1
|
Chen L, Li D, Shen Y, Li Z, Hao H, Ke C, Meng Z, Feng D. Microbiota characterization of the green mussel Perna viridis at the tissue scale and its relationship with the environment. Front Microbiol 2024; 15:1366305. [PMID: 38680921 PMCID: PMC11047130 DOI: 10.3389/fmicb.2024.1366305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Research on the microbiota associated with marine invertebrates is important for understanding host physiology and the relationship between the host and the environment. In this study, the microbiota of the green mussel Perna viridis was characterized at the tissue scale using 16S rRNA gene high-throughput sequencing and compared with the microbiota of the surrounding environment. Different mussel tissues were sampled, along with two environmental samples (the mussel's attachment substratum and seawater). The results showed that the phyla Proteobacteria, Bacteroidetes, and Spirochaetae were dominant in mussel tissues. The bacterial community composition at the family level varied among the tissues of P. viridis. Although the microbiota of P. viridis clearly differed from that of the surrounding seawater, the composition and diversity of the microbial community of the foot and outer shell surface were similar to those of the substratum, indicating their close relationship with the substratum. KEGG prediction analysis indicated that the bacteria harbored by P. viridis were enriched in the degradation of aromatic compounds, osmoregulation, and carbohydrate oxidation and fermentation, processes that may be important in P. viridis physiology. Our study provides new insights into the tissue-scale characteristics of mussel microbiomes and the intricate connection between mussels and their environment.
Collapse
Affiliation(s)
- Liying Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Dai Li
- China Nuclear Power Engineering Co., Ltd, Beijing, China
| | - Yawei Shen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhuo Li
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Huanhuan Hao
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhang Meng
- China Nuclear Power Engineering Co., Ltd, Beijing, China
| | - Danqing Feng
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Zvi-Kedem T, Vintila S, Kleiner M, Tchernov D, Rubin-Blum M. Metabolic handoffs between multiple symbionts may benefit the deep-sea bathymodioline mussels. ISME COMMUNICATIONS 2023; 3:48. [PMID: 37210404 PMCID: PMC10199937 DOI: 10.1038/s43705-023-00254-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Bathymodioline mussels rely on thiotrophic and/or methanotrophic chemosynthetic symbionts for nutrition, yet, secondary heterotrophic symbionts are often present and play an unknown role in the fitness of the organism. The bathymodioline Idas mussels that thrive in gas seeps and on sunken wood in the Mediterranean Sea and the Atlantic Ocean, host at least six symbiont lineages that often co-occur. These lineages include the primary symbionts chemosynthetic methane- and sulfur-oxidizing gammaproteobacteria, and the secondary symbionts, Methylophagaceae, Nitrincolaceae and Flavobacteriaceae, whose physiology and metabolism are obscure. Little is known about if and how these symbionts interact or exchange metabolites. Here we curated metagenome-assembled genomes of Idas modiolaeformis symbionts and used genome-centered metatranscriptomics and metaproteomics to assess key symbiont functions. The Methylophagaceae symbiont is a methylotrophic autotroph, as it encoded and expressed the ribulose monophosphate and Calvin-Benson-Bassham cycle enzymes, particularly RuBisCO. The Nitrincolaceae ASP10-02a symbiont likely fuels its metabolism with nitrogen-rich macromolecules and may provide the holobiont with vitamin B12. The Urechidicola (Flavobacteriaceae) symbionts likely degrade glycans and may remove NO. Our findings indicate that these flexible associations allow for expanding the range of substrates and environmental niches, via new metabolic functions and handoffs.
Collapse
Affiliation(s)
- Tal Zvi-Kedem
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, 3108000, Israel
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Maxim Rubin-Blum
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, 3108000, Israel.
| |
Collapse
|
3
|
DeLeo DM, Morrison CL, Sei M, Salamone V, Demopoulos AWJ, Quattrini AM. Genetic diversity and connectivity of chemosynthetic cold seep mussels from the U.S. Atlantic margin. BMC Ecol Evol 2022; 22:76. [PMID: 35715723 PMCID: PMC9204967 DOI: 10.1186/s12862-022-02027-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Deep-sea mussels in the subfamily Bathymodiolinae have unique adaptations to colonize hydrothermal-vent and cold-seep environments throughout the world ocean. These invertebrates function as important ecosystem engineers, creating heterogeneous habitat and promoting biodiversity in the deep sea. Despite their ecological significance, efforts to assess the diversity and connectivity of this group are extremely limited. Here, we present the first genomic-scale diversity assessments of the recently discovered bathymodioline cold-seep communities along the U.S. Atlantic margin, dominated by Gigantidas childressi and Bathymodiolus heckerae.
Results
A Restriction-site Associated DNA Sequencing (RADSeq) approach was used on 177 bathymodiolines to examine genetic diversity and population structure within and between seep sites. Assessments of genetic differentiation using single-nucleotide polymorphism (SNP) data revealed high gene flow among sites, with the shallower and more northern sites serving as source populations for deeper occurring G. childressi. No evidence was found for genetic diversification across depth in G. childressi, likely due to their high dispersal capabilities. Kinship analyses indicated a high degree of relatedness among individuals, and at least 10–20% of local recruits within a particular site. We also discovered candidate adaptive loci in G. childressi and B. heckerae that suggest differences in developmental processes and depth-related and metabolic adaptations to chemosynthetic environments.
Conclusions
These results highlight putative source communities for an important ecosystem engineer in the deep sea that may be considered in future conservation efforts. Our results also provide clues into species-specific adaptations that enable survival and potential speciation within chemosynthetic ecosystems.
Collapse
|
4
|
Romero Picazo D, Werner A, Dagan T, Kupczok A. Pangenome Evolution in Environmentally Transmitted Symbionts of Deep-Sea Mussels Is Governed by Vertical Inheritance. Genome Biol Evol 2022; 14:evac098. [PMID: 35731940 PMCID: PMC9260185 DOI: 10.1093/gbe/evac098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial pangenomes vary across species; their size and structure are determined by genetic diversity within the population and by gene loss and horizontal gene transfer (HGT). Many bacteria are associated with eukaryotic hosts where the host colonization dynamics may impact bacterial genome evolution. Host-associated lifestyle has been recognized as a barrier to HGT in parentally transmitted bacteria. However, pangenome evolution of environmentally acquired symbionts remains understudied, often due to limitations in symbiont cultivation. Using high-resolution metagenomics, here we study pangenome evolution of two co-occurring endosymbionts inhabiting Bathymodiolus brooksi mussels from a single cold seep. The symbionts, sulfur-oxidizing (SOX) and methane-oxidizing (MOX) gamma-proteobacteria, are environmentally acquired at an early developmental stage and individual mussels may harbor multiple strains of each symbiont species. We found differences in the accessory gene content of both symbionts across individual mussels, which are reflected by differences in symbiont strain composition. Compared with core genes, accessory genes are enriched in genome plasticity functions. We found no evidence for recent HGT between both symbionts. A comparison between the symbiont pangenomes revealed that the MOX population is less diverged and contains fewer accessory genes, supporting that the MOX association with B. brooksi is more recent in comparison to that of SOX. Our results show that the pangenomes of both symbionts evolved mainly by vertical inheritance. We conclude that genome evolution of environmentally transmitted symbionts that associate with individual hosts over their lifetime is affected by a narrow symbiosis where the frequency of HGT is constrained.
Collapse
Affiliation(s)
- Devani Romero Picazo
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Almut Werner
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Tal Dagan
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Anne Kupczok
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, 24118 Kiel, Germany
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
- Bioinformatics Group, Wageningen University & Research, 6708PB Wageningen, The Netherlands
| |
Collapse
|
5
|
Leinberger J, Milke F, Christodoulou M, Poehlein A, Caraveo-Patiño J, Teske A, Brinkhoff T. Microbial epibiotic community of the deep-sea galatheid squat lobster Munidopsis alvisca. Sci Rep 2022; 12:2675. [PMID: 35177734 PMCID: PMC8854721 DOI: 10.1038/s41598-022-06666-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Life at hydrothermal vent sites is based on chemosynthetic primary producers that supply heterotrophic microorganisms with substrates and generate biomass for higher trophic levels. Often, chemoautotrophs associate with the hydrothermal vent megafauna. To investigate attached bacterial and archaeal communities on deep-sea squat lobsters, we collected ten specimens from a hydrothermal vent in the Guaymas Basin (Gulf of California). All animals were identified as Munidopsis alvisca via morphological and molecular classification, and intraspecific divergence was determined. Amplicon sequencing of microbial DNA and cDNA revealed significant differences between microbial communities on the carapaces of M. alvisca and those in ambient sea water. Major epibiotic bacterial taxa were chemoautotrophic Gammaproteobacteria, such as Thiotrichaceae and Methylococcaceae, while archaea were almost exclusively represented by sequences affiliated with Ca. Nitrosopumilus. In sea water samples, Marine Group II and III archaea and organoheterotrophic Alphaproteobacteria, Flavobacteriia and Planctomycetacia were more dominant. Based on the identified taxa, we assume that main metabolic processes, carried out by M. alvisca epibiota, include ammonia, methane and sulphide oxidation. Considering that M. alvisca could benefit from sulphide detoxification by its epibiota, and that attached microbes are supplied with a stable habitat in proximity to substrate-rich hydrothermal fluids, a mutualistic host-microbe relationship appears likely.
Collapse
Affiliation(s)
- Janina Leinberger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Felix Milke
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Magdalini Christodoulou
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg am Meer, Wilhelmshaven, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | | | - Andreas Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
6
|
Abstract
Microbial communities associated with deep-sea animals are critical to the establishment of novel biological communities in unusual environments. Over the past few decades, rapid exploration of the deep sea has enabled the discovery of novel microbial communities, some of which form symbiotic relationships with animal hosts. Symbiosis in the deep sea changes host physiology, behavior, ecology, and evolution over time and space. Symbiont diversity within a host is often aligned with diverse metabolic pathways that broaden the environmental niche for the animal host. In this review, we focus on microbiomes and obligate symbionts found in different deep-sea habitats and how they facilitate survival of the organisms that live in these environments. In addition, we discuss factors that govern microbiome diversity, host specificity, and biogeography in the deep sea. Finally, we highlight the current limitations of microbiome research and draw a road map for future directions to advance our knowledge of microbiomes in the deep sea. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Eslam O Osman
- Biology Department, Eberly College, Pennsylvania State University, State College, Pennsylvania, USA; .,Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Biology Lab, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Alexis M Weinnig
- Biology Department, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Lin G, Lu J, Sun Z, Xie J, Huang J, Su M, Wu N. Characterization of tissue-associated bacterial community of two Bathymodiolus species from the adjacent cold seep and hydrothermal vent environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149046. [PMID: 34328889 DOI: 10.1016/j.scitotenv.2021.149046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Deep-sea mussels are widely distributed in marine chemosynthetic ecosystems. Bathymodiolus platifrons and B. japonicus, occurring at both cold seeps and hydrothermal vents, have been reported to house exclusively methanotrophic symbionts in the gill. However, the comparison of microbiota associated with different tissues between these two species from two contrasting habitats is still limited. In this study, using B. platifrons and B. japonicus collected from the adjacent cold seep and hydrothermal vent environments, we sampled different tissues (gill, adductor muscle, mantle, foot, and visceral mass including the gut) to decipher the microbial community structure at the tissue scale by employing 16S rRNA gene sequencing strategy. In the gill of both seep mussels and vent mussels, the symbiont gammaproteobacterial Methylomonaceae was the predominant lineage, and methane oxidation was identified as one of the most abundant putative function. In comparison, abundant families in other tissues were Pseudomonadaceae and Enterobacteriaceae in seep mussels and vent mussels, respectively, which may get involved in element cycling. The results revealed high similarity of community structure between two mussel species from the same habitat. The gill showed distinctive bacterial community structure compared with other tissues within the same environment, while the gill communities from two environments were more similar. Remarkably structural variations of adductor muscle, mantle, foot, and visceral mass were observed between two environments. This study can extend the understanding on the characteristics of tissue-associated microbiota of deep-sea mussels from the adjacent cold seep and hydrothermal vent environments.
