, 6525 EN Nijmegen, The Netherlands
| |
Collapse
|
5
|
Manto M, Cendelin J, Strupp M, Mitoma H. Advances in cerebellar disorders: pre-clinical models, therapeutic targets, and challenges. Expert Opin Ther Targets 2023; 27:965-987. [PMID: 37768297 DOI: 10.1080/14728222.2023.2263911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cerebellar ataxias (CAs) represent neurological disorders with multiple etiologies and a high phenotypic variability. Despite progress in the understanding of pathogenesis, few therapies are available so far. Closing the loop between preclinical studies and therapeutic trials is important, given the impact of CAs upon patients' health and the roles of the cerebellum in multiple domains. Because of a rapid advance in research on CAs, it is necessary to summarize the main findings and discuss future directions. AREAS COVERED We focus our discussion on preclinical models, cerebellar reserve, the therapeutic management of CAs, and suitable surrogate markers. We searched Web of Science and PubMed using keywords relevant to cerebellar diseases, therapy, and preclinical models. EXPERT OPINION There are many symptomatic and/or disease-modifying therapeutic approaches under investigation. For therapy development, preclinical studies, standardization of disease evaluation, safety assessment, and demonstration of clinical improvements are essential. Stage of the disease and the level of the cerebellar reserve determine the goals of the therapy. Deficits in multiple categories and heterogeneity of CAs may require disease-, stage-, and symptom-specific therapies. More research is needed to clarify how therapies targeting the cerebellum influence both basal ganglia and the cerebral cortex, poorly explored domains in CAs.
Collapse
Affiliation(s)
- Mario Manto
- Service des Neurosciences, University of Mons, Mons, Belgium
| | - Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo medical University, Tokyo, Japan
| |
Collapse
|
6
|
Cristini J, Parwanta Z, De las Heras B, Medina-Rincon A, Paquette C, Doyon J, Dagher A, Steib S, Roig M. Motor Memory Consolidation Deficits in Parkinson's Disease: A Systematic Review with Meta-Analysis. JOURNAL OF PARKINSON'S DISEASE 2023; 13:865-892. [PMID: 37458048 PMCID: PMC10578244 DOI: 10.3233/jpd-230038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The ability to encode and consolidate motor memories is essential for persons with Parkinson's disease (PD), who usually experience a progressive loss of motor function. Deficits in memory encoding, usually expressed as poorer rates of skill improvement during motor practice, have been reported in these patients. Whether motor memory consolidation (i.e., motor skill retention) is also impaired is unknown. OBJECTIVE To determine whether motor memory consolidation is impaired in PD compared to neurologically intact individuals. METHODS We conducted a pre-registered systematic review (PROSPERO: CRD42020222433) following PRISMA guidelines that included 46 studies. RESULTS Meta-analyses revealed that persons with PD have deficits in retaining motor skills (SMD = -0.17; 95% CI = -0.32, -0.02; p = 0.0225). However, these deficits are task-specific, affecting sensory motor (SMD = -0.31; 95% CI -0.47, -0.15; p = 0.0002) and visuomotor adaptation (SMD = -1.55; 95% CI = -2.32, -0.79; p = 0.0001) tasks, but not sequential fine motor (SMD = 0.17; 95% CI = -0.05, 0.39; p = 0.1292) and gross motor tasks (SMD = 0.04; 95% CI = -0.25, 0.33; p = 0.7771). Importantly, deficits became non-significant when augmented feedback during practice was provided, and additional motor practice sessions reduced deficits in sensory motor tasks. Meta-regression analyses confirmed that deficits were independent of performance during encoding, as well as disease duration and severity. CONCLUSION Our results align with the neurodegenerative models of PD progression and motor learning frameworks and emphasize the importance of developing targeted interventions to enhance motor memory consolidation in PD.
Collapse
Affiliation(s)
- Jacopo Cristini
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Zohra Parwanta
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Bernat De las Heras
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Almudena Medina-Rincon
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- Grupo de investigación iPhysio, San Jorge University, Zaragoza, Aragón, Spain
- Department of Physiotherapy, San Jorge University, Zaragoza, Aragón, Spain
| | - Caroline Paquette
- Department of Kinesiology & Physical Education, McGill University, Montreal, QC,Canada
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
| | - Julien Doyon
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Alain Dagher
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Simon Steib
- Department of Human Movement, Training and Active Aging, Institute of Sports and Sports Sciences, Heidelberg University, Heidelberg, Germany
| | - Marc Roig
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Hoenig MC, Dzialas V, Drzezga A, van Eimeren T. The Concept of Motor Reserve in Parkinson's Disease: New Wine in Old Bottles? Mov Disord 2023; 38:16-20. [PMID: 36345092 DOI: 10.1002/mds.29266] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Merle C Hoenig
- Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Research Center Juelich, Julich, Germany.,Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Verena Dzialas
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Alexander Drzezga
- Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Research Center Juelich, Julich, Germany.,Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn/Cologne, Germany
| | - Thilo van Eimeren
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Mitoma H, Kakei S, Manto M. Development of Cerebellar Reserve. Cells 2022; 11:cells11193013. [PMID: 36230975 PMCID: PMC9562018 DOI: 10.3390/cells11193013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The cerebellar reserve is defined as the capacity of the cerebellum for compensation and restoration following injury. This unique cerebellar ability is attributed to various forms of synaptic plasticity that incorporate multimodal and redundant cerebellar inputs, two major features of the cerebellar circuitry. It is assumed that the cerebellar reserve is acquired from the age of 12 years after the maturation of both the cerebellar adaptative behaviors and cerebellar functional connectivity. However, acquiring the cerebellar reserve is also affected by two other factors: vulnerability and growth potential in the developing cerebellum. First, cerebellar injury during the critical period of neural circuit formation (especially during fetal and neonatal life and infancy) leads to persistent dysfunction of the cerebellum and its targets, resulting in the limitation of the cerebellar reserve. Secondly, growth potential appears to facilitate cerebellar reserve during the stage when the cerebellar reserve is still immature. Based on these findings, the present mini-review proposes a possible developmental trajectory underlying the acquisition of cerebellar reserve. We highlight the importance of studies dedicated to the understanding of the cerebellar resilience to injuries.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo 160-0023, Japan
- Correspondence:
| | - Shinji Kakei
- Department of Anatomy and Physiology, Jissen Women’s University, Tokyo 191-8510, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000 Charleroi, Belgium
- Service des Neurosciences, University of Mons, 7000 Mons, Belgium
| |
Collapse
|
9
|
Chung SJ, Kim YJ, Kim YJ, Lee HS, Yun M, Lee PH, Jeong Y, Sohn YH. Potential Link Between Cognition and Motor Reserve in Patients With Parkinson's Disease. J Mov Disord 2022; 15:249-257. [PMID: 36065615 DOI: 10.14802/jmd.22063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Objective To investigate whether there is a link between cognitive function and motor reserve (i.e., individual capacity to cope with nigrostriatal dopamine depletion) in patients with newly diagnosed Parkinson's disease (PD). Methods A total of 163 patients with drug-naïve PD who underwent 18F-FP-CIT PET, brain MRI, and a detailed neuropsychological test were enrolled. We estimated individual motor reserve based on initial motor deficits and striatal dopamine depletion using a residual model. We performed correlation analyses between motor reserve estimates and cognitive composite scores. Diffusion connectometry analysis was performed to map the white matter fiber tracts, of which fractional anisotropy (FA) values were well correlated with motor reserve estimates. Additionally, Cox regression analysis was used to assess the effect of initial motor reserve on the risk of dementia conversion. Results The motor reserve estimate was positively correlated with the composite score of the verbal memory function domain (γ = 0.246) and with the years of education (γ = 0.251). Connectometry analysis showed that FA values in the left fornix were positively correlated with the motor reserve estimate, while no fiber tracts were negatively correlated with the motor reserve estimate. Cox regression analysis demonstrated that higher motor reserve estimates tended to be associated with a lower risk of dementia conversion (hazard ratio, 0.781; 95% confidence interval, 0.576-1.058). Conclusion The present study demonstrated that the motor reserve estimate was well correlated with verbal memory function and with white matter integrity in the left fornix, suggesting a possible link between cognition and motor reserve in patients with PD.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea.,YONSEI BEYOND LAB, Yongin, Korea
| | - Yae Ji Kim
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea.,KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea.,YONSEI BEYOND LAB, Yongin, Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Jeong
- YONSEI BEYOND LAB, Yongin, Korea.,Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea.,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Motor and non-motor circuit disturbances in early Parkinson disease: which happens first? Nat Rev Neurosci 2022; 23:115-128. [PMID: 34907352 DOI: 10.1038/s41583-021-00542-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
For the last two decades, pathogenic concepts in Parkinson disease (PD) have revolved around the toxicity and spread of α-synuclein. Thus, α-synuclein would follow caudo-rostral propagation from the periphery to the central nervous system, first producing non-motor manifestations (such as constipation, sleep disorders and hyposmia), and subsequently impinging upon the mesencephalon to account for the cardinal motor features before reaching the neocortex as the disease evolves towards dementia. This model is the prevailing theory of the principal neurobiological mechanism of disease. Here, we scrutinize the temporal evolution of motor and non-motor manifestations in PD and suggest that, even though the postulated bottom-up mechanisms are likely to be involved, early involvement of the nigrostriatal system is a key and prominent pathophysiological mechanism. Upcoming studies of detailed clinical manifestations with newer neuroimaging techniques will allow us to more closely define, in vivo, the role of α-synuclein aggregates with respect to neuronal loss during the onset and progression of PD.
Collapse
|
11
|
Bastos P, Barbosa R. Motor reserve: How to build neuronal resilience against ageing and neurodegeneration? Rev Neurol (Paris) 2022; 178:845-854. [DOI: 10.1016/j.neurol.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/14/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
|
12
|
Lahlou S, Gabitov E, Owen L, Shohamy D, Sharp M. Preserved motor memory in Parkinson's disease. Neuropsychologia 2022; 167:108161. [PMID: 35041839 DOI: 10.1016/j.neuropsychologia.2022.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/02/2022] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Patients with Parkinson's disease, who lose the dopaminergic projections to the striatum, are impaired in certain aspects of motor learning. Recent evidence suggests that, in addition to its role in motor performance, the striatum plays a key role in the memory of motor learning. Whether Parkinson's patients have impaired motor memory and whether motor memory is modulated by dopamine at the time of initial learning is unknown. To address these questions, we measured memory of a learned motor sequence in Parkinson's patients who were either On or Off their dopaminergic medications at the time of initial learning. We compared them to a group of older and younger controls. Contrary to our predictions, motor memory was not impaired in patients compared to older controls, and was not influenced by dopamine state at the time of initial learning. To probe post-learning consolidation processes, we also tested whether learning a new sequence shortly after learning the initial sequence would interfere with later memory. We found that, in contrast to younger adults, neither older adults nor patients were susceptible to this interference. These findings suggest that motor memory is preserved in Parkinson's patients and raise the possibility that motor memory in patients is supported by compensatory non-dopamine sensitive mechanisms. Furthermore, given the similar performance characteristics observed in the patients and older adults and the absence of an effect of dopamine, these results raise the possibility that aging and Parkinson's disease affect motor memory in similar ways.
