1
|
Zhang Z, Zheng H, Yu Q, Jing X. Understanding of Spinal Wide Dynamic Range Neurons and Their Modulation on Pathological Pain. J Pain Res 2024; 17:441-457. [PMID: 38318328 PMCID: PMC10840524 DOI: 10.2147/jpr.s446803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
The spinal dorsal horn (SDH) transmits sensory information from the periphery to the brain. Wide dynamic range (WDR) neurons within this relay site play a critical role in modulating and integrating peripheral sensory inputs, as well as the process of central sensitization during pathological pain. This group of spinal multi-receptive neurons has attracted considerable attention in pain research due to their capabilities for encoding the location and intensity of nociception. Meanwhile, transmission, processing, and modulation of incoming afferent information in WDR neurons also establish the underlying basis for investigating the integration of acupuncture and pain signals. This review aims to provide a comprehensive examination of the distinctive features of WDR neurons and their involvement in pain. Specifically, we will examine the regulation of diverse supraspinal nuclei on these neurons and analyze their potential in elucidating the mechanisms of acupuncture analgesia.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hao Zheng
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Qingquan Yu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Hyung JW, Son BC. Generalized Extension of Referred Trigeminal Pain due to Greater Occipital Nerve Entrapment. Case Rep Neurol Med 2023; 2023:1099222. [PMID: 38025301 PMCID: PMC10657245 DOI: 10.1155/2023/1099222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
We report a very rare case of referred pain caused by greater occipital nerve (GON) entrapment, inducing spontaneous pain in the whole body as well as in the trigeminal nerve region of the face and head. It has already been reported that entrapment of the GON can induce referred pain in the ipsilateral limb as well as the ipsilateral hemiface. A 42-year-old female patient presented with chronic pain in her gums, jaw angle, submandibular region, retro-auricular suboccipital, and temporo-occipital vertex that had been ongoing for four years. As the patient's head pain and facial pain became severe, severe spontaneous pain occurred in the arm, waist, and both lower extremities. This patient's pain in the occipital and neck, spontaneous pain in the face, jaw, and whole body improved with decompression of the GON. Anatomical basis of pain referral to the facial trigeminal area caused by chronic GON entrapment is convergence of nociceptive inflow from high cervical C1-C3 structures and trigeminal orofacial area in the dorsal horn of the cervical spinal cord from the C2 segment up to the medullary dorsal horn (MDH). The major afferent contribution among the suboccipital and high cervical structure is mediated by spinal root C2 that is peripherally represented by the GON. Chronic noxious input from GON entrapment can cause sensitization and hypersensitivity in second order neurons in the trigeminocervical complex (TCC) and MDH in the caudal trigeminal nucleus and high cervical cord. Generalized extension of referred pain due to GON entrapment is thought to involve two possible pathophysiologies. One is the possibility that generalized pain is caused by sensitization of third-order nociceptive neurons in the thalamus. Another speculation is that spontaneous pain may occur throughout the body due to dysfunction of the descending brain stem pain-modulating pathway by sensitization and hyperexcitation of the MDH and trigeminal brainstem sensory nuclear complex (TBSNC).
Collapse
Affiliation(s)
- Jung-woo Hyung
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung-chul Son
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
3
|
Ballon Romero SS, Fuh LJ, Hung SY, Lee YC, Huang YC, Chien SY, Chen YH. Electroacupuncture exerts prolonged analgesic and neuroprotective effects in a persistent dental pain model induced by multiple dental pulp injuries: GABAergic interneurons-astrocytes interaction. Front Immunol 2023; 14:1213710. [PMID: 37954604 PMCID: PMC10639134 DOI: 10.3389/fimmu.2023.1213710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Pain within the trigeminal system, particularly dental pain, is poorly understood. This study aimed to determine whether single or multiple dental pulp injuries induce persistent pain, its association with trigeminal central nociceptive pathways and whether electroacupuncture (EA) provides prolonged analgesic and neuroprotective effects in a persistent dental pain model. Models of single dental pulp injury (SDPI) and multiple dental pulp injuries (MDPI) were used to induce trigeminal neuropathic pain. The signs of dental pain-related behavior were assessed using the mechanical head withdrawal threshold (HWT). Immunofluorescence and western blot protocols were used to monitor astrocyte activation, changes in apoptosis-related proteins, and GABAergic interneuron plasticity. SDPI mice exhibited an initial marked decrease in HWT from days one to 14, followed by progressive recovery from days 21 to 42. From days 49 to 70, the HWT increased and returned to the control values. In contrast, MDPI mice showed a persistent decrease in HWT from days one to 70. MDPI increased glial fibrillary acidic protein (GFAP) and decreased glutamine synthetase (GS) and glutamate transporter-1 (GLT1) expression in the Vi/Vc transition zone of the brainstem on day 70, whereas no changes in astrocytic markers were observed on day 70 after SDPI. Increased expression of cleaved cysteine-aspartic protease-3 (cleaved caspase-3) and Bcl-2-associated X protein (Bax), along with decreased B-cell lymphoma/leukemia 2 (Bcl-2), were observed at day 70 after MDPI but not after SDPI. The downregulation of glutamic acid decarboxylase (GAD65) expression was observed on day 70 only after MDPI. The effects of MDPI-induced lower HWT from days one to 70 were attenuated by 12 sessions of EA treatment (days one to 21 after MDPI). Changes in astrocytic GFAP, GS, and GLT-1, along with cleaved caspase-3, Bax, Bcl-2, and GAD65 expression observed 70 days after MDPI, were reversed by EA treatment. The results suggest that persistent dental pain in mice was induced by MDPI but not by SDPI. This effect was associated with trigeminal GABAergic interneuron plasticity along with morphological and functional changes in astrocytes. EA exerts prolonged analgesic and neuroprotective effects that might be associated with the modulation of neuron-glia crosstalk mechanisms.
Collapse
Affiliation(s)
| | - Lih-Jyh Fuh
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Shih-Ya Hung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Division of Surgery, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chen Lee
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Department of Acupuncture, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chuen Huang
- Department of Medical Research, China Medical University Hospital, School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Szu-Yu Chien
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
4
|
Ma X, Zhu T, Ke J. Progress in animal models of trigeminal neuralgia. Arch Oral Biol 2023; 154:105765. [PMID: 37480619 DOI: 10.1016/j.archoralbio.2023.105765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
OBJECTIVE This review aims to systematically summarize the methods of establishing various models of trigeminal neuralgia (TN), the scope of application, and current animals used in TN research and the corresponding pain measurements, hoping to provide valuable reference for researchers to select appropriate TN animal models and make contributions to the research of pathophysiology and management of the disease. DESIGN The related literatures of TN were searched through PubMed database using different combinations of the following terms and keywords including but not limited: animal models, trigeminal neuralgia, orofacial neuropathic pain. To find the maximum number of eligible articles, no filters were used in the search. The references of eligible studies were analyzed and reviewed comprehensively. RESULTS This study summarized the current animal models of TN, categorized them into the following groups: chemical induction, photochemical induction, surgery and genetic engineering, and introduced various measurement methods to evaluate animal pain behaviors. CONCLUSIONS Although a variety of methods are used to establish disease models, there is no ideal TN model that can reflect all the characteristics of the disease. Therefore, there is still a need to develop more novel animal models in order to further study the etiology, pathological mechanism and potential treatment of TN.