Collapse
Affiliation(s)
- Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Zhilei Sun
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Institute of Marine Geology, China Geological Survey, Qingdao 266071, China; Laboratory for Mineral Resources, Qingdao Pilot National Laboratory for Marine Sciences and Technology, Qingdao 266071, China
| | - Jingui Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Ming Su
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Nengyou Wu
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Institute of Marine Geology, China Geological Survey, Qingdao 266071, China; Laboratory for Mineral Resources, Qingdao Pilot National Laboratory for Marine Sciences and Technology, Qingdao 266071, China.
| |
Collapse
|
8
|
Sogin EM, Kleiner M, Borowski C, Gruber-Vodicka HR, Dubilier N. Life in the Dark: Phylogenetic and Physiological Diversity of Chemosynthetic Symbioses. Annu Rev Microbiol 2021; 75:695-718. [PMID: 34351792 DOI: 10.1146/annurev-micro-051021-123130] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Possibly the last discovery of a previously unknown major ecosystem on Earth was made just over half a century ago, when researchers found teaming communities of animals flourishing two and a half kilometers below the ocean surface at hydrothermal vents. We now know that these highly productive ecosystems are based on nutritional symbioses between chemosynthetic bacteria and eukaryotes and that these chemosymbioses are ubiquitous in both deep-sea and shallow-water environments. The symbionts are primary producers that gain energy from the oxidation of reduced compounds, such as sulfide and methane, to fix carbon dioxide or methane into biomass to feed their hosts. This review outlines how the symbiotic partners have adapted to living together. We first focus on the phylogenetic and metabolic diversity of these symbioses and then highlight selected research directions that could advance our understanding of the processes that shaped the evolutionary and ecological success of these associations. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- E Maggie Sogin
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany; ,
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Christian Borowski
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany; , .,MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| | | | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany; , .,MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
9
|
Lee W, Juniper SK, Perez M, Ju S, Kim S. Diversity and characterization of bacterial communities of five co-occurring species at a hydrothermal vent on the Tonga Arc. Ecol Evol 2021; 11:4481-4493. [PMID: 33976824 PMCID: PMC8093707 DOI: 10.1002/ece3.7343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 11/06/2022] Open
Abstract
Host-symbiont relationships in hydrothermal vent ecosystems, supported by chemoautotrophic bacteria as primary producers, have been extensively studied. However, the process by which densely populated co-occurring invertebrate hosts form symbiotic relationships with bacterial symbionts remains unclear. Here, we analyzed gill-associated symbiotic bacteria (gill symbionts) of five co-occurring hosts, three mollusks ("Bathymodiolus" manusensis, B. brevior, and Alviniconcha strummeri) and two crustaceans (Rimicaris variabilis and Austinograea alayseae), collected together at a single vent site in the Tonga Arc. We observed both different compositions of gill symbionts and the presence of unshared operational taxonomic units (OTUs). In addition, the total number of OTUs was greater for crustacean hosts than for mollusks. The phylogenetic relationship trees of gill symbionts suggest that γ-proteobacterial gill symbionts have coevolved with their hosts toward reinforcement of host specificity, while campylobacterial Sulfurovum species found across various hosts and habitats are opportunistic associates. Our results confirm that gill symbiont communities differ among co-occurring vent invertebrates and indicate that hosts are closely related with their gill symbiont communities. Considering the given resources available at a single site, differentiation of gill symbionts seems to be a useful strategy for obtaining nutrition and energy while avoiding competition among both hosts and gill symbionts.
Collapse
Affiliation(s)
- Won‐Kyung Lee
- Genome Editing Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
| | - S. Kim Juniper
- Department of BiologySchool of Earth and Ocean SciencesUniversity of VictoriaVictoriaBCCanada
| | - Maëva Perez
- Département des Sciences BiologiquesUniversité de MontréalMontrealQCCanada
| | - Se‐Jong Ju
- Korea Institute of Ocean Science & TechnologyBusanKorea
| | - Se‐Joo Kim
- Genome Editing Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
| |
Collapse
|
10
|
Brzechffa C, Goffredi SK. Contrasting influences on bacterial symbiont specificity by co-occurring deep-sea mussels and tubeworms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:104-111. [PMID: 33196140 DOI: 10.1111/1758-2229.12909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Relationships fueled by sulfide between deep-sea invertebrates and bacterial symbionts are well known, yet the diverse overlapping factors influencing symbiont specificity are complex. For animals that obtain their symbionts from the environment, both host identity and geographic location can impact the ultimate symbiont partner. Bacterial symbionts were analysed for three co-occurring species each of Bathymodiolus mussels and vestimentiferan tubeworms, from three deep methane seeps off the west coast of Costa Rica. The bacterial internal transcribed spacer gene was analysed via direct and barcoded amplicon sequencing to reveal fine-scale symbiont diversity. Each of the three mussel species (B. earlougheri, B. billschneideri and B. nancyschneideri) hosted genetically distinct thiotrophic endosymbionts, despite living nearly side-by-side in their habitat, suggesting that host identity is crucial in driving symbiont specificity. The dominant thiotrophic symbiont of co-occurring tubeworms Escarpia spicata and Lamellibrachia (L. barhami and L. donwalshi), on the other hand, was identical regardless of host species or sample location, suggesting lack of influence by either factor on symbiont selectivity in this group of animals. These findings highlight the specific, yet distinct, influences on the environmental acquisition of symbionts in two foundational invertebrates with similar lifestyles, and provide a rapid, precise method of examining symbiont identities.
Collapse
|
11
|
Lan Y, Sun J, Chen C, Sun Y, Zhou Y, Yang Y, Zhang W, Li R, Zhou K, Wong WC, Kwan YH, Cheng A, Bougouffa S, Van Dover CL, Qiu JW, Qian PY. Hologenome analysis reveals dual symbiosis in the deep-sea hydrothermal vent snail Gigantopelta aegis. Nat Commun 2021; 12:1165. [PMID: 33608555 PMCID: PMC7895826 DOI: 10.1038/s41467-021-21450-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/07/2021] [Indexed: 01/31/2023] Open
Abstract
Animals endemic to deep-sea hydrothermal vents often form obligatory symbioses with bacteria, maintained by intricate host-symbiont interactions. Most genomic studies on holobionts have not investigated both sides to similar depths. Here, we report dual symbiosis in the peltospirid snail Gigantopelta aegis with two gammaproteobacterial endosymbionts: a sulfur oxidiser and a methane oxidiser. We assemble high-quality genomes for all three parties, including a chromosome-level host genome. Hologenomic analyses reveal mutualism with nutritional complementarity and metabolic co-dependency, highly versatile in transporting and using chemical energy. Gigantopelta aegis likely remodels its immune system to facilitate dual symbiosis. Comparisons with Chrysomallon squamiferum, a confamilial snail with a single sulfur-oxidising gammaproteobacterial endosymbiont, show that their sulfur-oxidising endosymbionts are phylogenetically distant. This is consistent with previous findings that they evolved endosymbiosis convergently. Notably, the two sulfur-oxidisers share the same capabilities in biosynthesising nutrients lacking in the host genomes, potentially a key criterion in symbiont selection.
Collapse
Affiliation(s)
- Yi Lan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jin Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa Prefecture, Japan
| | - Yanan Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yadong Zhou
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Yi Yang
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Weipeng Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Kun Zhou
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wai Chuen Wong
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yick Hang Kwan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Aifang Cheng
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Salim Bougouffa
- Computational Bioscience Research Centre, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Cindy Lee Van Dover
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, United States
| | - Jian-Wen Qiu
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
12
|
Regionalized cell proliferation in the symbiont-bearing gill of the hydrothermal vent mussel Bathymodiolus azoricus. Symbiosis 2020. [DOI: 10.1007/s13199-020-00720-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Zhou Z, Tran PQ, Kieft K, Anantharaman K. Genome diversification in globally distributed novel marine Proteobacteria is linked to environmental adaptation. ISME JOURNAL 2020; 14:2060-2077. [PMID: 32393808 PMCID: PMC7367891 DOI: 10.1038/s41396-020-0669-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
Proteobacteria constitute one of the most diverse and abundant groups of microbes on Earth. In productive marine environments like deep-sea hydrothermal systems, Proteobacteria are implicated in autotrophy coupled to sulfur, methane, and hydrogen oxidation, sulfate reduction, and denitrification. Beyond chemoautotrophy, little is known about the ecological significance of poorly studied Proteobacteria lineages that are globally distributed and active in hydrothermal systems. Here we apply multi-omics to characterize 51 metagenome-assembled genomes from three hydrothermal vent plumes in the Pacific and Atlantic Oceans that are affiliated with nine Proteobacteria lineages. Metabolic analyses revealed these organisms to contain a diverse functional repertoire including chemolithotrophic ability to utilize sulfur and C1 compounds, and chemoorganotrophic ability to utilize environment-derived fatty acids, aromatics, carbohydrates, and peptides. Comparative genomics with marine and terrestrial microbiomes suggests that lineage-associated functional traits could explain niche specificity. Our results shed light on the ecological functions and metabolic strategies of novel Proteobacteria in hydrothermal systems and beyond, and highlight the relationship between genome diversification and environmental adaptation.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
14
|
Rincón-Tomás B, González FJ, Somoza L, Sauter K, Madureira P, Medialdea T, Carlsson J, Reitner J, Hoppert M. Siboglinidae Tubes as an Additional Niche for Microbial Communities in the Gulf of Cádiz-A Microscopical Appraisal. Microorganisms 2020; 8:E367. [PMID: 32150959 PMCID: PMC7143560 DOI: 10.3390/microorganisms8030367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 11/30/2022] Open
Abstract
Siboglinids were sampled from four mud volcanoes in the Gulf of Cádiz (El Cid MV, Bonjardim MV, Al Gacel MV, and Anastasya MV). These invertebrates are characteristic to cold seeps and are known to host chemosynthetic endosymbionts in a dedicated trophosome organ. However, little is known about their tube as a potential niche for other microorganisms. Analyses by scanning and transmission electron microscopy showed dense biofilms on the tube in Al Gacel MV and Anastasya MV specimens by prokaryotic cells. Methanotrophic bacteria were the most abundant forming these biofilms as further supported by 16S rRNA sequence analysis. Furthermore, elemental analyses with electron microscopy and energy-dispersive X-ray spectroscopy point to the mineralization and silicification of the tube, most likely induced by the microbial metabolisms. Bacterial and archaeal 16S rRNA sequence libraries revealed abundant microorganisms related to these siboglinid specimens and certain variations in microbial communities among samples. Thus, the tube remarkably increases the microbial biomass related to the worms and provides an additional microbial niche in deep-sea ecosystems.
