1
|
Ritchie JL, Qi S, Soto DA, Swatzell SE, Grenz HI, Pruitt AY, Artimenia LM, Cooke SK, Berridge CW, Fuchs RA. Dorsal raphe to basolateral amygdala corticotropin-releasing factor circuit regulates cocaine-memory reconsolidation. Neuropsychopharmacology 2024; 49:2077-2086. [PMID: 38802479 PMCID: PMC11480471 DOI: 10.1038/s41386-024-01892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Environmental stimuli elicit drug craving and relapse in cocaine users by triggering the retrieval of strong cocaine-related contextual memories. Retrieval can also destabilize drug memories, requiring reconsolidation, a protein synthesis-dependent storage process, to maintain memory strength. Corticotropin-releasing factor (CRF) signaling in the basolateral amygdala (BLA) is necessary for cocaine-memory reconsolidation. We have hypothesized that a critical source of CRF in the BLA is the dorsal raphe nucleus (DR) based on its neurochemistry, anatomical connectivity, and requisite involvement in cocaine-memory reconsolidation. To test this hypothesis, male and female Sprague-Dawley rats received adeno-associated viruses to express Gi-coupled designer receptors exclusively activated by designer drugs (DREADDs) selectively in CRF neurons of the DR and injection cannulae directed at the BLA. The rats were trained to self-administer cocaine in a distinct environmental context then received extinction training in a different context. Next, they were briefly re-exposed to the cocaine-predictive context to destabilize (reactivate) cocaine memories. Intra-BLA infusions of the DREADD agonist deschloroclozapine (DCZ; 0.1 mM, 0.5 µL/hemisphere) immediately after memory reactivation attenuated cocaine-memory strength, relative to vehicle infusion. This was indicated by a selective, DCZ-induced and memory reactivation-dependent decrease in drug-seeking behavior in the cocaine-predictive context in DREADD-expressing males and females at test compared to respective controls. Notably, BLA-projecting DR CRF neurons that exhibited increased c-Fos expression during memory reconsolidation co-expressed the glutamatergic neuronal marker, vesicular glutamate transporter 3. Together, these findings suggest that the DRCRF → BLA circuit is engaged to maintain cocaine-memory strength after memory destabilization, and this phenomenon may be mediated by DR CRF and/or glutamate release in the BLA.
Collapse
Affiliation(s)
- Jobe L Ritchie
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Shuyi Qi
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - David A Soto
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Sydney E Swatzell
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Hope I Grenz
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Avery Y Pruitt
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Lilia M Artimenia
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Spencer K Cooke
- Psychology Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Craig W Berridge
- Psychology Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Rita A Fuchs
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA.
- Washington State University Alcohol and Drug Abuse Research Program, Pullman, WA, USA.
| |
Collapse
|
2
|
Markovic T, Higginbotham J, Ruyle B, Massaly N, Yoon HJ, Kuo CC, Kim JR, Yi J, Garcia JJ, Sze E, Abt J, Teich RH, Dearman JJ, McCall JG, Morón JA. A locus coeruleus to dorsal hippocampus pathway mediates cue-induced reinstatement of opioid self-administration in male and female rats. Neuropsychopharmacology 2024; 49:915-923. [PMID: 38374364 PMCID: PMC11039689 DOI: 10.1038/s41386-024-01828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
Opioid use disorder is a chronic relapsing disorder encompassing misuse, dependence, and addiction to opioid drugs. Long term maintenance of associations between the reinforcing effects of the drug and the cues associated with its intake are a leading cause of relapse. Indeed, exposure to the salient drug-associated cues can lead to drug cravings and drug seeking behavior. The dorsal hippocampus (dHPC) and locus coeruleus (LC) have emerged as important structures for linking the subjective rewarding effects of opioids with environmental cues. However, their role in cue-induced reinstatement of opioid use remains to be further elucidated. In this study, we showed that chemogenetic inhibition of excitatory dHPC neurons during re-exposure to drug-associated cues significantly attenuates cue-induced reinstatement of morphine-seeking behavior. In addition, the same manipulation reduced reinstatement of sucrose-seeking behavior but failed to alter memory recall in the object location task. Finally, intact activity of tyrosine hydroxylase (TH) LC-dHPCTh afferents is necessary to drive cue induced reinstatement of morphine-seeking as inhibition of this pathway blunts cue-induced drug-seeking behavior. Altogether, these studies show an important role of the dHPC and LC-dHPCTh pathway in mediating cue-induced reinstatement of opioid seeking.
Collapse
Affiliation(s)
- Tamara Markovic
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Jessica Higginbotham
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Brian Ruyle
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Hye Jean Yoon
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis, St. Louis, MO, USA
| | - Jenny R Kim
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis, St. Louis, MO, USA
| | - Jiwon Yi
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeniffer J Garcia
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric Sze
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Julian Abt
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Rachel H Teich
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Joanna J Dearman
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis, St. Louis, MO, USA
| | - Jose A Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA.
- Pain Center, Washington University in St Louis, St. Louis, MO, USA.
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA.
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
3
|
Ritchie JL, Qi S, Christian RJ, Greenwood MJ, Grenz HI, Swatzell SE, Krych PJ, Fuchs RA. Requisite role of dorsal raphé in contextual cocaine-memory reconsolidation. Neuropharmacology 2024; 246:109832. [PMID: 38176535 PMCID: PMC10901441 DOI: 10.1016/j.neuropharm.2023.109832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Memory reconsolidation is a process by which labile drug memories are restabilized in long-term memory stores, permitting their enduring control over drug-seeking behaviors. In the present study, we investigated the involvement of the dorsal raphé nuclei (DRN) in cocaine-memory reconsolidation. Sprague-Dawley rats (male, female) were trained to self-administer cocaine in a distinct environmental context to establish contextual drug memories. They then received extinction training in a different context. Next, the rats were re-exposed to the cocaine-predictive context for 15 min to reactivate their cocaine memories or remained in their home cages (no-reactivation control). Memory reactivation was sufficient to increase c-Fos expression, an index of neuronal activation, in the DRN, but not in the median raphé nuclei, during reconsolidation, compared to no reactivation. To determine whether DRN neuronal activity was necessary for cocaine-memory reconsolidation, rats received intra-DRN baclofen plus muscimol (BM; GABAB/A agonists) or vehicle microinfusions immediately after or 6 h after a memory reactivation session conducted with or without lever access. The effects of DRN functional inactivation on long-term memory strength, as indicated by the magnitude of context-induced cocaine seeking, were assessed 72 h later. Intra-DRN BM treatment immediately after memory reactivation with or without lever access attenuated subsequent context-induced cocaine-seeking behavior, independent of sex. Conversely, BM treatment in the adjacent periaqueductal gray (PAG) immediately after memory reactivation, or BM treatment in the DRN 6 h after memory reactivation, did not alter responding. Together, these findings indicate that the DRN plays a requisite role in maintaining cocaine-memory strength during reconsolidation.
Collapse
Affiliation(s)
- J L Ritchie
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - S Qi
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - R J Christian
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - M J Greenwood
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - H I Grenz
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - S E Swatzell
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - P J Krych
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - R A Fuchs
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA; Washington State University Alcohol and Drug Abuse Research Program, Pullman, WA, USA.
| |
Collapse
|
4
|
Ritchie JL, Qi S, Soto DA, Swatzell SE, Grenz HI, Pruitt AY, Artimenia LM, Cooke SK, Berridge CW, Fuchs RA. Dorsal Raphe to Basolateral Amygdala Corticotropin-Releasing Factor Circuit Regulates Cocaine-Memory Reconsolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579725. [PMID: 38405858 PMCID: PMC10888894 DOI: 10.1101/2024.02.10.579725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Environmental stimuli elicit drug craving and relapse in cocaine users by triggering the retrieval of strong cocainerelated contextual memories. Retrieval can also destabilize drug memories, requiring reconsolidation, a protein synthesis-dependent storage process, to maintain memory strength. Corticotropin-releasing factor (CRF) signaling in the basolateral amygdala (BLA) is necessary for cocainememory reconsolidation. We have hypothesized that a critical source of CRF in the BLA is the dorsal raphe nucleus (DR) based on its neurochemistry, anatomical connectivity, and requisite involvement in cocaine-memory reconsolidation. To test this hypothesis, male and female Sprague-Dawley rats received adeno-associated viruses to express Gi-coupled designer receptors exclusively activated by designer drugs (DREADDs) selectively in CRF neurons of the DR and injection cannulae directed at the BLA. The rats were trained to self-administer cocaine in a distinct environmental context then received extinction training in a different context. They were then briefly reexposed to the cocaine-predictive context to destabilize (reactivate) cocaine memories. Intra-BLA infusions of the DREADD agonist deschloroclozapine (DCZ; 0.1 mM, 0.5 μL/hemisphere) after memory reactivation attenuated cocaine-memory strength, relative to vehicle infusion. This was indicated by a selective, DCZ-induced and memory reactivation-dependent decrease in drug-seeking behavior in the cocaine-predictive context in DREADD-expressing males and females at test compared to respective controls. Notably, BLA-projecting DR CRF neurons that exhibited increased c-Fos expression during memory reconsolidation co-expressed glutamatergic and serotonergic neuronal markers. Together, these findings suggest that the DRCRF → BLA circuit is engaged to maintain cocaine-memory strength after memory destabilization, and this phenomenon may be mediated by DR CRF, glutamate, and/or serotonin release in the BLA.
Collapse
Affiliation(s)
- Jobe L. Ritchie
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Shuyi Qi
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - David A. Soto
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Sydney E. Swatzell
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Hope I. Grenz
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Avery Y. Pruitt
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Lilia M. Artimenia
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Spencer K. Cooke
- Psychology Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Craig W. Berridge
- Psychology Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Rita A. Fuchs
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
- Washington State University Alcohol and Drug Abuse Research Program, Pullman, WA, USA
| |
Collapse
|
5
|
Ibrahim KM, Massaly N, Yoon HJ, Sandoval R, Widman AJ, Heuermann RJ, Williams S, Post W, Pathiranage S, Lintz T, Zec A, Park A, Yu W, Kash TL, Gereau RW, Morón JA. Dorsal hippocampus to nucleus accumbens projections drive reinforcement via activation of accumbal dynorphin neurons. Nat Commun 2024; 15:750. [PMID: 38286800 PMCID: PMC10825206 DOI: 10.1038/s41467-024-44836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
The hippocampus is pivotal in integrating emotional processing, learning, memory, and reward-related behaviors. The dorsal hippocampus (dHPC) is particularly crucial for episodic, spatial, and associative memory, and has been shown to be necessary for context- and cue-associated reward behaviors. The nucleus accumbens (NAc), a central structure in the mesolimbic reward pathway, integrates the salience of aversive and rewarding stimuli. Despite extensive research on dHPC→NAc direct projections, their sufficiency in driving reinforcement and reward-related behavior remains to be determined. Our study establishes that activating excitatory neurons in the dHPC is sufficient to induce reinforcing behaviors through its direct projections to the dorso-medial subregion of the NAc shell (dmNAcSh). Notably, dynorphin-containing neurons specifically contribute to dHPC-driven reinforcing behavior, even though both dmNAcSh dynorphin- and enkephalin-containing neurons are activated with dHPC stimulation. Our findings unveil a pathway governing reinforcement, advancing our understanding of the hippocampal circuity's role in reward-seeking behaviors.
