1
|
Skinner J, Delgado AG, Hyman M, Chu MYJ. Implementation of in situ aerobic cometabolism for groundwater treatment: State of the knowledge and important factors for field operation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171667. [PMID: 38485017 DOI: 10.1016/j.scitotenv.2024.171667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
In situ aerobic cometabolism of groundwater contaminants has been demonstrated to be a valuable bioremediation technology to treat many legacy and emerging contaminants in dilute plumes. Several well-designed and documented field studies have shown that this technology can concurrently treat multiple contaminants and reach very low cleanup goals. Fundamentally different from metabolism-based biodegradation of contaminants, microorganisms that cometabolically degrade contaminants do not obtain sufficient carbon and energy from the degradation process to support their growth and require an exogenous growth supporting primary substrate. Successful applications of aerobic cometabolic treatment therefore require special considerations beyond conventional in situ bioremediation, such as competitive inhibition between growth-supporting primary substrate(s) and contaminant non-growth substrates, toxic effects resulting from contaminant degradation, and differences in microbial population dynamics exhibited by biostimulated indigenous consortia versus bioaugmentation cultures. This article first provides a general review of microbiological factors that are likely to affect the rate of aerobic cometabolic biodegradation. We subsequently review fourteen well documented field-scale aerobic cometabolic bioremediation studies and summarize the underlying microbiological factors that may affect the performance observed in these field studies. The combination of microbiological and engineering principles gained from field testing leads to insights and recommendations on planning, design, and operation of an in situ aerobic cometabolic treatment system. With a vision of more aerobic cometabolic treatments being considered to tackle large, dilute plumes, we present several novel topics and future research directions that can potentially enhance technology development and foster success in implementing this technology for environmental restoration.
Collapse
Affiliation(s)
- Justin Skinner
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, AZ 85281, USA; Andrews Engineering, Inc., 3300 Ginger Creek Drive, Springfield, IL 62711, USA
| | - Anca G Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, AZ 85281, USA
| | - Michael Hyman
- Department of Plant and Microbial Biology, North Carolina State University, Thomas Hall 4545, 112 Derieux Place, Raleigh, NC 27607, USA
| | - Min-Ying Jacob Chu
- Haley & Aldrich Inc., 400 E Van Buren St, Ste 545, Phoenix, AZ 85004, USA.
| |
Collapse
|
2
|
Skinner JP, Palar S, Allen C, Raderstorf A, Blake P, Morán Reyes A, Berg RN, Muse C, Robles A, Hamdan N, Chu MY, Delgado AG. Acetylene Tunes Microbial Growth During Aerobic Cometabolism of Trichloroethene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6274-6283. [PMID: 38531380 PMCID: PMC11008246 DOI: 10.1021/acs.est.3c08068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
Microbial aerobic cometabolism is a possible treatment approach for large, dilute trichloroethene (TCE) plumes at groundwater contaminated sites. Rapid microbial growth and bioclogging pose a persistent problem in bioremediation schemes. Bioclogging reduces soil porosity and permeability, which negatively affects substrate distribution and contaminant treatment efficacy while also increasing the operation and maintenance costs of bioremediation. In this study, we evaluated the ability of acetylene, an oxygenase enzyme-specific inhibitor, to decrease biomass production while maintaining aerobic TCE cometabolism capacity upon removal of acetylene. We first exposed propane-metabolizing cultures (pure and mixed) to 5% acetylene (v v-1) for 1, 2, 4, and 8 d and we then verified TCE aerobic cometabolic activity. Exposure to acetylene overall decreased biomass production and TCE degradation rates while retaining the TCE degradation capacity. In the mixed culture, exposure to acetylene for 1-8 d showed minimal effects on the composition and relative abundance of TCE cometabolizing bacterial taxa. TCE aerobic cometabolism and incubation conditions exerted more notable effects on microbial ecology than did acetylene. Acetylene appears to be a viable approach to control biomass production that may lessen the likelihood of bioclogging during TCE cometabolism. The findings from this study may lead to advancements in aerobic cometabolism remediation technologies for dilute plumes.
Collapse
Affiliation(s)
- Justin P. Skinner
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Skye Palar
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Channing Allen
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Alia Raderstorf
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Presley Blake
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Arantza Morán Reyes
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- Instituto
de Energías Renovables, Universidad
Nacional Autónoma de México, Xochicalco s/n, Azteca, Temixco, Morelos 62588, Mexico
| | - Riley N. Berg
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Christopher Muse
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Aide Robles
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
- Haley
& Aldrich, Inc., 400 E Van Buren St., Suite 545, Phoenix, Arizona 85004, United States
| | - Nasser Hamdan
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| | - Min-Ying Chu
- Haley
& Aldrich, Inc., 400 E Van Buren St., Suite 545, Phoenix, Arizona 85004, United States
| | - Anca G. Delgado
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Engineering
Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, Arizona 85281, United States
| |
Collapse
|
3
|
Kim S, Park MS, Song J, Kang I, Cho JC. High-throughput cultivation based on dilution-to-extinction with catalase supplementation and a case study of cultivating acI bacteria from Lake Soyang. J Microbiol 2020; 58:893-905. [PMID: 33125668 DOI: 10.1007/s12275-020-0452-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Multi-omics approaches, including metagenomics and single-cell amplified genomics, have revolutionized our understanding of the hidden diversity and function of microbes in nature. Even in the omics age, cultivation is an essential discipline in microbial ecology since microbial cultures are necessary to assess the validity of an in silico prediction about the microbial metabolism and to isolate viruses infecting bacteria and archaea. However, the ecophysiological characteristics of predominant freshwater bacterial lineages remain largely unknown due to the scarcity of cultured representatives. In an ongoing effort to cultivate the uncultured majority of freshwater bacteria, the most abundant freshwater Actinobacteria acI clade has recently been cultivated from Lake Soyang through catalase-supplemented high-throughput cultivation based on dilution-to-extinction. This method involves physical isolation of target microbes from mixed populations, culture media simulating natural habitats, and removal of toxic compounds. In this protocol, we describe detailed procedures for isolating freshwater oligotrophic microbes, as well as the essence of the dilution-to-extinction culturing. As a case study employing the catalase-supplemented dilution-to-extinction protocol, we also report a cultivation trial using a water sample collected from Lake Soyang. Of the 480 cultivation wells inoculated with a single lake-water sample, 75 new acI strains belonging to 8 acI tribes (acI-A1, A2, A4, A5, A6, A7, B1, B4, C1, and C2) were cultivated, and each representative strain per subclade could be revived from glycerol stocks. These cultivation results demonstrate that the protocol described in this study is efficient in isolating freshwater bacterioplankton harboring streamlined genomes.
