1
|
Wohl C, Villamayor J, Galí M, Mahajan AS, Fernández RP, Cuevas CA, Bossolasco A, Li Q, Kettle AJ, Williams T, Sarda-Esteve R, Gros V, Simó R, Saiz-Lopez A. Marine emissions of methanethiol increase aerosol cooling in the Southern Ocean. SCIENCE ADVANCES 2024; 10:eadq2465. [PMID: 39602531 PMCID: PMC11601248 DOI: 10.1126/sciadv.adq2465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Ocean-emitted dimethyl sulfide (DMS) is a major source of climate-cooling aerosols. However, most of the marine biogenic sulfur cycling is not routed to DMS but to methanethiol (MeSH), another volatile whose reactivity has hitherto hampered measurements. Therefore, the global emissions and climate impact of MeSH remain unexplored. We compiled a database of seawater MeSH concentrations, identified their statistical predictors, and produced monthly fields of global marine MeSH emissions adding to DMS emissions. Implemented into a global chemistry-climate model, MeSH emissions increase the sulfate aerosol burden by 30 to 70% over the Southern Ocean and enhance the aerosol cooling effect while depleting atmospheric oxidants and increasing DMS lifetime and transport. Accounting for MeSH emissions reduces the radiative bias of current climate models in this climatically relevant region.
Collapse
Affiliation(s)
- Charel Wohl
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain
- Centre of Ocean and Atmospheric Sciences, University of East Anglia, Norwich, UK
| | - Julián Villamayor
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid, Spain
| | - Martí Galí
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain
| | - Anoop S. Mahajan
- Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
| | - Rafael P. Fernández
- Institute for Interdisciplinary Science (ICB), National Research Council (CONICET), FCEN-UNCuyo, Mendoza, Argentina
| | - Carlos A. Cuevas
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid, Spain
| | - Adriana Bossolasco
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid, Spain
- Physics Institute of Northwest Argentina (INFINOA), National Research Council (CONICET), Tucumán, Argentina
| | - Qinyi Li
- Environment Research Institute, Shandong University, Qingdao, China
| | | | | | - Roland Sarda-Esteve
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE), CNRS-CEA-UVSQ, IPSL, Gif sur Yvette, France
- Climate and Atmosphere Research Center (CARE-C), the Cyprus Institute, Nicosia, 2121, Cyprus
| | - Valérie Gros
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE), CNRS-CEA-UVSQ, IPSL, Gif sur Yvette, France
| | - Rafel Simó
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid, Spain
| |
Collapse
|
2
|
Su X, Cui H, Zhang W. Copiotrophy in a Marine-Biofilm-Derived Roseobacteraceae Bacterium Can Be Supported by Amino Acid Metabolism and Thiosulfate Oxidation. Int J Mol Sci 2023; 24:ijms24108617. [PMID: 37239957 DOI: 10.3390/ijms24108617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Copiotrophic bacteria that respond rapidly to nutrient availability, particularly high concentrations of carbon sources, play indispensable roles in marine carbon cycling. However, the molecular and metabolic mechanisms governing their response to carbon concentration gradients are not well understood. Here, we focused on a new member of the family Roseobacteraceae isolated from coastal marine biofilms and explored the growth strategy at different carbon concentrations. When cultured in a carbon-rich medium, the bacterium grew to significantly higher cell densities than Ruegeria pomeroyi DSS-3, although there was no difference when cultured in media with reduced carbon. Genomic analysis showed that the bacterium utilized various pathways involved in biofilm formation, amino acid metabolism, and energy production via the oxidation of inorganic sulfur compounds. Transcriptomic analysis indicated that 28.4% of genes were regulated by carbon concentration, with increased carbon concentration inducing the expression of key enzymes in the EMP, ED, PP, and TCA cycles, genes responsible for the transformation of amino acids into TCA intermediates, as well as the sox genes for thiosulfate oxidation. Metabolomics showed that amino acid metabolism was enhanced and preferred in the presence of a high carbon concentration. Mutation of the sox genes decreased cell proton motive force when grown with amino acids and thiosulfate. In conclusion, we propose that copiotrophy in this Roseobacteraceae bacterium can be supported by amino acid metabolism and thiosulfate oxidation.
Collapse
Affiliation(s)
- Xiaoyan Su
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Han Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
3
|
Barak-Gavish N, Dassa B, Kuhlisch C, Nussbaum I, Brandis A, Rosenberg G, Avraham R, Vardi A. Bacterial lifestyle switch in response to algal metabolites. eLife 2023; 12:e84400. [PMID: 36691727 PMCID: PMC9873259 DOI: 10.7554/elife.84400] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Unicellular algae, termed phytoplankton, greatly impact the marine environment by serving as the basis of marine food webs and by playing central roles in the biogeochemical cycling of elements. The interactions between phytoplankton and heterotrophic bacteria affect the fitness of both partners. It is becoming increasingly recognized that metabolic exchange determines the nature of such interactions, but the underlying molecular mechanisms remain underexplored. Here, we investigated the molecular and metabolic basis for the bacterial lifestyle switch, from coexistence to pathogenicity, in Sulfitobacter D7 during its interaction with Emiliania huxleyi, a cosmopolitan bloom-forming phytoplankter. To unravel the bacterial lifestyle switch, we analyzed bacterial transcriptomes in response to exudates derived from algae in exponential growth and stationary phase, which supported the Sulfitobacter D7 coexistence and pathogenicity lifestyles, respectively. In pathogenic mode, Sulfitobacter D7 upregulated flagellar motility and diverse transport systems, presumably to maximize assimilation of E. huxleyi-derived metabolites released by algal cells upon cell death. Algal dimethylsulfoniopropionate (DMSP) was a pivotal signaling molecule that mediated the transition between the lifestyles, supporting our previous findings. However, the coexisting and pathogenic lifestyles were evident only in the presence of additional algal metabolites. Specifically, we discovered that algae-produced benzoate promoted the growth of Sulfitobacter D7 and hindered the DMSP-induced lifestyle switch to pathogenicity, demonstrating that benzoate is important for maintaining the coexistence of algae and bacteria. We propose that bacteria can sense the physiological state of the algal host through changes in the metabolic composition, which will determine the bacterial lifestyle during interaction.