Collapse
Affiliation(s)
- Blanca Rincón-Tomás
- Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany; (K.S.); (M.H.)
- Göttingen Centre of Geosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany;
| | | | - Luis Somoza
- Marine Geology Dv., Geological Survey of Spain, IGME, 28003 Madrid, Spain; (F.J.G.); (L.S.); (T.M.)
| | - Kathrin Sauter
- Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany; (K.S.); (M.H.)
| | - Pedro Madureira
- Estrutura de Missão para a Extensão da Plataforma Continental (EMEPC), 2770-047 Paço de Arcos, Portugal;
| | - Teresa Medialdea
- Marine Geology Dv., Geological Survey of Spain, IGME, 28003 Madrid, Spain; (F.J.G.); (L.S.); (T.M.)
| | - Jens Carlsson
- Area 52 Research Group, School of Biology and Environmental Science/Earth Institute, University College Dublin, Dublin 4, Ireland;
| | - Joachim Reitner
- Göttingen Centre of Geosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany;
- Göttingen Academy of Sciences and Humanities, 37073 Göttingen, Germany
| | - Michael Hoppert
- Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany; (K.S.); (M.H.)
| |
Collapse
|
15
|
Characteristics of Microbial Community Structure at the Seafloor Surface of the Nankai Trough. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Romero Picazo D, Dagan T, Ansorge R, Petersen JM, Dubilier N, Kupczok A. Horizontally transmitted symbiont populations in deep-sea mussels are genetically isolated. THE ISME JOURNAL 2019; 13:2954-2968. [PMID: 31395952 PMCID: PMC6863903 DOI: 10.1038/s41396-019-0475-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/22/2019] [Accepted: 06/16/2019] [Indexed: 02/07/2023]
Abstract
Eukaryotes are habitats for bacterial organisms where the host colonization and dispersal among individual hosts have consequences for the bacterial ecology and evolution. Vertical symbiont transmission leads to geographic isolation of the microbial population and consequently to genetic isolation of microbiotas from individual hosts. In contrast, the extent of geographic and genetic isolation of horizontally transmitted microbiota is poorly characterized. Here we show that chemosynthetic symbionts of individual Bathymodiolus brooksi mussels constitute genetically isolated subpopulations. The reconstruction of core genome-wide strains from high-resolution metagenomes revealed distinct phylogenetic clades. Nucleotide diversity and strain composition vary along the mussel life span and individual hosts show a high degree of genetic isolation. Our results suggest that the uptake of environmental bacteria is a restricted process in B. brooksi, where self-infection of the gill tissue results in serial founder effects during symbiont evolution. We conclude that bacterial colonization dynamics over the host life cycle is thus an important determinant of population structure and genome evolution of horizontally transmitted symbionts.
Collapse
Affiliation(s)
- Devani Romero Picazo
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, Kiel, Germany.
| | - Tal Dagan
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, Kiel, Germany
| | - Rebecca Ansorge
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jillian M Petersen
- Division of Microbiology and Ecosystem Science, University of Vienna, Wien, Austria
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Anne Kupczok
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, Kiel, Germany.
| |
Collapse
|
17
|
Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges. Appl Environ Microbiol 2019; 85:AEM.00992-19. [PMID: 31492669 DOI: 10.1128/aem.00992-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/03/2019] [Indexed: 01/27/2023] Open
Abstract
In deep-sea hydrothermal vent environments, sulfur-oxidizing bacteria belonging to the clade SUP05 are crucial symbionts of invertebrate animals. Marine viruses, as the most abundant biological entities in the ocean, play essential roles in regulating the sulfur metabolism of the SUP05 bacteria. To date, vent sponge-associated SUP05 and their phages have not been well documented. The current study analyzed microbiomes of Haplosclerida sponges from hydrothermal vents in the Okinawa Trough and recovered the dominant SUP05 genome, designated VS-SUP05. Phylogenetic analysis showed that VS-SUP05 was closely related to endosymbiotic SUP05 strains from mussels living in deep-sea hydrothermal vent fields. Homology and metabolic pathway comparisons against free-living and symbiotic SUP05 strains revealed that the VS-SUP05 genome shared many features with the deep-sea mussel symbionts. Supporting a potentially symbiotic lifestyle, the VS-SUP05 genome contained genes involved in the synthesis of essential amino acids and cofactors that are desired by the host. Analysis of sponge-associated viral sequences revealed putative VS-SUP05 phages, all of which were double-stranded viruses belonging to the families Myoviridae, Siphoviridae, Podoviridae, and Microviridae Among the phage sequences, one contig contained metabolic genes (iscR, iscS, and iscU) involved in iron-sulfur cluster formation. Interestingly, genome sequence comparison revealed horizontal transfer of the iscS gene among phages, VS-SUP05, and other symbiotic SUP05 strains, indicating an interaction between marine phages and SUP05 symbionts. Overall, our findings confirm the presence of SUP05 bacteria and their phages in sponges from deep-sea vents and imply a beneficial interaction that allows adaptation of the host sponge to the hydrothermal vent environment.IMPORTANCE Chemosynthetic SUP05 bacteria dominate the microbial communities of deep-sea hydrothermal vents around the world, SUP05 bacteria utilize reduced chemical compounds in vent fluids and commonly form symbioses with invertebrate organisms. This symbiotic relationship could be key to adapting to such unique and extreme environments. Viruses are the most abundant biological entities on the planet and have been identified in hydrothermal vent environments. However, their interactions with the symbiotic microbes of the SUP05 clade, along with their role in the symbiotic system, remain unclear. Here, using metagenomic sequence-based analyses, we determined that bacteriophages may support metabolism in SUP05 bacteria and play a role in the sponge-associated symbiosis system in hydrothermal vent environments.
Collapse
|
18
|
Molecular characterization of Bathymodiolus mussels and gill symbionts associated with chemosynthetic habitats from the U.S. Atlantic margin. PLoS One 2019; 14:e0211616. [PMID: 30870419 PMCID: PMC6417655 DOI: 10.1371/journal.pone.0211616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 01/17/2019] [Indexed: 01/22/2023] Open
Abstract
Mussels of the genus Bathymodiolus are among the most widespread colonizers of hydrothermal vent and cold seep environments, sustained by endosymbiosis with chemosynthetic bacteria. Presumed species of Bathymodiolus are abundant at newly discovered cold seeps on the Mid-Atlantic continental slope, however morphological taxonomy is challenging, and their phylogenetic affinities remain unestablished. Here we used mitochondrial sequence to classify species found at three seep sites (Baltimore Canyon seep (BCS; ~400m); Norfolk Canyon seep (NCS; ~1520m); and Chincoteague Island seep (CTS; ~1000m)). Mitochondrial COI (N = 162) and ND4 (N = 39) data suggest that Bathymodiolus childressi predominates at these sites, although single B. mauritanicus and B. heckerae individuals were detected. As previous work had suggested that methanotrophic and thiotrophic interactions can both occur at a site, and within an individual mussel, we investigated the symbiont communities in gill tissues of a subset of mussels from BCS and NCS. We constructed metabarcode libraries with four different primer sets spanning the 16S gene. A methanotrophic phylotype dominated all gill microbial samples from BCS, but sulfur-oxidizing Campylobacterota were represented by a notable minority of sequences from NCS. The methanotroph phylotype shared a clade with globally distributed Bathymodiolus spp. symbionts from methane seeps and hydrothermal vents. Two distinct Campylobacterota phylotypes were prevalent in NCS samples, one of which shares a clade with Campylobacterota associated with B. childressi from the Gulf of Mexico and the other with Campylobacterota associated with other deep-sea fauna. Variation in chemosynthetic symbiont communities among sites and individuals has important ecological and geochemical implications and suggests shifting reliance on methanotrophy. Continued characterization of symbionts from cold seeps will provide a greater understanding of the ecology of these unique environments as well and their geochemical footprint in elemental cycling and energy flux.
Collapse
|
19
|
Yu J, Wang M, Liu B, Yue X, Li C. Gill symbionts of the cold-seep mussel Bathymodiolus platifrons: Composition, environmental dependency and immune control. FISH & SHELLFISH IMMUNOLOGY 2019; 86:246-252. [PMID: 30458311 DOI: 10.1016/j.fsi.2018.11.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/16/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Deep-sea Bathymodiolus mussels depend on the organic carbon supplied by symbionts inside their gills. In this study, optimized methods of quantitative real-time PCR and fluorescence in situ hybridization targeted to both mRNA and 16S rRNA were used to investigate the gill symbionts of the cold-seep mussel Bathymodiolus platifrons, including species composition, environmental dependency and immune control by the host. Our results showed that methanotrophs were the major symbiotic bacteria in the gills of B. platifrons, while thiotrophs were scarce. In the mussels freshly collected from the deep sea, methanotrophs were housed in bacteriocytes in a unique circular pattern, and a lysosome-related gene (VAMP) encoding a vesicle-associated membrane protein was expressed at a high level and presented exactly where the methanotrophs occurred. After the mussels were reared for three months in aquaria without methane supply, the abundance of methanotrophs decreased significantly and their circle-shaped distribution pattern disappeared; in addition, the expression of VAMP decreased significantly. These results suggest that the symbiosis between B. platifrons and methanotrophs is influenced by the environment and that the lysosomal system plays an important immune role in controlling the abundance of endosymbionts in host. This study provides a reliable method for investigating symbionts in deep-sea mussels and enriches the knowledge about symbionts in B. platifrons.
Collapse
Affiliation(s)
- Jiajia Yu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minxiao Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266000, China
| | - Baozhong Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266000, China
| | - Xin Yue
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| | - Chaolun Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266000, China.
| |
Collapse
|
20
|
Sun Y, Wang M, Li L, Zhou L, Wang X, Zheng P, Yu H, Li C, Sun S. Molecular identification of methane monooxygenase and quantitative analysis of methanotrophic endosymbionts under laboratory maintenance in Bathymodiolus platifrons from the South China Sea. PeerJ 2017; 5:e3565. [PMID: 28828234 PMCID: PMC5553348 DOI: 10.7717/peerj.3565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/21/2017] [Indexed: 11/22/2022] Open
Abstract
Deep-sea mussels of the genus Bathymodiolus are numerically dominant macrofauna in many cold seep and hydrothermal vent ecosystems worldwide, and they depend on organic carbon produced by symbionts present in the epithelial cells of the gills. Although Bathymodiolus platifrons represents typical methanotrophic endosymbiosis, our understanding of molecular mechanisms of methane oxidization and carbon fixation is still in its infancy. Moreover, the laboratory maintenance of B. platifrons and the symbiont abundance dynamics during maintenance has not been reported. In the present study, we report the first systematic identification and phylogenetic analysis of three subunits of methane monooxygenase (pmoA, pmoB, and pmoC) obtained from the endosymbiotic bacteria found in B. platifrons. The coding sequences (CDS) of the three genes in the B. platifrons endosymbiont were 750, 1,245, and 753 bp, encoding 249, 414, and 250 amino acids, respectively. Sequence alignment and phylogenetic analysis revealed that the symbiont of B. platifrons belongs to the type I methanotrophs. In order to clarify the impact of environmental methane on symbiont abundance, a 34-day laboratory maintenance experiment was conducted in which B. platifrons individuals were acclimatized to methane-present and methane-absent environments. Symbiont abundance was evaluated by calculating the relative DNA content of the methane monooxygenase gene using quantitative real-time PCR. We found that symbiont quantity immediately decreased from its initial level, then continued to gradually decline during maintenance. At 24 and 34 days of maintenance, symbiont abundance in the methane-absent environment had significantly decreased compared to that in the methane-present environment, indicating that the maintenance of symbionts relies on a continuous supply of methane. Our electron microscopy results validated the qPCR analysis. This study enriches our knowledge of the molecular basis and the dynamic changes of the methanotrophic endosymbiosis in B. platifrons, and provides a feasible model biosystem for further investigation of methane oxidization, the carbon fixation process, and environmental adaptations of deep-sea mussels.