Collapse
Affiliation(s)
- Suhyun Kim
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Miri S Park
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Jaeho Song
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
4
|
Rasmussen MT, Saito AM, Hyman MR, Semprini L. Co-encapsulation of slow release compounds and Rhodococcus rhodochrous ATCC 21198 in gellan gum beads to promote the long-term aerobic cometabolic transformation of 1,1,1-trichloroethane, cis-1,2-dichloroethene and 1,4-dioxane. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:771-791. [PMID: 32083262 DOI: 10.1039/c9em00607a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rhodococcus rhodochrous ATCC 21198 (strain ATCC 21198) was successfully co-encapsulated in gellan gum beads with orthosilicates as slow release compounds (SRCs) to support aerobic cometabolism of a mixture of 1,1,1-trichloroethane (1,1,1-TCA), cis-1,2-dichloroethene (cis-DCE), and 1,4-dioxane (1,4-D) at aqueous concentrations ranging from 250 to 1000 μg L-1. Oxygen (O2) consumption and carbon dioxide (CO2) production showed the co-encapsulated cells utilized the alcohols that were released from the co-encapsulated SRCs. Two model SRCs, tetrabutylorthosilicate (TBOS) and tetra-s-butylorthosilicate (T2BOS), which hydrolyze to produce 1- and 2-butanol, respectively, were encapsulated in gellan gum (GG) at mass loadings as high as 10% (w/w), along with strain ATCC 21198. In the GG encapsulated beads, TBOS hydrolyzed 26 times faster than T2BOS and rates were ∼4 times higher in suspension than when encapsulated. In biologically active reactors, the co-encapsulated strain ATCC 21198 effectively utilized the SRC hydrolysis products (1- and 2-butanol) and cometabolized repeated additions of a mixture of 1,1,1-TCA, cis-DCE, and 1,4-D for over 300 days. The transformation followed pseudo-first-order kinetics. Vinyl chloride (VC) and 1,1-dichloroethene (1,1-DCE) were also transformed in the reactors after 250 days. In the long-term treatment, the batch reactors with co-encapsulated T2BOS GG beads achieved similar transformation rates, but at much lower O2 consumption rates than those with TBOS. The results demonstrate that the co-encapsulation technology can be a passive method for the cometabolic treatment of dilute groundwater plumes.
Collapse
Affiliation(s)
- Mitchell T Rasmussen
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, 97331 USA.
| | - Alyssa M Saito
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, 97331 USA.
| | - Michael R Hyman
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Lewis Semprini
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, 97331 USA.
| |
Collapse
|
5
|
Dellagnezze BM, Vasconcellos SP, Angelim AL, Melo VMM, Santisi S, Cappello S, Oliveira VM. Bioaugmentation strategy employing a microbial consortium immobilized in chitosan beads for oil degradation in mesocosm scale. MARINE POLLUTION BULLETIN 2016; 107:107-117. [PMID: 27158046 DOI: 10.1016/j.marpolbul.2016.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 05/22/2023]
Abstract
A bacterial consortium composed by four metagenomic clones and Bacillus subtilis strain CBMAI 707, all derived from petroleum reservoirs, was entrapped in chitosan beads and evaluated regarding hydrocarbon degradation capability. Experiments were carried out in mesocosm scale (3000L) with seawater artificially polluted with crude oil. At different time intervals, mesocosms were sampled and subjected to GC-FID and microbiological analyses, as total and heterotrophic culturable bacterial abundance (DAPI and CFU count), biological oxygen demand (BOD) and taxonomic diversity (massive sequencing of 16S rRNA genes). The results obtained showed that degradation of n-alkane hydrocarbons was similar between both treatments. However, aromatic compound degradation was more efficient in bioaugmentation treatment, with biodegradation percentages reaching up to 99% in 30days. Community dynamics was different between treatments and the consortium used in the bioaugmentation treatment contributed to a significant increase in aromatic hydrocarbon degradation.
Collapse
Affiliation(s)
- B M Dellagnezze
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP, CP 6171, CEP 13081-970 Campinas, SP, Brazil.
| | - S P Vasconcellos
- Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, 275, CEP 09972-270, Jd. Eldorado, Diadema, SP, Brazil
| | - A L Angelim
- Lembiotech (UFC), Federal University of Ceará, Av. Humberto Monte, 2977, Campus do Pici, Bloco 909, 60455-000, Fortaleza, CE, Brazil
| | - V M M Melo
- Lembiotech (UFC), Federal University of Ceará, Av. Humberto Monte, 2977, Campus do Pici, Bloco 909, 60455-000, Fortaleza, CE, Brazil
| | - S Santisi
- Institute for Coastal Marine Environment (IAMC), Consiglio Nazionale delle Ricerche (CNR) of Messina, Messina, Italy
| | - S Cappello
- Institute for Coastal Marine Environment (IAMC), Consiglio Nazionale delle Ricerche (CNR) of Messina, Messina, Italy
| | - V M Oliveira
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP, CP 6171, CEP 13081-970 Campinas, SP, Brazil
| |
Collapse
|
6
|
Torondel B, Ensink JHJ, Gundogdu O, Ijaz UZ, Parkhill J, Abdelahi F, Nguyen VA, Sudgen S, Gibson W, Walker AW, Quince C. Assessment of the influence of intrinsic environmental and geographical factors on the bacterial ecology of pit latrines. Microb Biotechnol 2016; 9:209-23. [PMID: 26875588 PMCID: PMC4767293 DOI: 10.1111/1751-7915.12334] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 10/02/2015] [Accepted: 10/12/2015] [Indexed: 12/15/2022] Open
Abstract
Improving the rate and extent of faecal decomposition in basic forms of sanitation such as pit latrines would benefit around 1.7 billion users worldwide, but to do so requires a major advance in our understanding of the biology of these systems. As a critical first step, bacterial diversity and composition was studied in 30 latrines in Tanzania and Vietnam using pyrosequencing of 16S rRNA genes, and correlated with a number of intrinsic environmental factors such as pH, temperature, organic matter content/composition and geographical factors. Clear differences were observed at the operational taxonomic unit, family and phylum level in terms of richness and community composition between latrines in Tanzania and Vietnam. The results also clearly show that environmental variables, particularly substrate type and availability, can exert a strong structuring influence on bacterial communities in latrines from both countries. The origins and significance of these environmental differences are discussed. This work describes the bacterial ecology of pit latrines in combination with inherent latrine characteristics at an unprecedented level of detail. As such, it provides useful baseline information for future studies that aim to understand the factors that affect decomposition rates in pit latrines.