Collapse
Affiliation(s)
- Noa Barak-Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Bareket Dassa
- Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Inbal Nussbaum
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Gili Rosenberg
- Department of Biological Regulation, Weizmann Institute of ScienceRehovotIsrael
| | - Roi Avraham
- Department of Biological Regulation, Weizmann Institute of ScienceRehovotIsrael
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
4
|
Wang T, Huang Q, Burns AS, Moran MA, Whitman WB. Oxidative Stress Regulates a Pivotal Metabolic Switch in Dimethylsulfoniopropionate Degradation by the Marine Bacterium Ruegeria pomeroyi. Microbiol Spectr 2022; 10:e0319122. [PMID: 36301115 PMCID: PMC9769926 DOI: 10.1128/spectrum.03191-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/03/2022] [Indexed: 01/10/2023] Open
Abstract
Dimethylsulfoniopropionate (DMSP) is an abundant organic compound in marine surface water and source of dimethyl sulfide (DMS), the largest natural sulfur source to the upper atmosphere. Marine bacteria either mineralize DMSP through the demethylation pathway or transform it to DMS through the cleavage pathway. Factors that regulate which pathway is utilized are not fully understood. In chemostat experiments, the marine Roseobacter Ruegeria pomeroyi DSS-3 was exposed to oxidative stress either during growth with H2O2 or by mutation of the gene encoding catalase. Oxidative stress reduced expression of the genes in the demethylation pathway and increased expression of those encoding the cleavage pathway. These results are contrary to the sulfur demand hypothesis, which theorizes that DMSP metabolism is driven by sulfur requirements of bacterial cells. Instead, we find strong evidence consistent with oxidative stress control over the switch in DMSP metabolism from demethylation to DMS production in an ecologically relevant marine bacterium. IMPORTANCE Dimethylsulfoniopropionate (DMSP) is the most abundant low-molecular-weight organic compound in marine surface water and source of dimethyl sulfide (DMS), a climatically active gas that connects the marine and terrestrial sulfur cycles. Marine bacteria are the major DMSP consumers, either generating DMS or consuming DMSP as a source of reduced carbon and sulfur. However, the factors regulating the DMSP catabolism in bacteria are not well understood. Marine bacteria are also exposed to oxidative stress. RNA sequencing (RNA-seq) experiments showed that oxidative stress induced in the laboratory reduced expression of the genes encoding the consumption of DMSP via the demethylation pathway and increased the expression of genes encoding DMS production via the cleavage pathway in the marine bacterium Ruegeria pomeroyi. These results support a model where DMS production in the ocean is regulated in part by oxidative stress.
Collapse
Affiliation(s)
- Tao Wang
- Department of Microbiology, University of Georgia, Georgia, USA
| | - Qiuyuan Huang
- Department of Microbiology, University of Georgia, Georgia, USA
| | - Andrew S. Burns
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
5
|
Shaw DK, Sekar J, Ramalingam PV. Recent insights into oceanic dimethylsulfoniopropionate biosynthesis and catabolism. Environ Microbiol 2022; 24:2669-2700. [PMID: 35611751 DOI: 10.1111/1462-2920.16045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Dimethylsulfoniopropionate (DMSP), a globally important organosulfur compound is produced in prodigious amounts (2.0 Pg sulfur) annually in the marine environment by phytoplankton, macroalgae, heterotrophic bacteria, some corals and certain higher plants. It is an important marine osmolyte and a major precursor molecule for the production of climate-active volatile gas dimethyl sulfide (DMS). DMSP synthesis take place via three pathways: a transamination 'pathway-' in some marine bacteria and algae, a Met-methylation 'pathway-' in angiosperms and bacteria and a decarboxylation 'pathway-' in the dinoflagellate, Crypthecodinium. The enzymes DSYB and TpMMT are involved in the DMSP biosynthesis in eukaryotes while marine heterotrophic bacteria engage key enzymes such as DsyB and MmtN. Several marine bacterial communities import DMSP and degrade it via cleavage or demethylation pathways or oxidation pathway, thereby generating DMS, methanethiol, and dimethylsulfoxonium propionate, respectively. DMSP is cleaved through diverse DMSP lyase enzymes in bacteria and via Alma1 enzyme in phytoplankton. The demethylation pathway involves four different enzymes, namely DmdA, DmdB, DmdC and DmdD/AcuH. However, enzymes involved in the oxidation pathway have not been yet identified. We reviewed the recent advances on the synthesis and catabolism of DMSP and enzymes that are involved in these processes.