Collapse
Affiliation(s)
- Soraya Lahlou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Canada
| | - Ella Gabitov
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Canada
| | - Lucy Owen
- Department of Psychological and Brain Sciences, Dartmouth College, USA
| | - Daphna Shohamy
- Department of Psychology, Columbia University, USA; Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Science, Columbia University, USA
| | - Madeleine Sharp
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Canada.
| |
Collapse
|
13
|
Liu A, Bi H, Li Y, Lee S, Cai J, Mi T, Garg S, Kim JL, Zhu M, Chen X, Wang ZJ, McKeown MJ. Galvanic Vestibular Stimulation Improves Subnetwork Interactions in Parkinson's Disease. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6632394. [PMID: 34094040 PMCID: PMC8137296 DOI: 10.1155/2021/6632394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/05/2021] [Indexed: 11/17/2022]
Abstract
Background Activating vestibular afferents via galvanic vestibular stimulation (GVS) has been recently shown to have a number of complex motor effects in Parkinson's disease (PD), but the basis of these improvements is unclear. The evaluation of network-level connectivity changes may provide us with greater insights into the mechanisms of GVS efficacy. Objective To test the effects of different GVS stimuli on brain subnetwork interactions in both health control (HC) and PD groups using fMRI. Methods FMRI data were collected for all participants at baseline (resting state) and under noisy, 1 Hz sinusoidal, and 70-200 Hz multisine GVS. All stimuli were given below sensory threshold, blinding subjects to stimulation. The subnetworks of 15 healthy controls and 27 PD subjects (on medication) were identified in their native space, and their subnetwork interactions were estimated by nonnegative canonical correlation analysis. We then determined if the inferred subnetwork interaction changes were affected by disease and stimulus type and if the stimulus-dependent GVS effects were influenced by demographic features. Results At baseline, interactions with the visual-cerebellar network were significantly decreased in the PD group. Sinusoidal and multisine GVS improved (i.e., made values approaching those seen in HC) subnetwork interactions more effectively than noisy GVS stimuli overall. Worsening disease severity, apathy, depression, impaired cognitive function, and increasing age all limited the beneficial effects of GVS. Conclusions Vestibular stimulation has widespread system-level brain influences and can improve subnetwork interactions in PD in a stimulus-dependent manner, with the magnitude of such effects associating with demographics and disease status.
Collapse
Affiliation(s)
- Aiping Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Huiling Bi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Yu Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Soojin Lee
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Pacific Parkinson's Research Centre, Vancouver, Canada
| | - Jiayue Cai
- Pacific Parkinson's Research Centre, Vancouver, Canada
| | - Taomian Mi
- Department of Neurology, Neurobiology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Brain Disorders, Beijing, China
| | - Saurabh Garg
- Pacific Parkinson's Research Centre, Vancouver, Canada
| | - Jowon L. Kim
- Pacific Parkinson's Research Centre, Vancouver, Canada
| | - Maria Zhu
- Pacific Parkinson's Research Centre, Vancouver, Canada
| | - Xun Chen
- Epilepsy Centre, Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Z. Jane Wang
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada
| | - Martin J. McKeown
- Pacific Parkinson's Research Centre, Vancouver, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada
- Department of Medicine (Neurology), University of British Columbia, Vancouver, Canada
| |
Collapse
|
14
|
Rizzolatti G, Fabbri-Destro M, Nuara A, Gatti R, Avanzini P. The role of mirror mechanism in the recovery, maintenance, and acquisition of motor abilities. Neurosci Biobehav Rev 2021; 127:404-423. [PMID: 33910057 DOI: 10.1016/j.neubiorev.2021.04.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/12/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
While it is well documented that the motor system is more than a mere implementer of motor actions, the possible applications of its cognitive side are still under-exploited, often remaining as poorly organized evidence. Here, we will collect evidence showing the value of action observation treatment (AOT) in the recovery of impaired motor abilities for a vast number of clinical conditions, spanning from traumatological patients to brain injuries and neurodegenerative diseases. Alongside, we will discuss the use of AOT in the maintenance of appropriate motor behavior in subjects at risk for events with dramatic physical consequences, like fall prevention in elderly people or injury prevention in sports. Finally, we will report that AOT can help to tune existing motor competencies in fields requiring precise motor control. We will connect all these diverse dots into the neurophysiological scenario offered by decades of research on the human mirror mechanism, discussing the potentialities for individualization. Empowered by modern technologies, AOT can impact individuals' safety and quality of life across the whole lifespan.
Collapse
Affiliation(s)
- Giacomo Rizzolatti
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
| | | | - Arturo Nuara
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy; Università di Modena e Reggio Emilia, Dipartimento di Scienze Biomediche, Metaboliche, e Neuroscienze, Modena, Italy
| | - Roberto Gatti
- Istituto Clinico Humanitas, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Pietro Avanzini
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy; Istituto Clinico Humanitas, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
15
|
Pasman EP, McKeown MJ, Garg S, Cleworth TW, Bloem BR, Inglis JT, Carpenter MG. Brain connectivity during simulated balance in older adults with and without Parkinson's disease. Neuroimage Clin 2021; 30:102676. [PMID: 34215147 PMCID: PMC8102637 DOI: 10.1016/j.nicl.2021.102676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 11/07/2022]
Abstract
Individuals with Parkinson's disease often experience postural instability, a debilitating and largely treatment-resistant symptom. A better understanding of the neural substrates contributing to postural instability could lead to more effective treatments. Constraints of current functional neuroimaging techniques, such as the horizontal orientation of most MRI scanners (forcing participants to lie supine), complicates investigating cortical and subcortical activation patterns and connectivity networks involved in healthy and parkinsonian balance control. In this cross-sectional study, we utilized a newly-validated MRI-compatible balance simulator (based on an inverted pendulum) that enabled participants to perform balance-relevant tasks while supine in the scanner. We utilized functional MRI to explore effective connectivity underlying static and dynamic balance control in healthy older adults (n = 17) and individuals with Parkinson's disease while on medication (n = 17). Participants performed four tasks within the scanner with eyes closed: resting, proprioceptive tracking of passive ankle movement, static balancing of the simulator, and dynamic responses to random perturbations of the simulator. All analyses were done in the participant's native space without spatial transformation to a common template. Effective connectivity between 57 regions of interest was computed using a Bayesian Network learning approach with false discovery rate set to 5%. The first 12 principal components of the connection weights, binomial logistic regression, and cross-validation were used to create 4 separate models: contrasting static balancing vs {rest, proprioception} and dynamic balancing vs {rest, proprioception} for both controls and individuals with Parkinson's disease. In order to directly compare relevant connections between controls and individuals with Parkinson's disease, we used connections relevant for predicting a task in either controls or individuals with Parkinson's disease in logistic regression with Least Absolute Shrinkage and Selection Operator regularization. During dynamic balancing, we observed decreased connectivity between different motor areas and increased connectivity from the brainstem to several cortical and subcortical areas in controls, while individuals with Parkinson's disease showed increased connectivity associated with motor and parietal areas, and decreased connectivity from brainstem to other subcortical areas. No significant models were found for static balancing in either group. Our results support the notion that dynamic balance control in individuals with Parkinson's disease relies more on cortical motor areas compared to healthy older adults, who show a preference of subcortical control during dynamic balancing.
Collapse
Affiliation(s)
- Elizabeth P Pasman
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | | | - Saurabh Garg
- Pacific Parkinson's Research Centre, Vancouver, BC, Canada
| | - Taylor W Cleworth
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Bastiaan R Bloem
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - J Timothy Inglis
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Mark G Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Clinical and Striatal Dopamine Transporter Predictors of Mild Behavioral Impairment in Drug-Naive Parkinson Disease. Clin Nucl Med 2020; 45:e463-e468. [PMID: 32956117 DOI: 10.1097/rlu.0000000000003281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Neuropsychiatric symptoms are important and frequent nonmotor features in Parkinson disease (PD). We explored mild behavioral impairment (MBI) in drug-naive patients with PD and its clinical and dopamine transporter (DAT) correlates. METHODS We recruited 275 drug-naive patients with PD who had undergone Unified Parkinson's Disease Rating Scale, a neuropsychological battery, Neuropsychiatric Inventory, and N-(3-[F]fluoropropyl)-2β-carbon ethoxy-3β-(4-iodophenyl) PET within 6 months. Patients with PD were divided into groups without MBI (PD-MBI-, n = 186) and with MBI (PD-MBI+, n = 89) according to the Neuropsychiatric Inventory. We performed comparative analysis of DAT availability, cognitive function, and motor deficits between the groups. RESULTS Mild behavioral impairment was found in 32.4% of PD patients at the time of diagnosis, and affective dysregulation and decreased motivation were the 2 most common neuropsychiatric domains. Dopamine transporter availability in the anterior caudate (odds ratio, 0.60; P = 0.016) and anterior putamen (odds ratio, 0.58; P = 0.008) was associated with the development of MBI in PD. PD-MBI+ group had a lower z-score in memory-related tests and Stroop color reading test than PD-MBI- group. PD-MBI+ group had a higher Unified Parkinson's Disease Rating Scale motor score after controlling for DAT availability in the posterior putamen than PD-MBI- group (P = 0.007). CONCLUSIONS This study suggests that early behavioral impairment is associated with more pathological involvement in the anterior striatum, memory and frontal dysfunction, and motor deficits, which could be regarded as a different phenotype in PD.