Collapse
Affiliation(s)
- Belen Torondel
- Environmental Health Group, Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Jeroen H J Ensink
- Environmental Health Group, Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Ozan Gundogdu
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | - Julian Parkhill
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | - Faraji Abdelahi
- Ifakara Health Institute, off Mlabani Passage, P.O. Box 53, Ifakara, Tanzania
| | - Viet-Anh Nguyen
- Hanoi University of Civil Engineering, 55 Giai Phong Road, Hanoi, Vietnam
| | - Steven Sudgen
- Environmental Health Group, Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Walter Gibson
- Bear Valley Ventures, Braeside, Utkinton Lane, Cotebrook, Tarporley, Cheshire CW6 0JH, UK
| | - Alan W Walker
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK.,Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, AB21 9SB, UK
| | | |
Collapse
|
7
|
Lu Q, Zhu RL, Yang J, Li H, Liu YD, Lu SG, Luo QS, Lin KF. Natural attenuation model and biodegradation for 1,1,1-trichloroethane contaminant in shallow groundwater. Front Microbiol 2015; 6:839. [PMID: 26379629 PMCID: PMC4548683 DOI: 10.3389/fmicb.2015.00839] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/31/2015] [Indexed: 12/03/2022] Open
Abstract
Natural attenuation is an effective and feasible technology for controlling groundwater contamination. This study investigated the potential effectiveness and mechanisms of natural attenuation of 1,1,1-trichloroethane (TCA) contaminants in shallow groundwater in Shanghai by using a column simulation experiment, reactive transport model, and 16S rRNA gene clone library. The results indicated that the majority of the contaminant mass was present at 2–6 m in depth, the contaminated area was approximately 1000 m × 1000 m, and natural attenuation processes were occurring at the site. The effluent breakthrough curves from the column experiments demonstrated that the effectiveness of TCA natural attenuation in the groundwater accorded with the advection-dispersion-reaction equation. The kinetic parameter of adsorption and biotic dehydrochlorination of TCA was 0.068 m3/kg and 0.0045 d–1. The contamination plume was predicted to diminish and the maximum concentration of TCA decreased to 280 μg/L. The bacterial community during TCA degradation in groundwater belonged to Trichococcus, Geobacteraceae, Geobacter, Mucilaginibacter, and Arthrobacter.
Collapse
Affiliation(s)
- Qiang Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology , Shanghai, China
| | - Rui-Li Zhu
- Shanghai Academy of Environmental Sciences , Shanghai, China
| | - Jie Yang
- Shanghai Academy of Environmental Sciences , Shanghai, China
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology , Shanghai, China
| | - Yong-Di Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology , Shanghai, China
| | - Shu-Guang Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology , Shanghai, China
| | - Qi-Shi Luo
- Shanghai Engineering Research Center of Contaminated Sites Remediation, Shanghai Institute for Design and Research on Environmental Engineering , Shanghai, China
| | - Kuang-Fei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology , Shanghai, China
| |
Collapse
|
8
|
Discovery of bacterial polyhydroxyalkanoate synthase (PhaC)-encoding genes from seasonal Baltic Sea ice and cold estuarine waters. Extremophiles 2014; 19:197-206. [DOI: 10.1007/s00792-014-0699-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/20/2014] [Indexed: 10/24/2022]
|
9
|
Frascari D, Zanaroli G, Danko AS. In situ aerobic cometabolism of chlorinated solvents: a review. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:382-399. [PMID: 25306537 DOI: 10.1016/j.jhazmat.2014.09.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 06/04/2023]
Abstract
The possible approaches for in situ aerobic cometabolism of aquifers and vadose zones contaminated by chlorinated solvents are critically evaluated. Bioaugmentation of resting-cells previously grown in a fermenter and in-well addition of oxygen and growth substrate appear to be the most promising approaches for aquifer bioremediation. Other solutions involving the sparging of air lead to satisfactory pollutant removals, but must be integrated by the extraction and subsequent treatment of vapors to avoid the dispersion of volatile chlorinated solvents in the atmosphere. Cometabolic bioventing is the only possible approach for the aerobic cometabolic bioremediation of the vadose zone. The examined studies indicate that in situ aerobic cometabolism leads to the biodegradation of a wide range of chlorinated solvents within remediation times that vary between 1 and 17 months. Numerous studies include a simulation of the experimental field data. The modeling of the process attained a high reliability, and represents a crucial tool for the elaboration of field data obtained in pilot tests and for the design of the full-scale systems. Further research is needed to attain higher concentrations of chlorinated solvent degrading microbes and more reliable cost estimates. Lastly, a procedure for the design of full-scale in situ aerobic cometabolic bioremediation processes is proposed.
Collapse
Affiliation(s)
- Dario Frascari
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Giulio Zanaroli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Anthony S Danko
- Geo-Environmental and Resources Research Center, Department of Mining Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; Centre for Natural Resources and the Environment (CERENA), Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
10
|
Li M, Mathieu J, Yang Y, Fiorenza S, Deng Y, He Z, Zhou J, Alvarez PJJ. Widespread distribution of soluble di-iron monooxygenase (SDIMO) genes in Arctic groundwater impacted by 1,4-dioxane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9950-9958. [PMID: 23909410 DOI: 10.1021/es402228x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Soluble di-iron monooxygenases (SDIMOs), especially group-5 SDIMOs (i.e., tetrahydrofuran and propane monooxygenases), are of significant interest due to their potential role in the initiation of 1,4-dioxane (dioxane) degradation. Functional gene array (i.e., GeoChip) analysis of Arctic groundwater exposed to dioxane since 1980s revealed that various dioxane-degrading SDIMO genes were widespread, and PCR-DGGE analysis showed that group-5 SDIMOs were present in every tested sample, including background groundwater with no known dioxane exposure history. A group-5 thmA-like gene was enriched (2.4-fold over background, p < 0.05) in source-zone samples with higher dioxane concentrations, suggesting selective pressure by dioxane. Microcosm assays with (14)C-labeled dioxane showed that the highest mineralization capacity (6.4 ± 0.1% (14)CO2 recovery during 15 days, representing over 60% of the amount degraded) corresponded to the source area, which was presumably more acclimated and contained a higher abundance of SDIMO genes. Dioxane mineralization ceased after 7 days and was resumed by adding acetate (0.24 mM) as an auxiliary substrate to replenish NADH, a key coenzyme for the functioning of monoxygenases. Acetylene inactivation tests further corroborated the vital role of monooxygenases in dioxane degradation. This is the first report of the prevalence of oxygenase genes that are likely involved in dioxane degradation and suggests their usefulness as biomarkers of dioxane natural attenuation.