Collapse
Affiliation(s)
- Xiaohan Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, China
| | - Taomin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
5
|
Mesa-Lombardo A, García-Magro N, Nuñez A, Martin YB. Locus coeruleus inhibition of vibrissal responses in the trigeminal subnucleus caudalis are reduced in a diabetic mouse model. Front Cell Neurosci 2023; 17:1208121. [PMID: 37475984 PMCID: PMC10354250 DOI: 10.3389/fncel.2023.1208121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
Diabetic neuropathy is the loss of sensory function beginning distally in the lower extremities, which is also characterized by pain and substantial morbidity. Furthermore, the locus coeruleus (LC) nucleus has been proposed to play an important role in descending pain control through the activation of α2-noradrenergic (NA) receptors in the spinal dorsal horn. We studied, on control and diabetic mice, the effect of electrical stimulation of the LC nucleus on the tactile responses in the caudalis division of the spinal trigeminal nucleus (Sp5C), which is involved in the relay of orofacial nociceptive information. Diabetes was induced in young adult C57BL/6J mice with one intraperitoneal injection of streptozotocin (50 mg/kg) daily for 5 days. The diabetic animals showed pain in the orofacial area because they had a decrease in the withdrawal threshold to the mechanical stimulation in the vibrissal pad. LC electrical stimulation induced the inhibition of vibrissal responses in the Sp5C neurons when applied at 50 and 100 ms before vibrissal stimulation in the control mice; however, the inhibition was reduced in the diabetic mice. These effects may be due to a reduction in the tyrosine hydroxylase positive (TH+) fibers in the Sp5C, as was observed in diabetic mice. LC-evoked inhibition was decreased by an intraperitoneal injection of the antagonist of the α2-NA receptors, yohimbine, indicating that it was due to the activation of α2-NA receptors. The decrease in the LC-evoked inhibition in the diabetic mice was partially recovered when clonidine, a non-selective α2-agonist, was injected intraperitoneally. These findings suggest that in diabetes, there is a reduction in the NA inputs from the LC in the Sp5C that may favor the development of chronic pain.
Collapse
Affiliation(s)
- Alberto Mesa-Lombardo
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria García-Magro
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Angel Nuñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Yasmina B. Martin
- Facultad de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
6
|
Puja G, Sonkodi B, Bardoni R. Mechanisms of Peripheral and Central Pain Sensitization: Focus on Ocular Pain. Front Pharmacol 2021; 12:764396. [PMID: 34916942 PMCID: PMC8669969 DOI: 10.3389/fphar.2021.764396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Persistent ocular pain caused by corneal inflammation and/or nerve injury is accompanied by significant alterations along the pain axis. Both primary sensory neurons in the trigeminal nerves and secondary neurons in the spinal trigeminal nucleus are subjected to profound morphological and functional changes, leading to peripheral and central pain sensitization. Several studies using animal models of inflammatory and neuropathic ocular pain have provided insight about the mechanisms involved in these maladaptive changes. Recently, the advent of new techniques such as optogenetics or genetic neuronal labelling has allowed the investigation of identified circuits involved in nociception, both at the spinal and trigeminal level. In this review, we will describe some of the mechanisms that contribute to the perception of ocular pain at the periphery and at the spinal trigeminal nucleus. Recent advances in the discovery of molecular and cellular mechanisms contributing to peripheral and central pain sensitization of the trigeminal pathways will be also presented.
Collapse
Affiliation(s)
- Giulia Puja
- Department of Life Sciences, University of Modena and Reggio Emilia, Emilia-Romagna, Italy
| | - Balazs Sonkodi
- Department of Health Sciences and Sport Medicine, University of Physical Education, Budapest, Hungary
| | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Emilia-Romagna, Italy
| |
Collapse
|
7
|
Nagakura Y, Nagaoka S, Kurose T. Potential Molecular Targets for Treating Neuropathic Orofacial Pain Based on Current Findings in Animal Models. Int J Mol Sci 2021; 22:ijms22126406. [PMID: 34203854 PMCID: PMC8232571 DOI: 10.3390/ijms22126406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/25/2023] Open
Abstract
This review highlights potential molecular targets for treating neuropathic orofacial pain based on current findings in animal models. Preclinical research is currently elucidating the pathophysiology of the disease and identifying the molecular targets for better therapies using animal models that mimic this category of orofacial pain, especially post-traumatic trigeminal neuropathic pain (PTNP) and primary trigeminal neuralgia (PTN). Animal models of PTNP and PTN simulate their etiologies, that is, trauma to the trigeminal nerve branch and compression of the trigeminal root entry zone, respectively. Investigations in these animal models have suggested that biological processes, including inflammation, enhanced neuropeptide-mediated pain signal transmission, axonal ectopic discharges, and enhancement of interactions between neurons and glial cells in the trigeminal pathway, are underlying orofacial pain phenotypes. The molecules associated with biological processes, whose expressions are substantially altered following trigeminal nerve damage or compression of the trigeminal nerve root, are potentially involved in the generation and/or exacerbation of neuropathic orofacial pain and can be potential molecular targets for the discovery of better therapies. Application of therapeutic candidates, which act on the molecular targets and modulate biological processes, attenuates pain-associated behaviors in animal models. Such therapeutic candidates including calcitonin gene-related peptide receptor antagonists that have a reasonable mechanism for ameliorating neuropathic orofacial pain and meet the requirements for safe administration to humans seem worth to be evaluated in clinical trials. Such prospective translation of the efficacy of therapeutic candidates from animal models to human patients would help develop better therapies for neuropathic orofacial pain.