Collapse
|
17
|
Chung SJ, Lee JJ, Lee PH, Sohn YH. Emerging Concepts of Motor Reserve in Parkinson's Disease. J Mov Disord 2020; 13:171-184. [PMID: 32854486 PMCID: PMC7502292 DOI: 10.14802/jmd.20029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/05/2020] [Indexed: 01/18/2023] Open
Abstract
The concept of cognitive reserve (CR) in Alzheimer's disease (AD) explains the differences between individuals in their susceptibility to AD-related pathologies. An enhanced CR may lead to less cognitive deficits despite severe pathological lesions. Parkinson's disease (PD) is also a common neurodegenerative disease and is mainly characterized by motor dysfunction related to striatal dopaminergic depletion. The degree of motor deficits in PD is closely correlated to the degree of dopamine depletion; however, significant individual variations still exist. Therefore, we hypothesized that the presence of motor reserve (MR) in PD explains the individual differences in motor deficits despite similar levels of striatal dopamine depletion. Since 2015, we have performed a series of studies investigating MR in de novo patients with PD using the data of initial clinical presentation and dopamine transporter PET scan. In this review, we summarized the results of these published studies. In particular, some premorbid experiences (i.e., physical activity and education) and modifiable factors (i.e., body mass index and white matter hyperintensity on brain image studies) could modulate an individual's capacity to tolerate PD pathology, which can be maintained throughout disease progression.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea
| | - Jae Jung Lee
- Department of Neurology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Chung SJ, Yoo HS, Lee YH, Lee HS, Lee PH, Sohn YH. Initial motor reserve and long-term prognosis in Parkinson's disease. Neurobiol Aging 2020; 92:1-6. [PMID: 32320836 DOI: 10.1016/j.neurobiolaging.2020.02.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/03/2020] [Accepted: 02/27/2020] [Indexed: 11/17/2022]
Abstract
There are individual differences in motor deficits, despite a similar degree of dopamine neuronal loss in Parkinson's disease (PD), called motor reserve (MR). Factors enhancing MR have been documented previously, but the influence of initial MR on the long-term prognosis remains unclear. In this longitudinal study, we enrolled 205 patients with de novo PD to estimate individual MR based on initial motor deficits and striatal dopamine depletion using the residual-based approach. We assessed the risk of developing levodopa-induced dyskinesia (LID) or freezing of gait (FOG) and longitudinal increases in levodopa-equivalent dose (LED) according to MR estimates using the Cox regression model and linear mixed model, respectively. Throughout the follow-up period (≥3 years), greater MR estimates were associated with a lower risk for LID and FOG. In addition, patients with high MR received lower LED than those with low MR. These findings suggest that the initial MR, that is, individual's capacity to cope with PD-related pathologies, can be maintained with disease progression and can modulate the risk for LID or FOG.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
19
|
Chung SJ, Kim HR, Jung JH, Lee PH, Jeong Y, Sohn YH. Identifying the Functional Brain Network of Motor Reserve in Early Parkinson's Disease. Mov Disord 2020; 35:577-586. [PMID: 32096277 DOI: 10.1002/mds.28012] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/09/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The severity of motor symptoms in Parkinson's disease (PD) does not always correlate with the degree of nigral dopaminergic neuronal loss. Individuals with greater motor reserve may have milder motor signs than their striatal dopamine loss. In this study, we explored the functional brain network associated with motor reserve in early-stage PD. METHODS We analyzed 134 patients with de novo PD who underwent dopamine transporter scans and resting-state functional magnetic resonance imaging. We estimated individual motor reserve based on initial motor deficits and striatal dopamine depletion using a residual model. We applied network-based statistic analysis to identify the functional brain network associated with the measure of motor reserve (ie, motor reserve network). We also assessed the effect of motor reserve network connectivity strength on the longitudinal increase in levodopa-equivalent dose during the 2-year follow-up period. RESULTS Network-based statistic analysis identified the motor reserve network composed of the basal ganglia, inferior frontal cortex, insula, and cerebellar vermis at a primary threshold of P value 0.001. Patients with an increased degree of functional connectivity within the motor reserve network had greater motor reserve. There was a significant interaction between the motor reserve network strength and time in the linear mixed model, indicating that higher motor reserve network strength was associated with slower longitudinal increase in levodopa-equivalent dose. CONCLUSIONS The present study revealed the functional brain network associated with motor reserve in patients with early-stage PD. Functional connections within the motor reserve network are associated with the individual's capacity to cope with PD-related pathologies. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Hang-Rai Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci 2019; 19:338-350. [PMID: 29643480 DOI: 10.1038/s41583-018-0002-7] [Citation(s) in RCA: 416] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The basal ganglia and the cerebellum are considered to be distinct subcortical systems that perform unique functional operations. The outputs of the basal ganglia and the cerebellum influence many of the same cortical areas but do so by projecting to distinct thalamic nuclei. As a consequence, the two subcortical systems were thought to be independent and to communicate only at the level of the cerebral cortex. Here, we review recent data showing that the basal ganglia and the cerebellum are interconnected at the subcortical level. The subthalamic nucleus in the basal ganglia is the source of a dense disynaptic projection to the cerebellar cortex. Similarly, the dentate nucleus in the cerebellum is the source of a dense disynaptic projection to the striatum. These observations lead to a new functional perspective that the basal ganglia, the cerebellum and the cerebral cortex form an integrated network. This network is topographically organized so that the motor, cognitive and affective territories of each node in the network are interconnected. This perspective explains how synaptic modifications or abnormal activity at one node can have network-wide effects. A future challenge is to define how the unique learning mechanisms at each network node interact to improve performance.
Collapse
Affiliation(s)
- Andreea C Bostan
- Systems Neuroscience Center and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Peter L Strick
- Systems Neuroscience Center and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA. .,University of Pittsburgh Brain Institute and Departments of Neurobiology, Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Farrand AQ, Helke KL, Aponte-Cofresí L, Gooz MB, Gregory RA, Hinson VK, Boger HA. Effects of vagus nerve stimulation are mediated in part by TrkB in a parkinson's disease model. Behav Brain Res 2019; 373:112080. [PMID: 31301412 DOI: 10.1016/j.bbr.2019.112080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
Vagus nerve stimulation (VNS) is being explored as a potential therapeutic for Parkinson's disease (PD). VNS is less invasive than other surgical treatments and has beneficial effects on behavior and brain pathology. It has been suggested that VNS exerts these effects by increasing brain-derived neurotrophic factor (BDNF) to enhance pro-survival mechanisms of its receptor, tropomyosin receptor kinase-B (TrkB). We have previously shown that striatal BDNF is increased after VNS in a lesion model of PD. By chronically administering ANA-12, a TrkB-specific antagonist, we aimed to determine TrkB's role in beneficial VNS effects for a PD model. In this study, we administered a noradrenergic neurotoxin, DSP-4, intraperitoneally and one week later administered a bilateral intrastriatal dopaminergic neurotoxin, 6-OHDA. At this time, the left vagus nerve was cuffed for stimulation. Eleven days later, rats received VNS twice per day for ten days, with daily locomotor assessment. Daily ANA-12 injections were given one hour prior to the afternoon stimulation and concurrent locomotor session. Following the final VNS session, rats were euthanized, and left striatum, bilateral substantia nigra and locus coeruleus were sectioned for immunohistochemical detection of neurons, α-synuclein, astrocytes, and microglia. While ANA-12 did not avert behavioral improvements of VNS, and only partially prevented VNS-induced attenuation of neuronal loss in the locus coeruleus, it did stop neuronal and anti-inflammatory effects of VNS in the nigrostriatal system, indicating a role for TrkB in mediating VNS efficacy. However, our data also suggest that BDNF-TrkB is not the sole mechanism of action for VNS in PD.
Collapse
Affiliation(s)
- Ariana Q Farrand
- Dept of Neuroscience and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB 403, MSC 510, Charleston, SC, 29425, USA
| | - Kristi L Helke
- Dept of Comparative Medicine, Medical University of South Carolina, 114 Doughty St, STB 648, MSC 777, Charleston, SC, 29425, USA; Dept of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Ave, Children's Hospital 309, MSC 908, Charleston, SC, 29425, USA
| | - Luis Aponte-Cofresí
- Dept of Neuroscience and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB 403, MSC 510, Charleston, SC, 29425, USA
| | - Monika B Gooz
- Dept of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St, DDB 507, MSC 139, Charleston, SC, 29425, USA
| | - Rebecca A Gregory
- Dept of Comparative Medicine, Medical University of South Carolina, 114 Doughty St, STB 648, MSC 777, Charleston, SC, 29425, USA
| | - Vanessa K Hinson
- Dept of Neurology, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 309, MSC 606, Charleston, SC, 29425, USA
| | - Heather A Boger
- Dept of Neuroscience and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB 403, MSC 510, Charleston, SC, 29425, USA.
| |
Collapse
|
22
|
Drucker JH, Sathian K, Crosson B, Krishnamurthy V, McGregor KM, Bozzorg A, Gopinath K, Krishnamurthy LC, Wolf SL, Hart AR, Evatt M, Corcos DM, Hackney ME. Internally Guided Lower Limb Movement Recruits Compensatory Cerebellar Activity in People With Parkinson's Disease. Front Neurol 2019; 10:537. [PMID: 31231297 PMCID: PMC6566131 DOI: 10.3389/fneur.2019.00537] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/03/2019] [Indexed: 11/14/2022] Open
Abstract
Background: Externally guided (EG) and internally guided (IG) movements are postulated to recruit two parallel neural circuits, in which motor cortical neurons interact with either the cerebellum or striatum via distinct thalamic nuclei. Research suggests EG movements rely more heavily on the cerebello-thalamo-cortical circuit, whereas IG movements rely more on the striato-pallido-thalamo-cortical circuit (1). Because Parkinson's (PD) involves striatal dysfunction, individuals with PD have difficulty generating IG movements (2). Objectives: Determine whether individuals with PD would employ a compensatory mechanism favoring the cerebellum over the striatum during IG lower limb movements. Methods: 22 older adults with mild-moderate PD, who had abstained at least 12 h from anti-PD medications, and 19 age-matched controls performed EG and IG rhythmic foot-tapping during functional magnetic resonance imaging. Participants with PD tapped with their right (more affected) foot. External guidance was paced by a researcher tapping participants' ipsilateral 3rd metacarpal in a pattern with 0.5 to 1 s intervals, while internal guidance was based on pre-scan training in the same pattern. BOLD activation was compared between tasks (EG vs. IG) and groups (PD vs. control). Results: Both groups recruited the putamen and cerebellar regions. The PD group demonstrated less activation in the striatum and motor cortex than controls. A task (EG vs. IG) by group (PD vs. control) interaction was observed in the cerebellum with increased activation for the IG condition in the PD group. Conclusions: These findings support the hypothesized compensatory shift in which the dysfunctional striatum is assisted by the less affected cerebellum to accomplish IG lower limb movement in individuals with mild-moderate PD. These findings are of relevance for temporal gait dysfunction and freezing of gait problems frequently noted in many people with PD and may have implications for future therapeutic application.