Collapse
Affiliation(s)
- Yan Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Leilei Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Zhou
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaocheng Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ping Zheng
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Yu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Chaolun Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Song Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Jiaozhou Bay Marine Ecosystem Research Station, Chinese Ecosystem Research Network, Qingdao, China
| |
Collapse
|
21
|
Abstract
Cycloclasticus bacteria are ubiquitous in oil-rich
regions of the ocean and are known for their ability to degrade polycyclic
aromatic hydrocarbons (PAHs). In this study, we describe
Cycloclasticus that have established a symbiosis with
Bathymodiolus heckerae mussels and poecilosclerid sponges
from asphalt-rich, deep-sea oil seeps at Campeche Knolls in the southern Gulf of
Mexico. Genomic and transcriptomic analyses revealed that in contrast to all
known Cycloclasticus, the symbiotic
Cycloclasticus appeared to lack the genes needed for PAH
degradation. Instead, these symbionts use propane and other short-chain alkanes
such as ethane and butane as carbon and energy sources, thus expanding the
limited range of substrates known to power chemosynthetic symbioses. Analyses of
short-chain alkanes in the environment of the Campeche Knolls symbioses revealed
that these are present at high concentrations (in the µM to mM range).
Comparative genomic analyses revealed high similarities between the genes used
by the symbiotic Cycloclasticus to degrade short-chain alkanes
and those of free-living Cycloclasticus that bloomed during the
Deepwater Horizon (DWH) oil spill. Our results indicate that the metabolic
versatility of bacteria within the Cycloclasticus clade is
higher than previously assumed, and highlight the expanded role of these
keystone species in the degradation of marine hydrocarbons.
Collapse
|
22
|
López-García P, Eme L, Moreira D. Symbiosis in eukaryotic evolution. J Theor Biol 2017; 434:20-33. [PMID: 28254477 DOI: 10.1016/j.jtbi.2017.02.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/19/2017] [Accepted: 02/25/2017] [Indexed: 01/27/2023]
Abstract
Fifty years ago, Lynn Margulis, inspiring in early twentieth-century ideas that put forward a symbiotic origin for some eukaryotic organelles, proposed a unified theory for the origin of the eukaryotic cell based on symbiosis as evolutionary mechanism. Margulis was profoundly aware of the importance of symbiosis in the natural microbial world and anticipated the evolutionary significance that integrated cooperative interactions might have as mechanism to increase cellular complexity. Today, we have started fully appreciating the vast extent of microbial diversity and the importance of syntrophic metabolic cooperation in natural ecosystems, especially in sediments and microbial mats. Also, not only the symbiogenetic origin of mitochondria and chloroplasts has been clearly demonstrated, but improvement in phylogenomic methods combined with recent discoveries of archaeal lineages more closely related to eukaryotes further support the symbiogenetic origin of the eukaryotic cell. Margulis left us in legacy the idea of 'eukaryogenesis by symbiogenesis'. Although this has been largely verified, when, where, and specifically how eukaryotic cells evolved are yet unclear. Here, we shortly review current knowledge about symbiotic interactions in the microbial world and their evolutionary impact, the status of eukaryogenetic models and the current challenges and perspectives ahead to reconstruct the evolutionary path to eukaryotes.
Collapse
Affiliation(s)
- Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France.
| | - Laura Eme
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada NS B3H 4R2
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| |
Collapse
|
23
|
Tavormina PL, Kellermann MY, Antony CP, Tocheva EI, Dalleska NF, Jensen AJ, Valentine DL, Hinrichs K, Jensen GJ, Dubilier N, Orphan VJ. Starvation and recovery in the deep‐sea methanotroph
M
ethyloprofundus sedimenti. Mol Microbiol 2016; 103:242-252. [DOI: 10.1111/mmi.13553] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Patricia L. Tavormina
- Division of Geological and Planetary SciencesCalifornia Institute of Technology1200 E. California BlvdPasadena CA91125 USA
| | - Matthias Y. Kellermann
- Department of Earth Science and Marine Science InstituteUniversity of CaliforniaSanta Barbara CA93106 USA
| | | | - Elitza I. Tocheva
- Department of Stomatology and Department of Biochemistry and Molecular MedicineUniversité de MontréalP. O. Box 6128 Station Centre‐VilleMontreal QCH3C 3J7 Canada
- Division of Biology and Biological Engineering andCalifornia Institute of Technology1200 E. California BlvdPasadena CA91125 USA
| | - Nathan F. Dalleska
- Environmental Analysis CenterCalifornia Institute of Technology1200 E. California BlvdPasadena CA91125 USA
| | - Ashley J. Jensen
- Division of Biology and Biological Engineering andCalifornia Institute of Technology1200 E. California BlvdPasadena CA91125 USA
| | - David L. Valentine
- Department of Earth Science and Marine Science InstituteUniversity of CaliforniaSanta Barbara CA93106 USA
| | - Kai‐Uwe Hinrichs
- MARUM Center for Marine Environmental SciencesUniversity of Bremen, Leobener StrBremen28359 Germany
| | - Grant J. Jensen
- Division of Biology and Biological Engineering and Howard Hughes Medical InstituteCalifornia Institute of Technology1200 E. California BlvdPasadena CA91125 USA
| | - Nicole Dubilier
- Max Planck Institute for Marine MicrobiologyCelsiusstraße 1Bremen28359 Germany
| | - Victoria J. Orphan
- Division of Geological and Planetary SciencesCalifornia Institute of Technology1200 E. California BlvdPasadena CA91125 USA
| |
Collapse
|
24
|
Assié A, Borowski C, van der Heijden K, Raggi L, Geier B, Leisch N, Schimak MP, Dubilier N, Petersen JM. A specific and widespread association between deep-sea Bathymodiolus mussels and a novel family of Epsilonproteobacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:805-813. [PMID: 27428292 DOI: 10.1111/1758-2229.12442] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Bathymodiolus mussels dominate animal communities at many hydrothermal vents and cold seeps. Essential to the mussels' ecological and evolutionary success is their association with symbiotic methane- and sulfur-oxidizing gammaproteobacteria, which provide them with nutrition. In addition to these well-known gammaproteobacterial endosymbionts, we found epsilonproteobacterial sequences in metatranscriptomes, metagenomes and 16S rRNA clone libraries as well as by polymerase chain reaction screening of Bathymodiolus species sampled from vents and seeps around the world. These epsilonproteobacterial sequences were closely related, indicating that the association is highly specific. The Bathymodiolus-associated epsilonproteobacterial 16S rRNA sequences were at most 87.6% identical to the closest cultured relative, and 91.2% identical to the closest sequences in public databases. This clade therefore represents a novel family within the Epsilonproteobacteria. Fluorescence in situ hybridization and transmission electron microscopy showed that the bacteria are filamentous epibionts associated with the gill epithelia in two Bathymodiolus species. In animals that host highly specific symbioses with one or a few types of endosymbionts, other less-abundant members of the microbiota can be easily overlooked. Our work highlights how widespread and specific associations with less-abundant microbes can be. Possibly, these microbes play an important role in the survival and health of their animal hosts.
Collapse
Affiliation(s)
- Adrien Assié
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, 28359, Germany
| | - Christian Borowski
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, 28359, Germany
| | | | - Luciana Raggi
- CIGoM, Instituto de Biotecnologia, UNAM, Av. Universidad 2001, C.P.62210, Cuernavaca, Morelos, Mexico
| | - Benedikt Geier
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, 28359, Germany
| | - Nikolaus Leisch
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, 28359, Germany
| | - Mario P Schimak
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, 28359, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, 28359, Germany
- MARUM, University of Bremen, Germany
| | - Jillian M Petersen
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, 28359, Germany
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstr. 14, Vienna, 1090, Austria
| |
Collapse
|
25
|
Seston SL, Beinart RA, Sarode N, Shockey AC, Ranjan P, Ganesh S, Girguis PR, Stewart FJ. Metatranscriptional Response of Chemoautotrophic Ifremeria nautilei Endosymbionts to Differing Sulfur Regimes. Front Microbiol 2016; 7:1074. [PMID: 27486438 PMCID: PMC4949241 DOI: 10.3389/fmicb.2016.01074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/27/2016] [Indexed: 12/26/2022] Open
Abstract
Endosymbioses between animals and chemoautotrophic bacteria are ubiquitous at hydrothermal vents. These environments are distinguished by high physico-chemical variability, yet we know little about how these symbioses respond to environmental fluctuations. We therefore examined how the γ-proteobacterial symbionts of the vent snail Ifremeria nautilei respond to changes in sulfur geochemistry. Via shipboard high-pressure incubations, we subjected snails to 105 μM hydrogen sulfide (LS), 350 μM hydrogen sulfide (HS), 300 μM thiosulfate (TS) and seawater without any added inorganic electron donor (ND). While transcript levels of sulfur oxidation genes were largely consistent across treatments, HS and TS treatments stimulated genes for denitrification, nitrogen assimilation, and CO2 fixation, coincident with previously reported enhanced rates of inorganic carbon incorporation and sulfur oxidation in these treatments. Transcripts for genes mediating oxidative damage were enriched in the ND and LS treatments, potentially due to a reduction in O2 scavenging when electron donors were scarce. Oxidative TCA cycle gene transcripts were also more abundant in ND and LS treatments, suggesting that I. nautilei symbionts may be mixotrophic when inorganic electron donors are limiting. These data reveal the extent to which I. nautilei symbionts respond to changes in sulfur concentration and species, and, interpreted alongside coupled biochemical metabolic rates, identify gene targets whose expression patterns may be predictive of holobiont physiology in environmental samples.