Collapse
Affiliation(s)
- Khairunisa Mohamad Ibrahim
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Hye-Jean Yoon
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Rossana Sandoval
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Allie J Widman
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Robert J Heuermann
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University Pain Center, St. Louis, MO, 63110, USA
| | - Sidney Williams
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - William Post
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Sulan Pathiranage
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Tania Lintz
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Azra Zec
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Ashley Park
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Waylin Yu
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Robert W Gereau
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Jose A Morón
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA.
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Milton AL. Drug memory reconsolidation: from molecular mechanisms to the clinical context. Transl Psychiatry 2023; 13:370. [PMID: 38040677 PMCID: PMC10692359 DOI: 10.1038/s41398-023-02666-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
Since its rediscovery at the beginning of the 21st Century, memory reconsolidation has been proposed to be a therapeutic target for reducing the impact of emotional memories that can go awry in mental health disorders such as drug addiction (substance use disorder, SUD). Addiction can be conceptualised as a disorder of learning and memory, in which both pavlovian and instrumental learning systems become hijacked into supporting drug-seeking and drug-taking behaviours. The past two decades of research have characterised the details of the molecular pathways supporting the reconsolidation of pavlovian cue-drug memories, with more recent work indicating that the reconsolidation of instrumental drug-seeking memories also relies upon similar mechanisms. This narrative review considers what is known about the mechanisms underlying the reconsolidation of pavlovian and instrumental memories associated with drug use, how these approaches have translated to experimental medicine studies, and the challenges and opportunities for the clinical use of reconsolidation-based therapies.
Collapse
Affiliation(s)
- Amy L Milton
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Pagano R, Salamian A, Skonieczna E, Wojtas B, Gielniewski B, Harda Z, Cały A, Havekes R, Abel T, Radwanska K. Molecular fingerprints in the hippocampus of alcohol seeking during withdrawal. RESEARCH SQUARE 2023:rs.3.rs-3337670. [PMID: 37841864 PMCID: PMC10571638 DOI: 10.21203/rs.3.rs-3337670/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Alcohol use disorder (AUD) is characterized by pathological motivation to consume alcohol and cognitive inflexibility, leading to excessive alcohol seeking and use. Due to limited understanding of the molecular basis of the disease, there are few pharmacological interventions available to combat AUD. In this study, we aimed to investigate the molecular correlates of impaired extinction of alcohol seeking during alcohol withdrawal using a mouse model of AUD implemented in the automated IntelliCage social system. This model enabled us to distinguish between animals exhibiting AUD-prone and AUD-resistant phenotypes, based on the presence of ≥ 2 or < 2 criteria of AUD, respectively. We utilized new generation RNA sequencing to identify genes that were differentially expressed in the hippocampus and amygdala of mice meeting ≥ 2 or < 2 criteria, as these brain regions are implicated in alcohol motivation, seeking, consumption and the cognitive inflexibility characteristic of AUD. To complement the sequencing studies, we conducted ex vivo electrophysiology experiments. Our findings revealed significant dysregulation of the hippocampal genes associated with the actin cytoskeleton and synaptic function, including actin binding molecule cofilin, during alcohol withdrawal in mice meeting ≥ 2 criteria compared to those meeting < 2 criteria. Moreover, this dysregulation was accompanied by impaired synaptic transmission in the molecular layer of the hippocampal dentate gyrus (ML-DG). Additionally, we demonstrated that overexpression of cofilin in the polymorphic layer of the hippocampal dentate gyrus (PoDG) inhibited ML-DG synapses, increased motivation to seek alcohol, impaired extinction of alcohol seeking and increased correlation between AUD behaviors, resembling the phenotype observed in mice meeting ≥ 2 criteria. Overall, our study uncovers a novel mechanism linking increased hippocampal cofilin expression with the AUD phenotype.
Collapse
Affiliation(s)
- Roberto Pagano
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Ahmad Salamian
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Edyta Skonieczna
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Bartosz Wojtas
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Bartek Gielniewski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Zofia Harda
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
- current address: Department Molecular Neuropharmacology, Maj Institute of Pharmacology of Polish Academy of Sciences, Krakow, Poland
| | - Anna Cały
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Robbert Havekes
- Neurobiology expertise group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ted Abel
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kasia Radwanska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| |
Collapse
|
8
|
Pagano R, Salamian A, Skonieczna E, Wojtas B, Gielniewski B, Harda Z, Cały A, Havekes R, Abel T, Radwanska K. Molecular fingerprints in the hippocampus of alcohol seeking during withdrawal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554622. [PMID: 37662388 PMCID: PMC10473700 DOI: 10.1101/2023.08.24.554622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Alcohol use disorder (AUD) is characterized by excessive alcohol seeking and use. Here, we investigated the molecular correlates of impaired extinction of alcohol seeking using a multidimentional mouse model of AUD. We distinguished AUD-prone and AUD-resistant mice, based on the presence of ≥ 2 or < 2 criteria of AUD and utilized RNA sequencing to identify genes that were differentially expressed in the hippocampus and amygdala of mice meeting ≥ 2 or < 2 criteria, as these brain regions are implicated in alcohol motivation, seeking, consumption and the cognitive inflexibility characteristic of AUD. Our findings revealed dysregulation of the genes associated with the actin cytoskeleton, including actin binding molecule cofilin, and impaired synaptic transmission in the hippocampi of mice meeting ≥ 2 criteria. Overexpression of cofilin in the polymorphic layer of the dentate gyrus (PoDG) inhibited ML-DG synapses, increased motivation to seek alcohol and impaired extinction of alcohol seeking, resembling the phenotype observed in mice meeting ≥ 2 criteria. Overall, our study uncovers a novel mechanism linking increased hippocampal cofilin expression with the AUD phenotype.
Collapse
Affiliation(s)
- Roberto Pagano
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Ahmad Salamian
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Edyta Skonieczna
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Bartosz Wojtas
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Bartek Gielniewski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Zofia Harda
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
- current address: Department Molecular Neuropharmacology, Maj Institute of Pharmacology of Polish Academy of Sciences, Krakow, Poland
| | - Anna Cały
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| | - Robbert Havekes
- Neurobiology expertise group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ted Abel
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kasia Radwanska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland
| |
Collapse
|
9
|
Charpentier ANH, Olekanma DI, Valade CT, Reeves CA, Cho BR, Arguello AA. Influence of reconsolidation in maintenance of cocaine-associated contextual memories formed during adolescence or adulthood. Sci Rep 2023; 13:13936. [PMID: 37626103 PMCID: PMC10457301 DOI: 10.1038/s41598-023-39949-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Adolescents are at increased risk to develop substance use disorders and suffer from relapse throughout life. Targeted weakening of drug-associated memories has been shown to reduce relapse-like behavior in adult rats, however this process has been understudied in adolescents. We aimed to examine whether adolescent-formed, cocaine-associated memories could be manipulated via reconsolidation mechanisms. To accomplish this objective, we used an abbreviated operant cocaine self-administration paradigm (ABRV Coc-SA). Adult and adolescent rats received jugular catheterization surgery followed by ABRV Coc-SA in a distinct context for 2 h, 2×/day over 5 days. Extinction training (EXT) occurred in a second context for 2 h, 2×/day over 4 days. To retrieve cocaine-context memories, rats were exposed to the cocaine-paired context for 15 min, followed by subcutaneous injection of vehicle or the protein synthesis inhibitor cycloheximide (2.5 mg/kg). Two additional EXT sessions were conducted before a 2 h reinstatement test in the cocaine-paired context to assess cocaine-seeking behavior. We find that both adult and adolescent cocaine-exposed rats show similar levels of cocaine-seeking behavior regardless of post-reactivation treatment. Our results suggest that systemic treatment with the protein synthesis inhibitor cycloheximide does not impair reconsolidation of cocaine-context memories and subsequent relapse during adulthood or adolescence.
Collapse
Affiliation(s)
- André N Herrera Charpentier
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Doris I Olekanma
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Christian T Valade
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Christopher A Reeves
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Bo Ram Cho
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Amy A Arguello
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA.
| |
Collapse
|
10
|
Goltseker K, Garay P, Bonefas K, Iwase S, Barak S. Alcohol-specific transcriptional dynamics of memory reconsolidation and relapse. Transl Psychiatry 2023; 13:55. [PMID: 36792579 PMCID: PMC9932068 DOI: 10.1038/s41398-023-02352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Relapse, a critical issue in alcohol addiction, can be attenuated by disruption of alcohol-associated memories. Memories are thought to temporarily destabilize upon retrieval during the reconsolidation process. Here, we provide evidence for unique transcriptional dynamics underpinning alcohol memory reconsolidation. Using a mouse place-conditioning procedure, we show that alcohol-memory retrieval increases the mRNA expression of immediate-early genes in the dorsal hippocampus and medial prefrontal cortex, and that alcohol seeking is abolished by post-retrieval non-specific inhibition of gene transcription, or by downregulating ARC expression using antisense-oligodeoxynucleotides. However, since retrieval of memories for a natural reward (sucrose) also increased the same immediate-early gene expression, we explored for alcohol-specific transcriptional changes using RNA-sequencing. We revealed a unique transcriptional fingerprint activated by alcohol memories, as the expression of this set of plasticity-related genes was not altered by sucrose-memory retrieval. Our results suggest that alcohol memories may activate two parallel transcription programs: one is involved in memory reconsolidation in general, and another is specifically activated during alcohol-memory processing.
Collapse
Affiliation(s)
- Koral Goltseker
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Patricia Garay
- The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
| | - Katherine Bonefas
- The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
| | - Shigeki Iwase
- The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
- Human Genetics Department, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, 48108, USA
| | - Segev Barak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
11
|
Qi S, Tan SM, Wang R, Higginbotham JA, Ritchie JL, Ibarra CK, Arguello AA, Christian RJ, Fuchs RA. Optogenetic inhibition of the dorsal hippocampus CA3 region during early-stage cocaine-memory reconsolidation disrupts subsequent context-induced cocaine seeking in rats. Neuropsychopharmacology 2022; 47:1473-1483. [PMID: 35581381 PMCID: PMC9205994 DOI: 10.1038/s41386-022-01342-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/11/2022] [Accepted: 05/07/2022] [Indexed: 11/09/2022]
Abstract
The dorsal hippocampus (DH) is key to the maintenance of cocaine memories through reconsolidation into long-term memory stores after retrieval-induced memory destabilization. Here, we examined the time-dependent role of the cornu ammonis 3 DH subregion (dCA3) in cocaine-memory reconsolidation by utilizing the temporal and spatial specificity of optogenetics. eNpHR3.0-eYFP- or eYFP-expressing male Sprague-Dawley rats were trained to lever press for cocaine infusions in a distinct context and received extinction training in a different context. Rats were then re-exposed to the cocaine-paired context for 15 min to destabilize cocaine memories (memory reactivation) or remained in their home cages (no-reactivation). Optogenetic dCA3 inhibition for one hour immediately after memory reactivation reduced c-Fos expression (index of neuronal activation) in dCA3 stratum pyramidale (SP) glutamatergic and GABAergic neurons and in stratum lucidum (SL) GABAergic neurons during reconsolidation. Furthermore, dCA3 inhibition attenuated drug-seeking behavior (non-reinforced lever presses) selectively in the cocaine-paired context three days later (recall test), relative to no photoinhibition. This behavioral effect was eNpHR3.0-, memory-reactivation, and time-dependent, indicating a memory-reconsolidation deficit. Based on this observation and our previous finding that protein synthesis in the DH is not necessary for cocaine-memory reconsolidation, we postulate that recurrent pyramidal neuronal activity in the dCA3 may maintain labile cocaine memories prior to protein synthesis-dependent reconsolidation elsewhere, and SL/SP interneurons may facilitate this process by limiting extraneous neuronal activity. Interestingly, SL c-Fos expression was reduced at recall concomitant with impairment in cocaine-seeking behavior, suggesting that SL neurons may also facilitate cocaine-memory retrieval by inhibiting non-engram neuronal activity.