Collapse
Affiliation(s)
- Deepak Kumar Shaw
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Jegan Sekar
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Prabavathy Vaiyapuri Ramalingam
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| |
Collapse
|
6
|
Gregory GJ, Boyd EF. Stressed out: Bacterial response to high salinity using compatible solute biosynthesis and uptake systems, lessons from Vibrionaceae. Comput Struct Biotechnol J 2021; 19:1014-1027. [PMID: 33613867 PMCID: PMC7876524 DOI: 10.1016/j.csbj.2021.01.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteria have evolved mechanisms that allow them to adapt to changes in osmolarity and some species have adapted to live optimally in high salinity environments such as in the marine ecosystem. Most bacteria that live in high salinity do so by the biosynthesis and/or uptake of compatible solutes, small organic molecules that maintain the turgor pressure of the cell. Osmotic stress response mechanisms and their regulation among marine heterotrophic bacteria are poorly understood. In this review, we discuss what is known about compatible solute metabolism and transport and new insights gained from studying marine bacteria belonging to the family Vibrionaceae.
Collapse
Affiliation(s)
| | - E. Fidelma Boyd
- Corresponding author at: Department of Biological Sciences, 341 Wolf Hall, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
7
|
Hernández L, Vicens A, Eguiarte LE, Souza V, De Anda V, González JM. Evolutionary history of dimethylsulfoniopropionate (DMSP) demethylation enzyme DmdA in marine bacteria. PeerJ 2020; 8:e9861. [PMID: 32974097 PMCID: PMC7487153 DOI: 10.7717/peerj.9861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/12/2020] [Indexed: 11/20/2022] Open
Abstract
Dimethylsulfoniopropionate (DMSP), an osmolyte produced by oceanic phytoplankton and bacteria, is primarily degraded by bacteria belonging to the Roseobacter lineage and other marine Alphaproteobacteria via DMSP-dependent demethylase A protein (DmdA). To date, the evolutionary history of DmdA gene family is unclear. Some studies indicate a common ancestry between DmdA and GcvT gene families and a co-evolution between Roseobacter and the DMSP-producing-phytoplankton around 250 million years ago (Mya). In this work, we analyzed the evolution of DmdA under three possible evolutionary scenarios: (1) a recent common ancestor of DmdA and GcvT, (2) a coevolution between Roseobacter and the DMSP-producing-phytoplankton, and (3) an enzymatic adaptation for utilizing DMSP in marine bacteria prior to Roseobacter origin. Our analyses indicate that DmdA is a new gene family originated from GcvT genes by duplication and functional divergence driven by positive selection before a coevolution between Roseobacter and phytoplankton. Our data suggest that Roseobacter acquired dmdA by horizontal gene transfer prior to an environment with higher DMSP. Here, we propose that the ancestor that carried the DMSP demethylation pathway genes evolved in the Archean, and was exposed to a higher concentration of DMSP in a sulfur-rich atmosphere and anoxic ocean, compared to recent Roseobacter eco-orthologs (orthologs performing the same function under different conditions), which should be adapted to lower concentrations of DMSP.
Collapse
Affiliation(s)
- Laura Hernández
- Departamento de Microbiología, Universidad de La Laguna, La Laguna, Spain
| | - Alberto Vicens
- Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, Vigo, Spain
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico D.F., Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico D.F., Mexico
| | - Valerie De Anda
- Department of Marine Sciences, Marine Science Institute, University of Texas Austin, Port Aransas, TX, USA
| | - José M González
- Departamento de Microbiología, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
8
|
Landa M, Burns AS, Roth SJ, Moran MA. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME JOURNAL 2017; 11:2677-2690. [PMID: 28731474 DOI: 10.1038/ismej.2017.117] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/17/2017] [Accepted: 06/07/2017] [Indexed: 01/01/2023]
Abstract
In their role as primary producers, marine phytoplankton modulate heterotrophic bacterial activities through differences in the types and amounts of organic matter they release. This study investigates the transcriptional response of bacterium Ruegeria pomeroyi, a member of the Roseobacter clade known to affiliate with diverse phytoplankton groups in the ocean, during a shift in phytoplankton taxonomy. The bacterium was initially introduced into a culture of the dinoflagellate Alexandrium tamarense, and then experienced a change in phytoplankton community composition as the diatom Thalassiosira pseudonana gradually outcompeted the dinoflagellate. Samples were taken throughout the 30-day experiment to track shifts in bacterial gene expression informative of metabolic and ecological interactions. Transcriptome data indicate fundamental differences in the exometabolites released by the two phytoplankton. During growth with the dinoflagellate, gene expression patterns indicated that the main sources of carbon and energy for R. pomeroyi were dimethysulfoniopropionate (DMSP), taurine, methylated amines, and polyamines. During growth with the diatom, dihydroxypropanesulfonate (DHPS), xylose, ectoine, and glycolate instead appeared to fuel the bulk of bacterial metabolism. Expression patterns of genes for quorum sensing, gene transfer agent, and motility suggest that bacterial processes related to cell communication and signaling differed depending on which phytoplankton species dominated the co-culture. A remodeling of the R. pomeroyi transcriptome implicating more than a quarter of the genome occurred through the change in phytoplankton regime.