Collapse
Affiliation(s)
- Mengyan Li
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, United States
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Daae FL, Økland I, Dahle H, Jørgensen SL, Thorseth IH, Pedersen RB. Microbial life associated with low-temperature alteration of ultramafic rocks in the Leka ophiolite complex. GEOBIOLOGY 2013; 11:318-339. [PMID: 23551703 DOI: 10.1111/gbi.12035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/15/2013] [Indexed: 06/02/2023]
Abstract
Water-rock interactions in ultramafic lithosphere generate reduced chemical species such as hydrogen that can fuel subsurface microbial communities. Sampling of this environment is expensive and technically demanding. However, highly accessible, uplifted oceanic lithospheres emplaced onto continental margins (ophiolites) are potential model systems for studies of the subsurface biosphere in ultramafic rocks. Here, we describe a microbiological investigation of partially serpentinized dunite from the Leka ophiolite (Norway). We analysed samples of mineral coatings on subsurface fracture surfaces from different depths (10-160 cm) and groundwater from a 50-m-deep borehole that penetrates several major fracture zones in the rock. The samples are suggested to represent subsurface habitats ranging from highly anaerobic to aerobic conditions. Water from a surface pond was analysed for comparison. To explore the microbial diversity and to make assessments about potential metabolisms, the samples were analysed by microscopy, construction of small subunit ribosomal RNA gene clone libraries, culturing and quantitative-PCR. Different microbial communities were observed in the groundwater, the fracture-coating material and the surface water, indicating that distinct microbial ecosystems exist in the rock. Close relatives of hydrogen-oxidizing Hydrogenophaga dominated (30% of the bacterial clones) in the oxic groundwater, indicating that microbial communities in ultramafic rocks at Leka could partially be driven by H2 produced by low-temperature water-rock reactions. Heterotrophic organisms, including close relatives of hydrocarbon degraders possibly feeding on products from Fischer-Tropsch-type reactions, dominated in the fracture-coating material. Putative hydrogen-, ammonia-, manganese- and iron-oxidizers were also detected in fracture coatings and the groundwater. The microbial communities reflect the existence of different subsurface redox conditions generated by differences in fracture size and distribution, and mixing of fluids. The particularly dense microbial communities in the shallow fracture coatings seem to be fuelled by both photosynthesis and oxidation of reduced chemical species produced by water-rock reactions.
Collapse
Affiliation(s)
- F L Daae
- Department of Biology, Centre for Geobiology, Bergen, Norway.
| | | | | | | | | | | |
Collapse
|
12
|
Knight J, Deora R, Assimos DG, Holmes RP. The genetic composition of Oxalobacter formigenes and its relationship to colonization and calcium oxalate stone disease. Urolithiasis 2013; 41:187-96. [PMID: 23632911 DOI: 10.1007/s00240-013-0566-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 12/26/2022]
Abstract
Oxalobacter formigenes is a unique intestinal organism that relies on oxalate degradation to meet most of its energy and carbon needs. A lack of colonization is a risk factor for calcium oxalate stone disease. Protection against calcium oxalate stone disease appears to be due to the oxalate degradation that occurs in the gut on low calcium diets with a possible further contribution from intestinal oxalate secretion. Much remains to be learned about how the organism establishes and maintains gut colonization and the precise mechanisms by which it modifies stone risk. The sequencing and annotation of the genomes of a Group 1 and a Group 2 strain of O. formigenes should provide the informatic tools required for the identification of the genes and pathways associated with colonization and survival. In this review we have identified genes that may be involved and where appropriate suggested how they may be important in calcium oxalate stone disease. Elaborating the functional roles of these genes should accelerate our understanding of the organism and clarify its role in preventing stone formation.
Collapse
Affiliation(s)
- John Knight
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | | | |
Collapse
|
13
|
Stable isotope probing identifies anthracene degraders under methanogenic conditions. Biodegradation 2011; 23:221-30. [DOI: 10.1007/s10532-011-9501-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
|
14
|
Rivett MO, Wealthall GP, Dearden RA, McAlary TA. Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones. JOURNAL OF CONTAMINANT HYDROLOGY 2011; 123:130-156. [PMID: 21316792 DOI: 10.1016/j.jconhyd.2010.12.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 12/29/2010] [Accepted: 12/30/2010] [Indexed: 05/30/2023]
Abstract
Reliable prediction of the unsaturated zone transport and attenuation of dissolved-phase VOC (volatile organic compound) plumes leached from shallow source zones is a complex, multi-process, environmental problem. It is an important problem as sources, which include solid-waste landfills, aqueous-phase liquid discharge lagoons and NAPL releases partially penetrating the unsaturated zone, may persist for decades. Natural attenuation processes operating in the unsaturated zone that, uniquely for VOCs includes volatilisation, may, however, serve to protect underlying groundwater and potentially reduce the need for expensive remedial actions. Review of the literature indicates that only a few studies have focused upon the overall leached VOC source and plume scenario as a whole. These are mostly modelling studies that often involve high strength, non-aqueous phase liquid (NAPL) sources for which density-induced and diffusive vapour transport is significant. Occasional dissolved-phase aromatic hydrocarbon controlled infiltration field studies also exist. Despite this lack of focus on the overall problem, a wide range of process-based unsaturated zone - VOC research has been conducted that may be collated to build good conceptual model understanding of the scenario, particularly for the much studied aromatic hydrocarbons and chlorinated aliphatic hydrocarbons (CAHs). In general, the former group is likely to be attenuated in the unsaturated zone due to their ready aerobic biodegradation, albeit with rate variability across the literature, whereas the fate of the latter is far less likely to be dominated by a single mechanism and dependent upon the relative importance of the various attenuation processes within individual site - VOC scenarios. Analytical and numerical modelling tools permit effective process representation of the whole scenario, albeit with potential for inclusion of additional processes - e.g., multi-mechanistic sorption phase partitioning, and provide good opportunity for further sensitivity analysis and development to practitioner use. There remains a significant need to obtain intermediate laboratory-scale and particularly field-scale (actual site and controlled release) datasets that address the scenario as a whole and permit validation of the available models. Integrated assessment of the range of simultaneous processes that combine to influence leached plume generation, transport and attenuation in the unsaturated zone is required. Component process research needs are required across the problem scenario and include: the simultaneous volatilisation and dissolution of source zones; development of appropriate field-scale dispersion estimates for the unsaturated zone; assessment of transient VOC exchanges between aqueous, vapour and sorbed phases and their influence upon plume attenuation; development of improved field methods to recognise and quantify biodegradation of CAHs; establishment of the influence of co-contaminants; and, finally, translation of research findings into more robust practitioner practice.