Collapse
Affiliation(s)
- Shuyi Qi
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Shi Min Tan
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Rong Wang
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Jessica A Higginbotham
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Jobe L Ritchie
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Christopher K Ibarra
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Amy A Arguello
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Robert J Christian
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Rita A Fuchs
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA.
- Alcohol and Drug Abuse Research Program, Washington State University, Pullman, Washington, USA.
| |
Collapse
|
12
|
Grigoryan GA. Neuroinflammation and Reconsolidation of Memory. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Ritchie JL, Walters JL, Galliou JMC, Christian RJ, Qi S, Savenkova MI, Ibarra CK, Grogan SR, Fuchs RA. Basolateral amygdala corticotropin-releasing factor receptor type 1 regulates context-cocaine memory strength during reconsolidation in a sex-dependent manner. Neuropharmacology 2021; 200:108819. [PMID: 34610289 PMCID: PMC8550898 DOI: 10.1016/j.neuropharm.2021.108819] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 01/13/2023]
Abstract
The basolateral amygdala (BLA) is a critical brain region for cocaine-memory reconsolidation. Corticotropin-releasing factor receptor type 1 (CRFR1) is densely expressed in the BLA, and CRFR1 stimulation can activate intra-cellular signaling cascades that mediate memory reconsolidation. Hence, we tested the hypothesis that BLA CRFR1 stimulation is necessary and sufficient for cocaine-memory reconsolidation. Using an instrumental model of drug relapse, male and female Sprague-Dawley rats received cocaine self-administration training in a distinct environmental context over 10 days followed by extinction training in a different context over 7 days. Next, rats were re-exposed to the cocaine-paired context for 15 min to initiate cocaine-memory retrieval and destabilization. Immediately or 6 h after this session, the rats received bilateral vehicle, antalarmin (CRFR1 antagonist; 500 ng/hemisphere), or corticotropin-releasing factor (CRF; 0.2, 30 or 500 ng/hemisphere) infusions into the BLA. Resulting changes in drug context-induced cocaine seeking (index of context-cocaine memory strength) were assessed three days later. Female rats self-administered more cocaine infusions and exhibited more extinction responding than males. Intra-BLA antalarmin treatment immediately after memory retrieval (i.e., when cocaine memories were labile), but not 6 h later (i.e., after memory reconsolidation), attenuated drug context-induced cocaine seeking at test independent of sex, relative to vehicle. Conversely, intra-BLA CRF treatment increased this behavior selectively in females, in a U-shaped dose-dependent fashion. In control experiments, a high (behaviorally ineffective) dose of CRF treatment did not reduce BLA CRFR1 cell-surface expression in females. Thus, BLA CRFR1 signaling is necessary and sufficient, in a sex-dependent manner, for regulating cocaine-memory strength.
Collapse
Affiliation(s)
- Jobe L Ritchie
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Jennifer L Walters
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Justine M C Galliou
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Robert J Christian
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Shuyi Qi
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Marina I Savenkova
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Christopher K Ibarra
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Shayna R Grogan
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Rita A Fuchs
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA; Washington State University Alcohol and Drug Abuse Research Program, Pullman, WA, USA.
| |
Collapse
|
14
|
Chen L, Yan H, Wang Y, He Z, Leng Q, Huang S, Wu F, Feng X, Yan J. The Mechanisms and Boundary Conditions of Drug Memory Reconsolidation. Front Neurosci 2021; 15:717956. [PMID: 34421529 PMCID: PMC8377231 DOI: 10.3389/fnins.2021.717956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Drug addiction can be seen as a disorder of maladaptive learning characterized by relapse. Therefore, disrupting drug-related memories could be an approach to improving therapies for addiction. Pioneering studies over the last two decades have revealed that consolidated memories are not static, but can be reconsolidated after retrieval, thereby providing candidate pathways for the treatment of addiction. The limbic-corticostriatal system is known to play a vital role in encoding the drug memory engram. Specific structures within this system contribute differently to the process of memory reconsolidation, making it a potential target for preventing relapse. In addition, as molecular processes are also active during memory reconsolidation, amnestic agents can be used to attenuate drug memory. In this review, we focus primarily on the brain structures involved in storing the drug memory engram, as well as the molecular processes involved in drug memory reconsolidation. Notably, we describe reports regarding boundary conditions constraining the therapeutic potential of memory reconsolidation. Furthermore, we discuss the principles that could be employed to modify stored memories. Finally, we emphasize the challenge of reconsolidation-based strategies, but end with an optimistic view on the development of reconsolidation theory for drug relapse prevention.
Collapse
Affiliation(s)
- Liangpei Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - He Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Yufang Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Ziping He
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qihao Leng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shihao Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Feilong Wu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Xiangyang Feng
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China.,Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
15
|
Abstract
Drug addiction is a chronic relapsing disorder, and a significant amount of research has been devoted to understand the factors that contribute to the development, loss of control, and persistence of compulsive addictive behaviors. In this review, we provide an overview of various theories of addiction to drugs of abuse and the neurobiology involved in elements of the addiction cycle. Specific focus is devoted to the role of the mesolimbic pathway in acute drug reinforcement and occasional drug use, the role of the mesocortical pathway and associated areas (e.g., the dorsal striatum) in escalation/dependence, and the contribution of these pathways and associated circuits to conditioned responses, drug craving, and loss of behavioral control that may underlie drug relapse. By enhancing the understanding of the neurobiological factors that mediate drug addiction, continued preclinical and clinical research will aid in the development of novel therapeutic interventions that can serve as effective long-term treatment strategies for drug-dependent individuals.
Collapse
Affiliation(s)
- Matthew W Feltenstein
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Ronald E See
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
- Department of Psychology, Westmont College, Santa Barbara, California 93108, USA
| | - Rita A Fuchs
- Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington 99164-7620, USA
| |
Collapse
|
16
|
Smaga I, Wydra K, Suder A, Frankowska M, Sanak M, Caffino L, Fumagalli F, Filip M. The NMDA Receptor Subunit (GluN1 and GluN2A) Modulation Following Different Conditions of Cocaine Abstinence in Rat Brain Structures. Neurotox Res 2021; 39:556-565. [PMID: 33759085 PMCID: PMC8096759 DOI: 10.1007/s12640-021-00350-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 01/06/2023]
Abstract
Different neuronal alterations within glutamatergic system seem to be crucial for developing of cocaine-seeking behavior. Cocaine exposure provokes a modulation of the NMDA receptor subunit expression in rodents, which probably contributes to cocaine-induced behavioral alterations. The aim of this study was to examine the composition of the NMDA receptor subunits in the brain structures in rats with the history of cocaine self-administration after cocaine abstinence (i) in an enriched environment, (ii) in an isolated condition, (iii) with extinction training, or (iv) without instrumental task, as well as the Grin1 (encoding GluN1) and Grin2A (encoding GluN2A) gene expression were evaluated after 10-day extinction training in rat brain structures. In the present study, we observed changes only following cocaine abstinence with extinction training, when the increased GluN2A subunit levels were seen in the postsynaptic density fraction but not in the whole homogenate of the prelimbic cortex (PLC) and dorsal hippocampus (dHIP) in rats previously self-administered cocaine. At the same time, extinction training did not change the Grin1 and Grin2A gene expression in these structures. In conclusion, NMDA receptor subunit modulation observed following cocaine abstinence with extinction training may represent a potential target in cocaine-seeking behavior.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, PL, Poland.
| | - Karolina Wydra
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, PL, Poland
| | - Agata Suder
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, PL, Poland
| | - Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, PL, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066, Kraków, PL, Poland
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, PL, Poland
| |
Collapse
|
17
|
López‐Gambero AJ, Rodríguez de Fonseca F, Suárez J. Energy sensors in drug addiction: A potential therapeutic target. Addict Biol 2021; 26:e12936. [PMID: 32638485 DOI: 10.1111/adb.12936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023]
Abstract
Addiction is defined as the repeated exposure and compulsive seek of psychotropic drugs that, despite the harmful effects, generate relapse after the abstinence period. The psychophysiological processes associated with drug addiction (acquisition/expression, withdrawal, and relapse) imply important alterations in neurotransmission and changes in presynaptic and postsynaptic plasticity and cellular structure (neuroadaptations) in neurons of the reward circuits (dopaminergic neuronal activity) and other corticolimbic regions. These neuroadaptation mechanisms imply important changes in neuronal energy balance and protein synthesis machinery. Scientific literature links drug-induced stimulation of dopaminergic and glutamatergic pathways along with presence of neurotrophic factors with alterations in synaptic plasticity and membrane excitability driven by metabolic sensors. Here, we provide current knowledge of the role of molecular targets that constitute true metabolic/energy sensors such as AMPK, mTOR, ERK, or KATP in the development of the different phases of addiction standing out the main brain regions (ventral tegmental area, nucleus accumbens, hippocampus, and amygdala) constituting the hubs in the development of addiction. Because the available treatments show very limited effectiveness, evaluating the drug efficacy of AMPK and mTOR specific modulators opens up the possibility of testing novel pharmacotherapies for an individualized approach in drug abuse.