Collapse
Affiliation(s)
- Jonathan H Drucker
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, GA, United States.,Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - K Sathian
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, GA, United States.,Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States.,Departments of Neurology, Neural and Behavioral Sciences, and Psychology, Pennsylvania State University, Hershey, PA, United States
| | - Bruce Crosson
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, GA, United States.,Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Psychology, Georgia State University, Atlanta, GA, United States.,Health and Rehabilitation Science, University of Queensland, Brisbane, QLD, Australia
| | - Venkatagiri Krishnamurthy
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, GA, United States.,Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Keith M McGregor
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, GA, United States.,Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Ariyana Bozzorg
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, GA, United States
| | - Kaundinya Gopinath
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Lisa C Krishnamurthy
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, GA, United States.,Department of Physics and Astronomy, Georgia State University, Atlanta, GA, United States
| | - Steven L Wolf
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, GA, United States.,Division of Physical Therapy, Department of Rehabilitation Medicine, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Cell Biology, School of Medicine, Emory University, Atlanta, GA, United States.,Division of General Medicine and Geriatrics, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Ariel R Hart
- Division of General Medicine and Geriatrics, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Marian Evatt
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Daniel M Corcos
- Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Madeleine E Hackney
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, GA, United States.,Division of Physical Therapy, Department of Rehabilitation Medicine, School of Medicine, Emory University, Atlanta, GA, United States.,Division of General Medicine and Geriatrics, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
23
|
Lee Y, Oh JS, Chung SJ, Lee JJ, Chung SJ, Moon H, Lee PH, Kim JS, Sohn YH. The presence of depression in de novo Parkinson's disease reflects poor motor compensation. PLoS One 2018; 13:e0203303. [PMID: 30231066 PMCID: PMC6145582 DOI: 10.1371/journal.pone.0203303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/18/2018] [Indexed: 11/18/2022] Open
Abstract
Depression frequently accompanies Parkinson's disease and often precedes the onset of motor symptoms. This study aimed to evaluate the impact of depression on motor compensation in patients with de novo Parkinson's disease. This retrospective cohort study analyzed data from 474 non-demented patients with de novo Parkinson's disease (mean age, 64.6±9.8 years; 242 men) who underwent both dopamine transporter PET scan and depression assessment using the Beck Depression Inventory at baseline. Patients were classified into tertiles by Beck Depression Inventory score. At baseline, high-tertile group (Beck Depression Inventory score ≥15, n = 157) showed more severe motor deficits and lower cognitive function than low-tertile group (Beck Depression Inventory score ≤7, n = 158, P = 0.034 and P = 0.008, respectively). Greater motor deficits in high-tertile group than low-tertile group remained significant after controlling for dopamine transporter binding in the posterior putamen, as well as other confounding variables. During follow-up of a median duration of 47 months, high-tertile group received higher levodopa-equivalent doses for symptom control than did low-tertile group after controlling for age, gender, and initial motor deficit severity. These results demonstrate that depression in de novo Parkinson's disease is associated with motor deficit severity at baseline and dose of PD medications during follow-up, suggesting that the presence of depression in de novo Parkinson's disease represents poor motor compensation.
Collapse
Affiliation(s)
- Yoonju Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jungsu S. Oh
- Department of Nuclear Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Jung Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Su Jin Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Myongji Hospital, Goyang, South Korea
| | - Hyojeong Moon
- Department of Nuclear Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Young H. Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
24
|
Ferrazzoli D, Ortelli P, Madeo G, Giladi N, Petzinger GM, Frazzitta G. Basal ganglia and beyond: The interplay between motor and cognitive aspects in Parkinson's disease rehabilitation. Neurosci Biobehav Rev 2018; 90:294-308. [PMID: 29733882 DOI: 10.1016/j.neubiorev.2018.05.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/28/2018] [Accepted: 05/03/2018] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is characterized by motor and cognitive dysfunctions, affecting the motor behaviour. We summarize evidence that the interplay between motor and cognitive approaches is crucial in PD rehabilitation. Rehabilitation is complementary to pharmacological therapy and effective in reducing the PD disturbances, probably acting by inducing neuroplastic effects. The motor behaviour results from a complex integration between cortical and subcortical areas, underlying the motor, cognitive and motivational aspects of movement. The close interplay amongst these areas makes possible to learn, control and express habitual-automatic actions, which are dysfunctional in PD. The physiopathology of PD could be considered the base for the development of effective rehabilitation treatments. As the volitional action control is spared in early-medium stages of disease, rehabilitative approaches engaging cognition permit to achieve motor benefits and appear to be the most effective for PD. We will point out data supporting the relevance of targeting both motor and cognitive aspects in PD rehabilitation. Finally, we will discuss the role of cognitive engagement in motor rehabilitation for PD.
Collapse
Affiliation(s)
- Davide Ferrazzoli
- Department of Parkinson's Disease, Movement Disorders and Brain Injury Rehabilitation, "Moriggia-Pelascini" Hospital, Via Pelascini, 3, Gravedona ed Uniti, 22015, Como, Italy.
| | - Paola Ortelli
- Department of Parkinson's Disease, Movement Disorders and Brain Injury Rehabilitation, "Moriggia-Pelascini" Hospital, Via Pelascini, 3, Gravedona ed Uniti, 22015, Como, Italy.
| | - Graziella Madeo
- Department of Parkinson's Disease, Movement Disorders and Brain Injury Rehabilitation, "Moriggia-Pelascini" Hospital, Via Pelascini, 3, Gravedona ed Uniti, 22015, Como, Italy.
| | - Nir Giladi
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Centre, Sieratzki Chair in Neurology, Sackler School of Medicine, Sagol School for Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| | - Giselle M Petzinger
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033, United States; Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, 90033, United States.
| | - Giuseppe Frazzitta
- Department of Parkinson's Disease, Movement Disorders and Brain Injury Rehabilitation, "Moriggia-Pelascini" Hospital, Via Pelascini, 3, Gravedona ed Uniti, 22015, Como, Italy.
| |
Collapse
|
25
|
Falvo MJ, Rohrbaugh JW, Alexander T, Earhart GM. Effects of Parkinson disease and antiparkinson medication on central adaptations to repetitive grasping. Life Sci 2018. [PMID: 29526800 DOI: 10.1016/j.lfs.2018.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cortical activity during motor task performance is attenuated in individuals with Parkinson disease (PD) relative to age-matched adults without PD, and this activity is enhanced with antiparkinson medication. It remains unclear, however, whether the relative change in cortical activity over the duration of the task, i.e., central adaptation, is affected individuals with PD, and if so, whether medication corrects for any unique behaviors. Movement-related cortical potentials (MRCPs) were recorded from scalp electrode sites Cz and C1 during 150 repetitive handgrip contractions at 70% of maximal voluntary contraction, in individuals with PD (n = 10) both ON and OFF of their PD medication, and neurologically normal age- and sex-matched controls (n = 10). Repetitions were divided into two Blocks (Block 1 and 2: repetitions 1-60 and 91-150, respectively), and the composite MRCP slopes were calculated during periods representing movement initiation (-2 s to movement onset) and execution (movement onset to 1 s). No significant interactions were noted for either comparison (PD OFF vs. control; PD OFF vs. PD ON), irrespective of electrode site (Cz or C1) or movement period (initiation or execution). Despite similar MRCP slopes and task performance, PD OFF endorsed greater perceived exertion during task performance than controls. In the present study, we observed attenuated task-related cortical activity among individuals with PD OFF relative to controls, but a similar relative adaptive response to a fatiguing task. Additionally, although antiparkinson medication enhanced cortical activity (PD OFF vs. PD ON), central adaptation was similar.
Collapse
Affiliation(s)
- Michael J Falvo
- War Related Illness and Injury Study Center, VA New Jersey Health Care System; East Orange, NJ, United States; New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - John W Rohrbaugh
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Thomas Alexander
- War Related Illness and Injury Study Center, VA New Jersey Health Care System; East Orange, NJ, United States; New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Gammon M Earhart
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, United States; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States; Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
26
|
Burzynska AZ, Finc K, Taylor BK, Knecht AM, Kramer AF. The Dancing Brain: Structural and Functional Signatures of Expert Dance Training. Front Hum Neurosci 2017; 11:566. [PMID: 29230170 PMCID: PMC5711858 DOI: 10.3389/fnhum.2017.00566] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/07/2017] [Indexed: 12/27/2022] Open
Abstract
Dance - as a ritual, therapy, and leisure activity - has been known for thousands of years. Today, dance is increasingly used as therapy for cognitive and neurological disorders such as dementia and Parkinson's disease. Surprisingly, the effects of dance training on the healthy young brain are not well understood despite the necessity of such information for planning successful clinical interventions. Therefore, this study examined actively performing, expert-level trained college students as a model of long-term exposure to dance training. To study the long-term effects of dance training on the human brain, we compared 20 young expert female Dancers with normal body mass index with 20 age- and education-matched Non-Dancers with respect to brain structure and function. We used diffusion tensor, morphometric, resting state and task-related functional MRI, a broad cognitive assessment, and objective measures of selected dance skill (Dance Central video game and a balance task). Dancers showed superior performance in the Dance Central video game and balance task, but showed no differences in cognitive abilities. We found little evidence for training-related differences in brain volume in Dancers. Dancers had lower anisotropy in the corticospinal tract. They also activated the action observation network (AON) to greater extent than Non-Dancers when viewing dance sequences. Dancers showed altered functional connectivity of the AON, and of the general motor learning network. These functional connectivity differences were related to dance skill and balance and training-induced structural characteristics. Our findings have the potential to inform future study designs aiming to monitor dance training-induced plasticity in clinical populations.
Collapse
Affiliation(s)
- Agnieszka Z. Burzynska
- Department of Human Development and Family Studies, Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, United States
| | - Karolina Finc
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Brittany K. Taylor
- Department of Human Development and Family Studies, Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, United States
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Anya M. Knecht
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - Arthur F. Kramer
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
- Departments of Psychology and Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
27
|
Blesa J, Trigo-Damas I, Dileone M, Del Rey NLG, Hernandez LF, Obeso JA. Compensatory mechanisms in Parkinson's disease: Circuits adaptations and role in disease modification. Exp Neurol 2017; 298:148-161. [PMID: 28987461 DOI: 10.1016/j.expneurol.2017.10.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
The motor features of Parkinson's disease (PD) are well known to manifest only when striatal dopaminergic deficit reaches 60-70%. Thus, PD has a long pre-symptomatic and pre-motor evolution during which compensatory mechanisms take place to delay the clinical onset of disabling manifestations. Classic compensatory mechanisms have been attributed to changes and adjustments in the nigro-striatal system, such as increased neuronal activity in the substantia nigra pars compacta and enhanced dopamine synthesis and release in the striatum. However, it is not so clear currently that such changes occur early enough to account for the pre-symptomatic period. Other possible mechanisms relate to changes in basal ganglia and motor cortical circuits including the cerebellum. However, data from early PD patients are difficult to obtain as most studies have been carried out once the diagnosis and treatments have been established. Likewise, putative compensatory mechanisms taking place throughout disease evolution are nearly impossible to distinguish by themselves. Here, we review the evidence for the role of the best known and other possible compensatory mechanisms in PD. We also discuss the possibility that, although beneficial in practical terms, compensation could also play a deleterious role in disease progression.