Collapse
Affiliation(s)
- Yukinori Nagakura
- School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa-city, Fukuoka 831-8501, Japan
- Correspondence:
| | - Shogo Nagaoka
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan; (S.N.); (T.K.)
| | - Takahiro Kurose
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan; (S.N.); (T.K.)
| |
Collapse
|
8
|
García-Magro N, Martin YB, Negredo P, Zafra F, Avendaño C. Microglia and Inhibitory Circuitry in the Medullary Dorsal Horn: Laminar and Time-Dependent Changes in a Trigeminal Model of Neuropathic Pain. Int J Mol Sci 2021; 22:4564. [PMID: 33925417 PMCID: PMC8123867 DOI: 10.3390/ijms22094564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Craniofacial neuropathic pain affects millions of people worldwide and is often difficult to treat. Two key mechanisms underlying this condition are a loss of the negative control exerted by inhibitory interneurons and an early microglial reaction. Basic features of these mechanisms, however, are still poorly understood. Using the chronic constriction injury of the infraorbital nerve (CCI-IoN) model of neuropathic pain in mice, we have examined the changes in the expression of GAD, the synthetic enzyme of GABA, and GlyT2, the membrane transporter of glycine, as well as the microgliosis that occur at early (5 days) and late (21 days) stages post-CCI in the medullary and upper spinal dorsal horn. Our results show that CCI-IoN induces a down-regulation of GAD at both postinjury survival times, uniformly across the superficial laminae. The expression of GlyT2 showed a more discrete and heterogeneous reduction due to the basal presence in lamina III of 'patches' of higher expression, interspersed within a less immunoreactive 'matrix', which showed a more substantial reduction in the expression of GlyT2. These patches coincided with foci lacking any perceptible microglial reaction, which stood out against a more diffuse area of strong microgliosis. These findings may provide clues to better understand the neural mechanisms underlying allodynia in neuropathic pain syndromes.
Collapse
Affiliation(s)
- Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience, Medical School, Autónoma University of Madrid, 28029 Madrid, Spain; (N.G.-M.); (P.N.)
- Ph.D. Programme in Neuroscience, Doctoral School, Autónoma University of Madrid, 28049 Madrid, Spain
| | - Yasmina B. Martin
- Departamento de Anatomía, Facultad de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autónoma University of Madrid, 28029 Madrid, Spain; (N.G.-M.); (P.N.)
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience, Medical School, Autónoma University of Madrid, 28029 Madrid, Spain; (N.G.-M.); (P.N.)
| |
Collapse
|
9
|
Increased substance P and synaptic remodeling occur in the trigeminal sensory system with sustained osteoarthritic temporomandibular joint sensitivity. Pain Rep 2021; 6:e911. [PMID: 33977183 PMCID: PMC8104398 DOI: 10.1097/pr9.0000000000000911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/24/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Increased substance P and a loss of inhibitory synapses occurs within the brain's trigeminal sensory system with persistent, but not transient, temporomandibular joint sensitivity. Introduction: Temporomandibular joint (TMJ) pain is among the most prevalent musculoskeletal conditions and can result from atypical joint loading. Although TMJ pain is typically self-resolving, 15% of patients develop chronic TMJ pain that is recalcitrant to therapy and may be attributed to changes in pain processing centers. Although TMJ overloading induces pain and osteoarthritis, whether neuronal modifications in the trigeminal sensory system contribute to persistent TMJ pain is unknown. Objective: This study investigates changes in excitatory neuropeptides and synaptic transmission proteins in cases of transient and persistent TMJ sensitivity in a rat model. Methods: Rats underwent repeated jaw loading that produces transient (2N-load) or persistent (3.5N-load) sensitivity. In both groups, immunolabeling was used to assess substance P in the spinal trigeminal nucleus caudalis (Sp5C) and glutamate transporter 1 in the ventroposteriomedial thalamus early after loading. Synaptosomal Western blots were used to measure synaptic proteins in the caudal medulla and thalamus at a later time after loading. Results: Substance P increases transiently in the Sp5C early after loading that induces persistent sensitivity. However, glutamate transporter 1 is unchanged in the ventroposteriomedial thalamus. At a later time, synaptosomal Western blots show loss of the presynaptic tethering protein, synapsin, and the inhibitory scaffolding protein, gephyrin, in the thalamus with persistent, but not transient, sensitivity. No changes are identified in synapsin, phosphorylated synapsin, homer, or gephyrin in the caudal medulla. Conclusions: Substance P in the Sp5C and later loss of inhibitory synapses in the thalamus likely contribute to, or indicate, persistent TMJ pain.
Collapse
|
10
|
Dong W, Jin SC, Allocco A, Zeng X, Sheth AH, Panchagnula S, Castonguay A, Lorenzo LÉ, Islam B, Brindle G, Bachand K, Hu J, Sularz A, Gaillard J, Choi J, Dunbar A, Nelson-Williams C, Kiziltug E, Furey CG, Conine S, Duy PQ, Kundishora AJ, Loring E, Li B, Lu Q, Zhou G, Liu W, Li X, Sierant MC, Mane S, Castaldi C, López-Giráldez F, Knight JR, Sekula RF, Simard JM, Eskandar EN, Gottschalk C, Moliterno J, Günel M, Gerrard JL, Dib-Hajj S, Waxman SG, Barker FG, Alper SL, Chahine M, Haider S, De Koninck Y, Lifton RP, Kahle KT. Exome Sequencing Implicates Impaired GABA Signaling and Neuronal Ion Transport in Trigeminal Neuralgia. iScience 2020; 23:101552. [PMID: 33083721 PMCID: PMC7554653 DOI: 10.1016/j.isci.2020.101552] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Trigeminal neuralgia (TN) is a common, debilitating neuropathic face pain syndrome often resistant to therapy. The familial clustering of TN cases suggests that genetic factors play a role in disease pathogenesis. However, no unbiased, large-scale genomic study of TN has been performed to date. Analysis of 290 whole exome-sequenced TN probands, including 20 multiplex kindreds and 70 parent-offspring trios, revealed enrichment of rare, damaging variants in GABA receptor-binding genes in cases. Mice engineered with a TN-associated de novo mutation (p.Cys188Trp) in the GABAA receptor Cl− channel γ-1 subunit (GABRG1) exhibited trigeminal mechanical allodynia and face pain behavior. Other TN probands harbored rare damaging variants in Na+ and Ca+ channels, including a significant variant burden in the α-1H subunit of the voltage-gated Ca2+ channel Cav3.2 (CACNA1H). These results provide exome-level insight into TN and implicate genetically encoded impairment of GABA signaling and neuronal ion transport in TN pathogenesis. Genomic analysis of trigeminal neuralgia (TN) using exome sequencing Rare mutations in GABA signaling and ion transport genes are enriched in TN cases Generation of a genetic TN mouse model engineered with a patient-specific mutation
Collapse
Affiliation(s)
- Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - August Allocco
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Xue Zeng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Amar H Sheth
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Annie Castonguay
- CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | | | - Barira Islam
- University College London, School of Pharmacy, London, England
| | | | - Karine Bachand
- CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Jamie Hu
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Agata Sularz
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jonathan Gaillard
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA.,Department of Biomedical Sciences, Korea University College of Medicine, 02841 Seoul, Korea