Collapse
Affiliation(s)
- Michael O Rivett
- Water Sciences Group, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
15
|
Dynamics of bacterial community exposed to hydrocarbons and oleophilic fertilizer in high-Arctic intertidal beach. Polar Biol 2011. [DOI: 10.1007/s00300-011-1003-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Biodegradation of vinyl chloride, cis-dichloroethene and 1,2-dichloroethane in the alkene/alkane-oxidising Mycobacterium strain NBB4. Biodegradation 2011; 22:1095-108. [DOI: 10.1007/s10532-011-9466-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
|
17
|
Frascari D, Cappelletti M, Fedi S, Zannoni D, Nocentini M, Pinelli D. 1,1,2,2-Tetrachloroethane aerobic cometabolic biodegradation in slurry and soil-free bioreactors: A kinetic study. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2010.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
|
19
|
Nemir A, David MM, Perrussel R, Sapkota A, Simonet P, Monier JM, Vogel TM. Comparative phylogenetic microarray analysis of microbial communities in TCE-contaminated soils. CHEMOSPHERE 2010; 80:600-607. [PMID: 20444493 DOI: 10.1016/j.chemosphere.2010.03.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 02/15/2010] [Accepted: 03/28/2010] [Indexed: 05/29/2023]
Abstract
The arrival of chemicals in a soil or groundwater ecosystem could upset the natural balance of the microbial community. Since soil microorganisms are the first to be exposed to the chemicals released into the soil environment, we evaluated the use of a phylogenetic microarray as a bio-indicator of community perturbations due to the exposure to trichloroethylene (TCE). The phylogenetic microarray, which measures the presence of different members of the soil community, was used to evaluate unpolluted soils exposed to TCE as well as to samples from historically TCE polluted sites. We were able to determine an apparent threshold at which the microbial community structure was significantly affected (about 1ppm). In addition, the members of the microbial community most affected were identified. This approach could be useful for assessing environmental impact of chemicals on the biosphere as well as important members of the microbial community involved in TCE degradation.
Collapse
Affiliation(s)
- Audra Nemir
- Ecole Centrale de Lyon, Université de Lyon, Ecully, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Imfeld G, Aragonés CE, Fetzer I, Mészáros É, Zeiger S, Nijenhuis I, Nikolausz M, Delerce S, Richnow HH. Characterization of microbial communities in the aqueous phase of a constructed model wetland treating 1,2-dichloroethene-contaminated groundwater. FEMS Microbiol Ecol 2010; 72:74-88. [DOI: 10.1111/j.1574-6941.2009.00825.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
21
|
Desai C, Pathak H, Madamwar D. Advances in molecular and "-omics" technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. BIORESOURCE TECHNOLOGY 2010; 101:1558-69. [PMID: 19962886 DOI: 10.1016/j.biortech.2009.10.080] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 10/29/2009] [Indexed: 05/12/2023]
Abstract
Microbial bioremediation has been well-demonstrated as an ecofriendly and cost-competitive strategy for elimination of xenobiotic and or anthropogenic compounds from the polluted environments. However, successful execution of these versatile bioremediation strategies requires a thorough understanding of factors governing the growth, metabolism, dynamics and functions of indigenous microbial communities at contaminated sites. Recent innovative breakthroughs in genotypic profiling, ultrafast genome pyrosequencing, metagenomics, metatranscriptomics, metaproteomics and metabolomics along with bioinformatics tools have provided crucial in-sights of microbial communities and their mechanisms in bioremediation of environmental pollutants. Moreover, advances in these technologies have significantly improved the process of efficacy determination and implementation of microbial bioremediation strategies. The current review is focused on application of these molecular and "-omics" technologies in gauging the innate microbial community structures, dynamics and functions at contaminated sites or pollution containment facilities.
Collapse
Affiliation(s)
- Chirayu Desai
- BRD School of Biosciences, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India.
| | | | | |
Collapse
|
22
|
Dowideit K, Scholz-Muramatsu H, Miethling-Graff R, Vigelahn L, Freygang M, Dohrmann AB, Tebbe CC. Spatial heterogeneity of dechlorinating bacteria and limiting factors forin situ trichloroethene dechlorination revealed by analyses of sediment cores from a polluted field site. FEMS Microbiol Ecol 2010; 71:444-59. [DOI: 10.1111/j.1574-6941.2009.00820.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
23
|
Zhang Y, Zhong F, Xia S, Wang X, Li J. Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor. JOURNAL OF HAZARDOUS MATERIALS 2009; 170:203-209. [PMID: 19473764 DOI: 10.1016/j.jhazmat.2009.04.114] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/13/2009] [Accepted: 04/27/2009] [Indexed: 05/27/2023]
Abstract
A hollow fiber membrane biofilm reactor (MBfR) using polyvinyl chloride (PVC) hollow fiber was evaluated in removing nitrate form contaminated drinking water. During a 279-day operation period, the denitrification rate increased gradually with the increase of influent nitrate loading. The denitrification rate reached a maximum value of 414.72 g N/m(3)d (1.50 g N/m(2)d) at an influent NO(3)(-)-N concentration of 10mg/L and a hydraulic residence time of 37.5 min, and the influent nitrate was completely reduced. At the same time, the effluent quality analysis showed the headspace hydrogen content (3.0%) was lower enough to preclude having an explosive air. Under the condition of the influent nitrate surface loading of 1.04 g N/m(2)d, over 90% removal efficiencies of the total nitrogen and nitrate were achieved at the hydrogen pressure above 0.04 MPa. The results of denaturing gel gradient electrophoresis (DGGE), 16S rDNA gene sequence analysis, and hierarchical cluster analysis showed that the microbial community structures in MBfR were of low diversity, simple and stable at mature stages; and the beta-Proteobacteria, including Rhodocyclus, Hydrogenophaga, and beta-Proteobacteria HTCC379, probably play an important role in autohydrogenotrophic denitrification.
Collapse
Affiliation(s)
- Yanhao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | | | | | | | | |
Collapse
|
24
|
Yagi JM, Sims D, Brettin T, Bruce D, Madsen EL. The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer. Environ Microbiol 2009; 11:2253-70. [PMID: 19453698 DOI: 10.1111/j.1462-2920.2009.01947.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We analysed the genome of the aromatic hydrocarbon-degrading, facultatively chemolithotrophic betaproteobacterium, Polaromonas naphthalenivorans strain CJ2. Recent work has increasingly shown that Polaromonas species are prevalent in a variety of pristine oligotrophic environments, as well as polluted habitats. Besides a circular chromosome of 4.4 Mb, strain CJ2 carries eight plasmids ranging from 353 to 6.4 kb in size. Overall, the genome is predicted to encode 4929 proteins. Comparisons of DNA sequences at the individual gene, gene cluster and whole-genome scales revealed strong trends in shared heredity between strain CJ2 and other members of the Comamonadaceae and Burkholderiaceae. blastp analyses of protein coding sequences across strain CJ2's genome showed that genetic commonalities with other betaproteobacteria diminished significantly in strain CJ2's plasmids compared with the chromosome, especially for the smallest ones. Broad trends in nucleotide characteristics (GC content, GC skew, Karlin signature difference) showed at least six anomalous regions in the chromosome, indicating alteration of genome architecture via horizontal gene transfer. Detailed analysis of one of these anomalous regions (96 kb in size, containing the nag-like naphthalene catabolic operon) indicates that the fragment's insertion site was within a putative MiaB-like tRNA-modifying enzyme coding sequence. The mosaic nature of strain CJ2's genome was further emphasized by the presence of 309 mobile genetic elements scattered throughout the genome, including 131 predicted transposase genes, 178 phage-related genes, and representatives of 12 families of insertion elements. A total of three different terminal oxidase genes were found (putative cytochrome aa(3)-type oxidase, cytochrome cbb(3)-type oxidase and cytochrome bd-type quinol oxidase), suggesting adaptation by strain CJ2 to variable aerobic and microaerobic conditions. Sequence-suggested abilities of strain CJ2 to carry out nitrogen fixation and grow on the aromatic compounds, biphenyl and benzoate, were experimentally verified. These new phenotypes and genotypes set the stage for gaining additional insights into the physiology and biochemistry contributing to strain CJ2's fitness in its native habitat, contaminated sediment.