Collapse
Affiliation(s)
- Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| | - Inés Trigo-Damas
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Michele Dileone
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Natalia Lopez-Gonzalez Del Rey
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ledia F Hernandez
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - José A Obeso
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| |
Collapse
|
28
|
Bakhti K, Mottet D, Schweighofer N, Froger J, Laffont I. Proximal arm non-use when reaching after a stroke. Neurosci Lett 2017; 657:91-96. [DOI: 10.1016/j.neulet.2017.07.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/07/2017] [Accepted: 07/30/2017] [Indexed: 11/25/2022]
|
29
|
Alterations in Functional Cortical Hierarchy in Hemiparkinsonian Rats. J Neurosci 2017; 37:7669-7681. [PMID: 28687605 DOI: 10.1523/jneurosci.3257-16.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/07/2017] [Accepted: 03/12/2017] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease and experimentally induced hemiparkinsonism are characterized by increased beta synchronization between cortical and subcortical areas. This change in beta connectivity might reflect either a symmetric increase in interareal influences or asymmetric changes in directed influences among brain areas. We assessed patterns of functional and directed connectivity within and between striatum and six cortical sites in each hemisphere of the hemiparkinsonian rat model. LFPs were recorded in resting and walking states, before and after unilateral 6-hydroxydopamine lesion. The hemiparkinsonian state was characterized by increased oscillatory activity in the 20-40 Hz range in resting and walking states, and increased interhemispheric coupling (phase lag index) that was more widespread at rest than during walking. Spectral Granger-causality analysis revealed that the change in symmetric functional connectivity comprised profound reorganization of hierarchical organization and directed influence patterns. First, in the lesioned hemisphere, the more anterior, nonprimary motor areas located at the top of the cortical hierarchy (i.e., receiving many directed influences) tended to increase their directed influence onto the posterior primary motor and somatosensory areas. This enhanced influence of "higher" areas may be related to the loss of motor control due to the 6-OHDA lesion. Second, the drive from the nonlesioned toward the lesioned hemisphere (in particular to striatum) increased, most prominently during walking. The nature of these adaptations (disturbed signaling or compensation) is discussed. The present study demonstrates that hemiparkinsonism is associated with a profound reorganization of the hierarchical organization of directed influence patterns among brain areas, perhaps reflecting compensatory processes.SIGNIFICANCE STATEMENT Parkinson's disease classically first becomes manifest in one hemibody before affecting both sides, suggesting that degeneration is asymmetrical. Our results suggest that asymmetrical degeneration of the dopaminergic system induces an increased drive from the nonlesioned toward the lesioned hemisphere and a profound reorganization of functional cortical hierarchical organization, leading to a stronger directed influence of hierarchically higher placed cortical areas over primary motor and somatosensory cortices. These changes may represent a compensatory mechanism for loss of motor control as a consequence of dopamine depletion.
Collapse
|
30
|
Simioni AC, Dagher A, Fellows LK. Effects of levodopa on corticostriatal circuits supporting working memory in Parkinson's disease. Cortex 2017; 93:193-205. [PMID: 28675834 DOI: 10.1016/j.cortex.2017.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/10/2017] [Accepted: 05/28/2017] [Indexed: 12/17/2022]
Abstract
Working memory dysfunction is common in Parkinson's disease, even in its early stages, but its neural basis is debated. Working memory performance likely reflects a balance between corticostriatal dysfunction and compensatory mechanisms. We tested this hypothesis by examining working memory performance with a letter n-back task in 19 patients with mild-moderate Parkinson's disease and 20 demographically matched healthy controls. Parkinson's disease patients were tested after an overnight washout of their usual dopamine replacement therapy, and again after a standard dose of levodopa. FMRI was used to assess task-related activation and resting state functional connectivity; changes in BOLD signal were related to performance to disentangle pathological and compensatory processes. Parkinson's disease patients off dopamine replacement therapy displayed significantly reduced spatial extent of task-related activation in left prefrontal and bilateral parietal cortex, and poorer working memory performance, compared to controls. Amongst the Parkinson's disease patients off dopamine replacement therapy, relatively better performance was associated with greater activation of right dorsolateral prefrontal cortex compared to controls, consistent with compensatory right hemisphere recruitment. Administration of levodopa remediated the working memory deficit in the Parkinson's disease group, and resulted in a different pattern of performance-correlated activity, with a shift to greater left ventrolateral prefrontal cortex activation in patients on, compared to off dopamine replacement therapy. Levodopa also significantly increased resting-state functional connectivity between caudate and right parietal cortex (within the right fronto-parietal attentional network). The strength of this connectivity contributed to better performance in patients and controls, suggesting a general compensatory mechanism. These findings argue that Parkinson's disease patients can recruit additional neural resources, here, the right fronto-parietal network, to optimize working memory performance despite impaired corticostriatal function. Levodopa seems to both boost engagement of a task-specific prefrontal region, and strengthen a putative compensatory caudate-cortical network to support this executive function.
Collapse
Affiliation(s)
- Alison C Simioni
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - Lesley K Fellows
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
31
|
Gait improvement via rhythmic stimulation in Parkinson's disease is linked to rhythmic skills. Sci Rep 2017; 7:42005. [PMID: 28233776 PMCID: PMC5324039 DOI: 10.1038/srep42005] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/05/2017] [Indexed: 11/16/2022] Open
Abstract
Training based on rhythmic auditory stimulation (RAS) can improve gait in patients with idiopathic Parkinson’s disease (IPD). Patients typically walk faster and exhibit greater stride length after RAS. However, this effect is highly variable among patients, with some exhibiting little or no response to the intervention. These individual differences may depend on patients’ ability to synchronize their movements to a beat. To test this possibility, 14 IPD patients were submitted to RAS for four weeks, in which they walked to music with an embedded metronome. Before and after the training, patients’ synchronization was assessed with auditory paced hand tapping and walking to auditory cues. Patients increased gait speed and stride length in non-cued gait after training. However, individual differences were apparent as some patients showed a positive response to RAS and others, either no response, or a negative response. A positive response to RAS was predicted by the synchronization performance in hand tapping and gait tasks. More severe gait impairment, low synchronization variability, and a prompt response to a stimulation change foster a positive response to RAS training. Thus, sensorimotor timing skills underpinning the synchronization of steps to an auditory cue may allow predicting the success of RAS in IPD.
Collapse
|
32
|
Sunwoo MK, Lee JE, Hong JY, Ye BS, Lee HS, Oh JS, Kim JS, Lee PH, Sohn YH. Premorbid exercise engagement and motor reserve in Parkinson's disease. Parkinsonism Relat Disord 2016; 34:49-53. [PMID: 27852513 DOI: 10.1016/j.parkreldis.2016.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Life-long experiences of cognitive activity could enhance cognitive reserve, which may lead individuals to show less cognitive deficits in Alzheimer's disease, despite similar pathological changes. We performed this study to test whether premorbid physical activity may enhance motor reserve in Parkinson's disease (PD) (i.e., less motor deficits despite similar degrees of dopamine depletion). METHODS We assessed engagement in premorbid leisure-time exercise among 102 drug naive PD patients who had been initially diagnosed at our hospital by dopamine transporter scanning. Patients were classified into tertile groups based on the frequency, duration, and intensity of the exercises in which they participated. RESULTS Among patients with mild to moderate reductions in striatal dopaminergic activity (above the median dopaminergic activity), the exercise group of the highest tertile showed significantly lower motor scores (i.e., fewer motor deficits, 15.53 ± 6.25), despite similar degrees of dopamine reduction, compared to the combined group of the middle and the lowest tertiles (21.57 ± 8.34, p = 0.01). Nonetheless, the highest tertile group showed a more rapid decline in motor function related to reductions in striatal dopaminergic activity than the other two groups (p = 0.002 with the middle tertile group and p = 0.001 with the lowest tertile group). CONCLUSIONS These results suggest that engagement in premorbid exercise acts as a proxy for an active reserve in the motor domain (i.e., motor reserve) in patients with PD.
Collapse
Affiliation(s)
- Mun K Sunwoo
- Department of Neurology and Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Bundang Jesaeng General Hospital, Seongnam, South Korea
| | - Ji E Lee
- Department of Neurology and Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Y Hong
- Department of Neurology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Byung S Ye
- Department of Neurology and Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye S Lee
- Department of Biostatistics, Yonsei University College of Medicine, Seoul, South Korea
| | - Jungsu S Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae S Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Phil H Lee
- Department of Neurology and Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology and Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
33
|
Cortical and motor responses to acute forced exercise in Parkinson's disease. Parkinsonism Relat Disord 2016; 24:56-62. [PMID: 26857399 DOI: 10.1016/j.parkreldis.2016.01.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Studies in animal models of Parkinson's disease (PD) have suggested that the rate of exercise performance is important in treatment efficacy and neuroprotection. In humans with PD, lower-extremity forced-exercise (FE) produced global improvements in motor symptoms based on clinical ratings and biomechanical measures of upper extremity function. METHODS fMRI was used to compare the underlying changes in brain activity in PD patients following the administration of anti-parkinsonian medication and following a session of FE. RESULTS Nine individuals with PD completed fMRI scans under each condition: off anti-PD medication, on anti-PD medication, and off medication + FE. Unified Parkinson's Disease Rating Motor Scale scores improved by 50% in the FE condition compared to the off-medication condition. The pattern of fMRI activation after FE was similar to that seen with anti-PD medication. Direct comparison of the fMRI activation patterns showed high correlation between FE and anti-PD medication. CONCLUSION These findings suggest that medication and FE likely utilize the same pathways to produce symptomatic relief in individuals with PD.
Collapse
|
34
|
O'Callaghan C, Hornberger M, Balsters JH, Halliday GM, Lewis SJG, Shine JM. Cerebellar atrophy in Parkinson's disease and its implication for network connectivity. Brain 2016; 139:845-55. [PMID: 26794597 DOI: 10.1093/brain/awv399] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022] Open
Abstract
Pathophysiological and atrophic changes in the cerebellum are documented in Parkinson's disease. Without compensatory activity, such abnormalities could potentially have more widespread effects on both motor and non-motor symptoms. We examined how atrophic change in the cerebellum impacts functional connectivity patterns within the cerebellum and between cerebellar-cortical networks in 42 patients with Parkinson's disease and 29 control subjects. Voxel-based morphometry confirmed grey matter loss across the motor and cognitive cerebellar territories in the patient cohort. The extent of cerebellar atrophy correlated with decreased resting-state connectivity between the cerebellum and large-scale cortical networks, including the sensorimotor, dorsal attention and default networks, but with increased connectivity between the cerebellum and frontoparietal networks. The severity of patients' motor impairment was predicted by a combination of cerebellar atrophy and decreased cerebellar-sensorimotor connectivity. These findings demonstrate that cerebellar atrophy is related to both increases and decreases in cerebellar-cortical connectivity in Parkinson's disease, identifying potential cerebellar driven functional changes associated with sensorimotor deficits. A post hoc analysis exploring the effect of atrophy in the subthalamic nucleus, a cerebellar input source, confirmed that a significant negative relationship between grey matter volume and intrinsic cerebellar connectivity seen in controls was absent in the patients. This suggests that the modulatory relationship of the subthalamic nucleus on intracerebellar connectivity is lost in Parkinson's disease, which may contribute to pathological activation within the cerebellum. The results confirm significant changes in cerebellar network activity in Parkinson's disease and reveal that such changes occur in association with atrophy of the cerebellum.