| | - Ashley Dunbar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Emre Kiziltug
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Sierra Conine
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Phan Q Duy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Erin Loring
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Geyu Zhou
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Xinyue Li
- School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Michael C Sierant
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Shrikant Mane
- Yale Center for Genome Analysis, West Haven, CT, USA
| | | | | | | | - Raymond F Sekula
- Department of Neurological Surgery, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emad N Eskandar
- Department of Neurological Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, New York
| | | | | | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jason L Gerrard
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Sulayman Dib-Hajj
- Center for Neuroscience & Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Neurology; Yale University, New Haven, CT, USA
| | - Stephen G Waxman
- Center for Neuroscience & Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Neurology; Yale University, New Haven, CT, USA
| | - Fred G Barker
- Harvard Medical School, Boston, MA, USA.,Cancer Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mohamed Chahine
- CERVO Brain Research Centre, Université Laval, Québec, QC, Canada.,Department of Medicine, Université Laval, Québec, QC, Canada
| | - Shozeb Haider
- University College London, School of Pharmacy, London, England
| | - Yves De Koninck
- CERVO Brain Research Centre, Université Laval, Québec, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.,Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA.,Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
García-Magro N, Negredo P, Martin YB, Nuñez Á, Avendaño C. Modulation of mechanosensory vibrissal responses in the trigeminocervical complex by stimulation of the greater occipital nerve in a rat model of trigeminal neuropathic pain. J Headache Pain 2020; 21:96. [PMID: 32762640 PMCID: PMC7410158 DOI: 10.1186/s10194-020-01161-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background Stimulation of the occipital or trigeminal nerves has been successfully used to treat chronic refractory neurovascular headaches such as migraine or cluster headache, and painful neuropathies. Convergence of trigeminal and occipital sensory afferents in the ‘trigeminocervical complex’ (TCC) from cutaneous, muscular, dural, and visceral sources is a key mechanism for the input-induced central sensitization that may underlie the altered nociception. Both excitatory (glutamatergic) and inhibitory (GABAergic and glycinergic) mechanisms are involved in modulating nociception in the spinal and medullary dorsal horn neurons, but the mechanisms by which nerve stimulation effects occur are unclear. This study was aimed at investigating the acute effects of electrical stimulation of the greater occipital nerve (GON) on the responses of neurons in the TCC to the mechanical stimulation of the vibrissal pad. Methods Adult male Wistar rats were used. Neuronal recordings were obtained in laminae II-IV in the TCC in control, sham and infraorbital chronic constriction injury (CCI-IoN) animals. The GON was isolated and electrically stimulated. Responses to the stimulation of vibrissae by brief air pulses were analyzed before and after GON stimulation. In order to understand the role of the neurotransmitters involved, specific receptor blockers of NMDA (AP-5), GABAA (bicuculline, Bic) and Glycine (strychnine, Str) were applied locally. Results GON stimulation produced a facilitation of the response to light facial mechanical stimuli in controls, and an inhibition in CCI-IoN cases. AP-5 reduced responses to GON and vibrissal stimulation and blocked the facilitation of GON on vibrissal responses found in controls. The application of Bic or Str significantly reduced the facilitatory effect of GON stimulation on the response to vibrissal stimulation in controls. However, the opposite effect was found when GABAergic or Glycinergic transmission was prevented in CCI-IoN cases. Conclusions GON stimulation modulates the responses of TCC neurons to light mechanical input from the face in opposite directions in controls and under CCI-IoN. This modulation is mediated by GABAergic and Glycinergic mechanisms. These results will help to elucidate the neural mechanisms underlying the effectiveness of nerve stimulation in controlling painful craniofacial disorders, and may be instrumental in identifying new therapeutic targets for their prevention and treatment.
Collapse
Affiliation(s)
- Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain.,Programme in Neuroscience, Doctoral School, Autonoma University of Madrid, Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Yasmina B Martin
- Facultad de Medicina, Universidad Francisco de Vitoria, 28223, Madrid, Spain
| | - Ángel Nuñez
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain
| | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, 28029, Madrid, Spain.
| |
Collapse
|
12
|
Zama M, Fujita S, Nakaya Y, Tonogi M, Kobayashi M. Preceding Administration of Minocycline Suppresses Plastic Changes in Cortical Excitatory Propagation in the Model Rat With Partial Infraorbital Nerve Ligation. Front Neurol 2019; 10:1150. [PMID: 31749758 PMCID: PMC6848061 DOI: 10.3389/fneur.2019.01150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/14/2019] [Indexed: 01/02/2023] Open
Abstract
Neuropathic pain is known to be attributable to the injured nerve, a postoperative problem induced by surgery. The infraorbital nerve (ION), a branch of the trigeminal nerve, innervates to the facial and oral regions and conveys somatosensory information to the central nervous system. The partial ligation of ION (pl-ION) is a method to mimic chronic trigeminal neuropathic pain and behavioral abnormality. To counteract induction of such abnormal pain, the effective pharmacological treatment is desired. Although recent studies have revealed the molecular mechanisms regarding chronic pain, estimation of the effectiveness of the pharmacological treatment has not been well-provided especially in the central nervous system so far. Here we examined whether pl-ION induces plastic changes in the cerebral cortex and investigated effects of minocycline on the cortical plastic changes. We performed the pl-ION to Wistar male rats (4–5 weeks old), and confirmed a mechanical nocifensive behavior in response to the mechanical stimulation with von-Frey filaments. The withdrawal threshold to mechanical stimuli of the whisker pad was decreased 1 day (1 d) after pl-ION, which continued up to 14 d after pl-ION, suggesting that pl-ION model rats presented allodynia and enhanced the response sustained at least for 14 d after pl-ION. Next, cerebrocortical activities were evaluated 3 d after pl-ION (3d-pl-ION) by the optical imaging with a voltages-sensitive dye, RH1691, to quantify the response to electrical stimulation of the whisker pad skin, mandibular molar dental pulp, and mentum skin. Electrical stimulation to the whisker pad skin induced smaller excitation in the primary sensory cortex (S1) of 3d-pl-ION in comparison to that in the sham. In contrast, cerebral cortical responses to the mandibular molar dental pulp and mentum skin stimuli increased both in S1, and the secondary somatosensory and insular oral region (S2/IOR) after pl-ION. Administration of minocycline (30 mg/kg/d) from 1 d before to 2 d after pl-ION partially recovered the pl-ION-induced changes in cortical excitation in S1 and S2/IOR in 3d-pl-ION. These results suggest that somatosensory and insular cortical excitation is changed by pl-ION, and the preceding injection of minocycline counteracts the plastic changes in the cortical activities.