Collapse
Affiliation(s)
| | - Roxanne A Beinart
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, MA, USA
| | - Neha Sarode
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Abigail C Shockey
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Madison, WI, USA
| | - Piyush Ranjan
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Sangita Ganesh
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, MA, USA
| | - Frank J Stewart
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| |
Collapse
|
26
|
Laming SR, Duperron S, Gaudron SM, Hilário A, Cunha MR. Adapted to change: The rapid development of symbiosis in newly settled, fast-maturing chemosymbiotic mussels in the deep sea. MARINE ENVIRONMENTAL RESEARCH 2015; 112:100-112. [PMID: 26275834 DOI: 10.1016/j.marenvres.2015.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 06/04/2023]
Abstract
Symbioses between microbiota and marine metazoa occur globally at chemosynthetic habitats facing imminent threat from anthropogenic disturbance, yet little is known concerning the role of symbiosis during early development in chemosymbiotic metazoans: a critical period in any benthic species' lifecycle. The emerging symbiosis of Idas (sensu lato) simpsoni mussels undergoing development is assessed over a post-larval-to-adult size spectrum using histology and fluorescence in situ hybridisation (FISH). Post-larval development shows similarities to that of both heterotrophic and chemosymbiotic mussels. Data from newly settled specimens confirm aposymbiotic, planktotrophic larval development. Sulphur-oxidising (SOX) symbionts subsequently colonise multiple exposed, non-ciliated epithelia shortly after metamorphosis, but only become abundant on gills as these expand with greater host size. This wide-spread bathymodiolin recorded from sulphidic wood, bone and cold-seep habitats, displays a suite of adaptive traits that could buffer against anthropogenic disturbance.
Collapse
Affiliation(s)
- Sven R Laming
- Sorbonne Universités, Université Paris 06, UMR7208 Laboratoire biologie des organismes et écosystèmes aquatiques (UPMC CNRS MNHM IRD CAEN), 7 quai St Bernard, 75005 Paris, France; Departamento de Biologia and CESAM, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.
| | - Sébastien Duperron
- Sorbonne Universités, Université Paris 06, UMR7208 Laboratoire biologie des organismes et écosystèmes aquatiques (UPMC CNRS MNHM IRD CAEN), 7 quai St Bernard, 75005 Paris, France; Institut Universitaire de France, Paris, France
| | - Sylvie M Gaudron
- Sorbonne Universités, Université Paris 06, UMR7208 Laboratoire biologie des organismes et écosystèmes aquatiques (UPMC CNRS MNHM IRD CAEN), 7 quai St Bernard, 75005 Paris, France
| | - Ana Hilário
- Departamento de Biologia and CESAM, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Marina R Cunha
- Departamento de Biologia and CESAM, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
27
|
Species distribution and population connectivity of deep-sea mussels at hydrocarbon seeps in the Gulf of Mexico. PLoS One 2015; 10:e0118460. [PMID: 25859657 PMCID: PMC4393317 DOI: 10.1371/journal.pone.0118460] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/17/2015] [Indexed: 11/19/2022] Open
Abstract
Hydrocarbon seepage is widespread and patchy in the Gulf of Mexico, and six species of symbiont containing bathymodiolin mussels are found on active seeps over wide and overlapping depth and geographic ranges. We use mitochondrial genes to discriminate among the previously known and a newly discovered species and to assess the connectivity among populations of the same species in the northern Gulf of Mexico (GoM). Our results generally validate the morphologically based distribution of the three previously known GoM species of Bathymodiolus, although we found that approximately 10% of the morphologically based identifications were incorrect and this resulted in some inaccuracies with respect to their previously assigned depth and geographical distribution patterns. These data allowed us to confirm that sympatry of two species of Bathymodiolus within a single patch of mussels is common. A new species of bathymodiolin, Bathymodiolus sp. nov., closely related to B. heckerae was also discovered. The two species live at the same depths but have not been found in sympatry and both have small effective population sizes. We found evidence for genetic structure within populations of the three species of Bathymodiolinae for which we had samples from multiple sites and suggest limited connectivity for populations at some sites. Despite relatively small sample sizes, genetic diversity indices suggest the largest population sizes for B. childressi and Tamu fisheri and the smallest for B. heckerae and B. sp. nov. among the GoM bathymodiolins. Moreover, we detected an excess of rare variants indicating recent demographic changes and population expansions for the four species of bathymodiolins from the Gulf of Mexico.
Collapse
|
28
|
Characterization of Bacterial Symbionts in Deep-Sea Fauna: Protocols for Sample Conditioning, Fluorescence In Situ Hybridization, and Image Analysis. SPRINGER PROTOCOLS HANDBOOKS 2015. [DOI: 10.1007/8623_2015_73] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Tavormina PL, Hatzenpichler R, McGlynn S, Chadwick G, Dawson KS, Connon SA, Orphan VJ. Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the 'deep sea-1' clade of marine methanotrophs. Int J Syst Evol Microbiol 2014; 65:251-259. [PMID: 25342114 DOI: 10.1099/ijs.0.062927-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We report the isolation and growth characteristics of a gammaproteobacterial methane-oxidizing bacterium (Methylococcaceae strain WF1(T), 'whale fall 1') that shares 98 % 16S rRNA gene sequence identity with uncultivated free-living methanotrophs and the methanotrophic endosymbionts of deep-sea mussels, ≤94.6 % 16S rRNA gene sequence identity with species of the genus Methylobacter and ≤93.6 % 16S rRNA gene sequence identity with species of the genera Methylomonas and Methylosarcina. Strain WF1(T) represents the first cultivar from the 'deep sea-1' clade of marine methanotrophs, which includes members that participate in methane oxidation in sediments and the water column in addition to mussel endosymbionts. Cells of strain WF1(T) were elongated cocci, approximately 1.5 µm in diameter, and occurred singly, in pairs and in clumps. The cell wall was Gram-negative, and stacked intracytoplasmic membranes and storage granules were evident. The genomic DNA G+C content of WF1(T) was 40.5 mol%, significantly lower than that of currently described cultivars, and the major fatty acids were 16 : 0, 16 : 1ω9c, 16 : 1ω9t, 16 : 1ω8c and 16 : 2ω9,14. Growth occurred in liquid media at an optimal temperature of 23 °C, and was dependent on the presence of methane or methanol. Atmospheric nitrogen could serve as the sole nitrogen source for WF1(T), a capacity that had not been functionally demonstrated previously in members of Methylobacter. On the basis of its unique morphological, physiological and phylogenetic properties, this strain represents the type species within a new genus, and we propose the name Methyloprofundus sedimenti gen. nov., sp. nov. The type strain of Methyloprofundus sedimenti is WF1(T) ( = LMG 28393(T) = ATCC BAA-2619(T)).
Collapse
Affiliation(s)
- Patricia L Tavormina
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Roland Hatzenpichler
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Shawn McGlynn
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Grayson Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Katherine S Dawson
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Stephanie A Connon
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| |
Collapse
|
30
|
Jan C, Petersen JM, Werner J, Teeling H, Huang S, Glöckner FO, Golyshina OV, Dubilier N, Golyshin PN, Jebbar M, Cambon-Bonavita MA. The gill chamber epibiosis of deep-sea shrimp Rimicaris exoculata: an in-depth metagenomic investigation and discovery of Zetaproteobacteria. Environ Microbiol 2014; 16:2723-38. [PMID: 24447589 DOI: 10.1111/1462-2920.12406] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 01/14/2014] [Indexed: 11/29/2022]
Abstract
The gill chamber of deep-sea hydrothermal vent shrimp Rimicaris exoculata hosts a dense community of epibiotic bacteria dominated by filamentous Epsilonproteobacteria and Gammaproteobacteria. Using metagenomics on shrimp from the Rainbow hydrothermal vent field, we showed that both epibiont groups have the potential to grow autotrophically and oxidize reduced sulfur compounds or hydrogen with oxygen or nitrate. For carbon fixation, the Epsilonproteobacteria use the reductive tricarboxylic acid cycle, whereas the Gammaproteobacteria use the Calvin-Benson-Bassham cycle. Only the epsilonproteobacterial epibionts had the genes necessary for producing ammonium. This ability likely minimizes direct competition between epibionts and also broadens the spectrum of environmental conditions that the shrimp may successfully inhabit. We identified genes likely to be involved in shrimp-epibiont interactions, as well as genes for nutritional and detoxification processes that might benefit the host. Shrimp epibionts at Rainbow are often coated with iron oxyhydroxides, whose origin is intensely debated. We identified 16S rRNA sequences and functional genes affiliated with iron-oxidizing Zetaproteobacteria, which indicates that biological iron oxidation might play a role in forming these deposits. Fluorescence in situ hybridizations confirmed the presence of active Zetaproteobacteria in the R. exoculata gill chamber, thus providing the first evidence for a Zetaproteobacteria-invertebrate association.
Collapse
Affiliation(s)
- Cyrielle Jan
- UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), Université de Bretagne Occidentale, Plouzané, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Becker EL, Cordes EE, Macko SA, Lee RW, Fisher CR. Using stable isotope compositions of animal tissues to infer trophic interactions in Gulf of Mexico lower slope seep communities. PLoS One 2013; 8:e74459. [PMID: 24324572 PMCID: PMC3855623 DOI: 10.1371/journal.pone.0074459] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/31/2013] [Indexed: 11/25/2022] Open
Abstract
We analyzed the tissue carbon, nitrogen, and sulfur stable isotope contents of macrofaunal communities associated with vestimentiferan tubeworms and bathymodiolin mussels from the Gulf of Mexico lower continental slope (970-2800 m). Shrimp in the genus Alvinocaris associated with vestimentiferans from shallow (530 m) and deep (1400-2800 m) sites were used to test the hypothesis that seep animals derive a greater proportion of their nutrition from seeps (i.e. a lower proportion from the surface) at greater depths. To account for spatial variability in the inorganic source pool, we used the differences between the mean tissue δ13C and δ15N of the shrimp in each collection and the mean δ 13C and δ15N values of the vestimentiferans from the same collection, since vestimentiferans are functionally autotrophic and serve as a baseline for environmental isotopic variation. There was a significant negative relationship between this difference and depth for both δ13C and δ15N (p=0.02 and 0.007, respectively), which supports the hypothesis of higher dependence on seep nutrition with depth. The small polychaete worm Protomystides sp. was hypothesized to be a blood parasite of the vestimentiferan Escarpialaminata. There was a highly significant linear relationship between the δ13C values of Protomystides sp. and the E. laminata individuals to which they were attached across all collections (p < 0.001) and within a single collection (p = 0.01), although this relationship was not significant for δ15N and δ34S. We made several other qualitative inferences with respect to the feeding biology of the taxa occurring in these lower slope seeps, some of which have not been described prior to this study.