Collapse
Affiliation(s)
- Antonio Jesús López‐Gambero
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga Universidad de Málaga Málaga Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| |
Collapse
|
18
|
CB1 Receptor Signaling Modulates Amygdalar Plasticity during Context-Cocaine Memory Reconsolidation to Promote Subsequent Cocaine Seeking. J Neurosci 2020; 41:613-629. [PMID: 33257326 DOI: 10.1523/jneurosci.1390-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Contextual drug-associated memories precipitate craving and relapse in cocaine users. Such associative memories can be weakened through interference with memory reconsolidation, a process by which memories are maintained following memory retrieval-induced destabilization. We hypothesized that cocaine-memory reconsolidation requires cannabinoid type 1 receptor (CB1R) signaling based on the fundamental role of the endocannabinoid system in synaptic plasticity and emotional memory processing. Using an instrumental model of cocaine relapse, we evaluated whether systemic CB1R antagonism (AM251; 3 mg/kg, i.p.) during memory reconsolidation altered (1) subsequent drug context-induced cocaine-seeking behavior as well as (2) cellular adaptations and (3) excitatory synaptic physiology in the basolateral amygdala (BLA) in male Sprague Dawley rats. Systemic CB1R antagonism, during, but not after, cocaine-memory reconsolidation reduced drug context-induced cocaine-seeking behavior 3 d, but not three weeks, later. CB1R antagonism also inhibited memory retrieval-associated increases in BLA zinc finger 268 (zif268) and activity regulated cytoskeletal-associated protein (Arc) immediate-early gene (IEG) expression and changes in BLA AMPA receptor (AMPAR) and NMDA receptor (NMDAR) subunit phosphorylation that likely contribute to increased receptor membrane trafficking and synaptic plasticity during memory reconsolidation. Furthermore, CB1R antagonism increased memory reconsolidation-associated spontaneous EPSC (sEPSC) frequency in BLA principal neurons during memory reconsolidation. Together, these findings suggest that CB1R signaling modulates cellular and synaptic mechanisms in the BLA that may facilitate cocaine-memory strength by enhancing reconsolidation or synaptic reentry reinforcement, or by inhibiting extinction-memory consolidation. These findings identify the CB1R as a potential therapeutic target for relapse prevention.SIGNIFICANCE STATEMENT Drug relapse can be triggered by the retrieval of context-drug memories on re-exposure to a drug-associated environment. Context-drug associative memories become destabilized on retrieval and must be reconsolidated into long-term memory stores to persist. Hence, targeted interference with memory reconsolidation can weaken maladaptive context-drug memories and reduce the propensity for drug relapse. Our findings indicate that cannabinoid type 1 receptor (CB1R) signaling is critical for context-cocaine memory reconsolidation and subsequent drug context-induced reinstatement of cocaine-seeking behavior. Furthermore, cocaine-memory reconsolidation is associated with CB1R-dependent immediate-early gene (IEG) expression and changes in excitatory synaptic proteins and physiology in the basolateral amygdala (BLA). Together, our findings provide initial support for CB1R as a potential therapeutic target for relapse prevention.
Collapse
|
19
|
Neuroadaptations in the dorsal hippocampus underlie cocaine seeking during prolonged abstinence. Proc Natl Acad Sci U S A 2020; 117:26460-26469. [PMID: 33020308 DOI: 10.1073/pnas.2006133117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Relapse vulnerability in substance use disorder is attributed to persistent cue-induced drug seeking that intensifies (or "incubates") during drug abstinence. Incubated cocaine seeking has been observed in both humans with cocaine use disorder and in preclinical relapse models. This persistent relapse vulnerability is mediated by neuroadaptations in brain regions involved in reward and motivation. The dorsal hippocampus (DH) is involved in context-induced reinstatement of cocaine seeking but the role of the DH in cocaine seeking during prolonged abstinence has not been investigated. Here we found that transforming growth factor-β (TGF-β) superfamily member activin A is increased in the DH on abstinence day (AD) 30 but not AD1 following extended-access cocaine self-administration compared to saline controls. Moreover, activin A does not affect cocaine seeking on AD1 but regulates cocaine seeking on AD30 in a bidirectional manner. Next, we found that activin A regulates phosphorylation of NMDA receptor (NMDAR) subunit GluN2B and that GluN2B-containing NMDARs also regulate expression of cocaine seeking on AD30. Activin A and GluN2B-containing NMDARs have both previously been implicated in hippocampal synaptic plasticity. Therefore, we examined synaptic strength in the DH during prolonged abstinence and observed an increase in moderate long-term potentiation (LTP) in cocaine-treated rats compared to saline controls. Lastly, we examined the role of DH projections to the lateral septum (LS), a brain region implicated in cocaine seeking and found that DH projections to the LS govern cocaine seeking on AD30. Taken together, this study demonstrates a role for the DH in relapse behavior following prolonged abstinence from cocaine self-administration.
Collapse
|
20
|
Bender BN, Torregrossa MM. Molecular and circuit mechanisms regulating cocaine memory. Cell Mol Life Sci 2020; 77:3745-3768. [PMID: 32172301 PMCID: PMC7492456 DOI: 10.1007/s00018-020-03498-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/04/2020] [Accepted: 03/02/2020] [Indexed: 01/27/2023]
Abstract
Risk of relapse is a major challenge in the treatment of substance use disorders. Several types of learning and memory mechanisms are involved in substance use and have implications for relapse. Associative memories form between the effects of drugs and the surrounding environmental stimuli, and exposure to these stimuli during abstinence causes stress and triggers drug craving, which can lead to relapse. Understanding the neural underpinnings of how these associations are formed and maintained will inform future advances in treatment practices. A large body of research has expanded our knowledge of how associative memories are acquired and consolidated, how they are updated through reactivation and reconsolidation, and how competing extinction memories are formed. This review will focus on the vast literature examining the mechanisms of cocaine Pavlovian associative memories with an emphasis on the molecular memory mechanisms and circuits involved in the consolidation, reconsolidation, and extinction of these memories. Additional research elucidating the specific signaling pathways, mechanisms of synaptic plasticity, and epigenetic regulation of gene expression in the circuits involved in associative learning will reveal more distinctions between consolidation, reconsolidation, and extinction learning that can be applied to the treatment of substance use disorders.
Collapse
Affiliation(s)
- Brooke N Bender
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
21
|
Taujanskaitė U, Cahill EN, Milton AL. Targeting drug memory reconsolidation: a neural analysis. Curr Opin Pharmacol 2020; 56:7-12. [PMID: 32961367 DOI: 10.1016/j.coph.2020.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Addiction can be conceptualised as a disorder of maladaptive learning and memory. Therefore, maladaptive drug memories supporting drug-seeking and relapse behaviours may present novel treatment targets for therapeutic approaches based upon reconsolidation-blockade. It is known that different structures within the limbic corticostriatal system contribute differentially to different types of maladaptive drug memories, including pavlovian associations between environmental cues and contexts with the drug high, and instrumental memories underlying drug-seeking. Here, we review the mechanisms underlying drug memory reconsolidation in the amygdala, striatum, and hippocampus, noting similarities and differences, and opportunities for future research.
Collapse
Affiliation(s)
- Uršulė Taujanskaitė
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emma N Cahill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
22
|
Piva A, Caffino L, Padovani L, Pintori N, Mottarlini F, Sferrazza G, Paolone G, Fumagalli F, Chiamulera C. The metaplastic effects of ketamine on sucrose renewal and contextual memory reconsolidation in rats. Behav Brain Res 2020; 379:112347. [DOI: 10.1016/j.bbr.2019.112347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022]
|
23
|
Correia C, Romieu P, Olmstead MC, Befort K. Can cocaine-induced neuroinflammation explain maladaptive cocaine-associated memories? Neurosci Biobehav Rev 2020; 111:69-83. [PMID: 31935376 DOI: 10.1016/j.neubiorev.2020.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/20/2019] [Accepted: 01/01/2020] [Indexed: 12/19/2022]
Abstract
Persistent and intrusive memories define a number of psychiatric disorders, including posttraumatic stress disorder and substance use disorder. In the latter, memory for drug-paired cues plays a critical role in sustaining compulsive drug use as these are potent triggers of relapse. As with many drugs, cocaine-cue associated memory is strengthened across presentations as cues become reliable predictors of drug availability. Recently, the targeting of cocaine-associated memory through disruption of the reconsolidation process has emerged as a potential therapeutic strategy; reconsolidation reflects the active process by which memory is re-stabilized after retrieval. In addition, a separate line of work reveals that neuroinflammatory markers, regulated by cocaine intake, play a role in memory processes. Our review brings these two literatures together by summarizing recent findings on cocaine-associated reconsolidation and cocaine-induced neuroinflammation. We discuss the interactions between reconsolidation processes and neuroinflammation following cocaine use, concluding with a new perspective on treatment to decrease risk of relapse to cocaine use.
Collapse
Affiliation(s)
- Caroline Correia
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, UMR 7364, Faculté de Psychologie, 12 rue Goethe, F-67000, Strasbourg, France
| | - Pascal Romieu
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, UMR 7364, Faculté de Psychologie, 12 rue Goethe, F-67000, Strasbourg, France
| | - Mary C Olmstead
- Dept. Psychology, Centre for Neuroscience Studies, Queen's University, Kingston ON, K7L 3N6, Canada
| | - Katia Befort
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, UMR 7364, Faculté de Psychologie, 12 rue Goethe, F-67000, Strasbourg, France.
| |
Collapse
|
24
|
Pharmacological NOS-1 Inhibition Within the Hippocampus Prevented Expression of Cocaine Sensitization: Correlation with Reduced Synaptic Transmission. Mol Neurobiol 2019; 57:450-460. [PMID: 31378002 DOI: 10.1007/s12035-019-01725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
Abstract
Behavioral sensitization to psychostimulants hyperlocomotor effect is a useful model of addiction and craving. Particularly, cocaine sensitization in rats enhanced synaptic plasticity within the hippocampus, an important brain region for the associative learning processes underlying drug addiction. Nitric oxide (NO) is a neurotransmitter involved in both, hippocampal synaptic plasticity and cocaine sensitization. It has been previously demonstrated a key role of NOS-1/NO/sGC/cGMP signaling pathway in the development of cocaine sensitization and in the associated enhancement of hippocampal synaptic plasticity. The aim of the present investigation was to determine whether NOS-1 inhibition after development of cocaine sensitization was able to reverse it, and to characterize the involvement of the hippocampus in this phenomenon. Male Wistar rats were administered only with cocaine (15 mg/kg/day i.p.) for 5 days. Then, animals received 7-nitroindazole (NOS-1 inhibitor) either systemically for the next 5 days or a single intra-hippocampal administration. Development of sensitization and its expression after withdrawal were tested, as well as threshold for long-term potentiation in hippocampus, NOS-1, and CREB protein levels and gene expression. The results showed that NOS-1 protein levels and gene expression were increased only in sensitized animals as well as CREB gene expression. NOS-1 inhibition after sensitization reversed behavioral expression and the highest level of hippocampal synaptic plasticity. In conclusion, NO signaling within the hippocampus is critical for the development and expression of cocaine sensitization. Therefore, NOS-1 inhibition or NO signaling pathways interferences during short-term withdrawal after repeated cocaine administration may represent plausible pharmacological targets to prevent or reduce susceptibility to relapse.