Collapse
Affiliation(s)
- Manabu Zama
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - Satoshi Fujita
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Yuka Nakaya
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Morio Tonogi
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan.,Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, Kobe, Japan
| |
Collapse
|
13
|
Ouachikh O, Hafidi A, Boucher Y, Dieb W. Electrical Synapses are Involved in Orofacial Neuropathic Pain. Neuroscience 2018; 382:69-79. [PMID: 29746991 DOI: 10.1016/j.neuroscience.2018.04.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/28/2022]
Abstract
Accumulated evidences suggest important roles of glial GAP-junctions in pain. However, only a few studies have explored the role of neuronal GAP-junctions or electrical synapses in neuropathic pain (NP). Therefore, the present study explores the role of connexin 36 (Cx36) in NP using the chronic constriction injury of the infraorbital nerve (CCI-IoN) model in rat. A significant increase in Cx36 labeling was observed in the medullary dorsal horn (MDH) of CCI-IoN-lesioned compared to sham rats. The expression of Cx36 in CCI-IoN-lesioned rats revealed a rostroventral gradient of punctuate labeling within lamina IIo of the MDH. Cx36-positive somata and processes were also observed in MDH laminae IIi and III-V. These somata were mostly of the Gamma aminobutyric acid (GABA) and occasionally Glycine transporter 2 (GlyT2) cell subtypes. Moreover the GABA cell subtypes are highly coupled in lamina IIo as revealed by the intense Cx36 staining in this lamina. Pharmacological Cx36 blockade by intracisternal administration of mefloquine decreased significantly the mechanical allodynia observed in CCI-IoN-lesioned rats. Altogether, our findings demonstrated that Cx36 play an important role in mechanical allodynia by coupling GABA cells. Increasing cell coupling by enhancing Cx36 expression favors neuropathic pain while disrupting this coupling alleviates it. This mechanism may constitute a novel target for the treatment of orofacial mechanical allodynia.
Collapse
Affiliation(s)
- Omar Ouachikh
- EA 7280 - Neuro-psycho-pharmacologie des systèmes dopaminergiques sous corticaux, Université Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Aziz Hafidi
- EA 7280 - Neuro-psycho-pharmacologie des systèmes dopaminergiques sous corticaux, Université Clermont Auvergne, Clermont-Ferrand 63000, France.
| | - Yves Boucher
- Faculté d'odontologie (Garançière), Université Paris-Diderot, Paris, France; Hôpital Pitié-Salpétrière, AP-HP, Paris, France
| | - Wisam Dieb
- EA 7280 - Neuro-psycho-pharmacologie des systèmes dopaminergiques sous corticaux, Université Clermont Auvergne, Clermont-Ferrand 63000, France; Faculté d'odontologie (Garançière), Université Paris-Diderot, Paris, France; Hôpital Pitié-Salpétrière, AP-HP, Paris, France
| |
Collapse
|
14
|
Hu G, Zhang M, Su M, Zhang Q, Wu H, Wang X, Dong Z, Yu S. Wider range of allodynia in a rat model of repeated dural nociception compared with infraorbital nerve chronic constriction injury. Neurosci Lett 2018; 666:120-126. [PMID: 29277624 DOI: 10.1016/j.neulet.2017.12.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/16/2017] [Accepted: 12/22/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND To identify differences in allodynia and grooming behaviours between rat models of either repeated dural nociception with inflammatory soup (IS) or infraorbital nerve chronic constriction injury (IoN-CCI). METHODS Repeated dural nociception was induced via the application of IS to the dural meninges and IoN-CCI was applied to model neuropathic pain. All surgeries were performed on the right side and a sham operation was performed on the control group. Mechanical and thermal withdrawal thresholds were tested on different facial areas and hindpaw during the interictal period and grooming behaviours were recorded. RESULTS A significant decreases was found in the mechanical withdrawal thresholds of the bilateral vibrissa pad and right periorbital area in both the IS and the IoN-CCI groups, but only in the left periorbital area of the IS group. Hindpaw thermal allodynia was evident only in the IS group. Ipsilateral hindpaw grooming behaviour increased in the IS group and facial grooming behaviour increased in the IoN-CCI group. CONCLUSIONS Repeated dural nociception induced by IS and IoN-CCI in rats effectively simulated chronic migraine (CM) and trigeminal neuralgia (TN), respectively. The IS group exhibited a wider range of allodynia than the IoN-CCI group, but further studies are necessary to determine underlying mechanisms.
Collapse
Affiliation(s)
- Guanqun Hu
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin, 300071, China
| | - Mingjie Zhang
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China.
| | - Min Su
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin, 300071, China
| | - Qing Zhang
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin, 300071, China
| | - Hangfei Wu
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaolin Wang
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhao Dong
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
15
|
de Matos NM, Hock A, Wyss M, Ettlin DA, Brügger M. Neurochemical dynamics of acute orofacial pain in the human trigeminal brainstem nuclear complex. Neuroimage 2017; 162:162-172. [DOI: 10.1016/j.neuroimage.2017.08.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 01/25/2023] Open
|
16
|
Rahman M, Shiozaki K, Okamoto K, Thompson R, Bereiter DA. Trigeminal brainstem modulation of persistent orbicularis oculi muscle activity in a rat model of dry eye. Neuroscience 2017; 349:208-219. [PMID: 28288901 PMCID: PMC5408357 DOI: 10.1016/j.neuroscience.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 01/16/2023]
Abstract
Altered corneal reflex activity is a common feature of dry eye disease (DE). Trigeminal sensory nerves supply the ocular surface and terminate at the trigeminal interpolaris/caudalis (ViVc) transition and spinomedullary (VcC1) regions. Although both regions contribute to corneal reflexes, their role under dry eye conditions is not well defined. This study assessed the influence of local inhibitory and excitatory amino acid neurotransmission at the ViVc transition and VcC1 regions on hypertonic saline (HS) evoked orbicularis oculi muscle activity (OOemg) in urethane-anesthetized male rats after exorbital gland removal (DE). HS increased the magnitude of long-duration OOemg activity (OOemgL, >200ms) in DE compared to sham rats, while short-duration OOemg activity (OOemgS, <200ms) was similar for both groups. Inhibition of the ViVc transition by muscimol, a GABAA receptor agonist, greatly reduced HS-evoked OOemgL activity in DE rats, whereas injections at the VcC1 region had only minor effects in both groups. Blockade of GABAA receptors by bicuculline methiodide at the ViVc transition or VcC1 region increased HS-evoked OOemgL activity in DE rats. Blockade of N-methyl-D-aspartate (NMDA) receptors at either region reduced HS-evoked OOemgL activity in DE and sham rats. GABAαβ3 receptor density was reduced at the ViVc transition, while NMDA receptor density was increased at both regions in DE rats. Loss of GABAergic inhibition at the ViVc transition coupled with enhanced NMDA excitatory amino acid neurotransmission at the ViVc transition and the VcC1 region likely contribute to altered corneal reflexes under dry eye conditions.