Collapse
Affiliation(s)
- Marine Landa
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Andrew S Burns
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Selena J Roth
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
Kielb P, Utesch T, Kozuch J, Jeoung JH, Dobbek H, Mroginski MA, Hildebrandt P, Weidinger I. Switchable Redox Chemistry of the Hexameric Tyrosine-Coordinated Heme Protein. J Phys Chem B 2017; 121:3955-3964. [DOI: 10.1021/acs.jpcb.7b01286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrycja Kielb
- Institut
für Chemie, Sekr. PC14, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Tillmann Utesch
- Institut
für Chemie, Sekr. PC14, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Jacek Kozuch
- Institut
für Chemie, Sekr. PC14, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
- Department
of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Jae-Hun Jeoung
- Institute
of Biology, Humboldt Universität Berlin, Philippstrasse
13, D-10115 Berlin, Germany
| | - Holger Dobbek
- Institute
of Biology, Humboldt Universität Berlin, Philippstrasse
13, D-10115 Berlin, Germany
| | - Maria Andrea Mroginski
- Institut
für Chemie, Sekr. PC14, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Institut
für Chemie, Sekr. PC14, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Inez Weidinger
- Department
of Chemistry and Food Chemistry, Technische Universität Dresden, Zellescher Weg 19, D-01069 Dresden, Germany
| |
Collapse
|
10
|
Tang K, Yang Y, Lin D, Li S, Zhou W, Han Y, Liu K, Jiao N. Genomic, physiologic, and proteomic insights into metabolic versatility in Roseobacter clade bacteria isolated from deep-sea water. Sci Rep 2016; 6:35528. [PMID: 27762339 PMCID: PMC5071866 DOI: 10.1038/srep35528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/28/2016] [Indexed: 11/09/2022] Open
Abstract
Roseobacter clade bacteria are ubiquitous in marine environments and now thought to be significant contributors to carbon and sulfur cycling. However, only a few strains of roseobacters have been isolated from the deep-sea water column and have not been thoroughly investigated. Here, we present the complete genomes of phylogentically closed related Thiobacimonas profunda JLT2016 and Pelagibaca abyssi JLT2014 isolated from deep-sea water of the Southeastern Pacific. The genome sequences showed that the two deep-sea roseobacters carry genes for versatile metabolisms with functional capabilities such as ribulose bisphosphate carboxylase-mediated carbon fixation and inorganic sulfur oxidation. Physiological and biochemical analysis showed that T. profunda JLT2016 was capable of autotrophy, heterotrophy, and mixotrophy accompanied by the production of exopolysaccharide. Heterotrophic carbon fixation via anaplerotic reactions contributed minimally to bacterial biomass. Comparative proteomics experiments showed a significantly up-regulated carbon fixation and inorganic sulfur oxidation associated proteins under chemolithotrophic conditions compared to heterotrophic conditions. Collectively, rosebacters show a high metabolic flexibility, suggesting a considerable capacity for adaptation to the marine environment.
Collapse
Affiliation(s)
- Kai Tang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, P. R. China
| | - Yujie Yang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, P. R. China
| | - Dan Lin
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, P. R. China
| | - Shuhui Li
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, P. R. China
| | - Wenchu Zhou
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, P. R. China
| | - Yu Han
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, P. R. China
| | - Keshao Liu
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, P. R. China
| | - Nianzhi Jiao
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, P. R. China
| |
Collapse
|
11
|
Burns AS, Bullock HA, Smith C, Huang Q, Whitman WB, Moran MA. Small RNAs expressed during dimethylsulfoniopropionate degradation by a model marine bacterium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:763-773. [PMID: 27337503 DOI: 10.1111/1758-2229.12437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
The fate of the sulfur moiety of dimethylsulfoniopropionate (DMSP) depends on the 'bacterial switch', a regulatory point between two metabolic pathways with different biogeochemical endpoints. Studies have focused on transcriptional patterns of known genes to determine physiological and environmental factors affecting this switch, but post-transcriptional regulation has been under-studied. Here we use a model bacterium containing both pathways to look for transcription of non-coding regulatory small RNAs (sRNAs) during DMSP metabolism. RNA-seq analysis of Ruegeria pomeroyi DSS-3 grown with DMSP, metabolic intermediates of DMSP degradation (MMPA or acetate), or methionine revealed 182 putative sRNAs, with 46 showing differential expression during growth on DMSP. A knockout mutant constructed for an upregulated sRNA had a phenotype that differed in its use of the two degradation pathways. Because transcription patterns of many differentially expressed sRNAs were not correlated with the transcription of their putative target gene, their effects on DMSP degradation would not be observable in the transcriptome. Overall, our results indicate that sRNAs are crucial but largely cryptic actors in regulating DMSP metabolism in this model marine bacterium and potentially other bacterial groups involved in the surface ocean sulfur cycle.
Collapse
Affiliation(s)
- Andrew S Burns
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Hannah A Bullock
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Christa Smith
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Qiuyuan Huang
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
12
|
Xiong L, Jian H, Zhang Y, Xiao X. The Two Sets of DMSO Respiratory Systems of Shewanella piezotolerans WP3 Are Involved in Deep Sea Environmental Adaptation. Front Microbiol 2016; 7:1418. [PMID: 27656177 PMCID: PMC5013071 DOI: 10.3389/fmicb.2016.01418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/26/2016] [Indexed: 12/04/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is an abundant methylated sulfur compound in deep sea ecosystems. However, the mechanism underlying DMSO-induced reduction in benthic microorganisms is unknown. Shewanella piezotolerans WP3, which was isolated from a west Pacific deep sea sediment, can utilize DMSO as the terminal electron acceptor. In this study, two putative dms gene clusters [type I (dmsEFA1B1G1H1) and type II (dmsA2B2G2H2)] were identified in the WP3 genome. Genetic and physiological analyses demonstrated that both dms gene clusters were functional and the transcription of both gene clusters was affected by changes in pressure and temperature. Notably, the type I system is essential for WP3 to thrive under in situ conditions (4°C/20 MPa), whereas the type II system is more important under high pressure or low temperature conditions (20°C/20 MPa, 4°C/0.1 MPa). Additionally, DMSO-dependent growth conferred by the presence of both dms gene clusters was higher than growth conferred by either of the dms gene clusters alone. These data collectively suggest that the possession of two sets of DMSO respiratory systems is an adaptive strategy for WP3 survival in deep sea environments. We propose, for the first time, that deep sea microorganisms might be involved in global DMSO/DMS cycling.