Collapse
|
25
|
Rivera PD, Simmons SJ, Reynolds RP, Just AL, Birnbaum SG, Eisch AJ. Image-guided cranial irradiation-induced ablation of dentate gyrus neurogenesis impairs extinction of recent morphine reward memories. Hippocampus 2019; 29:726-735. [PMID: 30779299 DOI: 10.1002/hipo.23071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022]
Abstract
Dentate gyrus adult neurogenesis is implicated in the formation of hippocampal-dependent contextual associations. However, the role of adult neurogenesis during reward-based context-dependent paradigms-such as conditioned place preference (CPP)-is understudied. Therefore, we used image-guided, hippocampal-targeted X-ray irradiation (IG-IR) and morphine CPP to explore whether dentate gyrus adult neurogenesis plays a role in reward memories created in adult C57BL/6J male mice. In addition, as adult neurogenesis appears to participate to a greater extent in retrieval and extinction of recent (<48 hr posttraining) versus remote (>1 week posttraining) memories, we specifically examined the role of adult neurogenesis in reward-associated contextual memories probed at recent and remote timepoints. Six weeks post-IG-IR or Sham treatment, mice underwent morphine CPP. Using separate groups, retrieval of recent and remote reward memories was found to be similar between IG-IR and Sham treatments. Interestingly, IG-IR mice showed impaired extinction-or increased persistence-of the morphine-associated reward memory when it was probed 24-hr (recent) but not 3-weeks (remote) postconditioning relative to Sham mice. Taken together, these data show that hippocampal-directed irradiation and the associated decrease in dentate gyrus adult neurogenesis affect the persistence of recently-but not remotely-probed reward memory. These data indicate a novel role for adult neurogenesis in reward-based memories and particularly the extinction rate of these memories. Consideration of this work may lead to better understanding of extinction-based behavioral interventions for psychiatric conditions characterized by dysregulated reward processing.
Collapse
Affiliation(s)
- Phillip D Rivera
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Steven J Simmons
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ryan P Reynolds
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas.,Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alanna L Just
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Shari G Birnbaum
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Amelia J Eisch
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas.,Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Goode TD, Maren S. Common neurocircuitry mediating drug and fear relapse in preclinical models. Psychopharmacology (Berl) 2019; 236:415-437. [PMID: 30255379 PMCID: PMC6373193 DOI: 10.1007/s00213-018-5024-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Comorbidity of anxiety disorders, stressor- and trauma-related disorders, and substance use disorders is extremely common. Moreover, therapies that reduce pathological fear and anxiety on the one hand, and drug-seeking on the other, often prove short-lived and are susceptible to relapse. Considerable advances have been made in the study of the neurobiology of both aversive and appetitive extinction, and this work reveals shared neural circuits that contribute to both the suppression and relapse of conditioned responses associated with trauma or drug use. OBJECTIVES The goal of this review is to identify common neural circuits and mechanisms underlying relapse across domains of addiction biology and aversive learning in preclinical animal models. We focus primarily on neural circuits engaged during the expression of relapse. KEY FINDINGS After extinction, brain circuits involving the medial prefrontal cortex and hippocampus come to regulate the expression of conditioned responses by the amygdala, bed nucleus of the stria terminalis, and nucleus accumbens. During relapse, hippocampal projections to the prefrontal cortex inhibit the retrieval of extinction memories resulting in a loss of inhibitory control over fear- and drug-associated conditional responding. CONCLUSIONS The overlapping brain systems for both fear and drug memories may explain the co-occurrence of fear and drug-seeking behaviors.
Collapse
Affiliation(s)
- Travis D Goode
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, 301 Old Main Dr., College Station, TX, 77843-3474, USA.
| |
Collapse
|
27
|
Namba MD, Tomek SE, Olive MF, Beckmann JS, Gipson CD. The Winding Road to Relapse: Forging a New Understanding of Cue-Induced Reinstatement Models and Their Associated Neural Mechanisms. Front Behav Neurosci 2018; 12:17. [PMID: 29479311 PMCID: PMC5811475 DOI: 10.3389/fnbeh.2018.00017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
In drug addiction, cues previously associated with drug use can produce craving and frequently trigger the resumption of drug taking in individuals vulnerable to relapse. Environmental stimuli associated with drugs or natural reinforcers can become reliably conditioned to increase behavior that was previously reinforced. In preclinical models of addiction, these cues enhance both drug self-administration and reinstatement of drug seeking. In this review, we will dissociate the roles of conditioned stimuli as reinforcers from their modulatory or discriminative functions in producing drug-seeking behavior. As well, we will examine possible differences in neurobiological encoding underlying these functional differences. Specifically, we will discuss how models of drug addiction and relapse should more systematically evaluate these different types of stimuli to better understand the neurobiology underlying craving and relapse. In this way, behavioral and pharmacotherapeutic interventions may be better tailored to promote drug use cessation outcomes and long-term abstinence.
Collapse
Affiliation(s)
- Mark D. Namba
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Seven E. Tomek
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Joshua S. Beckmann
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Cassandra D. Gipson
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
28
|
Hitchcock LN, Lattal KM. Involvement of the dorsal hippocampus in expression and extinction of cocaine-induced conditioned place preference. Hippocampus 2018; 28:226-238. [PMID: 29341327 DOI: 10.1002/hipo.22826] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/05/2018] [Accepted: 01/13/2018] [Indexed: 12/31/2022]
Abstract
A key aspect of substance abuse is that drug taking often occurs in a specific context. As a consequence, exposure to drug-associated contexts can trigger cravings and relapse, even after long periods of abstinence. Although many studies have demonstrated that the hippocampus is critical for developing and retrieving contextual and spatial memories, comparatively little is known about the role of the hippocampus in acquiring and inhibiting memories involving contexts and drugs of abuse. We examined the effects of hippocampal inactivation on expression of cocaine-induced conditioned place preference (CPP) after initial acquisition or extinction of CPP in C57BL/6 mice. During acquisition of CPP, distinct tactile cues were paired with cocaine (20 mg kg-1 , intraperitoneal, CS+) and different tactile cues were paired with saline (CS-) on alternate days. Groups differed in whether the CS+ and CS- cues were presented in the same large space (one-compartment procedure) or distinct small spaces (two-compartment procedure), as previous findings demonstrate that a two-compartment configuration facilitates acquisition and attenuates extinction of a cocaine-induced CPP. Microinjection of the GABAA agonist, muscimol, into the dorsal hippocampus impaired (1) retrieval of a place preference after acquisition, (2) extinction of a place preference, and (3) retrieval of extinction. These effects differed depending on the spatial configuration during acquisition or extinction, suggesting that the dorsal hippocampus may differentially modulate drug seeking during retrieval and extinction of CPP.
Collapse
Affiliation(s)
- Leah N Hitchcock
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
29
|
Dendrosomal nanocurcumin prevents morphine self-administration behavior in rats despite CA1 damage. Behav Pharmacol 2017; 28:681-689. [DOI: 10.1097/fbp.0000000000000291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Extinction of Contextual Cocaine Memories Requires Ca v1.2 within D1R-Expressing Cells and Recruits Hippocampal Ca v1.2-Dependent Signaling Mechanisms. J Neurosci 2017; 37:11894-11911. [PMID: 29089442 DOI: 10.1523/jneurosci.2397-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/03/2017] [Accepted: 10/25/2017] [Indexed: 11/21/2022] Open
Abstract
Exposure to cocaine-associated contextual cues contributes significantly to relapse. Extinction of these contextual associations, which involves a new form of learning, reduces cocaine-seeking behavior; however, the molecular mechanisms underlying this process remain largely unknown. We report that extinction, but not acquisition, of cocaine conditioned place preference (CPP) in male mice increased Cav1.2 L-type Ca2+ channel mRNA and protein in postsynaptic density (PSD) fractions of the hippocampus, a brain region involved in drug-context associations. Moreover, viral-mediated deletion of Cav1.2 in the dorsal hippocampus attenuated extinction of cocaine CPP. Molecular studies examining downstream Cav1.2 targets revealed that extinction recruited calcium/calmodulin (Ca2+/CaMK)-dependent protein kinase II (CaMKII) to the hippocampal PSD. This occurred in parallel with an increase in phosphorylation of the AMPA GluA1 receptor subunit at serine 831 (S831), a CaMKII site, along with an increase in total PSD GluA1. The necessity of S831 GluA1 was further demonstrated by the lack of extinction in S831A GluA1 phosphomutant mice. Of note hippocampal GluA1 levels remained unaltered at the PSD, but were reduced near the PSD and at perisynaptic sites of dendritic spines in extinction-resistant S831A mutant mice. Finally, conditional knock-out of Cav1.2 in dopamine D1 receptor (D1R)-expressing cells resulted in attenuation of cocaine CPP extinction and lack of extinction-dependent changes in hippocampal PSD CaMKII expression and S831 GluA1 phosphorylation. In summary, we demonstrate an essential role for the hippocampal Cav1.2/CaMKII/S831 GluA1 pathway in cocaine CPP extinction, with data supporting contribution of hippocampal D1R-expressing cells in this process. These findings demonstrate a novel role for Cav1.2 channels in extinction of contextual cocaine-associated memories.SIGNIFICANCE STATEMENT Continued drug-seeking behavior, a defining characteristic of cocaine addiction, can be precipitated by contextual cues, yet the molecular mechanisms required for extinction of these context-specific memories remain poorly understood. Here, we have uncovered a novel and selective role of the Cav1.2 L-type Ca2+ channel and its downstream signaling pathway in the hippocampus that mediate extinction of cocaine conditioned place preference (CPP). We additionally provide evidence that supports a role of Cav1.2 within dopamine D1 receptor-expressing cells of the hippocampus for extinction of cocaine CPP. Therefore, these findings reveal a previously unknown role of Cav1.2 channels within the hippocampus and in D1 receptor-expressing cells in extinction of cocaine-associated memories, providing a framework for further exploration of mechanisms underlying extinction of cocaine-seeking behavior.
Collapse
|
31
|
Stringfield SJ, Higginbotham JA, Wang R, Berger AL, McLaughlin RJ, Fuchs RA. Role of glucocorticoid receptor-mediated mechanisms in cocaine memory enhancement. Neuropharmacology 2017; 123:349-358. [PMID: 28549664 PMCID: PMC5526334 DOI: 10.1016/j.neuropharm.2017.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/12/2017] [Accepted: 05/20/2017] [Indexed: 12/18/2022]
Abstract
The basolateral amygdala (BLA) is a critical site for the reconsolidation of labile contextual cocaine memories following retrieval-induced reactivation/destabilization. Here, we examined whether glucocorticoid receptors (GR), which are abundant in the BLA, mediate this phenomenon. Rats were trained to lever press for cocaine reinforcement in a distinct environmental context, followed by extinction training in a different context. Rats were then briefly exposed to the cocaine-paired context (to elicit memory reactivation and reconsolidation) or their home cages (no reactivation control). Exposure to the cocaine-paired context elicited greater serum corticosterone concentrations than home cage stay. Interestingly, the GR antagonist, mifepristone (3-10 ng/hemisphere), administered into the BLA after memory reactivation produced a further, dose-dependent increase in serum corticosterone concentrations during the putative time of cocaine-memory reconsolidation but produced an inverted U-shaped dose-effect curve on subsequent cocaine-seeking behavior 72 h later. This effect was anatomically selective, dependent on memory reactivation (i.e., not observed after home cage exposure), and did not reflect protracted hyperactivity. However, the effect was also observed when mifepristone was administered after novelty stress that mimics drug context-induced hypothalamic-pituitary-adrenal (HPA) axis activation without explicit memory reactivation. Together, these findings suggest that, similar to explicit memory retrieval, a stressful event is sufficient to destabilize cocaine memories and permit their manipulation. Furthermore, BLA GR stimulation exerts inhibitory feedback upon HPA axis activation and thus suppresses cocaine-memory reconsolidation.