Collapse
Affiliation(s)
- Jane M Yagi
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
25
|
Identification of a novel toluene-degrading bacterium from the candidate phylum TM7, as determined by DNA stable isotope probing. Appl Environ Microbiol 2009; 75:4644-7. [PMID: 19447956 DOI: 10.1128/aem.00283-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dominant bacterium responsible for carbon uptake from toluene in an agricultural soil was identified by stable isotope probing. Samples were amended with unlabeled toluene or labeled [ring-(13)C(6)]toluene, and DNA was extracted over time. Sequencing indicated that the organism involved belongs to the candidate phylum TM7. Microorganisms in this candidate phylum are of particular interest because although they have been found in a variety of habitats, no stable culture of any species exists, so their general metabolic capabilities are largely unknown.
Collapse
|
26
|
Kim M, Bae SS, Seol M, Lee JH, Oh YS. Monitoring nutrient impact on bacterial community composition during bioremediation of anoxic PAH-contaminated sediment. J Microbiol 2008; 46:615-23. [DOI: 10.1007/s12275-008-0097-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 09/06/2008] [Indexed: 10/21/2022]
|
27
|
Abstract
AIMS To examine the diversity of cultivable 0.2 micron filtrate biofilm forming bacteria from drinking water systems. METHODS AND RESULTS Potable chlorinated drinking water hosts phylogenetically diverse ultramicrocells (UMC) (0.2 and 0.1 microm filterable). UMC (starved or dwarf bacteria) were isolated by cultivation on minimal medium from a flow system wall model with polyvinyl chloride (PVC) pipes. All cultivated cells (25 different isolates) did not maintain their ultra-size after passages on rich media. Cultured UMC were identified by their 16S ribosomal DNA sequences. The results showed that they were closely related to uncultured and cultured members of the Proteobacteria, Actinobacteria and Firmicutes. The isolates of phylum Actinobacteria included representatives of a diverse set of Actinobacterial families: Micrococcaceae, Microbacteriaceae, Dermabacteraceae, Nocardiaceae and Nocardioidaceae. CONCLUSIONS This study is the first to show an abundance of cultivable UMC of various phyla in drinking water system, including a high frequency of bacteria known to be involved in opportunistic infections, such as Stenotrophomonas maltophilia, Microbacterium sp., Pandoraea sp. and Afipia strains. SIGNIFICANCE AND IMPACT OF THE STUDY Chlorinated tap water filtrate (0.2 and 0.1 microm) still harbours opportunistic micro-organisms that can pose some health threat.
Collapse
Affiliation(s)
- F S Silbaq
- Mar Elias Educational Institutions and Mar Elias Campus, Ibillin, Galilee, Israel.
| |
Collapse
|
28
|
Frascari D, Pinelli D, Nocentini M, Baleani E, Cappelletti M, Fedi S. A kinetic study of chlorinated solvent cometabolic biodegradation by propane-grown Rhodococcus sp. PB1. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2008.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
The genome of Polaromonas sp. strain JS666: insights into the evolution of a hydrocarbon- and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl Environ Microbiol 2008; 74:6405-16. [PMID: 18723656 DOI: 10.1128/aem.00197-08] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polaromonas sp. strain JS666 can grow on cis-1,2-dichloroethene (cDCE) as a sole carbon and energy source and may be useful for bioremediation of chlorinated solvent-contaminated sites. Analysis of the genome sequence of JS666 (5.9 Mb) shows a bacterium well adapted to pollution that carries many genes likely to be involved in hydrocarbon and xenobiotic catabolism and metal resistance. Clusters of genes coding for haloalkane, haloalkanoate, n-alkane, alicyclic acid, cyclic alcohol, and aromatic catabolism were analyzed in detail, and growth on acetate, catechol, chloroacetate, cyclohexane carboxylate, cyclohexanol, ferulate, heptane, 3-hydroxybenzoate, hydroxyquinol, gentisate, octane, protocatechuate, and salicylate was confirmed experimentally. Strain JS666 also harbors diverse putative mobile genetic elements, including retrons, inteins, a miniature inverted-repeat transposable element, insertion sequence transposases from 14 families, eight genomic islands, a Mu family bacteriophage, and two large (338- and 360-kb) plasmids. Both plasmids are likely to be self-transferable and carry genes for alkane, alcohol, aromatic, and haloacid metabolism. Overall, the JS666 genome sequence provides insights into the evolution of pollutant-degrading bacteria and provides a toolbox of catabolic genes with utility for biotechnology.
Collapse
|
30
|
Williams PJ, Cloete TE. Microbial community study of the iron ore concentrate of the Sishen Iron Ore Mine, South Africa. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9777-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Salcher MM, Pernthaler J, Zeder M, Psenner R, Posch T. Spatio-temporal niche separation of planktonic Betaproteobacteria in an oligo-mesotrophic lake. Environ Microbiol 2008; 10:2074-86. [PMID: 18430016 DOI: 10.1111/j.1462-2920.2008.01628.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the diversity of planktonic Betaproteobacteria and the seasonal population changes of betaproteobacterial taxa in an oligo-mesotrophic lake (Piburger See, Austria). Focus was put on the vertical distribution of the investigated populations and on differences between their respective cell fractions with apparent amino acid incorporation. On average, 66% of betaproteobacterial cells and 73% of their diversity could be attributed to four clades within three lineages that were further analysed by fluorescence in situ hybridization. The numbers of bacteria from the R-BT subclade of the beta I lineage and from the PnecB subgroup of the beta II lineage were rather constant throughout the water column. In contrast, members of another subgroup of beta II (PnecC) and bacteria related to Methylophilus (beta IV) were particularly numerous in the oxygen-depleted zone. In general, only moderate seasonal changes in abundance were observed in the upper water layers, whereas there was a clear relationship between decreasing oxygen levels and the rise of bacteria from the PnecC and beta IV clades in deeper strata. On average, almost 80% of beta I bacteria, but < 15% of cells from the beta IV clade, showed amino acid incorporation. Our results suggest that the studied populations occupy distinct vertical and ecophysiological niches in Piburger See.