Collapse
Affiliation(s)
- Lei Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Yuxia Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China; State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
13
|
Tatti E, McKew BA, Whitby C, Smith CJ. Simultaneous DNA-RNA Extraction from Coastal Sediments and Quantification of 16S rRNA Genes and Transcripts by Real-time PCR. J Vis Exp 2016. [PMID: 27341629 PMCID: PMC4927785 DOI: 10.3791/54067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Real Time Polymerase Chain Reaction also known as quantitative PCR (q-PCR) is a widely used tool in microbial ecology to quantify gene abundances of taxonomic and functional groups in environmental samples. Used in combination with a reverse transcriptase reaction (RT-q-PCR), it can also be employed to quantify gene transcripts. q-PCR makes use of highly sensitive fluorescent detection chemistries that allow quantification of PCR amplicons during the exponential phase of the reaction. Therefore, the biases associated with 'end-point' PCR detected in the plateau phase of the PCR reaction are avoided. A protocol to quantify bacterial 16S rRNA genes and transcripts from coastal sediments via real-time PCR is provided. First, a method for the co-extraction of DNA and RNA from coastal sediments, including the additional steps required for the preparation of DNA-free RNA, is outlined. Second, a step-by-step guide for the quantification of 16S rRNA genes and transcripts from the extracted nucleic acids via q-PCR and RT-q-PCR is outlined. This includes details for the construction of DNA and RNA standard curves. Key considerations for the use of RT-q-PCR assays in microbial ecology are included.
Collapse
Affiliation(s)
- Enrico Tatti
- Microbiology, School of Natural Sciences, National University of Ireland Galway
| | - Boyd A McKew
- School of Biological Sciences, University of Essex
| | | | - Cindy J Smith
- Microbiology, School of Natural Sciences, National University of Ireland Galway;
| |
Collapse
|
14
|
Sun J, Todd JD, Thrash JC, Qian Y, Qian MC, Temperton B, Guo J, Fowler EK, Aldrich JT, Nicora CD, Lipton MS, Smith RD, De Leenheer P, Payne SH, Johnston AWB, Davie-Martin CL, Halsey KH, Giovannoni SJ. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. Nat Microbiol 2016; 1:16065. [PMID: 27573103 DOI: 10.1038/nmicrobiol.2016.65] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/07/2016] [Indexed: 01/20/2023]
Abstract
Marine phytoplankton produce ∼10(9) tonnes of dimethylsulfoniopropionate (DMSP) per year(1,2), an estimated 10% of which is catabolized by bacteria through the DMSP cleavage pathway to the climatically active gas dimethyl sulfide(3,4). SAR11 Alphaproteobacteria (order Pelagibacterales), the most abundant chemo-organotrophic bacteria in the oceans, have been shown to assimilate DMSP into biomass, thereby supplying this cell's unusual requirement for reduced sulfur(5,6). Here, we report that Pelagibacter HTCC1062 produces the gas methanethiol, and that a second DMSP catabolic pathway, mediated by a cupin-like DMSP lyase, DddK, simultaneously shunts as much as 59% of DMSP uptake to dimethyl sulfide production. We propose a model in which the allocation of DMSP between these pathways is kinetically controlled to release increasing amounts of dimethyl sulfide as the supply of DMSP exceeds cellular sulfur demands for biosynthesis.
Collapse
Affiliation(s)
- Jing Sun
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - J Cameron Thrash
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Yanping Qian
- Department of Food Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - Michael C Qian
- Department of Food Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - Ben Temperton
- Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Jiazhen Guo
- Qingdao Aquarium, Qingdao, Shandong 266003, China
| | - Emily K Fowler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Joshua T Aldrich
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Carrie D Nicora
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Mary S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Richard D Smith
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Patrick De Leenheer
- Department of Mathematics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Samuel H Payne
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Andrew W B Johnston
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Cleo L Davie-Martin
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Kimberly H Halsey
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Stephen J Giovannoni
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
15
|
Johnson WM, Kido Soule MC, Kujawinski EB. Evidence for quorum sensing and differential metabolite production by a marine bacterium in response to DMSP. ISME JOURNAL 2016; 10:2304-16. [PMID: 26882264 PMCID: PMC4989321 DOI: 10.1038/ismej.2016.6] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/17/2015] [Accepted: 12/24/2015] [Indexed: 11/09/2022]
Abstract
Microbes, the foundation of the marine foodweb, do not function in isolation, but rather rely on molecular level interactions among species to thrive. Although certain types of interactions between autotrophic and heterotrophic microorganisms have been well documented, the role of specific organic molecules in regulating inter-species relationships and supporting growth are only beginning to be understood. Here, we examine one such interaction by characterizing the metabolic response of a heterotrophic marine bacterium, Ruegeria pomeroyi DSS-3, to growth on dimethylsulfoniopropionate (DMSP), an abundant organosulfur metabolite produced by phytoplankton. When cultivated on DMSP, R. pomeroyi synthesized a quorum-sensing molecule, N-(3-oxotetradecanoyl)-l-homoserine lactone, at significantly higher levels than during growth on propionate. Concomitant with the production of a quorum-sensing molecule, we observed differential production of intra- and extracellular metabolites including glutamine, vitamin B2 and biosynthetic intermediates of cyclic amino acids. Our metabolomics data indicate that R. pomeroyi changes regulation of its biochemical pathways in a manner that is adaptive for a cooperative lifestyle in the presence of DMSP, in anticipation of phytoplankton-derived nutrients and higher microbial density. This behavior is likely to occur on sinking marine particles, indicating that this response may impact the fate of organic matter.