Collapse
Affiliation(s)
- S J Stringfield
- Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - J A Higginbotham
- Washington State University, College of Veterinary Medicine, Department of Integrative Physiology and Neuroscience, Pullman, WA, USA
| | - R Wang
- Washington State University, College of Veterinary Medicine, Department of Integrative Physiology and Neuroscience, Pullman, WA, USA
| | - A L Berger
- Washington State University, College of Veterinary Medicine, Department of Integrative Physiology and Neuroscience, Pullman, WA, USA
| | - R J McLaughlin
- Washington State University, College of Veterinary Medicine, Department of Integrative Physiology and Neuroscience, Pullman, WA, USA
| | - R A Fuchs
- Washington State University, College of Veterinary Medicine, Department of Integrative Physiology and Neuroscience, Pullman, WA, USA.
| |
Collapse
|
32
|
Arguello AA, Wang R, Lyons CM, Higginbotham JA, Hodges MA, Fuchs RA. Role of the agranular insular cortex in contextual control over cocaine-seeking behavior in rats. Psychopharmacology (Berl) 2017; 234:2431-2441. [PMID: 28462472 PMCID: PMC5538945 DOI: 10.1007/s00213-017-4632-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/15/2017] [Indexed: 11/30/2022]
Abstract
RATIONALE Environmental stimulus control over drug relapse requires the retrieval of context-response-cocaine associations, maintained in long-term memory through active reconsolidation processes. Identifying the neural substrates of these phenomena is important from a drug addiction treatment perspective. OBJECTIVES The present study evaluated whether the agranular insular cortex (AI) plays a role in drug context-induced cocaine-seeking behavior and cocaine memory reconsolidation. METHODS Rats were trained to lever press for cocaine infusions in a distinctive context, followed by extinction training in a different context. Rats in experiment 1 received bilateral microinfusions of vehicle or a GABA agonist cocktail (baclofen and muscimol (BM)) into the AI or the overlying somatosensory cortex (SSJ, anatomical control region) immediately before a test of drug-seeking behavior (i.e., non-reinforced lever presses) in the previously cocaine-paired context. The effects of these manipulations on locomotor activity were also assessed in a novel context. Rats in experiment 2 received vehicle or BM into the AI after a 15-min reexposure to the cocaine-paired context, intended to reactivate context-response-cocaine memories and initiate their reconsolidation. The effects of these manipulations on drug context-induced cocaine-seeking behavior were assessed 72 h later. RESULTS BM-induced pharmacological inactivation of the AI, but not the SSJ, attenuated drug context-induced reinstatement of cocaine-seeking behavior without altering locomotor activity. Conversely, AI inactivation after memory reactivation failed to impair subsequent drug-seeking behavior and thus cocaine memory reconsolidation. CONCLUSIONS These findings suggest that the AI is a critical element of the neural circuitry that mediates contextual control over cocaine-seeking behavior.
Collapse
Affiliation(s)
- Amy A. Arguello
- Department of Psychology, Michigan State University, East Lansing, MI, 48824, USA
| | - Rong Wang
- Integrative Physiology and Neuroscience, Washington State University, VBRB #231 Pullman, WA, 99164-7620, USA
| | - Carey M. Lyons
- Integrative Physiology and Neuroscience, Washington State University, VBRB #231 Pullman, WA, 99164-7620, USA
| | - Jessica A. Higginbotham
- Integrative Physiology and Neuroscience, Washington State University, VBRB #231 Pullman, WA, 99164-7620, USA
| | - Matthew A. Hodges
- Integrative Physiology and Neuroscience, Washington State University, VBRB #231 Pullman, WA, 99164-7620, USA
| | - Rita A. Fuchs
- Integrative Physiology and Neuroscience, Washington State University, VBRB #231 Pullman, WA, 99164-7620, USA,Corresponding Author: Dr. Rita A. Fuchs, Washington State University, College of Veterinary Medicine, Integrative Physiology and Neuroscience, P.O. Box 647620, Pullman, WA 99164-7620, USA, Phone: 509-335-6164, Fax: 509-335-4650,
| |
Collapse
|
33
|
Glutamatergic Projections from the Entorhinal Cortex to Dorsal Dentate Gyrus Mediate Context-Induced Reinstatement of Heroin Seeking. Neuropsychopharmacology 2017; 42:1860-1870. [PMID: 28106041 PMCID: PMC5520779 DOI: 10.1038/npp.2017.14] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/27/2022]
Abstract
Reexposure to the context associated with heroin intake provokes relapse to drug taking after abstinence. The dorsal dentate gyrus (dDG) and entorhinal cortex (EC) have been implicated in contextual memory processing, but the underlying circuit mechanisms in context-induced relapse remain poorly understood. In this study, using a self-administration rat model, we found that activation and synaptic transmission of glutamatergic projections from the EC to the upper blade of dentate gyrus (dDGub) were significantly enhanced during context-induced reinstatement of heroin seeking. This effect was associated with increased of phosphorylation of GluN2B-containing NMDA receptors (GluN2B) at Y1472, ratio of GluN2B membrane/total protein levels, and expression of downstream extracellular signal-regulated kinase-1/2 (ERK1/2) in the dDG region. Furthermore, DREADD-mediated specific inactivation of the EC-dDG pathway or disconnection of the pathway with local postsynaptic GluN2B-ERK1/2 signaling both decreased context-induced reinstatement of heroin seeking. These experimental manipulations had no effect on saccharin-reinforced responding and general locomotor activity in rats. Our results indicate that the EC-dDG pathway mediates context-induced reinstatement of heroin seeking, via the activation of postsynaptic GluN2B-ERK1/2 signaling in the dDG.
Collapse
|
34
|
Lovinger DM, Alvarez VA. Alcohol and basal ganglia circuitry: Animal models. Neuropharmacology 2017; 122:46-55. [PMID: 28341206 DOI: 10.1016/j.neuropharm.2017.03.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 01/18/2023]
Abstract
Brain circuits that include the cortex and basal ganglia make up the bulk of the forebrain, and influence behaviors related to almost all aspects of affective, cognitive and sensorimotor functions. The learning of new actions as well as association of existing action repertoires with environmental events are key functions of this circuitry. Unfortunately, the cortico-basal ganglia circuitry is also the target for all drugs of abuse, including alcohol. This makes the circuitry susceptible to the actions of chronic alcohol exposure that impairs circuit function in ways that contribute to cognitive dysfunction and drug use disorders. In the present review, we describe the connectivity and functions of the associative, limbic and sensorimotor cortico-basal ganglia circuits. We then review the effects of acute and chronic alcohol exposure on circuit function. Finally, we review studies examining the roles of the different circuits and circuit elements in alcohol use and abuse. We attempt to synthesize information from a variety of studies in laboratory animals and humans to generate hypotheses about how the three circuits interact with each other and with the other brain circuits during exposure to alcohol and during the development of alcohol use disorders. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Veronica A Alvarez
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
35
|
Monsey MS, Sanchez H, Taylor JR. The Naturally Occurring Compound Garcinia Indica Selectively Impairs the Reconsolidation of a Cocaine-Associated Memory. Neuropsychopharmacology 2017; 42:587-597. [PMID: 27380937 PMCID: PMC5240167 DOI: 10.1038/npp.2016.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 12/27/2022]
Abstract
Sustained abstinence from cocaine use is frequently compromised by exposure to environmental stimuli that have previously been strongly associated with drug taking. Such cues trigger memories of the effects of the drug, leading to craving and potential relapse. Our work has demonstrated that manipulating cocaine-cue memories by destabilizing them through interfering with the reconsolidation process is one potential therapeutic tool by which to prolong abstinence. Here, we examine the use of the naturally occurring amnestic agent garcinol to manipulate an established cocaine-cue memory. Rats underwent 12 days of cocaine self-administration training during which time active lever presses resulted in an i.v. infusion of cocaine that was paired with a light/tone cue. Next rats underwent lever extinction for 8 days followed by light/tone reactivation and a test of cue-induced cocaine-seeking behavior. Systemic injection of garcinol 30 min after reactivation significantly impaired the reconsolidation of the cocaine-associated cue memory. Further testing revealed that garcinol had no effect on drug-induced cocaine-seeking, but was capable of blocking the initial conditioned reinforcing properties of the cue and prevents the acquisition of a new response. Additional experiments showed that the effects of garcinol are specific to reactivated memories only, temporally constrained, cue-specific, long-lasting, and persist following extended cocaine access. These data provide strong evidence that the naturally occurring compound, garcinol, may be a potentially useful tool to sustain abstinence from drug abuse.
Collapse
Affiliation(s)
- Melissa S Monsey
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Hayde Sanchez
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jane R Taylor
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA,Department of Psychology, Yale University, New Haven, CT, USA,The Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA, Tel: +1 203 974 7727, Fax: +1 203 974 7724, E-mail:
| |
Collapse
|
36
|
Kutlu MG, Gould TJ. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learn Mem 2016; 23:515-33. [PMID: 27634143 PMCID: PMC5026208 DOI: 10.1101/lm.042192.116] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022]
Abstract
It has long been hypothesized that conditioning mechanisms play major roles in addiction. Specifically, the associations between rewarding properties of drugs of abuse and the drug context can contribute to future use and facilitate the transition from initial drug use into drug dependency. On the other hand, the self-medication hypothesis of drug abuse suggests that negative consequences of drug withdrawal result in relapse to drug use as an attempt to alleviate the negative symptoms. In this review, we explored these hypotheses and the involvement of the hippocampus in the development and maintenance of addiction to widely abused drugs such as cocaine, amphetamine, nicotine, alcohol, opiates, and cannabis. Studies suggest that initial exposure to stimulants (i.e., cocaine, nicotine, and amphetamine) and alcohol may enhance hippocampal function and, therefore, the formation of augmented drug-context associations that contribute to the development of addiction. In line with the self-medication hypothesis, withdrawal from stimulants, ethanol, and cannabis results in hippocampus-dependent learning and memory deficits, which suggest that an attempt to alleviate these deficits may contribute to relapse to drug use and maintenance of addiction. Interestingly, opiate withdrawal leads to enhancement of hippocampus-dependent learning and memory. Given that a conditioned aversion to drug context develops during opiate withdrawal, the cognitive enhancement in this case may result in the formation of an augmented association between withdrawal-induced aversion and withdrawal context. Therefore, individuals with opiate addiction may return to opiate use to avoid aversive symptoms triggered by the withdrawal context. Overall, the systematic examination of the role of the hippocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates.