Collapse
Affiliation(s)
- Mostafeezur Rahman
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Moos Tower 18-186, 515 Delaware St. SE, Minneapolis, MN 55455, USA.
| | - Kazunari Shiozaki
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Moos Tower 18-186, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Keiichiro Okamoto
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Moos Tower 18-186, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Randall Thompson
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Moos Tower 18-186, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Moos Tower 18-186, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
17
|
The Transition of Acute Postoperative Pain to Chronic Pain: An Integrative Overview of Research on Mechanisms. THE JOURNAL OF PAIN 2017; 18:359.e1-359.e38. [DOI: 10.1016/j.jpain.2016.11.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 10/15/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
|
18
|
Park J, Trinh VN, Sears-Kraxberger I, Li KW, Steward O, Luo ZD. Synaptic ultrastructure changes in trigeminocervical complex posttrigeminal nerve injury. J Comp Neurol 2015; 524:309-22. [PMID: 26132987 DOI: 10.1002/cne.23844] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
Trigeminal nerves collecting sensory information from the orofacial area synapse on second-order neurons in the dorsal horn of subnucleus caudalis and cervical C1/C2 spinal cord (Vc/C2, or trigeminocervical complex), which is critical for sensory information processing. Injury to the trigeminal nerves may cause maladaptive changes in synaptic connectivity that plays an important role in chronic pain development. Here we examined whether injury to the infraorbital nerve, a branch of the trigeminal nerves, led to synaptic ultrastructural changes when the injured animals have developed neuropathic pain states. Transmission electron microscopy was used to examine synaptic profiles in Vc/C2 at 3 weeks postinjury, corresponding to the time of peak behavioral hypersensitivity following chronic constriction injury to the infraorbital nerve (CCI-ION). Using established criteria, synaptic profiles were classified as associated with excitatory (R-), inhibitory (F-), and primary afferent (C-) terminals. Each type was counted within the superficial dorsal horn of the Vc/C2 and the means from each rat were compared between sham and injured animals; synaptic contact length was also measured. The overall analysis indicates that rats with orofacial pain states had increased numbers and decreased mean synaptic length of R-profiles within the Vc/C2 superficial dorsal horn (lamina I) 3 weeks post-CCI-ION. Increases in the number of excitatory synapses in the superficial dorsal horn of Vc/C2 could lead to enhanced activation of nociceptive pathways, contributing to the development of orofacial pain states.
Collapse
Affiliation(s)
- John Park
- Department of Pharmacology, University of California Irvine, School of Medicine, Irvine, California, 92697
| | - Van Nancy Trinh
- Department of Anesthesiology & Perioperative Care, University of California Irvine, School of Medicine, Irvine, California, 92697
| | - Ilse Sears-Kraxberger
- Reeve-Irvine Research Center, University of California Irvine, School of Medicine, Irvine, California, 92697
| | - Kang-Wu Li
- Department of Anesthesiology & Perioperative Care, University of California Irvine, School of Medicine, Irvine, California, 92697
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California Irvine, School of Medicine, Irvine, California, 92697
| | - Z David Luo
- Department of Pharmacology, University of California Irvine, School of Medicine, Irvine, California, 92697.,Department of Anesthesiology & Perioperative Care, University of California Irvine, School of Medicine, Irvine, California, 92697.,Reeve-Irvine Research Center, University of California Irvine, School of Medicine, Irvine, California, 92697
| |
Collapse
|
19
|
Xie HY, Xu F, Li Y, Zeng ZB, Zhang R, Xu HJ, Qian NS, Zhang YG. Increases in PKC gamma expression in trigeminal spinal nucleus is associated with orofacial thermal hyperalgesia in streptozotocin-induced diabetic mice. J Chem Neuroanat 2015; 63:13-9. [PMID: 25561408 DOI: 10.1016/j.jchemneu.2014.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/03/2014] [Accepted: 12/10/2014] [Indexed: 12/16/2022]
Abstract
Painful diabetic polyneuropathy (PDN) at the early phrase of diabetes frequently exhibits increased responsiveness to nociception. In diabetic patients and animal models, alterations in the transmission of orofacial sensory information have been demonstrated in trigeminal system. Herein, we examined the changes of protein kinase Cγ subunit (PKCγ) in trigeminal spinal nucleus (Sp5C) and observed the development of orofacial thermal sensitivity in streptozotocin (STZ)-induced type 1 diabetic mice. With hyperglycemia and body weight loss, STZ mice exhibited orofacial thermal hyperalgesia, along with increased PKCγ expression in Sp5C. Insulin treatment at the early stage of diabetes could alleviate the orofacial thermal hyperalgesia and impaired increased PKCγ in Sp5C in diabetic mice. In summary, our results demonstrate that PKCγ might be involved in orofacial thermal hyperalgesia of diabetes, and early insulin treatment might be effective way to treat orofacial PDN.
Collapse
Affiliation(s)
- Hong-Ying Xie
- Department of Cardiology, Daping Hospital and the Research Institute of Surgery of the Third Military Medical University, 400042 Chongqing, China
| | - Fei Xu
- The Oncology Radiotherapy Center of PLA 302 Hospital, Beijing 100039, China
| | - Yue Li
- Department of Vascular Surgery, PLA General Hospital, Beijing, 100853, China
| | - Zhao-Bin Zeng
- Department of Stomatology, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Ran Zhang
- Department of Cardiology, PLA General Hospital, Beijing, 100853, China
| | - Hui-Jun Xu
- The Oncology Radiotherapy Center of PLA 302 Hospital, Beijing 100039, China
| | - Nian-Song Qian
- Oncology Dept.2of PLA General Hospital, Bejing 100853, China.
| | - Yi-Guan Zhang
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA.
| |
Collapse
|
20
|
Martin YB, Negredo P, Villacorta-Atienza JA, Avendaño C. Trigeminal intersubnuclear neurons: morphometry and input-dependent structural plasticity in adult rats. J Comp Neurol 2014; 522:1597-617. [PMID: 24178892 DOI: 10.1002/cne.23494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 11/09/2022]
Abstract
Intersubnuclear neurons in the caudal division of the spinal trigeminal nucleus that project to the principal nucleus (Pr5) play an active role in shaping the receptive fields of other neurons, at different levels in the ascending sensory system that processes information originating from the vibrissae. By using retrograde labeling and digital reconstruction, we investigated the morphometry and topology of the dendritic trees of these neurons and the changes induced by long-term experience-dependent plasticity in adult male rats. Primary afferent input was either eliminated by transection of the right infraorbital nerve (IoN), or selectively altered by repeated whisker clipping on the right side. These neurons do not display asymmetries between sides in basic metric and topologic parameters (global number of trees, nodes, spines, or dendritic ends), although neurons on the left tend to have longer terminal segments. Ipsilaterally, both deafferentation (IoN transection) and deprivation (whisker trimming) reduced the density of spines, and the former also caused a global increase in total dendritic length and a relative increase in more complex arbors. Contralaterally, deafferentation reduced more complex dendritic trees, and caused a moderate decline in dendritic length and spatial reach, and a loss of spines in number and density. Deprivation caused a similar, but more profound, effect on spines. Our findings provide original quantitative descriptions of a scarcely known cell population, and show that denervation- or deprivation-derived plasticity is expressed not only by neurons at higher levels of the sensory pathways, but also by neurons in key subcortical circuits for sensory processing.