Collapse
Affiliation(s)
- Winifred M Johnson
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Melissa C Kido Soule
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
16
|
Wenning L, Stöveken N, Wübbeler JH, Steinbüchel A. Substrate and Cofactor Range Differences of Two Cysteine Dioxygenases from Ralstonia eutropha H16. Appl Environ Microbiol 2016; 82:910-21. [PMID: 26590284 PMCID: PMC4725276 DOI: 10.1128/aem.02568-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022] Open
Abstract
Cysteine dioxygenases (Cdos), which catalyze the sulfoxidation of cysteine to cysteine sulfinic acid (CSA), have been extensively studied in eukaryotes because of their roles in several diseases. In contrast, only a few prokaryotic enzymes of this type have been investigated. In Ralstonia eutropha H16, two Cdo homologues (CdoA and CdoB) have been identified previously. In vivo studies showed that Escherichia coli cells expressing CdoA could convert 3-mercaptopropionate (3MP) to 3-sulfinopropionate (3SP), whereas no 3SP could be detected in cells expressing CdoB. The objective of this study was to confirm these findings and to study both enzymes in detail by performing an in vitro characterization. The proteins were heterologously expressed and purified to apparent homogeneity by immobilized metal chelate affinity chromatography (IMAC). Subsequent analysis of the enzyme activities revealed striking differences with regard to their substrate ranges and their specificities for the transition metal cofactor, e.g., CdoA catalyzed the sulfoxidation of 3MP to a 3-fold-greater extent than the sulfoxidation of cysteine, whereas CdoB converted only cysteine. Moreover, the dependency of the activities of the Cdos from R. eutropha H16 on the metal cofactor in the active center could be demonstrated. The importance of CdoA for the metabolism of the sulfur compounds 3,3'-thiodipropionic acid (TDP) and 3,3'-dithiodipropionic acid (DTDP) by further converting their degradation product, 3MP, was confirmed. Since 3MP can also function as a precursor for polythioester (PTE) synthesis in R. eutropha H16, deletion of cdoA might enable increased synthesis of PTEs.
Collapse
Affiliation(s)
- Leonie Wenning
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Nadine Stöveken
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Cunliffe M. Purine catabolic pathway revealed by transcriptomics in the model marine bacterium Ruegeria pomeroyi DSS-3. FEMS Microbiol Ecol 2015; 92:fiv150. [PMID: 26613749 DOI: 10.1093/femsec/fiv150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2015] [Indexed: 11/13/2022] Open
Abstract
Purines are nitrogen-rich compounds that are widely distributed in the marine environment and are an important component of the dissolved organic nitrogen (DON) pool. Even though purines have been shown to be degraded by bacterioplankton, the identities of marine bacteria capable of purine degradation and their underlying catabolic mechanisms are currently unknown. This study shows that Ruegeria pomeroyi, a model marine bacterium and Marine Roseobacter Clade (MRC) representative, utilizes xanthine as a source of carbon and nitrogen. The R. pomeroyi genome contains putative genes that encode xanthine dehydrogenase (XDH), which is expressed during growth with xanthine. RNAseq-based analysis of the R. pomeroyi transcriptome revealed that the transcription of an XDH-initiated catabolic pathway is up-regulated during growth with xanthine, with transcription greatest when xanthine was the only available carbon source. The RNAseq-deduced pathway indicates that glyoxylate and ammonia are the key intermediates from xanthine degradation. Utilising a laboratory model, this study has identified the potential genes and catabolic pathway active during xanthine degradation. The ability of R. pomeroyi to utilize xanthine provides novel insights into the capabilities of the MRC that may contribute to their success in marine ecosystems and the potential biogeochemical importance of the group in processing DON.
Collapse
Affiliation(s)
- Michael Cunliffe
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK Marine Biology and Ecology Research Centre, Marine Institute, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
18
|
Salinity as a regulator of DMSP degradation in Ruegeria pomeroyi DSS-3. J Microbiol 2014; 52:948-54. [PMID: 25277409 DOI: 10.1007/s12275-014-4409-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
Abstract
Dimethylsulfoniopropionate (DMSP) is an important carbon and sulfur source to marine bacterial communities and the main precursor of dimethylsulfide (DMS), a gas that influences atmospheric chemistry and potentially the global climate. In nature, bacterial DMSP catabolism can yield different proportions of DMS and methanethiol (MeSH), but relatively little is known about the factors controlling the pathways of bacterial degradation that select between their formation (cleavage vs. demethiolation). In this study, we carried out experiments to evaluate the influence of salinity on the routes of DMSP catabolism in Ruegeria pomeroyi DSS-3. We monitored DMS and MeSH accumulation in cell suspensions grown in a range of salinities (10, 20, 30 ppt) and with different DMSP amendments (0, 50, 500 µM). Significantly higher concentrations of DMS accumulated in low salinity treatments (10 ppt; P < 0.001), in both Marine Basal Medium (MBM) and half-strength Yeast Tryptone Sea Salts (1/2 YTSS) media. Results showed a 47.1% and 87.5% decrease of DMS accumulation, from salinity 10 to 20 ppt, in MBM and 1/2 YTSS media, respectively. On the other hand, MeSH showed enhanced accumulations at higher salinities (20, 30 ppt), with a 90.6% increase of MeSH accumulation from the 20 ppt to the 30 ppt salinity treatments. Our results with R. pomeroyi DSS-3 in culture are in agreement with previous results from estuarine sediments and demonstrate that salinity can modulate selection of the DMSP enzymatic degradation routes, with a consequent potential impact on DMS and MeSH liberation into the atmosphere.