Collapse
Affiliation(s)
- Claire O'Callaghan
- 1 Brain and Mind Research Institute, University of Sydney, Sydney, Australia 2 Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Michael Hornberger
- 3 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Joshua H Balsters
- 4 Department of Health Sciences and Technology, Neural Control of Movement Laboratory, ETH Zurich, Switzerland
| | - Glenda M Halliday
- 5 Neuroscience Research Australia, Sydney, Australia 6 Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Simon J G Lewis
- 1 Brain and Mind Research Institute, University of Sydney, Sydney, Australia
| | - James M Shine
- 1 Brain and Mind Research Institute, University of Sydney, Sydney, Australia 5 Neuroscience Research Australia, Sydney, Australia 7 School of Psychology, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
35
|
Hackney ME, Lee HL, Battisto J, Crosson B, McGregor KM. Context-Dependent Neural Activation: Internally and Externally Guided Rhythmic Lower Limb Movement in Individuals With and Without Neurodegenerative Disease. Front Neurol 2015; 6:251. [PMID: 26696952 PMCID: PMC4667008 DOI: 10.3389/fneur.2015.00251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative disorder that has received considerable attention in allopathic medicine over the past decades. However, it is clear that, to date, pharmacological and surgical interventions do not fully address symptoms of PD and patients’ quality of life. As both an alternative therapy and as an adjuvant to conventional approaches, several types of rhythmic movement (e.g., movement strategies, dance, tandem biking, and Tai Chi) have shown improvements to motor symptoms, lower limb control, and postural stability in people with PD (1–6). However, while these programs are increasing in number, still little is known about the neural mechanisms underlying motor improvements attained with such interventions. Studying limb motor control under task-specific contexts can help determine the mechanisms of rehabilitation effectiveness. Both internally guided (IG) and externally guided (EG) movement strategies have evidence to support their use in rehabilitative programs. However, there appears to be a degree of differentiation in the neural substrates involved in IG vs. EG designs. Because of the potential task-specific benefits of rhythmic training within a rehabilitative context, this report will consider the use of IG and EG movement strategies, and observations produced by functional magnetic resonance imaging and other imaging techniques. This review will present findings from lower limb imaging studies, under IG and EG conditions for populations with and without movement disorders. We will discuss how these studies might inform movement disorders rehabilitation (in the form of rhythmic, music-based movement training) and highlight research gaps. We believe better understanding of lower limb neural activity with respect to PD impairment during rhythmic IG and EG movement will facilitate the development of novel and effective therapeutic approaches to mobility limitations and postural instability.
Collapse
Affiliation(s)
- Madeleine E Hackney
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation , Decatur, GA , USA ; Division of General Medicine and Geriatrics, Department of Medicine, Emory School of Medicine , Atlanta, GA , USA
| | - Ho Lim Lee
- Emory College of Arts and Sciences, Emory University , Atlanta, GA , USA
| | - Jessica Battisto
- Emory College of Arts and Sciences, Emory University , Atlanta, GA , USA
| | - Bruce Crosson
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation , Decatur, GA , USA ; Department of Neurology, Emory School of Medicine , Atlanta, GA , USA
| | - Keith M McGregor
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation , Decatur, GA , USA ; Department of Neurology, Emory School of Medicine , Atlanta, GA , USA
| |
Collapse
|
36
|
Simioni AC, Dagher A, Fellows LK. Compensatory striatal-cerebellar connectivity in mild-moderate Parkinson's disease. NEUROIMAGE-CLINICAL 2015; 10:54-62. [PMID: 26702396 PMCID: PMC4669533 DOI: 10.1016/j.nicl.2015.11.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 11/29/2022]
Abstract
Dopamine depletion in the putamen is associated with altered motor network functional connectivity in people with Parkinson's disease (PD), but the functional significance of these changes remains unclear, attributed to either pathological or compensatory mechanisms in different studies. Here, we examined the effects of PD on dorsal caudal putamen functional connectivity, off and on dopamine replacement therapy (DRT), using resting state fMRI. Motor performance was assessed with the Purdue pegboard task. Twenty-one patients with mild–moderate Parkinson's disease were studied twice, once after an overnight DRT washout and once after the administration of a standard dose of levodopa (Sinemet), and compared to 20 demographically-matched healthy control participants. PD patients off DRT showed increased putamen functional connectivity with both the cerebellum (lobule V) and primary motor cortex (M1), relative to healthy controls. Greater putamen–cerebellar functional connectivity was significantly correlated with better motor performance, whereas greater putamen–M1 functional connectivity was predictive of poorer motor performance. The administration of levodopa improved motor performance in the PD group, as expected, and reduced putamen–cerebellar connectivity to levels comparable to the healthy control group. The strength of putamen–cerebellar functional connectivity continued to predict motor performance in the PD group while on levodopa. These findings argue that increased putamen–M1 functional connectivity reflects a pathological change, deleterious to motor performance. In contrast, increased putamen–cerebellar connectivity reflects a compensatory mechanism. We examined the functional significance of altered motor networks in Parkinson's. Patients showed greater putamen–cerebellar and –motor cortex connectivity. Greater putamen–cerebellar connectivity correlated with better motor performance. Greater putamen–motor cortex connectivity correlated with worse motor performance. l-Dopa normalized putamen–cerebellar connectivity and improved motor performance.
Collapse
Affiliation(s)
- Alison C Simioni
- Montreal Neurological Institute, McGill University, 3801 University Street, Rm 276, Montreal, QC H3A 2B4, Canada
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, 3801 University Street, Rm 276, Montreal, QC H3A 2B4, Canada
| | - Lesley K Fellows
- Montreal Neurological Institute, McGill University, 3801 University Street, Rm 276, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
37
|
Quattrocchi CC, de Pandis MF, Piervincenzi C, Galli M, Melgari JM, Salomone G, Sale P, Mallio CA, Carducci F, Stocchi F. Acute Modulation of Brain Connectivity in Parkinson Disease after Automatic Mechanical Peripheral Stimulation: A Pilot Study. PLoS One 2015; 10:e0137977. [PMID: 26469868 PMCID: PMC4607499 DOI: 10.1371/journal.pone.0137977] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/23/2015] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The present study shows the results of a double-blind sham-controlled pilot trial to test whether measurable stimulus-specific functional connectivity changes exist after Automatic Mechanical Peripheral Stimulation (AMPS) in patients with idiopathic Parkinson Disease. METHODS Eleven patients (6 women and 5 men) with idiopathic Parkinson Disease underwent brain fMRI immediately before and after sham or effective AMPS. Resting state Functional Connectivity (RSFC) was assessed using the seed-ROI based analysis. Seed ROIs were positioned on basal ganglia, on primary sensory-motor cortices, on the supplementary motor areas and on the cerebellum. Individual differences for pre- and post-effective AMPS and pre- and post-sham condition were obtained and first entered in respective one-sample t-test analyses, to evaluate the mean effect of condition. RESULTS Effective AMPS, but not sham stimulation, induced increase of RSFC of the sensory motor cortex, nucleus striatum and cerebellum. Secondly, individual differences for both conditions were entered into paired group t-test analysis to rule out sub-threshold effects of sham stimulation, which showed stronger connectivity of the striatum nucleus with the right lateral occipital cortex and the cuneal cortex (max Z score 3.12) and with the right anterior temporal lobe (max Z score 3.42) and of the cerebellum with the right lateral occipital cortex and the right cerebellar cortex (max Z score 3.79). CONCLUSIONS Our results suggest that effective AMPS acutely increases RSFC of brain regions involved in visuo-spatial and sensory-motor integration. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that automatic mechanical peripheral stimulation is effective in modulating brain functional connectivity of patients with Parkinson Disease at rest. TRIAL REGISTRATION Clinical Trials.gov NCT01815281.
Collapse
Affiliation(s)
| | | | - Claudia Piervincenzi
- Department of Physiology and Pharmacology, Neuroimaging Laboratory, Sapienza University, Rome, Italy
- Institute for Advanced Biomedical Technologies, University G. D’Annunzio Chieti-Pescara, Chieti, Italy
| | - Manuela Galli
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Jean Marc Melgari
- Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Gaetano Salomone
- Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Patrizio Sale
- Department of Neurology, Institute for Research and Medical Care, IRCCS San Raffaele, Rome, Italy
| | | | - Filippo Carducci
- Department of Physiology and Pharmacology, Neuroimaging Laboratory, Sapienza University, Rome, Italy
| | - Fabrizio Stocchi
- Department of Neurology, Institute for Research and Medical Care, IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
38
|
Ham JH, Lee JJ, Kim JS, Lee PH, Sohn YH. Is Dominant-Side Onset Associated With a Better Motor Compensation in Parkinson's Disease? Mov Disord 2015; 30:1921-5. [PMID: 26408124 DOI: 10.1002/mds.26418] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Unilateral onset and persistent asymmetry of motor signs are unique features of PD. The dominant hemisphere may have more efficient motor networks with greater neural reserve to cope with pathological changes. Therefore, this study compared dominant-side onset and non-dominant-side onset PD to evaluate whether dominant-side onset patients have greater neural reserve and fewer motor deficits despite similar pathological changes. METHODS We included the data of 157 consecutive, de novo PD patients with documented right-handedness who underwent dopamine transporter PET scans for an initial diagnostic workup. Among them, 118 patients with significant asymmetric motor deficits were selected for the analyses. RESULTS Dominant-side patients (i.e., the majority of motor deficits on the right side) showed significantly fewer motor deficits (i.e., the part III score of the UPDRS) than non-dominant-side patients (18.0 ± 8.1 and 22.9 ± 10.1, respectively; P = 0.005). Other variables, including symptom duration and striatal dopaminergic activities, were similar between the two groups. A general linear model showed that this difference in motor deficits remained statistically significant after controlling for patient age, sex, symptom duration, and striatal dopaminergic activity in the posterior putamen (P = 0.013). CONCLUSION These results suggest that dominant-side patients have greater neural reserve, allowing them to better cope with PD-related pathological changes (i.e., fewer motor deficits despite similar dopamine reduction) compared to non-dominant-side patients.
Collapse
Affiliation(s)
- Jee H Ham
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae J Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae S Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Phil H Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Festini SB, Bernard JA, Kwak Y, Peltier S, Bohnen NI, Müller MLTM, Dayalu P, Seidler RD. Altered cerebellar connectivity in Parkinson's patients ON and OFF L-DOPA medication. Front Hum Neurosci 2015; 9:214. [PMID: 25954184 PMCID: PMC4405615 DOI: 10.3389/fnhum.2015.00214] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/02/2015] [Indexed: 01/28/2023] Open
Abstract
Although nigrostriatal changes are most commonly affiliated with Parkinson's disease, the role of the cerebellum in Parkinson's has become increasingly apparent. The present study used lobule-based cerebellar resting state functional connectivity to (1) compare cerebellar-whole brain and cerebellar-cerebellar connectivity in Parkinson's patients both ON and OFF L-DOPA medication and controls, and to (2) relate variations in cerebellar connectivity to behavioral performance. Results indicated that, when contrasted to the control group, Parkinson's patients OFF medication had increased levels of cerebellar-whole brain and cerebellar-cerebellar connectivity, whereas Parkinson's patients ON medication had decreased levels of cerebellar-whole brain and cerebellar-cerebellar connectivity. Moreover, analyses relating levels of cerebellar connectivity to behavioral measures demonstrated that, within each group, increased levels of connectivity were most often associated with improved cognitive and motor performance, but there were several instances where increased connectivity was related to poorer performance. Overall, the present study found medication-variant cerebellar connectivity in Parkinson's patients, further demonstrating cerebellar changes associated with Parkinson's disease and the moderating effects of medication.