Collapse
Affiliation(s)
- Munir Gunes Kutlu
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
37
|
Gourley SL, Taylor JR. Going and stopping: Dichotomies in behavioral control by the prefrontal cortex. Nat Neurosci 2016; 19:656-664. [PMID: 29162973 DOI: 10.1038/nn.4275] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rodent dorsal medial prefrontal cortex (PFC), specifically the prelimbic cortex (PL), regulates the expression of conditioned fear and behaviors interpreted as reward-seeking. Meanwhile, the ventral medial PFC, namely the infralimbic cortex (IL), is essential to extinction conditioning in both appetitive and aversive domains. Here we review evidence that supports, or refutes, this "PL-go/IL-stop" dichotomy. We focus on the extinction of conditioned fear and the extinction and reinstatement of cocaine- or heroin-reinforced responding. We then synthesize evidence that the PL is essential for developing goal-directed response strategies, while the IL supports habit behavior. Finally, we propose that some functions of the orbital PFC parallel those of the medial PFC in the regulation of response selection. Integration of these discoveries may provide points of intervention for inhibiting untethered drug seeking in drug use disorders, failures in extinction in Post-traumatic Stress Disorder, or co-morbidities between the two.
Collapse
Affiliation(s)
- Shannon L Gourley
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine; Graduate Program in Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Jane R Taylor
- Department of Psychiatry, Yale University School of Medicine; Interdepartmental Neuroscience Program, Department of Psychology, Yale University, New Haven, CT
| |
Collapse
|
38
|
Castilla-Ortega E, Serrano A, Blanco E, Araos P, Suárez J, Pavón FJ, Rodríguez de Fonseca F, Santín LJ. A place for the hippocampus in the cocaine addiction circuit: Potential roles for adult hippocampal neurogenesis. Neurosci Biobehav Rev 2016; 66:15-32. [PMID: 27118134 DOI: 10.1016/j.neubiorev.2016.03.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023]
Abstract
Cocaine addiction is a chronic brain disease in which the drug seeking habits and profound cognitive, emotional and motivational alterations emerge from drug-induced neuroadaptations on a vulnerable brain. Therefore, a 'cocaine addiction brain circuit' has been described to explain this disorder. Studies in both cocaine patients and rodents reveal the hippocampus as a main node in the cocaine addiction circuit. The contribution of the hippocampus to cocaine craving and the associated memories is essential to understand the chronic relapsing nature of addiction, which is the main obstacle for the recovery. Interestingly, the hippocampus holds a particular form of plasticity that is rare in the adult brain: the ability to generate new functional neurons. There is an active scientific debate on the contributions of these new neurons to the addicted brain. This review focuses on the potential role(s) of adult hippocampal neurogenesis (AHN) in cocaine addiction. Although the current evidence primarily originates from animal research, these preclinical studies support AHN as a relevant component for the hippocampal effects of cocaine.
Collapse
Affiliation(s)
- Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain.
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Eduardo Blanco
- Departament de Pedagogia i Psicologia, Facultat d'Educació, Psicologia i Treball Social, Universitat de Lleida, Spain
| | - Pedro Araos
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain.
| |
Collapse
|
39
|
Contribution of an SFK-Mediated Signaling Pathway in the Dorsal Hippocampus to Cocaine-Memory Reconsolidation in Rats. Neuropsychopharmacology 2016; 41. [PMID: 26202103 PMCID: PMC4707834 DOI: 10.1038/npp.2015.217] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Environmentally induced relapse to cocaine seeking requires the retrieval of context-response-cocaine associative memories. These memories become labile when retrieved and must undergo reconsolidation into long-term memory storage to be maintained. Identification of the molecular underpinnings of cocaine-memory reconsolidation will likely facilitate the development of treatments that mitigate the impact of cocaine memories on relapse vulnerability. Here, we used the rat extinction-reinstatement procedure to test the hypothesis that the Src family of tyrosine kinases (SFK) in the dorsal hippocampus (DH) critically controls contextual cocaine-memory reconsolidation. To this end, we evaluated the effects of bilateral intra-DH microinfusions of the SFK inhibitor, PP2 (62.5 ng per 0.5 μl per hemisphere), following re-exposure to a cocaine-associated (cocaine-memory reactivation) or an unpaired context (no memory reactivation) on subsequent drug context-induced instrumental cocaine-seeking behavior. We also assessed alterations in the phosphorylation state of SFK targets, including GluN2A and GluN2B N-methyl-D-aspartate (NMDA) and GluA2 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits at the putative time of memory restabilization and following PP2 treatment. Finally, we evaluated the effects of intra-DH PEAQX (2.5 μg per 0.5 μl per hemisphere), a GluN2A-subunit-selective NMDAR antagonist, following, or in the absence of, cocaine-memory reactivation on subsequent drug context-induced cocaine-seeking behavior. GluN2A phosphorylation increased in the DH during putative memory restabilization, and intra-DH PP2 treatment inhibited this effect. Furthermore, PP2-as well as PEAQX-attenuated subsequent drug context-induced cocaine-seeking behavior, in a memory reactivation-dependent manner, relative to VEH. These findings suggest that hippocampal SFKs contribute to the long-term stability of cocaine-related memories that underlie contextual stimulus control over cocaine-seeking behavior.
Collapse
|
40
|
Hippocampal and Insular Response to Smoking-Related Environments: Neuroimaging Evidence for Drug-Context Effects in Nicotine Dependence. Neuropsychopharmacology 2016; 41:877-85. [PMID: 26179147 PMCID: PMC4707833 DOI: 10.1038/npp.2015.214] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/12/2015] [Accepted: 07/01/2015] [Indexed: 02/05/2023]
Abstract
Environments associated with prior drug use provoke craving and drug taking, and set the stage for lapse/relapse. Although the neurobehavioral bases of environment-induced drug taking have been investigated with animal models, the influence of drug-environments on brain function and behavior in clinical populations of substance users is largely unexplored. Adult smokers (n=40) photographed locations personally associated with smoking (personal smoking environments; PSEs) or personal nonsmoking environment (PNEs). Following 24-h abstinence, participants underwent fMRI scanning while viewing PSEs, PNEs, standard smoking and nonsmoking environments, as well as proximal smoking (eg, lit cigarette) and nonsmoking (eg, pencil) cues. Finally, in two separate sessions following 6-h abstinence they viewed either PSEs or PNEs while cue-induced self-reported craving and smoking behavior were assessed. Viewing PSEs increased blood oxygen level-dependent signal in right posterior hippocampus (pHPC; F(2,685)=3.74, p<0.024) and bilateral insula (left: F(2,685)=6.87, p=0.0011; right: F(2,685)=5.34, p=0.005). In the laboratory, viewing PSEs, compared with PNEs, was associated with higher craving levels (F(2,180)=18.32, p<0.0001) and greater ad lib smoking (F(1,36)=5.01, p=0.032). The effect of PSEs (minus PNEs) on brain activation in right insula was positively correlated with the effect of PSEs (minus PNEs) on number of puffs taken from a cigarette (r=0.6, p=0.001). Our data, for the first time in humans, elucidates the neural mechanisms that mediate the effects of real-world drug-associated environments on drug taking behavior under conditions of drug abstinence. These findings establish targets for the development and evaluation of treatments seeking to reduce environment provoked relapse.
Collapse
|
41
|
Tedesco V, Mutti A, Auber A, Chiamulera C. Nicotine-seeking reinstatement is reduced by inhibition of instrumental memory reconsolidation. Behav Pharmacol 2015; 25:725-31. [PMID: 25230207 DOI: 10.1097/fbp.0000000000000088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The reinforcing properties of nicotine play a major role in instrumental conditioning to nicotine taking in smokers. Retrieval of nicotine-related memories may promote relapse to nicotine seeking after prolonged abstinence. Once consolidated, memories are stable, but they return to a labile phase, called reconsolidation, after their retrieval. The aim of our study was to investigate whether it was possible to interfere with the reconsolidation of instrumental nicotine-related memories by acting at glutamatergic receptors [N-methyl-D-aspartate receptors (NMDARs)] to prevent relapse to nicotine-seeking behaviour in the rat. We assessed whether the NMDAR antagonist MK-801, administered before or after nicotine-related instrumental memory retrieval, can reduce reinstatement of nicotine-seeking behaviour in rats previously trained to nicotine self-administration. Following a period of forced abstinence, MK-801 (0.1 mg/kg intraperitoneally) was administered 30 min before or 1 h after the re-exposure to 20 lever presses without any contingency in the training context to retrieve instrumental memory. MK-801 administered after, but not before, retrieval inhibited reinstatement compared with vehicle controls and groups without retrieval of instrumental memory. Interestingly, a retrieval factor effect was observed as an increase of reinstatement in vehicle-treated groups, suggesting a behavioural outcome of the occurrence of instrumental memory reconsolidation. Our findings suggest that, by acting on NMDARs, it is possible to reduce the reinstatement of nicotine-seeking behaviour through inhibition of instrumental nicotine-related memory reconsolidation.
Collapse
Affiliation(s)
- Vincenzo Tedesco
- Department of Public Health & Community Medicine, University of Verona, Verona, Italy
| | | | | | | |
Collapse
|
42
|
Sorg BA, Todd RP, Slaker M, Churchill L. Anisomycin in the medial prefrontal cortex reduces reconsolidation of cocaine-associated memories in the rat self-administration model. Neuropharmacology 2015; 92:25-33. [PMID: 25576371 PMCID: PMC4346388 DOI: 10.1016/j.neuropharm.2014.12.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 12/12/2014] [Accepted: 12/22/2014] [Indexed: 12/19/2022]
Abstract
We tested the hypothesis that infusion of anisomycin into the medial prefrontal cortex (mPFC) disrupts the reconsolidation of a cocaine-associated memory in the rat cocaine self-administration model. Male Sprague-Dawley rats were trained to lever press for cocaine self-administration (0.5 mg/kg/infusion) along with a cue light presentation on an FR1 followed by an FR3 schedule of reinforcement for 2 h/day. Rats were then given extinction sessions or an equivalent forced abstinence period followed by a 5 min memory reactivation session during which time they received an ip cocaine injection (10 mg/kg, ip) and were allowed to press for contingent cue light presentation. Immediately after reactivation, they were administered an intra-mPFC infusion of vehicle or anisomycin. Two additional control groups received extinction and either no memory reactivation and intra-mPFC infusions as above or intra-mPFC infusions 6 h after memory reactivation. A fourth group received forced abstinence and intra-mPFC infusions immediately after memory reactivation. Combined cocaine + cue-induced reinstatement was given 2-3 days (early) and 8-12 days (late) later. Rats given anisomycin in the Extinction + Reactivation demonstrated decreased reinstatement, while anisomycin treatment did not alter behavior in any of the other three groups. These results suggest that extinction training may recruit the mPFC such that it renders the memory susceptible to disruption by anisomycin. These findings have implications for using extinction training prior to or in conjunction with other therapies, including reconsolidation disruption, to enhance prefrontal control over drug-seeking behavior.