Collapse
|
19
|
Wübbeler JH, Hiessl S, Schuldes J, Thürmer A, Daniel R, Steinbüchel A. Unravelling the complete genome sequence of Advenella mimigardefordensis strain DPN7T and novel insights in the catabolism of the xenobiotic polythioester precursor 3,3'-dithiodipropionate. MICROBIOLOGY-SGM 2014; 160:1401-1416. [PMID: 24739217 DOI: 10.1099/mic.0.078279-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advenella mimigardefordensis strain DPN7(T) is a remarkable betaproteobacterium because of its extraordinary ability to use the synthetic disulfide 3,3'-dithiodipropionic acid (DTDP) as the sole carbon source and electron donor for aerobic growth. One application of DTDP is as a precursor substrate for biotechnically synthesized polythioesters (PTEs), which are interesting non-degradable biopolymers applicable for plastics materials. Metabolic engineering for optimization of PTE production requires an understanding of DTDP conversion. The genome of A. mimigardefordensis strain DPN7(T) was sequenced and annotated. The circular chromosome was found to be composed of 4,740,516 bp and 4112 predicted ORFs, whereas the circular plasmid consisted of 23,610 bp and 24 predicted ORFs. The genes participating in DTDP catabolism had been characterized in detail previously, but knowing the complete genome sequence and with support of Tn5: :mob-induced mutants, putatively involved transporter proteins and a transcriptional regulator were also identified. Most probably, DTDP is transported into the cell by a specific tripartite tricarboxylate transport system and is then cleaved by the disulfide reductase LpdA, sulfoxygenated by the 3-mercaptopropionate dioxygenase Mdo, activated by the CoA ligase SucCD and desulfinated by the acyl-CoA dehydrogenase-like desulfinase AcdA. Regulation of this pathway is presumably performed by a transcriptional regulator of the xenobiotic response element family. The excessive sulfate that is inevitably produced is secreted by the cells by a unique sulfate exporter of the CPA (cation : proton antiporter) superfamily.
Collapse
Affiliation(s)
- Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Sebastian Hiessl
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Jörg Schuldes
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Andrea Thürmer
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Alexander Steinbüchel
- Faculty of Biology, King Abdulaziz University, Jeddah, Saudi Arabia.,Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
20
|
Acrylyl-coenzyme A reductase, an enzyme involved in the assimilation of 3-hydroxypropionate by Rhodobacter sphaeroides. J Bacteriol 2013; 195:4716-25. [PMID: 23955006 DOI: 10.1128/jb.00685-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anoxygenic phototroph Rhodobacter sphaeroides uses 3-hydroxypropionate as a sole carbon source for growth. Previously, we showed that the gene (RSP_1434) known as acuI, which encodes a protein of the medium-chain dehydrogenase/reductase (MDR) superfamily, was involved in 3-hydroxypropionate assimilation via the reductive conversion to propionyl-coenzyme A (CoA). Based on these results, we speculated that acuI encoded acrylyl-CoA reductase. In this work, we characterize the in vitro enzyme activity of purified, recombinant AcuI using a coupled spectrophotometric assay. AcuI from R. sphaeroides catalyzes the NADPH-dependent acrylyl-CoA reduction to produce propionyl-CoA. Two other members of the MDR012 family within the MDR superfamily, the products of SPO_1914 from Ruegeria pomeroyi and yhdH from Escherichia coli, were shown to also be part of this new class of NADPH-dependent acrylyl-CoA reductases. The activities of the three enzymes were characterized by an extremely low Km for acrylyl-CoA (<3 μM) and turnover numbers of 45 to 80 s(-1). These homodimeric enzymes were highly specific for NADPH (Km = 18 to 33 μM), with catalytic efficiencies of more than 10-fold higher for NADPH than for NADH. The introduction of codon-optimized SPO_1914 or yhdH into a ΔacuI::kan mutant of R. sphaeroides on a plasmid complemented 3-hydroxypropionate-dependent growth. However, in their native hosts, SPO_1914 and yhdH are believed to function in the metabolism of substrates other than 3-hydroxypropionate, where acrylyl-CoA is an intermediate. Complementation of the ΔacuI::kan mutant phenotype by crotonyl-CoA carboxylase/reductase from R. sphaeroides was attributed to the fact that the enzyme also uses acrylyl-CoA as a substrate.