Collapse
Affiliation(s)
- Erin L. Becker
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| | - Erik E. Cordes
- Biology Department, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Stephen A. Macko
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Raymond W. Lee
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Charles R. Fisher
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
32
|
Thubaut J, Puillandre N, Faure B, Cruaud C, Samadi S. The contrasted evolutionary fates of deep-sea chemosynthetic mussels (Bivalvia, Bathymodiolinae). Ecol Evol 2013; 3:4748-66. [PMID: 24363902 PMCID: PMC3867909 DOI: 10.1002/ece3.749] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 11/10/2022] Open
Abstract
Bathymodiolinae are giant mussels that were discovered at hydrothermal vents and harboring chemosynthetic symbionts. Due to their close phylogenetic relationship with seep species and tiny mussels from organic substrates, it was hypothesized that they gradually evolved from shallow to deeper environments, and specialized in decaying organic remains, then in seeps, and finally colonized deep-sea vents. Here, we present a multigene phylogeny that reveals that most of the genera are polyphyletic and/or paraphyletic. The robustness of the phylogeny allows us to revise the genus-level classification. Organic remains are robustly supported as the ancestral habitat for Bathymodiolinae. However, rather than a single step toward colonization of vents and seeps, recurrent habitat shifts from organic substrates to vents and seeps occurred during evolution, and never the reverse. This new phylogenetic framework challenges the gradualist scenarios “from shallow to deep.” Mussels from organic remains tolerate a large range of ecological conditions and display a spectacular species diversity contrary to vent mussels, although such habitats are yet underexplored compared to vents and seeps. Overall, our data suggest that for deep-sea mussels, the high specialization to vent habitats provides ecological success in this harsh habitat but also brings the lineage to a kind of evolutionary dead end.
Collapse
Affiliation(s)
- Justine Thubaut
- Département Systématique et Evolution, Muséum National d'Histoire Naturelle Unité Mixte de Recherche 7138 (UPMC-IRD-MNHN-CNRS), "Systématique Adaptation et Evolution", 75005, Paris, France
| | - Nicolas Puillandre
- Département Systématique et Evolution, Muséum National d'Histoire Naturelle Unité Mixte de Recherche 7138 (UPMC-IRD-MNHN-CNRS), "Systématique Adaptation et Evolution", 75005, Paris, France
| | - Baptiste Faure
- Station Biologique de Roscoff, Unité Mixte de Recherche 7127, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie 29680, Roscoff, France ; Biotope Service Recherche et Développement, BP58 34140, Mèze, France
| | | | - Sarah Samadi
- Département Systématique et Evolution, Muséum National d'Histoire Naturelle Unité Mixte de Recherche 7138 (UPMC-IRD-MNHN-CNRS), "Systématique Adaptation et Evolution", 75005, Paris, France
| |
Collapse
|
33
|
Niemann H, Linke P, Knittel K, MacPherson E, Boetius A, Brückmann W, Larvik G, Wallmann K, Schacht U, Omoregie E, Hilton D, Brown K, Rehder G. Methane-carbon flow into the benthic food web at cold seeps--a case study from the Costa Rica subduction zone. PLoS One 2013; 8:e74894. [PMID: 24116017 PMCID: PMC3792092 DOI: 10.1371/journal.pone.0074894] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 08/07/2013] [Indexed: 01/30/2023] Open
Abstract
Cold seep ecosystems can support enormous biomasses of free-living and symbiotic chemoautotrophic organisms that get their energy from the oxidation of methane or sulfide. Most of this biomass derives from animals that are associated with bacterial symbionts, which are able to metabolize the chemical resources provided by the seeping fluids. Often these systems also harbor dense accumulations of non-symbiotic megafauna, which can be relevant in exporting chemosynthetically fixed carbon from seeps to the surrounding deep sea. Here we investigated the carbon sources of lithodid crabs (Paralomis sp.) feeding on thiotrophic bacterial mats at an active mud volcano at the Costa Rica subduction zone. To evaluate the dietary carbon source of the crabs, we compared the microbial community in stomach contents with surface sediments covered by microbial mats. The stomach content analyses revealed a dominance of epsilonproteobacterial 16S rRNA gene sequences related to the free-living and epibiotic sulfur oxidiser Sulfurovum sp. We also found Sulfurovum sp. as well as members of the genera Arcobacter and Sulfurimonas in mat-covered surface sediments where Epsilonproteobacteria were highly abundant constituting 10% of total cells. Furthermore, we detected substantial amounts of bacterial fatty acids such as i-C15∶0 and C17∶1ω6c with stable carbon isotope compositions as low as -53‰ in the stomach and muscle tissue. These results indicate that the white microbial mats at Mound 12 are comprised of Epsilonproteobacteria and that microbial mat-derived carbon provides an important contribution to the crab's nutrition. In addition, our lipid analyses also suggest that the crabs feed on other (13)C-depleted organic matter sources, possibly symbiotic megafauna as well as on photosynthetic carbon sources such as sedimentary detritus.
Collapse
Affiliation(s)
- Helge Niemann
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Peter Linke
- Sonderforschungsbereich 574, University of Kiel, Kiel, Germany
- Helmholtz Centre for Ocean Research Kiel, GEOMAR, Kiel, Germany
| | - Katrin Knittel
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Antje Boetius
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute for Marine and Polar Research, Bremerhaven, Germany
| | - Warner Brückmann
- Sonderforschungsbereich 574, University of Kiel, Kiel, Germany
- Helmholtz Centre for Ocean Research Kiel, GEOMAR, Kiel, Germany
| | - Gaute Larvik
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Klaus Wallmann
- Sonderforschungsbereich 574, University of Kiel, Kiel, Germany
- Helmholtz Centre for Ocean Research Kiel, GEOMAR, Kiel, Germany
| | - Ulrike Schacht
- Sonderforschungsbereich 574, University of Kiel, Kiel, Germany
| | - Enoma Omoregie
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Centro de Astrobiología (CSIC/INTA), Instituto Nacional de Técnica Aeroespacial Torrejón de Ardoz, Madrid, Spain
| | - David Hilton
- Scripps Institution of Oceanography, University of California, San Diego, United States of America
| | - Kevin Brown
- Scripps Institution of Oceanography, University of California, San Diego, United States of America
| | - Gregor Rehder
- Sonderforschungsbereich 574, University of Kiel, Kiel, Germany
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| |
Collapse
|
34
|
Thubaut J, Corbari L, Gros O, Duperron S, Couloux A, Samadi S. Integrative biology of Idas iwaotakii (Habe, 1958), a 'model species' associated with sunken organic substrates. PLoS One 2013; 8:e69680. [PMID: 23894520 PMCID: PMC3722101 DOI: 10.1371/journal.pone.0069680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/11/2013] [Indexed: 11/19/2022] Open
Abstract
The giant bathymodioline mussels from vents have been studied as models to understand the adaptation of organisms to deep-sea chemosynthetic environments. These mussels are closely related to minute mussels associated to organic remains decaying on the deep-sea floor. Whereas biological data accumulate for the giant mussels, the small mussels remain poorly studied. Despite this lack of data for species living on organic remains it has been hypothesized that during evolution, contrary to their relatives from vents or seeps, they did not acquire highly specialized biological features. We aim at testing this hypothesis by providing new biological data for species associated with organic falls. Within Bathymodiolinae a close phylogenetic relationship was revealed between the Bathymodiolus sensu stricto lineage (i.e. “thermophilus” lineage) which includes exclusively vent and seep species, and a diversified lineage of small mussels, attributed to the genus Idas, that includes mostly species from organic falls. We selected Idas iwaotakii (Habe, 1958) from this latter lineage to analyse population structure and to document biological features. Mitochondrial and nuclear markers reveal a north-south genetic structure at an oceanic scale in the Western Pacific but no structure was revealed at a regional scale or as correlated with the kind of substrate or depth. The morphology of larval shells suggests substantial dispersal abilities. Nutritional features were assessed by examining bacterial diversity coupled by a microscopic analysis of the digestive tract. Molecular data demonstrated the presence of sulphur-oxidizing bacteria resembling those identified in other Bathymodiolinae. In contrast with most Bathymodiolus s.s. species the digestive tract of I. iwaotakii is not reduced. Combining data from literature with the present data shows that most of the important biological features are shared between Bathymodiolus s.s. species and its sister-lineage. However Bathymodiolus s.s. species are ecologically more restricted and also display a lower species richness than Idas species.
Collapse
Affiliation(s)
- Justine Thubaut
- Département Systématique et Evolution, UMR 7138 UPMC-IRD-MNHN-CNRS, Muséum national d'Histoire naturelle, Paris, France.
| | | | | | | | | | | |
Collapse
|
35
|
Li M, Jain S, Baker BJ, Taylor C, Dick GJ. Novel hydrocarbon monooxygenase genes in the metatranscriptome of a natural deep-sea hydrocarbon plume. Environ Microbiol 2013; 16:60-71. [PMID: 23826624 DOI: 10.1111/1462-2920.12182] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 05/10/2013] [Accepted: 06/03/2013] [Indexed: 12/30/2022]
Abstract
Particulate membrane-associated hydrocarbon monooxygenases (pHMOs) are critical components of the aerobic degradation pathway for low molecular weight hydrocarbons, including the potent greenhouse gas methane. Here, we analysed pHMO gene diversity in metagenomes and metatranscriptomes of hydrocarbon-rich hydrothermal plumes in the Guaymas Basin (GB) and nearby background waters in the deep Gulf of California. Seven distinct phylogenetic groups of pHMO were present and transcriptionally active in both plume and background waters, including several that are undetectable with currently available polymerase chain reaction (PCR) primers. The seven groups of pHMOs included those related to a putative ethane oxidizing Methylococcaceae-like group, a group of the SAR324 Deltaproteobacteria, three deep-sea clades (Deep sea-1/symbiont-like, Deep sea-2/PS-80 and Deep sea-3/OPU3) within gammaproteobacterial methanotrophs, one clade related to Group Z and one unknown group. Differential abundance of pHMO gene transcripts in plume and background suggests niche differentiation between groups. Corresponding 16S rRNA genes reflected similar phylogenetic and transcriptomic abundance trends. The novelty of transcriptionally active pHMOs we recovered from a hydrocarbon-rich hydrothermal plume suggests there are significant gaps in our knowledge of the diversity and function of these enzymes in the environment.
Collapse
Affiliation(s)
- Meng Li
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
36
|
Wentrup C, Wendeberg A, Huang JY, Borowski C, Dubilier N. Shift from widespread symbiont infection of host tissues to specific colonization of gills in juvenile deep-sea mussels. ISME JOURNAL 2013; 7:1244-7. [PMID: 23389105 PMCID: PMC3660682 DOI: 10.1038/ismej.2013.5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The deep-sea mussel Bathymodiolus harbors chemosynthetic bacteria in its gills that provide it with nutrition. Symbiont colonization is assumed to occur in early life stages by uptake from the environment, but little is known about this process. In this study, we used fluorescence in situ hybridization to examine symbiont distribution and the specificity of the infection process in juvenile B. azoricus and B. puteoserpentis (4–21 mm). In the smallest juveniles, we observed symbionts, but no other bacteria, in a wide range of epithelial tissues. This suggests that despite the widespread distribution of symbionts in many different juvenile organs, the infection process is highly specific and limited to the symbiotic bacteria. Juveniles⩾9 mm only had symbionts in their gills, indicating an ontogenetic shift in symbiont colonization from indiscriminate infection of almost all epithelia in early life stages to spatially restricted colonization of gills in later developmental stages.