Collapse
Affiliation(s)
- Sara B Festini
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas Dallas, TX, USA ; Department of Psychology, University of Michigan Ann Arbor, MI, USA
| | - Jessica A Bernard
- Department of Psychology and Neuroscience, University of Colorado Boulder Boulder, CO, USA
| | - Youngbin Kwak
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst Amherst, MA, USA
| | - Scott Peltier
- Functional MRI Laboratory, Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, USA
| | - Nicolaas I Bohnen
- Department of Radiology, University of Michigan Ann Arbor, MI, USA ; Department of Neurology, University of Michigan Ann Arbor, MI, USA ; Geriatric Research, Education and Clinical Center, VA Ann Arbor Ann Arbor, MI, USA
| | | | - Praveen Dayalu
- Department of Neurology, University of Michigan Ann Arbor, MI, USA
| | - Rachael D Seidler
- Department of Psychology, University of Michigan Ann Arbor, MI, USA ; School of Kinesiology, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
40
|
Foki T, Pirker W, Geißler A, Haubenberger D, Hilbert M, Hoellinger I, Wurnig M, Rath J, Lehrner J, Matt E, Fischmeister F, Trattnig S, Auff E, Beisteiner R. Finger dexterity deficits in Parkinson's disease and somatosensory cortical dysfunction. Parkinsonism Relat Disord 2015; 21:259-65. [DOI: 10.1016/j.parkreldis.2014.12.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/22/2014] [Accepted: 12/27/2014] [Indexed: 01/17/2023]
|
41
|
Greenbaum L, Lerer B. Pharmacogenetics of antipsychotic-induced movement disorders as a resource for better understanding Parkinson's disease modifier genes. Front Neurol 2015; 6:27. [PMID: 25750634 PMCID: PMC4335175 DOI: 10.3389/fneur.2015.00027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 01/30/2015] [Indexed: 12/05/2022] Open
Abstract
Antipsychotic-induced movement disorders are major side effects of antipsychotic drugs among schizophrenia patients, and include antipsychotic-induced parkinsonism (AIP) and tardive dyskinesia (TD). Substantial pharmacogenetic work has been done in this field, and several susceptibility variants have been suggested. In this paper, the genetics of antipsychotic-induced movement disorders is considered in a broader context. We hypothesize that genetic variants that are risk factors for AIP and TD may provide insights into the pathophysiology of motor symptoms in Parkinson’s disease (PD). Since loss of dopaminergic stimulation (albeit pharmacological in AIP and degenerative in PD) is shared by the two clinical entities, genes associated with susceptibility to AIP may be modifier genes that influence clinical expression of PD motor sub-phenotypes, such as age at onset, disease severity, or rate of progression. This is due to their possible functional influence on compensatory mechanisms for striatal dopamine loss. Better compensatory potential might be beneficial at the early and later stages of the PD course. AIP vulnerability variants could also be related to latent impairment in the nigrostriatal pathway, affecting its functionality, and leading to subclinical dopaminergic deficits in the striatum. Susceptibility of PD patients to early development of l-DOPA induced dyskinesia (LID) is an additional relevant sub-phenotype. LID might share a common genetic background with TD, with which it shares clinical features. Genetic risk variants may predispose to both phenotypes, exerting a pleiotropic effect. According to this hypothesis, elucidating the genetics of antipsychotic-induced movement disorders may advance our understanding of multiple aspects of PD and it clinical course, rendering this a potentially rewarding field of study.
Collapse
Affiliation(s)
- Lior Greenbaum
- Department of Neurology, Sheba Medical Center at Tel Hashomer , Ramat Gan , Israel ; The Joseph Sagol Neuroscience Center, Sheba Medical Center at Tel Hashomer , Ramat Gan , Israel
| | - Bernard Lerer
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah - Hebrew University Medical Center , Jerusalem , Israel
| |
Collapse
|
42
|
Gerrits NJHM, van der Werf YD, Verhoef KMW, Veltman DJ, Groenewegen HJ, Berendse HW, van den Heuvel OA. Compensatory fronto-parietal hyperactivation during set-shifting in unmedicated patients with Parkinson's disease. Neuropsychologia 2015; 68:107-16. [PMID: 25576907 DOI: 10.1016/j.neuropsychologia.2014.12.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/10/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
Patients with Parkinson's disease (PD) often suffer from impairments in executive functions, such as mental rigidity, which can be measured as impaired set-shifting. Previous studies have shown that set-shifting deficits in patients with PD result from hypo-excitation of the caudate nucleus and lateral prefrontal cortices. The results of these studies may have been influenced by the inclusion of patients on dopaminergic medication, and by choosing set-shifting paradigms in which performance also depends on other cognitive mechanisms, such as matching-to-sample. To circumvent these potential confounding factors, we tested patients with PD that were not on dopamine replacement therapy, and we developed a new feedback-based paradigm to measure the cognitive construct set-shifting more accurately. In this case-control study, 18 patients with PD and 35 well-matched healthy controls performed the set-shifting task, while task-related neural activation was recorded using functional magnetic resonance imaging. Behaviourally, PD patients, compared with healthy controls, made more errors during repeat trials, but not set-shift trials. The patients, compared with controls, showed increased task-related activation of the bilateral inferior parietal cortex, and the right superior frontal gyrus, and decreased activation of the right ventrolateral prefrontal cortex during set-shift trials. Our findings suggest that, despite decreased task-related activation of the right ventrolateral prefrontal cortex, these early-stage unmedicated patients with PD do not yet suffer from set-shifting deficits due to compensatory hyperactivation in the inferior parietal cortex and the superior frontal gyrus.
Collapse
Affiliation(s)
- Niels J H M Gerrits
- Department of Anatomy & Neurosciences, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Neuroscience Campus Amsterdam (NCA), Amsterdam, The Netherlands.
| | - Ysbrand D van der Werf
- Department of Anatomy & Neurosciences, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Neuroscience Campus Amsterdam (NCA), Amsterdam, The Netherlands
| | - Kim M W Verhoef
- Department of Anatomy & Neurosciences, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, VUmc, Amsterdam, The Netherlands; Neuroscience Campus Amsterdam (NCA), Amsterdam, The Netherlands
| | - Henk J Groenewegen
- Department of Anatomy & Neurosciences, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Neuroscience Campus Amsterdam (NCA), Amsterdam, The Netherlands
| | - Henk W Berendse
- Department of Neurology, VUmc, Amsterdam, The Netherlands; Neuroscience Campus Amsterdam (NCA), Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Department of Anatomy & Neurosciences, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Department of Psychiatry, VUmc, Amsterdam, The Netherlands; Neuroscience Campus Amsterdam (NCA), Amsterdam, The Netherlands
| |
Collapse
|
43
|
Liu A, Chen X, McKeown MJ, Wang ZJ. A sticky weighted regression model for time-varying resting-state brain connectivity estimation. IEEE Trans Biomed Eng 2014; 62:501-510. [PMID: 25252272 DOI: 10.1109/tbme.2014.2359211] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite recent progress on brain connectivity modeling using neuroimaging data such as fMRI, most current approaches assume that brain connectivity networks have time-invariant topology/coefficients. This is clearly problematic as the brain is inherently nonstationary. Here, we present a time-varying model to investigate the temporal dynamics of brain connectivity networks. The proposed method allows for abrupt changes in network structure via a fused least absolute shrinkage and selection operator (LASSO) scheme, as well as recovery of time-varying networks with smoothly changing coefficients via a weighted regression technique. Simulations demonstrate that the proposed method yields improved accuracy on estimating time-dependent connectivity patterns when compared to a static sparse regression model or a weighted time-varying regression model. When applied to real resting-state fMRI datasets from Parkinson's disease (PD) and control subjects, significantly different temporal and spatial patterns were found to be associated with PD. Specifically, PD subjects demonstrated reduced network variability over time, which may be related to impaired cognitive flexibility previously reported in PD. The temporal dynamic properties of brain connectivity in PD subjects may provide insights into brain dynamics associated with PD and may serve as a potential biomarker in future studies.
Collapse
Affiliation(s)
- Aiping Liu
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Xun Chen
- Department of Biomedical Engineering, School of Medical Engineering, Hefei University of Technology, Hefei, China
| | - Martin J McKeown
- Department of Medicine (Neurology) and Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Z Jane Wang
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
44
|
Beyond the basal ganglia: cFOS expression in the cerebellum in response to acute and chronic dopaminergic alterations. Neuroscience 2014; 267:219-31. [PMID: 24631673 DOI: 10.1016/j.neuroscience.2014.02.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 02/15/2014] [Accepted: 02/28/2014] [Indexed: 11/21/2022]
Abstract
The suggestion of an anatomical and functional relationship between the basal ganglia and cerebellum is recent. Traditionally, these structures were considered as neuronal circuits working separately to organize and control goal-directed movements and cognitive functions. However, several studies in rodents and primates have described an anatomical interaction between cortico-basal and cortico-cerebellar networks. Most importantly, functional changes have been observed in one of these circuits when altering the other one. In this context, we aimed to accomplish an extensive description of cerebellar activation patterns using cFOS expression (cFOS-IR) after acute and chronic manipulation of dopaminergic activity. In the acute study, substantia nigra pars compacta (SNc) activity was stimulated or suppressed by intra cerebral administration of picrotoxin or lidocaine, respectively. In addition, we analyzed cerebellar activity after the induction of a parkinsonism model, the tremulous jaw movements. In this model, tremulous jaw movements were induced in male rats by IP chronic administration of the dopamine antagonist haloperidol (1.5mg/kg). Acute stimulation of SNc by picrotoxin increased cFOS-IR in the vermis and cerebellar hemispheres. However, lidocaine did not produce an effect. After 14days of haloperidol treatment, the vermis and cerebellar hemispheres showed an opposite regulation of cFOS expression. Chronic dopaminergic antagonism lessened cFOS expression in the vermis but up-regulated such expression in the cerebellar hemisphere. Overall, the present data indicate a very close functional relationship between the basal ganglia and the cerebellum and they may allow a better understanding of disorders in which there are dopamine alterations.