Collapse
Affiliation(s)
- Michaela M Salcher
- Department of Limnology, Institute of Plant Biology, University of Zurich, Seestrasse 187, CH-8802 Kilchberg, Switzerland.
| | | | | | | | | |
Collapse
|
32
|
Gualandi G, Frascari D, Pinelli D, Nocentini M. Growth of Chlorinated Solvent-Degrading Consortia in Fed-Batch Bioreactors and Development of a Double-Substrate High-Performing Microbial Inoculum. Eng Life Sci 2007. [DOI: 10.1002/elsc.200620189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
33
|
Iwasaki A, Takagi K, Yoshioka Y, Fujii K, Kojima Y, Harada N. Isolation and characterization of a novel simazine-degrading beta-proteobacterium and detection of genes encoding s-triazine-degrading enzymes. PEST MANAGEMENT SCIENCE 2007; 63:261-8. [PMID: 17304635 DOI: 10.1002/ps.1334] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A moderately persistent herbicide, simazine, has been used globally and detected as a contaminant in soil and water. The authors have isolated a simazine-degrading bacterium from a simazine-degrading bacterial consortium that was enriched using charcoal as a microhabitat. The isolate, strain CDB21, was gram-negative, rod-shaped (0.5-0.6 microm x 1.0-1.2 microm) and motile by means of a single polar flagellum. Based on 16S rRNA sequence analysis, strain CDB21 was identified as a novel beta-proteobacterium exhibiting 100% sequence identity with the uncultured bacterium HOClCi25 (GenBank accession number AY328574). PCR using primers that were specific for the genes of the atrazine-degrading enzymes (atzABCDEF) of Pseudomonas sp. strain ADP showed that strain CDB21 also possessed the entire set of genes of these enzymes. Nucleotide sequences of the atzCDEF genes of strain CDB21 were 100% identical to those of Pseudomonas sp. strain ADP. Sequence identity of the atzA genes between these bacteria was 99.7%. The 398-nucleotide upstream fragment of the atzB gene of strain CDB21 was 100% identical to ORF30 of Pseudomonas sp. strain ADP, and the 1526-nucleotide downstream fragment showed 99.8% sequence similarity to the atzB gene of the pseudomonad.
Collapse
Affiliation(s)
- Akio Iwasaki
- Kowa Research Institute, Kowa Co., Ltd, 1-25-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | | | | | |
Collapse
|
34
|
van Beilen JB, Funhoff EG. Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 2007; 74:13-21. [PMID: 17216462 DOI: 10.1007/s00253-006-0748-0] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 11/03/2006] [Accepted: 11/05/2006] [Indexed: 11/30/2022]
Abstract
This review focuses on the role and distribution in the environment of alkane hydroxylases and their (potential) applications in bioremediation and biocatalysis. Alkane hydroxylases play an important role in the microbial degradation of oil, chlorinated hydrocarbons, fuel additives, and many other compounds. Environmental studies demonstrate the abundance of alkane degraders and have lead to the identification of many new species, including some that are (near)-obligate alkanotrophs. The availability of a growing collection of alkane hydroxylase gene sequences now allows estimations of the relative abundance of the different enzyme systems and the distribution of the host organisms.
Collapse
Affiliation(s)
- Jan B van Beilen
- Département de Biologie Moléculaire Végétale, Le Biophore, Quartier Sorge, Université de Lausanne, 1015, Lausanne, Switzerland.
| | | |
Collapse
|
35
|
Kalyuzhnaya MG, Bowerman S, Lara JC, Lidstrom ME, Chistoserdova L. Methylotenera mobilis gen. nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int J Syst Evol Microbiol 2007; 56:2819-2823. [PMID: 17158982 DOI: 10.1099/ijs.0.64191-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel obligate methylamine utilizer (strain JLW8(T)), isolated from Lake Washington sediment, was characterized taxonomically. The isolate was an aerobic, Gram-negative bacterium. Cells were rod-shaped and motile by means of a single flagellum. Reproduction was by binary fission and no resting bodies were formed. Growth was observed within a pH range of 5-8.5, with optimum growth at pH 7.5. It utilized methylamine as a single source of energy, carbon and nitrogen. Methylamine was oxidized via methylamine dehydrogenase and formaldehyde was assimilated via the ribulose monophosphate cycle. The cellular fatty acid profile was dominated by C(16 : 0)omega7c and C(16 : 0) and the major phospholipid was phosphatidylethanolamine. The DNA G+C content was 54 mol%. 16S rRNA gene sequence analysis indicated that the new isolate was closely related (97-98 % similarity) to a broad group of sequences from uncultured or uncharacterized Betaproteobacteria, but only distantly related (93-96 % similarity) to known methylotrophs of the family Methylophilaceae. Strain JLW8(T) (=ATCC BAA-1282(T)=DSM 17540(T)) is proposed as the type strain of a novel species in a new genus within the family Methylophilaceae, Methylotenera mobilis gen. nov., sp. nov.