Collapse
Affiliation(s)
- Barbara A Sorg
- Translational Addiction Research Center and Alcohol and Drug Abuse Research Program, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA.
| | - Ryan P Todd
- Translational Addiction Research Center and Alcohol and Drug Abuse Research Program, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Megan Slaker
- Translational Addiction Research Center and Alcohol and Drug Abuse Research Program, Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Lynn Churchill
- Translational Addiction Research Center and Alcohol and Drug Abuse Research Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
43
|
Abstract
Many psychiatric disorders are characterized by intrusive, distracting, and disturbing memories that either perpetuate the illness or hinder successful treatment. For example, posttraumatic stress disorder (PTSD) involves such strong reemergence of memories associated with a traumatic event that the individual feels like the event is happening again. Furthermore, drug addiction is characterized by compulsive use and repeated relapse that is often driven by internal memories of drug use and/or by exposure to external stimuli that were associated with drug use. Therefore, identifying pharmacological methods to weaken the strength of maladaptive memories is a major goal of research efforts aimed at finding new treatments for these disorders. The primary mechanism by which memories could be pharmacologically disrupted or altered is through manipulation of memory reconsolidation. Reconsolidation occurs when an established memory is remembered or reactivated, reentering a labile state before again being consolidated into long-term memory storage. Memories are subject to disruption during this labile state. In this chapter we will discuss the preclinical and clinical studies identifying potential pharmacological methods for disrupting the integrity of maladaptive memory to treat mental illness.
Collapse
Affiliation(s)
- Jane R Taylor
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | |
Collapse
|
44
|
Xu J, Kober H, Wang X, DeVito EE, Carroll KM, Potenza MN. Hippocampal volume mediates the relationship between measures of pre-treatment cocaine use and within-treatment cocaine abstinence. Drug Alcohol Depend 2014; 143:74-80. [PMID: 25115748 PMCID: PMC4165405 DOI: 10.1016/j.drugalcdep.2014.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Data suggest that the amygdala and hippocampus contribute to cocaine seeking and use, particularly following exposure to cocaine-related cues and contexts. Furthermore, indices of pre-treatment cocaine-use severity have been shown to correlate with treatment outcome in cocaine-dependent patients. METHODS The aim of this study was to assess the relationships between amygdalar and hippocampal volumes and cocaine use before and during treatment. High-resolution magnetic-resonance brain images were obtained from 23 cocaine-dependent patients prior to treatment and 54 healthy comparison individuals. Automated segmentation of the amygdala and hippocampus images was performed in FreeSurfer. Cocaine-dependent patients subsequently received behavioral therapy alone or combined with contingency management as part of a treatment trial, and cocaine-use indices (self-report, urine toxicology) were collected. RESULTS Comparison participants and cocaine-dependent patients did not show significant difference in amygdalar and hippocampal volumes at pre-treatment. Within the patient group, greater hippocampal volumes were correlated with more days of cocaine use before treatment and with poorer treatment outcome as indexed by shorter durations of continuous abstinence from cocaine and lower percentages of cocaine-negative urine samples during treatment. Mediation analysis indicated that pre-treatment hippocampal volumes mediated the relationships between pre-treatment cocaine use and treatment outcomes. CONCLUSIONS The finding of a significant correlation between hippocampal volume and pre-treatment cocaine-use severity and treatment response suggests that hippocampal volume should be considered when developing individualized treatments for cocaine dependence.
Collapse
Affiliation(s)
- Jiansong Xu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States.
| | - Hedy Kober
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Xin Wang
- Department of Neurosciences, University of Toledo Medical Center, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Elise E. DeVito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Kathleen M. Carroll
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States,Child Study Center, Yale University School of Medicine, New Haven, CT 06510, United States,Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
45
|
Retrieval-induced NMDA receptor-dependent Arc expression in two models of cocaine-cue memory. Neurobiol Learn Mem 2014; 116:79-89. [PMID: 25225165 DOI: 10.1016/j.nlm.2014.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 01/15/2023]
Abstract
The association of environmental cues with drugs of abuse results in persistent drug-cue memories. These memories contribute significantly to relapse among addicts. While conditioned place preference (CPP) is a well-established paradigm frequently used to examine the modulation of drug-cue memories, very few studies have used the non-preference-based model conditioned activity (CA) for this purpose. Here, we used both experimental approaches to investigate the neural substrates of cocaine-cue memories. First, we directly compared, in a consistent setting, the involvement of cortical and subcortical brain regions in cocaine-cue memory retrieval by quantifying activity-regulated cytoskeletal-associated (Arc) protein expression in both the CPP and CA models. Second, because NMDA receptor activation is required for Arc expression, we investigated the NMDA receptor dependency of memory persistence using the CA model. In both the CPP and CA models, drug-paired animals showed significant increases in Arc immunoreactivity in regions of the frontal cortex and amygdala compared to unpaired controls. Additionally, administration of a NMDA receptor antagonist (MK-801 or memantine) immediately after cocaine-CA memory reactivation impaired the subsequent conditioned locomotion associated with the cocaine-paired environment. The enhanced Arc expression evident in a subset of corticolimbic regions after retrieval of a cocaine-context memory, observed in both the CPP and CA paradigms, likely signifies that these regions: (i) are activated during retrieval of these memories irrespective of preference-based decisions, and (ii) undergo neuroplasticity in order to update information about cues previously associated with cocaine. This study also establishes the involvement of NMDA receptors in maintaining memories established using the CA model, a characteristic previously demonstrated using CPP. Overall, these results demonstrate the utility of the CA model for studies of cocaine-context memory and suggest the involvement of an NMDA receptor-dependent Arc induction pathway in drug-cue memory interference.
Collapse
|
46
|
Auber A, Muthu Karuppasamy NS, Pedercini M, Bertoglio D, Tedesco V, Chiamulera C. The Effect of Postretrieval Extinction of Nicotine Pavlovian Memories in Rats Trained to Self-Administer Nicotine. Nicotine Tob Res 2014; 16:1599-605. [DOI: 10.1093/ntr/ntu110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Otis JM, Fitzgerald MK, Mueller D. Inhibition of hippocampal β-adrenergic receptors impairs retrieval but not reconsolidation of cocaine-associated memory and prevents subsequent reinstatement. Neuropsychopharmacology 2014; 39:303-10. [PMID: 23907403 PMCID: PMC3870790 DOI: 10.1038/npp.2013.187] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 01/16/2023]
Abstract
Retrieval of drug-associated memories is critical for maintaining addictive behaviors, as presentation of drug-associated cues can elicit drug seeking and relapse. Recently, we and others have demonstrated that β-adrenergic receptor (β-AR) activation is necessary for retrieval using both rat and human memory models. Importantly, blocking retrieval with β-AR antagonists persistently impairs retrieval and provides protection against subsequent reinstatement. However, the neural locus at which β-ARs are required for maintaining retrieval and subsequent reinstatement is unclear. Here, we investigated the necessity of dorsal hippocampus (dHipp) β-ARs for drug-associated memory retrieval. Using a cocaine conditioned place preference (CPP) model, we demonstrate that local dHipp β-AR blockade before a CPP test prevents CPP expression shortly and long after treatment, indicating that dHipp β-AR blockade induces a memory retrieval disruption. Furthermore, this retrieval disruption provides long-lasting protection against cocaine-induced reinstatement. The effects of β-AR blockade were dependent on memory reactivation and were not attributable to reconsolidation disruption as blockade of β-ARs immediately after a CPP test had little effect on subsequent CPP expression. Thus, cocaine-associated memory retrieval is mediated by β-AR activity within the dHipp, and disruption of this activity could prevent cue-induced drug seeking and relapse long after treatment.
Collapse
Affiliation(s)
- James M Otis
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Devin Mueller
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
48
|
Involvement of amygdalar protein kinase A, but not calcium/calmodulin-dependent protein kinase II, in the reconsolidation of cocaine-related contextual memories in rats. Psychopharmacology (Berl) 2014; 231:55-65. [PMID: 23873418 PMCID: PMC3852194 DOI: 10.1007/s00213-013-3203-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 07/03/2013] [Indexed: 01/12/2023]
Abstract
RATIONALE Contextual control over drug relapse depends on the successful reconsolidation and retention of context-response-cocaine associations in long-term memory stores. The basolateral amygdala (BLA) plays a critical role in cocaine memory reconsolidation and subsequent drug context-induced cocaine-seeking behavior; however, less is known about the cellular mechanisms of this phenomenon. OBJECTIVES The present study evaluated the hypothesis that protein kinase A (PKA) and calcium/calmodulin-dependent protein kinase II (CaMKII) activation in the BLA is necessary for the reconsolidation of context-response-cocaine memories that promote subsequent drug context-induced cocaine-seeking behavior. METHODS Rats were trained to lever-press for cocaine infusions in a distinct context, followed by extinction training in a different context. Rats were then briefly re-exposed to the previously cocaine-paired context or an unpaired context in order to reactivate cocaine-related contextual memories and initiate their reconsolidation or to provide a similar behavioral experience without explicit cocaine-related memory reactivation, respectively. Immediately after this session, rats received bilateral microinfusions of vehicle, the PKA inhibitor, Rp-adenosine 3',5'-cyclic monophosphorothioate triethylammonium salt (Rp-cAMPS), or the CaMKII inhibitor, KN-93, into the BLA or the posterior caudate putamen (anatomical control region). Rats were then tested for cocaine-seeking behavior (responses on the previously cocaine-paired lever) in the cocaine-paired context and the extinction context. RESULTS Intra-BLA infusion of Rp-cAMPS, but not KN-93, following cocaine memory reconsolidation impaired subsequent cocaine-seeking behavior in a dose-dependent, site-specific, and memory reactivation-dependent fashion. CONCLUSIONS PKA, but not CaMKII, activation in the BLA is critical for cocaine memory re-stabilization processes that facilitate subsequent drug context-induced instrumental cocaine-seeking behavior.
Collapse
|
49
|
Abstract
Through the process of reconsolidation, memories can be updated to maintain their relevance. To reconsolidate, a memory must first be destabilized in a process that we have hypothesized is initiated by a prediction error signal. Here we demonstrate that dysregulation of ventral tegmental area (VTA) signaling, which is thought to mediate prediction errors, prevented the destabilization of an appetitive goal-tracking memory in rats. We additionally show that intra-VTA infusion of either the competitive NMDA antagonist AP5 or the noncompetitive NMDA antagonist MK-801 does not selectively disrupt reconsolidation, indicating that the VTA may not be an important neural locus of reconsolidation-related neural plasticity.
Collapse
|
50
|
Guan X, Wan R, Zhu C, Li S. Corticotropin-releasing factor receptor type-2 is involved in the cocaine-primed reinstatement of cocaine conditioned place preference in rats. Behav Brain Res 2013; 258:90-6. [PMID: 24144545 DOI: 10.1016/j.bbr.2013.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 01/13/2023]
Abstract
Here we explored the in vivo role of brain corticotropin-releasing factor receptor type-2 (CRFR2) in cocaine-primed reinstatement of drug seeking. Conditioned place preference (CPP) procedure was used to assess the acquisition, extinction and reinstatement of cocaine-seeking behavior in rats. First, expressions of CRFR2 were shown to be affected in a brain region-specific manner within cocaine-induced CPP and cocaine-extinct CPP models. Bilateral blockade of CRFR2 in the dorsal portion of the medial prefrontal cortex (mPFC), or hippocampus (HP) was partially inhibited, but in the dorsal striatum (DS) did not affect, the cocaine-primed reinstatement of cocaine CPP.
Collapse
Affiliation(s)
- Xiaowei Guan
- Department of Human Anatomy, Nanjing Medical University, Nanjing 210029, China.
| | | | | | | |
Collapse
|