Collapse
Affiliation(s)
- Yasmina B Martin
- Department of Anatomy, Histology, & Neuroscience, Autonoma University of Madrid, 28029, Madrid, Spain; Department of Anatomy, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Dieb W, Hafidi A. Mechanism of GABA involvement in post-traumatic trigeminal neuropathic pain: activation of neuronal circuitry composed of PKCγ interneurons and pERK1/2 expressing neurons. Eur J Pain 2014; 19:85-96. [PMID: 24890317 DOI: 10.1002/ejp.525] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2014] [Indexed: 01/27/2023]
Abstract
BACKGROUND GABA disinhibition within the spinal dorsal horn has been implicated in pain hypersensitivity on injury in different neuropathic models. However, GABA alteration has been explored in only one study on trigeminal neuropathic pain. METHODS The present study investigated the implication of GABA in trigeminal dynamic mechanical allodynia (DMA) obtained after chronic constriction of the infraorbital nerve (CCI-IoN), and explored the cellular and molecular mechanisms by which GABA dysfunction induced DMA. RESULTS Our data demonstrated a significant decrease in labelling in two GABA cell markers, glutamate acid decarboxylase (GAD67), and parvalbumin, in the medullary dorsal horn (MDH) of allodynic rats in comparison to sham rats. Increasing GABA by intracisternal injections of vigabatrin (VGB), a blocker of the catabolic enzyme GABA transaminase, alleviated pain behaviour and restored normal GABA cell marker expression in allodynic MDH. Interestingly, intracisternal VGB administration also significantly decreased PKCγ staining, i.e., of its phosphorylated active form and the number of pERK1/2 positive cells within the MDH. These two markers were highly expressed in allodynic MDH. CONCLUSION The circuitry composed of PKCγ and pERK1/2 cells is silent under physiological conditions but is activated after CCI-IoN, therefore, switching touch stimuli to pain sensation. The decrease of GABA transmission constituted a key factor in the activation of this neuronal circuitry, which opens the gate for non-noxious stimuli to reach nociceptive projection neurons in lamina I.
Collapse
Affiliation(s)
- W Dieb
- Neuropsycho-pharmacologie des systèmes dopaminergiques sous corticaux, Université d'Auvergne, Clermont-Ferrand, France
| | | |
Collapse
|
22
|
Malmierca E, Chaves-Coira I, Rodrigo-Angulo M, Nuñez A. Corticofugal projections induce long-lasting effects on somatosensory responses in the trigeminal complex of the rat. Front Syst Neurosci 2014; 8:100. [PMID: 24904321 PMCID: PMC4033105 DOI: 10.3389/fnsys.2014.00100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/08/2014] [Indexed: 11/17/2022] Open
Abstract
The sensory information flow at subcortical relay stations is controlled by the action of topographic connections from the neocortex. To determinate the functional properties of the somatosensory corticofugal projections to the principal (Pr5) and caudal spinal (Sp5C) trigeminal nuclei, we performed unitary recordings in anesthetized rats. To examine the effect of these cortical projections we used tactile stimulation of the whisker and electrical stimulation of somatosensory cortices. Corticofugal anatomical projections to Pr5 and Sp5C nuclei were detected by using retrograde fluorescent tracers. Neurons projecting exclusively to Pr5 were located in the cingulate cortex while neurons projecting to both Sp5C and Pr5 nuclei were located in the somatosensory and insular cortices (>75% of neurons). Physiological results indicated that primary somatosensory cortex produced a short-lasting facilitating or inhibiting effects (<5 min) of tactile responses in Pr5 nucleus through activation of NMDA glutamatergic or GABAA receptors since effects were blocked by iontophoretically application of APV and bicuculline, respectively. In contrast, stimulation of secondary somatosensory cortex did not affect most of the Pr5 neurons; however both cortices inhibited the nociceptive responses in the Sp5C nucleus through activation of glycinergic or GABAA receptors because effects were blocked by iontophoretically application of strychnine and bicuculline, respectively. These and anatomical results demonstrated that the somatosensory cortices projects to Pr5 nucleus to modulate tactile responses by excitatory and inhibitory actions, while projections to the Sp5C nucleus control nociceptive sensory transmission by only inhibitory effects. Thus, somatosensory cortices may modulate innocuous and noxious inputs simultaneously, contributing to the perception of specifically tactile or painful sensations.
Collapse
Affiliation(s)
- Eduardo Malmierca
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Irene Chaves-Coira
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Margarita Rodrigo-Angulo
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Angel Nuñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
23
|
Okubo M, Castro A, Guo W, Zou S, Ren K, Wei F, Keller A, Dubner R. Transition to persistent orofacial pain after nerve injury involves supraspinal serotonin mechanisms. J Neurosci 2013; 33:5152-61. [PMID: 23516281 PMCID: PMC3640487 DOI: 10.1523/jneurosci.3390-12.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The orofacial region is a major focus of chronic neuropathic pain conditions characterized by primary hyperalgesia at the site of injury and secondary hyperalgesia outside the injured zone. We have used a rat model of injury to the maxillary branch (V2) of the trigeminal nerve to produce constant and long-lasting primary hyperalgesia in the V2 territory and secondary hyperalgesia in territories innervated by the mandibular branch (V3). Our findings indicate that the induction of primary and secondary hyperalgesia depended on peripheral input from the injured nerve. In contrast, the maintenance of secondary hyperalgesia depended on central mechanisms. The centralization of the secondary hyperalgesia involved descending 5-HT drive from the rostral ventromedial medulla and the contribution of 5-HT3 receptors in the trigeminal nucleus caudalis (Vc), the homolog of the spinal dorsal horn. Electrophysiological studies further indicate that after nerve injury spontaneous responses and enhanced poststimulus discharges in Vc nociresponsive neurons were time-dependent on descending 5-HT drive and peripheral input. The induction phase of secondary hyperalgesia involved central sensitization mechanisms in Vc neurons that were dependent on peripheral input, whereas the maintenance phase of secondary hyperalgesia involved central sensitization in Vc neurons conducted by a delayed descending 5-HT drive and a persistence of peripheral inputs. Our results are the first to show that the maintenance of secondary hyperalgesia and underlying central sensitization associated with persistent pain depend on a transition to supraspinal mechanisms involving the serotonin system in rostral ventromedial medulla-dorsal horn circuits.