Collapse
Affiliation(s)
- Marina G Kalyuzhnaya
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Sarah Bowerman
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jimmie C Lara
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Mary E Lidstrom
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Ludmila Chistoserdova
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
36
|
Li H, Zhang Y, Kravchenko I, Xu H, Zhang CG. Dynamic changes in microbial activity and community structure during biodegradation of petroleum compounds: a laboratory experiment. J Environ Sci (China) 2007; 19:1003-1013. [PMID: 17966858 DOI: 10.1016/s1001-0742(07)60163-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
With 110-d incubation experiment in laboratory, the responses of microbial quantity, soil enzymatic activity, and bacterial community structure to different amounts of diesel fuel amendments were studied to reveal whether certain biological and biochemical characteristics could serve as reliable indicators of petroleum hydrocarbon contamination in meadow-brown soil, and use these indicators to evaluate the actual ecological impacts of 50-year petroleum-refining wastewater irrigation on soil function in Shenfu irrigation area. Results showed that amendments of < or =1000 mg/kg diesel fuel stimulated the growth of aerobic heterotrophic bacteria, and increased the activity of soil dehydrogenase, hydrogenperoxidase, polyphenol oxidase and substrate-induced respiration. Soil bacterial diversity decreased slightly during the first 15 d of incubation and recovered to the control level on day 30. The significant decrease of the colony forming units of soil actinomyces and filamentous fungi can be taken as the sensitive biological indicators of petroleum contamination when soil was amended with > or =5000 mg/kg diesel fuel. The sharp decrease in urease activity was recommended as the most sensitive biochemical indicator of heavy diesel fuel contamination. The shifts in community structure to a community documented by Sphingomonadaceae within alpha-subgroup of Proteobacteria could be served as a sensitive and precise indicator of diesel fuel contamination. Based on the results described in this paper, the soil function in Shenfu irrigation area was disturbed to some extent.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Terrestrial Ecological Processes, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | | | | | | | | |
Collapse
|
37
|
Kalyuzhnaya MG, De Marco P, Bowerman S, Pacheco CC, Lara JC, Lidstrom ME, Chistoserdova L. Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol 2006; 56:2517-2522. [PMID: 17082383 DOI: 10.1099/ijs.0.64422-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic positions and phylogenetic relationships of two new methylotrophic isolates from Lake Washington (USA) sediment, FAM5Tand 500, and the previously described methylotrophic strain EHg5 isolated from contaminated soil in Estarreja (Portugal) were investigated. All three strains were facultative methylotrophs capable of growth on a variety of C1and multicarbon compounds. Optimal growth occurred at pH 7.5–8 and 30–37 °C. The major fatty acids were C16 : 1ω7cand C16 : 0. The major quinone was ubiquinone Q8. Neither methanol dehydrogenase nor methanol oxidase activities were detectable in cells grown on methanol, suggesting an alternative, as-yet unknown, mechanism for methanol oxidation. The isolates assimilated C1units at the level of formaldehyde, via the serine cycle. The DNA G+C content of the strains ranged between 64 and 65 mol%. 16S rRNA gene sequence similarity between the three new isolates was 99.85–100 %, but was below 94 % with other members of theBetaproteobacteria, indicating that the isolates represent a novel taxon. Based on physiological, phenotypic and genomic characteristics of the three isolates, a new genus,Methyloversatilisgen. nov., is proposed within the familyRhodocyclaceae. The type strain ofMethyloversatilis universalisgen. nov., sp. nov. is FAM5T(=CCUG 52030T=JCM 13912T).
Collapse
MESH Headings
- Alcohol Oxidoreductases/analysis
- Betaproteobacteria/classification
- Betaproteobacteria/isolation & purification
- Betaproteobacteria/physiology
- Betaproteobacteria/ultrastructure
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fatty Acids/analysis
- Fatty Acids/chemistry
- Fresh Water/microbiology
- Genes, rRNA
- Geologic Sediments/microbiology
- Hydrogen-Ion Concentration
- Methanol/metabolism
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Phylogeny
- Portugal
- Quinones/analysis
- Quinones/chemistry
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Soil Microbiology
- Temperature
- United States
Collapse
Affiliation(s)
- Marina G Kalyuzhnaya
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Paolo De Marco
- Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Sarah Bowerman
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Catarina C Pacheco
- Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Jimmie C Lara
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Mary E Lidstrom
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Ludmila Chistoserdova
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
38
|
Bates CL, Forstner MRJ, Barnes MB, Whiteley M, McLean RJC. HETEROTROPHIC LIMESTONE-ADHERENT BIOFILM ISOLATES FROM THE EDWARDS AQUIFER, TEXAS. SOUTHWEST NAT 2006. [DOI: 10.1894/0038-4909(2006)51[299:hlbift]2.0.co;2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Coleman NV, Bui NB, Holmes AJ. Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environ Microbiol 2006; 8:1228-39. [PMID: 16817931 DOI: 10.1111/j.1462-2920.2006.01015.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble di-iron monooxygenases (SDIMOs) are key enzymes in the bacterial oxidation of hydrocarbons, and have applications in environmental and industrial biotechnology. SDIMOs from pure cultures are unlikely to represent the total diversity of this enzyme family, so we used polymerase chain reaction to survey the diversity of SDIMO alpha subunit genes in environmental samples, ethene enrichments and ethene-degrading bacterial isolates. From 178 cloned amplicons, 98 restriction fragment length polymorphism types were seen, from which 75 representative SDIMO sequences were obtained; 45 from environmental samples, 25 from enrichments and seven from isolates. The sequences were diverse, including genes similar to ethene (etnC), propene (amoC, pmoC), propane (prmA) and butane (bmoX) monooxygenases, in addition to many novel sequences comprising a new SDIMO group (group 6). Environmental samples showed the highest diversity, with strong representation of group 6 SDIMOs and prmA-like genes. Ethene stimulation of samples resulted in increased frequencies of group 4 SDIMOs (etnC-like). Four ethene-utilizing Mycobacterium isolates (NBB1-NBB4) from enrichments all contained etnC; one isolate (NBB4) also contained three additional SDIMO genes (bmoX-like, amoC-like and group 6). The primers, database, clone libraries and strains reported here provide a resource for future bioremediation and biocatalysis studies, with particular relevance for chlorinated alkene and alkane compounds.
Collapse
Affiliation(s)
- Nicholas V Coleman
- School of Molecular and Microbial Biosciences, Building G08, University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
40
|
Kim Y, Istok JD, Semprini L. Push-pull tests evaluating in situ aerobic cometabolism of ethylene, propylene, and cis-1,2-dichloroethylene. JOURNAL OF CONTAMINANT HYDROLOGY 2006; 82:165-81. [PMID: 16298015 DOI: 10.1016/j.jconhyd.2005.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2005] [Revised: 09/30/2005] [Accepted: 10/03/2005] [Indexed: 05/05/2023]
Abstract
In situ aerobic cometabolic transformations of ethylene, propylene, and cis-1,2-dichloroethylene (c-DCE), by microorganisms stimulated on propane, were examined in groundwater contaminated with c-DCE and trichloroethylene (TCE). In situ measurements were performed by conducting field push-pull tests, which consisted of injecting site groundwater amended with a bromide tracer and combinations of propane, dissolved oxygen (DO), nitrate, ethylene, propylene, c-DCE, and TCE into existing monitoring wells and sampling the same wells over time. Mass balance and transformation rate calculations were performed after adjusting for dilution losses using measured tracer concentrations. Initial rates of propane utilization were very low; rates increased substantially following sequential additions of propane and DO. Evidence that propane and DO additions had stimulated organisms expressing a propane monoxygenase enzyme system and that had the capability to transform chlorinated aliphatic hydrocarbons (CAHs) included: (1) the transformation of injected ethylene and propylene to the cometabolic byproducts ethylene oxide and propylene oxide, (2) the transformation of c-DCE, and (3) the inhibition of these transformations in the presence of coinjected acetylene, a known monoxygenase mechanism-based inactivator. These results suggest that a series of push-pull tests performed with nontoxic chemical probes can be useful for detecting and monitoring in situ aerobic cometabolism of CAHs.
Collapse
Affiliation(s)
- Young Kim
- Dept. of Environmental Engineering, Korea University, Yeongi-Gun, Jochiwon-Eub, Choong Nam 339-800, Korea
| | | | | |
Collapse
|