Collapse
Affiliation(s)
- Cecilia Wentrup
- Max Planck Institute for Marine Microbiology, Symbiosis Group, Bremen, Germany.
| | | | | | | | | |
Collapse
|
37
|
Raggi L, Schubotz F, Hinrichs KU, Dubilier N, Petersen JM. Bacterial symbionts of Bathymodiolus mussels and Escarpia tubeworms from Chapopote, an asphalt seep in the Southern Gulf of Mexico. Environ Microbiol 2012; 15:1969-87. [PMID: 23279012 DOI: 10.1111/1462-2920.12051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/14/2012] [Indexed: 11/28/2022]
Abstract
Chemosynthetic life was recently discovered at Chapopote, an asphalt hydrocarbon seep in the southern Gulf of Mexico. Preliminary morphological analyses indicated that one tubeworm and two mussel species colonize Chapopote. Our molecular analyses identified the tubeworm as Escarpia sp., and the mussels as Bathymodiolus heckerae and B. brooksi. Comparative 16S rRNA analysis and FISH showed that all three species harbour intracellular sulfur-oxidizing symbionts highly similar or identical to those found in the same host species from northern Gulf of Mexico (nGoM). The mussels also harbour methane-oxidizing symbionts, and these shared highly similar to identical 16S rRNA sequences to their nGoM conspecifics. We discovered a novel symbiont in B. heckerae, which is closely related to hydrocarbon-degrading bacteria of the genus Cycloclasticus. In B. heckerae, we found key genes for the use of aromatic compounds, and its stable carbon isotope values were consistently higher than B. brooksi, indicating that the novel symbiont might use isotopically heavy aromatic hydrocarbons from the asphalt seep. This discovery is particularly intriguing because until now only methane and reduced sulfur compounds have been shown to power cold-seep chemosynthetic symbioses. The abundant hydrocarbons available at Chapopote would provide these mussel symbioses with a rich source of nutrition.
Collapse
Affiliation(s)
- L Raggi
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany
| | | | | | | | | |
Collapse
|
38
|
Rodrigues CF, Cunha MR, Génio L, Duperron S. A complex picture of associations between two host mussels and symbiotic bacteria in the Northeast Atlantic. Naturwissenschaften 2012; 100:21-31. [DOI: 10.1007/s00114-012-0985-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 11/29/2022]
|
39
|
The transcriptome of Bathymodiolus azoricus gill reveals expression of genes from endosymbionts and free-living deep-sea bacteria. Mar Drugs 2012; 10:1765-1783. [PMID: 23015773 PMCID: PMC3447338 DOI: 10.3390/md10081765] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 12/21/2022] Open
Abstract
Deep-sea environments are largely unexplored habitats where a surprising number of species may be found in large communities, thriving regardless of the darkness, extreme cold, and high pressure. Their unique geochemical features result in reducing environments rich in methane and sulfides, sustaining complex chemosynthetic ecosystems that represent one of the most surprising findings in oceans in the last 40 years. The deep-sea Lucky Strike hydrothermal vent field, located in the Mid Atlantic Ridge, is home to large vent mussel communities where Bathymodiolus azoricus represents the dominant faunal biomass, owing its survival to symbiotic associations with methylotrophic or methanotrophic and thiotrophic bacteria. The recent transcriptome sequencing and analysis of gill tissues from B. azoricus revealed a number of genes of bacterial origin, hereby analyzed to provide a functional insight into the gill microbial community. The transcripts supported a metabolically active microbiome and a variety of mechanisms and pathways, evidencing also the sulfur and methane metabolisms. Taxonomic affiliation of transcripts and 16S rRNA community profiling revealed a microbial community dominated by thiotrophic and methanotrophic endosymbionts of B. azoricus and the presence of a Sulfurovum-like epsilonbacterium.
Collapse
|
40
|
van der Heijden K, Petersen JM, Dubilier N, Borowski C. Genetic connectivity between north and south Mid-Atlantic Ridge chemosynthetic bivalves and their symbionts. PLoS One 2012; 7:e39994. [PMID: 22792208 PMCID: PMC3391212 DOI: 10.1371/journal.pone.0039994] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 06/04/2012] [Indexed: 11/18/2022] Open
Abstract
Transform faults are geological structures that interrupt the continuity of mid-ocean ridges and can act as dispersal barriers for hydrothermal vent organisms. In the equatorial Atlantic Ocean, it has been hypothesized that long transform faults impede gene flow between the northern and the southern Mid-Atlantic Ridge (MAR) and disconnect a northern from a southern biogeographic province. To test if there is a barrier effect in the equatorial Atlantic, we examined phylogenetic relationships of chemosynthetic bivalves and their bacterial symbionts from the recently discovered southern MAR hydrothermal vents at 5°S and 9°S. We examined Bathymodiolus spp. mussels and Abyssogena southwardae clams using the mitochondrial cytochrome c oxidase subunit I (COI) gene as a phylogenetic marker for the hosts and the bacterial 16S rRNA gene as a marker for the symbionts. Bathymodiolus spp. from the two southern sites were genetically divergent from the northern MAR species B. azoricus and B. puteoserpentis but all four host lineages form a monophyletic group indicating that they radiated after divergence from their northern Atlantic sister group, the B. boomerang species complex. This suggests dispersal of Bathymodiolus species from north to south across the equatorial belt. 16S rRNA genealogies of chemoautotrophic and methanotrophic symbionts of Bathymodiolus spp. were inconsistent and did not match the host COI genealogy indicating disconnected biogeography patterns. The vesicomyid clam Abyssogena southwardae from 5°S shared an identical COI haplotype with A. southwardae from the Logatchev vent field on the northern MAR and their symbionts shared identical 16S phylotypes, suggesting gene flow across the Equator. Our results indicate genetic connectivity between the northern and southern MAR and suggest that a strict dispersal barrier does not exist.
Collapse
Affiliation(s)
| | - Jillian M. Petersen
- Symbiosis Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Nicole Dubilier
- Symbiosis Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Christian Borowski
- Symbiosis Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
- * E-mail:
| |
Collapse
|
41
|
Duperron S, Guezi H, Gaudron SM, Pop Ristova P, Wenzhöfer F, Boetius A. Relative abundances of methane- and sulphur-oxidising symbionts in the gills of a cold seep mussel and link to their potential energy sources. GEOBIOLOGY 2011; 9:481-491. [PMID: 21978364 DOI: 10.1111/j.1472-4669.2011.00300.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bathymodiolus mussels are key species in many deep-sea chemosynthetic ecosystems. They often harbour two types of endosymbiotic bacteria in their gills, sulphur- and methane oxidisers. These bacteria take up sulphide and methane from the environment and provide energy to their hosts, supporting some of the most prolific ecosystems in the sea. In this study, we tested whether symbiont relative abundances in Bathymodiolus gills reflect variations in the highly spatially dynamic chemical environment of cold seep mussels. Samples of Bathymodiolus aff. boomerang were obtained from two cold seeps of the deep Gulf of Guinea, REGAB (5°47.86S, 9°42.69E, 3170 m depth) and DIAPIR (6°41.58S, 10°20.94E, 2700 m depth). Relative abundances of both symbiont types were measured by means of 3D fluorescence in situ hybridisation and image analysis and compared considering the local sulphide and methane concentrations and fluxes assessed via benthic chamber incubations. Specimens inhabiting areas with highest methane content displayed higher relative abundances of methane oxidisers. The bacterial abundances correlated also with carbon stable isotope signatures in the mussel tissue, suggesting a higher contribution of methane-derived carbon to the biomass of mussels harbouring higher densities of methane-oxidising symbionts. A dynamic adaptation of abundances of methanotrophs and thiotrophs in the gill could be a key factor optimising the energy yield for the symbiotic system and could explain the success of dual symbiotic mussels at many cold seeps and hydrothermal vents of the Atlantic and Gulf of Mexico.
Collapse
Affiliation(s)
- S Duperron
- UMR 7138 (UPMC CNRS IRD MNHN), Systématique Adaptation Evolution - Adaptation aux Milieux Extrêmes, Paris, France.
| | | | | | | | | | | |
Collapse
|
42
|
Boutet I, Ripp R, Lecompte O, Dossat C, Corre E, Tanguy A, Lallier FH. Conjugating effects of symbionts and environmental factors on gene expression in deep-sea hydrothermal vent mussels. BMC Genomics 2011; 12:530. [PMID: 22034982 PMCID: PMC3218092 DOI: 10.1186/1471-2164-12-530] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/28/2011] [Indexed: 11/17/2022] Open
Abstract
Background The deep-sea hydrothermal vent mussel Bathymodiolus azoricus harbors thiotrophic and methanotrophic symbiotic bacteria in its gills. While the symbiotic relationship between this hydrothermal mussel and these chemoautotrophic bacteria has been described, the molecular processes involved in the cross-talking between symbionts and host, in the maintenance of the symbiois, in the influence of environmental parameters on gene expression, and in transcriptome variation across individuals remain poorly understood. In an attempt to understand how, and to what extent, this double symbiosis affects host gene expression, we used a transcriptomic approach to identify genes potentially regulated by symbiont characteristics, environmental conditions or both. This study was done on mussels from two contrasting populations. Results Subtractive libraries allowed the identification of about 1000 genes putatively regulated by symbiosis and/or environmental factors. Microarray analysis showed that 120 genes (3.5% of all genes) were differentially expressed between the Menez Gwen (MG) and Rainbow (Rb) vent fields. The total number of regulated genes in mussels harboring a high versus a low symbiont content did not differ significantly. With regard to the impact of symbiont content, only 1% of all genes were regulated by thiotrophic (SOX) and methanotrophic (MOX) bacteria content in MG mussels whereas 5.6% were regulated in mussels collected at Rb. MOX symbionts also impacted a higher proportion of genes than SOX in both vent fields. When host transcriptome expression was analyzed with respect to symbiont gene expression, it was related to symbiont quantity in each field. Conclusions Our study has produced a preliminary description of a transcriptomic response in a hydrothermal vent mussel host of both thiotrophic and methanotrophic symbiotic bacteria. This model can help to identify genes involved in the maintenance of symbiosis or regulated by environmental parameters. Our results provide evidence of symbiont effect on transcriptome regulation, with differences related to type of symbiont, even though the relative percentage of genes involved remains limited. Differences observed between the vent site indicate that environment strongly influences transcriptome regulation and impacts both activity and relative abundance of each symbiont. Among all these genes, those participating in recognition, the immune system, oxidative stress, and energy metabolism constitute new promising targets for extended studies on symbiosis and the effect of environmental parameters on the symbiotic relationships in B. azoricus.
Collapse
Affiliation(s)
- Isabelle Boutet
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29682 Roscoff, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Xiao Y, Zeng GM, Yang ZH, Ma YH, Huang C, Shi WJ, Xu ZY, Huang J, Fan CZ. Effects of continuous thermophilic composting (CTC) on bacterial community in the active composting process. MICROBIAL ECOLOGY 2011; 62:599-608. [PMID: 21611687 DOI: 10.1007/s00248-011-9882-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 05/14/2011] [Indexed: 05/30/2023]
Abstract
The method of continuous thermophilic composting (CTC) remarkably shortened the active composting cycle and enhanced the compost stability. Effects of CTC on the quantities of bacteria, with a comparison to the traditional composting (TC) method, were explored by plate count with incubation at 30, 40 and 50°C, respectively, and by quantitative PCR targeting the universal bacterial 16S rRNA genes and the Bacillus 16S rRNA genes. The comparison of cultivatable or uncultivatable bacterial numbers indicated that CTC might have increased the biomass of bacteria, especially Bacillus spp., during the composting. Denaturing gradient gel electrophoresis (DGGE) analysis was employed to investigate the effects of CTC on bacterial diversity, and a community dominated by fewer species was detected in a typical CTC run. The analysis of sequence and phylogeny based on DGGE indicated that the continuously high temperature had changed the structure of bacterial community and strengthened the mainstay role of the thermophilic and spore-forming Bacillus spp. in CTC run.