Collapse
Affiliation(s)
| | - Alberto Castro
- 2Department of Anatomy and Neurobiology, Medical School; Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201
| | - Wei Guo
- 1Department of Neural and Pain Sciences, Dental School and
| | - Shiping Zou
- 1Department of Neural and Pain Sciences, Dental School and
| | - Ke Ren
- 1Department of Neural and Pain Sciences, Dental School and
| | - Feng Wei
- 1Department of Neural and Pain Sciences, Dental School and
| | - Asaf Keller
- 2Department of Anatomy and Neurobiology, Medical School; Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201
| | - Ronald Dubner
- 1Department of Neural and Pain Sciences, Dental School and
| |
Collapse
|
24
|
Guo N, Gu X, Zhao J, Zhao G, Jin M, Zou H, Zhang Y, Zhao Z, Jin GJ, Yu L. Maxillary nerve compression in cynomolgus monkey Macaca fascicularis: altered somatic sensation and peripheral nerve firing. BMC Neurosci 2012; 13:150. [PMID: 23234480 PMCID: PMC3554490 DOI: 10.1186/1471-2202-13-150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 11/29/2012] [Indexed: 01/01/2023] Open
Abstract
Background Trigeminal nerve is a major source of the sensory input of the face, and trigeminal neuropathology models have been reported in rodents with injury to branches of the maxillary or mandibular division of the trigeminal nerve. Non-human primates are neuroanatomically more closely related to human than rodents; however, nerve injury studies in non-human primates are limited. Results We describe here a nerve injury model of maxillary nerve compression (MNC) in the cynomolgus macaque monkey, Macaca fascicularis, and the initial characterization of the consequences of damage to this trigeminal nerve branch. The nerve injury from the compression appeared to be mild, as we did not observe overt changes in home-cage behavior in the monkeys. When mechanical stimulation was applied to the facial area, monkeys with MNC displayed increased mechanical sensitivity, as the avoidance response scores were lower than those from the control animals. Such a change in mechanical sensitivity appeared to be somewhat bilateral, as the contralateral side also showed increased mechanical sensitivity, although the change on the ipsilateral side was more robust. Multiple-unit recording of the maxillary nerve showed a general pattern of increasing responsiveness to escalating force in mechanical stimulation on the contralateral side. Ipsilateral side of the maxillary nerve showed a lack of responsiveness to escalating force in mechanical stimulation, possibly reflecting a maximum stimulation threshold effect from sensitized nerve due to MNC injury. Conclusions These results suggest that MNC may produce increased sensitivity of the ipsilateral maxillary nerve, and that this model may serve as a non-human primate model to evaluate the effect of injury to trigeminal nerve branches.
Collapse
Affiliation(s)
- Ning Guo
- Shanghai University of Traditional Chinese Medicine, and ShanghaiBio Corporation, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Krzyzanowska A, Avendaño C. Behavioral testing in rodent models of orofacial neuropathic and inflammatory pain. Brain Behav 2012; 2:678-97. [PMID: 23139912 PMCID: PMC3489819 DOI: 10.1002/brb3.85] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/10/2012] [Accepted: 07/13/2012] [Indexed: 11/12/2022] Open
Abstract
Orofacial pain conditions are often very debilitating to the patient and difficult to treat. While clinical interest is high, the proportion of studies performed in the orofacial region in laboratory animals is relatively low, compared with other body regions. This is partly due to difficulties in testing freely moving animals and therefore lack of reliable testing methods. Here we present a comprehensive review of the currently used rodent models of inflammatory and neuropathic pain adapted to the orofacial areas, taking into account the difficulties and drawbacks of the existing approaches. We examine the available testing methods and procedures used for assessing the behavioral responses in the face in both mice and rats and provide a summary of some pharmacological agents used in these paradigms to date. The use of these agents in animal models is also compared with outcomes observed in the clinic.
Collapse
Affiliation(s)
- Agnieszka Krzyzanowska
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Medical School Madrid, Spain
| | | |
Collapse
|
26
|
Malmierca E, Martin YB, Nuñez A. Inhibitory control of nociceptive responses of trigeminal spinal nucleus cells by somatosensory corticofugal projection in rat. Neuroscience 2012; 221:115-24. [PMID: 22796078 DOI: 10.1016/j.neuroscience.2012.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 11/17/2022]
Abstract
The caudal division of the trigeminal spinal nucleus (Sp5C) is an important brainstem relay station of orofacial pain transmission. The aim of the present study was to examine the effect of cortical electrical stimulation on nociceptive responses in Sp5C neurons. Extracellular recordings were performed in the Sp5C nucleus by tungsten microelectrodes in urethane-anesthetized Sprague-Dawley rats. Nociceptive stimulation was produced by application of capsaicin cream on the whisker pad or by constriction of the infraorbital nerve. Capsaicin application evoked a long-lasting increase in the spontaneous firing rate from 1.4±0.2 to 3.4±0.6 spikes/s. Non-noxious tactile responses from stimuli delivered to the receptive field (RF) center decreased 5 min. after capsaicin application (from 2.3±0.1 to 1.6±0.1 spikes/stimulus) while responses from the whisker located at the RF periphery increased (from 1.3±0.2 to 2.0±0.1 spikes/stimulus under capsaicin). Electrical train stimulation of the primary (S1) or secondary (S2) somatosensory cortical areas reduced the increase in the firing rate evoked by capsaicin. Also, S1, but not S2, cortical stimulation reduced the increase in non-noxious tactile responses from the RF periphery. Inhibitory cortical effects were mediated by the activation of GABAergic and glycinergic neurons because they were blocked by bicuculline or strychnine. The S1 and S2 cortical stimulation also inhibited Sp5C neurons in animals with constriction of the infraorbital nerve. Consequently, the corticofugal projection from S1 and S2 cortical areas modulates nociceptive responses of Sp5C neurons and may control the transmission of nociceptive sensory stimulus.
Collapse
Affiliation(s)
- E Malmierca
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | |
Collapse
|
27
|
Chen SH, Tsai YJ, Lin CT, Wang HY, Li SF, Lue JH. Changes in GABA and GABA(B) receptor expressions are involved in neuropathy in the rat cuneate nucleus following median nerve transection. Synapse 2012; 66:561-72. [PMID: 22290688 DOI: 10.1002/syn.21539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/20/2012] [Indexed: 01/17/2023]
Abstract
This study examined the relationship between changes in GABA transmission and behavioral abnormalities after median nerve transection. Following unilateral median nerve transection, the percentage of GABA-like immunoreactive neurons in the cuneate nucleus and that of GABA(B) receptor-like immunoreactive neurons in the dorsal root ganglion in the injured side decreased and reached a nadir at 4 weeks after median nerve transection. Four weeks after bilateral median nerve transection and intraperitoneal application with saline, baclofen (2 mg kg⁻¹), or phaclofen (2 mg kg⁻¹) before unilateral electrical stimulation of the injured median nerve, we investigated the level of neuropeptide Y release and c-Fos expression in the stimulated side of the cuneate nucleus. The neuropeptide Y release level and the number of c-Fos-like immunoreactive neurons in the baclofen group were significantly attenuated, whereas those in the phaclofen group had increased compared to the saline group. These findings indicate that median nerve transection reduces GABA transmission, promoting injury-induced neuropeptide Y release and consequently evoking c-Fos expression in cuneate nucleus neurons. Furthermore, this study used the CatWalk method to assess behavioral abnormalities in rats following median nerve transection. These abnormalities were reversed by baclofen treatment. Overall, the results suggest that baclofen treatment block neuropeptide Y release, subsequently lessening c-Fos expression in cuneate neurons and consequently attenuating neuropathic signal transmission to the thalamus.
Collapse
Affiliation(s)
- Seu-Hwa Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10018, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|