Collapse
|
45
|
Stevenson JKR, Lee C, Lee BS, Talebifard P, Ty E, Aseeva K, Oishi MMK, McKeown MJ. Excessive Sensitivity to Uncertain Visual Input in L-DOPA-Induced Dyskinesias in Parkinson's Disease: Further Implications for Cerebellar Involvement. Front Neurol 2014; 5:8. [PMID: 24550883 PMCID: PMC3912458 DOI: 10.3389/fneur.2014.00008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/10/2014] [Indexed: 12/03/2022] Open
Abstract
When faced with visual uncertainty during motor performance, humans rely more on predictive forward models and proprioception and attribute lesser importance to the ambiguous visual feedback. Though disrupted predictive control is typical of patients with cerebellar disease, sensorimotor deficits associated with the involuntary and often unconscious nature of l-DOPA-induced dyskinesias in Parkinson’s disease (PD) suggests dyskinetic subjects may also demonstrate impaired predictive motor control. Methods: We investigated the motor performance of 9 dyskinetic and 10 non-dyskinetic PD subjects on and off l-DOPA, and of 10 age-matched control subjects, during a large-amplitude, overlearned, visually guided tracking task. Ambiguous visual feedback was introduced by adding “jitter” to a moving target that followed a Lissajous pattern. Root mean square (RMS) tracking error was calculated, and ANOVA, robust multivariate linear regression, and linear dynamical system analyses were used to determine the contribution of speed and ambiguity to tracking performance. Results: Increasing target ambiguity and speed contributed significantly more to the RMS error of dyskinetic subjects off medication. l-DOPA improved the RMS tracking performance of both PD groups. At higher speeds, controls and PDs without dyskinesia were able to effectively de-weight ambiguous visual information. Conclusion: PDs’ visually guided motor performance degrades with visual jitter and speed of movement to a greater degree compared to age-matched controls. However, there are fundamental differences in PDs with and without dyskinesia: subjects without dyskinesia are generally slow, and less responsive to dynamic changes in motor task requirements, but in PDs with dyskinesia, there was a trade-off between overall performance and inappropriate reliance on ambiguous visual feedback. This is likely associated with functional changes in posterior parietal–ponto–cerebellar pathways.
Collapse
Affiliation(s)
- James K R Stevenson
- Kinsmen Laboratory of Neurological Research, Department of Neuroscience, University of British Columbia , Vancouver, BC , Canada
| | - Chonho Lee
- School of Computer Engineering, Nanyang Technological University , Singapore , Singapore
| | - Bu-Sung Lee
- School of Computer Engineering, Nanyang Technological University , Singapore , Singapore
| | - Pouria Talebifard
- Department of Electrical and Computer Engineering, University of British Columbia , Vancouver, BC , Canada
| | - Edna Ty
- Pacific Parkinson's Research Centre, University Hospital, University of British Columbia , Vancouver, BC , Canada
| | - Kristina Aseeva
- Pacific Parkinson's Research Centre, University Hospital, University of British Columbia , Vancouver, BC , Canada
| | - Meeko M K Oishi
- Department of Electrical and Computer Engineering, University of New Mexico , Albuquerque, NM , USA
| | - Martin J McKeown
- Kinsmen Laboratory of Neurological Research, Department of Neuroscience, University of British Columbia , Vancouver, BC , Canada ; Department of Electrical and Computer Engineering, University of British Columbia , Vancouver, BC , Canada ; Pacific Parkinson's Research Centre, University Hospital, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
46
|
Holschneider DP, Guo Y, Wang Z, Roch M, Scremin OU. Remote brain network changes after unilateral cortical impact injury and their modulation by acetylcholinesterase inhibition. J Neurotrauma 2014; 30:907-19. [PMID: 23343118 DOI: 10.1089/neu.2012.2657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We explored whether cerebral cortical impact injury (CCI) effects extend beyond direct lesion sites to affect remote brain networks, and whether acetylcholinesterase (AChE) inhibition elicits discrete changes in functional activation of motor circuits following CCI. Adult male rats underwent unilateral motor-sensory CCI or sham injury. Physostigmine (AChE inhibitor) or saline were administered subcutaneously continuously via implanted minipumps (1.6 micromoles/kg/day) for 3 weeks, followed by cerebral perfusion mapping during treadmill walking using [(14)C]-iodoantipyrine. Quantitative autoradiographs were analyzed by statistical parametric mapping and functional connectivity (FC) analysis. CCI resulted in functional deficits in the ipsilesional basal ganglia, with increased activation contralesionally. Recruitment was also observed, especially contralesionally, of the red nucleus, superior colliculus, pedunculopontine tegmental nucleus, thalamus (ventrolateral n., central medial n.), cerebellum, and sensory cortex. FC decreased significantly within ipsi- and contralesional motor circuits and between hemispheres, but increased between midline cerebellum and select regions of the basal ganglia within each hemisphere. Physostigmine significantly increased functional brain activation in the cerebellar thalamocortical pathway (midline cerebellum→ventrolateral thalamus→motor cortex), subthalamic nucleus/zona incerta, and red nucleus and bilateral sensory cortex. In conclusion, CCI resulted in increased functional recruitment of contralesional motor cortex and bilateral subcortical motor regions, as well as recruitment of the cerebellar-thalamocortical circuit and contralesional sensory cortex. This phenomenon, augmented by physostigmine, may partially compensate motor deficits. FC decreased inter-hemispherically and in negative, but not positive, intra-hemispherical FC, and it was not affected by physostigmine. Circuit-based approaches into functional brain reorganization may inform future behavioral or molecular strategies to augment targeted neurorehabilitation.
Collapse
Affiliation(s)
- Daniel P Holschneider
- Department of Psychiatry, Keck School of Medicine at University of Southern California , Los Angeles, California 90033, USA.
| | | | | | | | | |
Collapse
|
47
|
Sehm B, Taubert M, Conde V, Weise D, Classen J, Dukart J, Draganski B, Villringer A, Ragert P. Structural brain plasticity in Parkinson's disease induced by balance training. Neurobiol Aging 2014; 35:232-9. [DOI: 10.1016/j.neurobiolaging.2013.06.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 06/07/2013] [Accepted: 06/30/2013] [Indexed: 11/24/2022]
|
48
|
Wang Z, Myers KG, Guo Y, Ocampo MA, Pang RD, Jakowec MW, Holschneider DP. Functional reorganization of motor and limbic circuits after exercise training in a rat model of bilateral parkinsonism. PLoS One 2013; 8:e80058. [PMID: 24278239 PMCID: PMC3836982 DOI: 10.1371/journal.pone.0080058] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/09/2013] [Indexed: 01/30/2023] Open
Abstract
Exercise training is widely used for neurorehabilitation of Parkinson's disease (PD). However, little is known about the functional reorganization of the injured brain after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise in a rat model of dopaminergic deafferentation (bilateral, dorsal striatal 6-hydroxydopamine lesions). One week after training, cerebral perfusion was mapped during treadmill walking or at rest using [(14)C]-iodoantipyrine autoradiography. Regional cerebral blood flow-related tissue radioactivity (rCBF) was analyzed in three-dimensionally reconstructed brains by statistical parametric mapping. In non-exercised rats, lesions resulted in persistent motor deficits. Compared to sham-lesioned rats, lesioned rats showed altered functional brain activation during walking, including: 1. hypoactivation of the striatum and motor cortex; 2. hyperactivation of non-lesioned areas in the basal ganglia-thalamocortical circuit; 3. functional recruitment of the red nucleus, superior colliculus and somatosensory cortex; 4. hyperactivation of the ventrolateral thalamus, cerebellar vermis and deep nuclei, suggesting recruitment of the cerebellar-thalamocortical circuit; 5. hyperactivation of limbic areas (amygdala, hippocampus, ventral striatum, septum, raphe, insula). These findings show remarkable similarities to imaging findings reported in PD patients. Exercise progressively improved motor deficits in lesioned rats, while increasing activation in dorsal striatum and rostral secondary motor cortex, attenuating a hyperemia of the zona incerta and eliciting a functional reorganization of regions participating in the cerebellar-thalamocortical circuit. Both lesions and exercise increased activation in mesolimbic areas (amygdala, hippocampus, ventral striatum, laterodorsal tegmental n., ventral pallidum), as well as in related paralimbic regions (septum, raphe, insula). Exercise, but not lesioning, resulted in decreases in rCBF in the medial prefrontal cortex (cingulate, prelimbic, infralimbic). Our results in this PD rat model uniquely highlight the breadth of functional reorganizations in motor and limbic circuits following lesion and long-term, aerobic exercise, and provide a framework for understanding the neural substrates underlying exercise-based neurorehabilitation.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Kalisa G. Myers
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Yumei Guo
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Marco A. Ocampo
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Raina D. Pang
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Michael W. Jakowec
- Department of Neurology, University of Southern California, Los Angeles, California, United States of America
| | - Daniel P. Holschneider
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Neurology, University of Southern California, Los Angeles, California, United States of America
- Department of Cell and Neurobiology, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Spagnolo F, Coppi E, Chieffo R, Straffi L, Fichera M, Nuara A, Gonzalez-Rosa J, Martinelli V, Comi G, Volontè MA, Leocani L. Interhemispheric Balance in Parkinson's Disease: A Transcranial Magnetic Stimulation Study. Brain Stimul 2013; 6:892-7. [DOI: 10.1016/j.brs.2013.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 04/29/2013] [Accepted: 05/11/2013] [Indexed: 11/26/2022] Open
|
50
|
Beeler JA, Petzinger G, Jakowec MW. The Enemy within: Propagation of Aberrant Corticostriatal Learning to Cortical Function in Parkinson's Disease. Front Neurol 2013; 4:134. [PMID: 24062721 PMCID: PMC3770942 DOI: 10.3389/fneur.2013.00134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/28/2013] [Indexed: 12/30/2022] Open
Abstract
Motor dysfunction in Parkinson’s disease is believed to arise primarily from pathophysiology in the dorsal striatum and its related corticostriatal and thalamostriatal circuits during progressive dopamine denervation. One function of these circuits is to provide a filter that selectively facilitates or inhibits cortical activity to optimize cortical processing, making motor responses rapid and efficient. Corticostriatal synaptic plasticity mediates the learning that underlies this performance-optimizing filter. Under dopamine denervation, corticostriatal plasticity is altered, resulting in aberrant learning that induces inappropriate basal ganglia filtering that impedes rather than optimizes cortical processing. Human imaging suggests that increased cortical activity may compensate for striatal dysfunction in PD patients. In this Perspective article, we consider how aberrant learning at corticostriatal synapses may impair cortical processing and learning and undermine potential cortical compensatory mechanisms. Blocking or remediating aberrant corticostriatal plasticity may protect cortical function and support cortical compensatory mechanisms mitigating the functional decline associated with progressive dopamine denervation.
Collapse
Affiliation(s)
- Jeff A Beeler
- Department of Psychology, Queens College, City University of New York , New York, NY , USA
| | | | | |
Collapse
|