Collapse
Affiliation(s)
- Yong Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Direct image-based correlative microscopy technique for coupling identification and structural investigation of bacterial symbionts associated with metazoans. Appl Environ Microbiol 2011; 77:4172-9. [PMID: 21515722 DOI: 10.1128/aem.02461-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Coupling prokaryote identification with ultrastructural investigation of bacterial communities has proven difficult in environmental samples. Prokaryotes can be identified by using specific probes and fluorescence in situ hybridization (FISH), but resolution achieved by light microscopes does not allow ultrastructural investigation. In the case of symbioses involving bacteria associated with metazoan tissues, FISH-based studies often indicate the co-occurrence of several bacterial types within a single host species. The ultrastructure is then relevant to address host and bacterial morphology and the intra- or extracellular localization of symbionts. A simple protocol for correlative light and electron microscopy (CLEM) is presented here which allows FISH-based identification of specific 16S rRNA phylotypes and transmission electron microscopy to be performed on a same sample. Image analysis tools are provided to superimpose images obtained and generate overlays. This procedure has been applied to two symbiont-bearing metazoans, namely, aphids and deep-sea mussels. The FISH protocol was modified to take into account constraints associated with the use of electron microscopy grids, and intense and specific signals were obtained. FISH signals were successfully overlaid with bacterial morphotypes in aphids. We thus used the method to address the question of symbiont morphology and localization in a deep-sea mussel. Signals from a type I methanotroph-related phylotype were associated with morphotypes displaying the stacked internal membranes typical for this group and three-dimensional electron tomography was performed, confirming for the first time the correspondence between morphology and phylotype. CLEM is thus feasible and reliable and could emerge as a potent tool for the study of prokaryotic communities.
Collapse
|
45
|
Crépeau V, Cambon Bonavita MA, Lesongeur F, Randrianalivelo H, Sarradin PM, Sarrazin J, Godfroy A. Diversity and function in microbial mats from the Lucky Strike hydrothermal vent field. FEMS Microbiol Ecol 2011; 76:524-40. [DOI: 10.1111/j.1574-6941.2011.01070.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
46
|
Olu K, Cordes EE, Fisher CR, Brooks JM, Sibuet M, Desbruyères D. Biogeography and potential exchanges among the atlantic Equatorial belt cold-seep faunas. PLoS One 2010; 5:e11967. [PMID: 20700528 PMCID: PMC2916822 DOI: 10.1371/journal.pone.0011967] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 07/06/2010] [Indexed: 11/18/2022] Open
Abstract
Like hydrothermal vents along oceanic ridges, cold seeps are patchy and isolated ecosystems along continental margins, extending from bathyal to abyssal depths. The Atlantic Equatorial Belt (AEB), from the Gulf of Mexico to the Gulf of Guinea, was one focus of the Census of Marine Life ChEss (Chemosynthetic Ecosystems) program to study biogeography of seep and vent fauna. We present a review and analysis of collections from five seep regions along the AEB: the Gulf of Mexico where extensive faunal sampling has been conducted from 400 to 3300 m, the Barbados accretionary prism, the Blake ridge diapir, and in the Eastern Atlantic from the Congo and Gabon margins and the recently explored Nigeria margin. Of the 72 taxa identified at the species level, a total of 9 species or species complexes are identified as amphi-Atlantic. Similarity analyses based on both Bray Curtis and Hellinger distances among 9 faunal collections, and principal component analysis based on presence/absence of megafauna species at these sites, suggest that within the AEB seep megafauna community structure is influenced primarily by depth rather than by geographic distance. Depth segregation is observed between 1000 and 2000 m, with the middle slope sites either grouped with those deeper than 2000 m or with the shallower sites. The highest level of community similarity was found between the seeps of the Florida escarpment and Congo margin. In the western Atlantic, the highest degree of similarity is observed between the shallowest sites of the Barbados prism and of the Louisiana slope. The high number of amphi-atlantic cold-seep species that do not cluster according to biogeographic regions, and the importance of depth in structuring AEB cold-seep communities are the major conclusions of this study. The hydrothermal vent sites along the Mid Atlantic Ridge (MAR) did not appear as "stepping stones" for dispersal of the AEB seep fauna, however, the south MAR and off axis regions should be further explored to more fully test this hypothesis.
Collapse
Affiliation(s)
- Karine Olu
- Département Etude des Ecosystèmes Profonds (DEEP), IFREMER, BP70, 29280 Plouzané, France.
| | | | | | | | | | | |
Collapse
|
47
|
Fujiwara Y, Kawato M, Noda C, Kinoshita G, Yamanaka T, Fujita Y, Uematsu K, Miyazaki JI. Extracellular and mixotrophic symbiosis in the whale-fall mussel Adipicola pacifica: a trend in evolution from extra- to intracellular symbiosis. PLoS One 2010; 5:e11808. [PMID: 20676405 PMCID: PMC2910738 DOI: 10.1371/journal.pone.0011808] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 06/24/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Deep-sea mussels harboring chemoautotrophic symbionts from hydrothermal vents and seeps are assumed to have evolved from shallow-water asymbiotic relatives by way of biogenic reducing environments such as sunken wood and whale falls. Such symbiotic associations have been well characterized in mussels collected from vents, seeps and sunken wood but in only a few from whale falls. METHODOLOGY/PRINCIPAL FINDING Here we report symbioses in the gill tissues of two mussels, Adipicola crypta and Adipicola pacifica, collected from whale-falls on the continental shelf in the northwestern Pacific. The molecular, morphological and stable isotopic characteristics of bacterial symbionts were analyzed. A single phylotype of thioautotrophic bacteria was found in A. crypta gill tissue and two distinct phylotypes of bacteria (referred to as Symbiont A and Symbiont C) in A. pacifica. Symbiont A and the A. crypta symbiont were affiliated with thioautotrophic symbionts of bathymodiolin mussels from deep-sea reducing environments, while Symbiont C was closely related to free-living heterotrophic bacteria. The symbionts in A. crypta were intracellular within epithelial cells of the apical region of the gills and were extracellular in A. pacifica. No spatial partitioning was observed between the two phylotypes in A. pacifica in fluorescence in situ hybridization experiments. Stable isotopic analyses of carbon and sulfur indicated the chemoautotrophic nature of A. crypta and mixotrophic nature of A. pacifica. Molecular phylogenetic analyses of the host mussels showed that A. crypta constituted a monophyletic clade with other intracellular symbiotic (endosymbiotic) mussels and that A. pacifica was the sister group of all endosymbiotic mussels. CONCLUSIONS/SIGNIFICANCE These results strongly suggest that the symbiosis in A. pacifica is at an earlier stage in evolution than other endosymbiotic mussels. Whale falls and other modern biogenic reducing environments may act as refugia for primal chemoautotrophic symbioses between eukaryotes and prokaryotes since the extinction of ancient large marine vertebrates.
Collapse
Affiliation(s)
- Yoshihiro Fujiwara
- Chemo-Ecosystem Evolution Research (ChEER) Team, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Rodrigues CF, Webster G, Cunha MR, Duperron S, Weightman AJ. Chemosynthetic bacteria found in bivalve species from mud volcanoes of the Gulf of Cadiz. FEMS Microbiol Ecol 2010; 73:486-99. [PMID: 20550577 DOI: 10.1111/j.1574-6941.2010.00913.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
As in other cold seeps, the dominant bivalves in mud volcanoes (MV) from the Gulf of Cadiz are macrofauna belonging to the families Solemyidae (Acharax sp., Petrasma sp.), Lucinidae (Lucinoma sp.), Thyasiridae (Thyasira vulcolutre) and Mytilidae (Bathymodiolus mauritanicus). The delta(13)C values measured in solemyid, lucinid and thyasirid specimens support the hypothesis of thiotrophic nutrition, whereas isotopic signatures of B. mauritanicus suggest methanotrophic nutrition. The indication by stable isotope analysis that chemosynthetic bacteria make a substantial contribution to the nutrition of the bivalves led us to investigate their associated bacteria and their phylogenetic relationships based on comparative 16S rRNA gene sequence analysis. PCR-denaturing gradient gel electrophoresis analysis and cloning of bacterial 16S rRNA-encoding genes confirmed the presence of sulfide-oxidizing symbionts within gill tissues of many of the studied specimens. Phylogenetic analysis of bacterial 16S rRNA gene sequences demonstrated that most bacteria were related to known sulfide-oxidizing endosymbionts found in other deep-sea chemosynthetic environments, with the co-occurrence of methane-oxidizing symbionts in Bathymodiolus specimens. This study confirms the presence of several chemosynthetic bivalves in the Gulf of Cadiz and further highlights the importance of sulfide- and methane-oxidizing symbionts in the trophic ecology of macrobenthic communities in MV.
Collapse
Affiliation(s)
- Clara F Rodrigues
- CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | | | | | | | | |
Collapse
|
49
|
Dick GJ, Tebo BM. Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume. Environ Microbiol 2010; 12:1334-47. [PMID: 20192971 DOI: 10.1111/j.1462-2920.2010.02177.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hydrothermal plumes are hot spots of microbial biogeochemistry in the deep ocean, yet little is known about the diversity or ecology of microorganisms inhabiting plumes. Recent biogeochemical evidence shows that Mn(II) oxidation in the Guaymas Basin (GB) hydrothermal plume is microbially mediated and suggests that the plume microbial community is distinct from deep-sea communities. Here we use a molecular approach to compare microbial diversity in the GB plume and in background deep seawater communities, and cultivation to identify Mn(II)-oxidizing bacteria from plumes and sediments. Despite dramatic differences in Mn(II) oxidation rates between plumes and background seawater, microbial diversity and membership were remarkably similar. All bacterial clone libraries were dominated by Gammaproteobacteria and archaeal clone libraries were dominated by Crenarchaeota. Two lineages, both phylogenetically related to methanotrophs and/or methylotrophs, were consistently over-represented in the plume. Eight Mn(II)-oxidizing bacteria were isolated, but none of these or previously identified Mn(II) oxidizers were abundant in clone libraries. Taken together with Mn(II) oxidation rates measured in laboratory cultures and in the field, these results suggest that Mn(II) oxidation in the GB hydrothermal plume is mediated by genome-level dynamics (gene content and/or expression) of microorganisms that are indigenous and abundant in the deep sea but have yet to be unidentified as Mn(II) oxidizers.
Collapse
Affiliation(s)
- Gregory J Dick
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
| | | |
Collapse
|
50
|
Le Bris N, Duperron S. Chemosynthetic communities and biogeochemical energy pathways along the Mid-Atlantic Ridge: The case of Bathymodiolus azoricus. GEOPHYSICAL MONOGRAPH SERIES 2010. [DOI: 10.1029/2008gm000712] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|