Collapse
|
21
|
Reisch CR, Crabb WM, Gifford SM, Teng Q, Stoudemayer MJ, Moran MA, Whitman WB. Metabolism of dimethylsulphoniopropionate byRuegeria pomeroyi DSS-3. Mol Microbiol 2013; 89:774-91. [DOI: 10.1111/mmi.12314] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2013] [Indexed: 11/25/2022]
Affiliation(s)
- Chris R. Reisch
- Department of Microbiology; University of Georgia; Athens; GA; USA
| | - Warren M. Crabb
- Department of Microbiology; University of Georgia; Athens; GA; USA
| | - Scott M. Gifford
- Department of Marine sciences; University of Georgia; Athens; GA; USA
| | - Quincy Teng
- US Environmental Protection Agency; Athens; GA; USA
| | | | - Mary Ann Moran
- Department of Marine sciences; University of Georgia; Athens; GA; USA
| | | |
Collapse
|
22
|
Chan LK, Newton RJ, Sharma S, Smith CB, Rayapati P, Limardo AJ, Meile C, Moran MA. Transcriptional changes underlying elemental stoichiometry shifts in a marine heterotrophic bacterium. Front Microbiol 2012; 3:159. [PMID: 22783226 PMCID: PMC3390766 DOI: 10.3389/fmicb.2012.00159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 04/09/2012] [Indexed: 12/03/2022] Open
Abstract
Marine bacteria drive the biogeochemical processing of oceanic dissolved organic carbon (DOC), a 750-Tg C reservoir that is a critical component of the global C cycle. Catabolism of DOC is thought to be regulated by the biomass composition of heterotrophic bacteria, as cells maintain a C:N:P ratio of ∼50:10:1 during DOC processing. Yet a complicating factor in stoichiometry-based analyses is that bacteria can change the C:N:P ratio of their biomass in response to resource composition. We investigated the physiological mechanisms of resource-driven shifts in biomass stoichiometry in continuous cultures of the marine heterotrophic bacterium Ruegeria pomeroyi (a member of the Roseobacter clade) under four element limitation regimes (C, N, P, and S). Microarray analysis indicated that the bacterium scavenged for alternate sources of the scarce element when cells were C-, N-, or P-limited; reworked the ratios of biomolecules when C- and P- limited; and exerted tighter control over import/export and cytoplasmic pools when N-limited. Under S limitation, a scenario not existing naturally for surface ocean microbes, stress responses dominated transcriptional changes. Resource-driven changes in C:N ratios of up to 2.5-fold and in C:P ratios of up to sixfold were measured in R. pomeroyi biomass. These changes were best explained if the C and P content of the cells was flexible in the face of shifting resources but N content was not, achieved through the net balance of different transcriptional strategies. The cellular-level metabolic trade-offs that govern biomass stoichiometry in R. pomeroyi may have implications for global carbon cycling if extendable to other heterotrophic bacteria. Strong homeostatic responses to N limitation by marine bacteria would intensify competition with autotrophs. Modification of cellular inventories in C- and P-limited heterotrophs would vary the elemental ratio of particulate organic matter sequestered in the deep ocean.
Collapse
Affiliation(s)
- Leong-Keat Chan
- Department of Marine Sciences, University of GeorgiaAthens, GA, USA
| | - Ryan J. Newton
- Department of Marine Sciences, University of GeorgiaAthens, GA, USA
- Great Lakes WATER Institute, University of Wisconsin-MilwaukeeMilwaukee, WI, USA
| | - Shalabh Sharma
- Department of Marine Sciences, University of GeorgiaAthens, GA, USA
| | - Christa B. Smith
- Department of Marine Sciences, University of GeorgiaAthens, GA, USA
| | | | | | - Christof Meile
- Department of Marine Sciences, University of GeorgiaAthens, GA, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of GeorgiaAthens, GA, USA
| |
Collapse
|
23
|
Todd JD, Curson ARJ, Sullivan MJ, Kirkwood M, Johnston AWB. The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate. PLoS One 2012; 7:e35947. [PMID: 22563425 PMCID: PMC3338564 DOI: 10.1371/journal.pone.0035947] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/23/2012] [Indexed: 11/17/2022] Open
Abstract
The Escherichia coli YhdH polypeptide is in the MDR012 sub-group of medium chain reductase/dehydrogenases, but its biological function was unknown and no phenotypes of YhdH− mutants had been described. We found that an E. coli strain with an insertional mutation in yhdH was hyper-sensitive to inhibitory effects of acrylate, and, to a lesser extent, to those of 3-hydroxypropionate. Close homologues of YhdH occur in many Bacterial taxa and at least two animals. The acrylate sensitivity of YhdH− mutants was corrected by the corresponding, cloned homologues from several bacteria. One such homologue is acuI, which has a role in acrylate degradation in marine bacteria that catabolise dimethylsulfoniopropionate (DMSP) an abundant anti-stress compound made by marine phytoplankton. The acuI genes of such bacteria are often linked to ddd genes that encode enzymes that cleave DMSP into acrylate plus dimethyl sulfide (DMS), even though these are in different polypeptide families, in unrelated bacteria. Furthermore, most strains of Roseobacters, a clade of abundant marine bacteria, cleave DMSP into acrylate plus DMS, and can also demethylate it, using DMSP demethylase. In most Roseobacters, the corresponding gene, dmdA, lies immediately upstream of acuI and in the model Roseobacter strain Ruegeria pomeroyi DSS-3, dmdA-acuI were co-regulated in response to the co-inducer, acrylate. These observations, together with findings by others that AcuI has acryloyl-CoA reductase activity, lead us to suggest that YdhH/AcuI enzymes protect cells against damaging effects of intracellular acryloyl-CoA, formed endogenously, and/or via catabolising exogenous acrylate. To provide “added protection” for bacteria that form acrylate from DMSP, acuI was recruited into clusters of genes involved in this conversion and, in the case of acuI and dmdA in the Roseobacters, their co-expression may underpin an interaction between the two routes of DMSP catabolism, whereby the acrylate product of DMSP lyases is a co-inducer for the demethylation pathway.
Collapse
Affiliation(s)
- Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Bacterial dimethylsulfoniopropionate degradation genes in the oligotrophic north pacific subtropical gyre. Appl Environ Microbiol 2012; 78:2775-82. [PMID: 22327587 DOI: 10.1128/aem.07559-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dimethylsulfoniopropionate (DMSP) is an organic sulfur compound that is rapidly metabolized by marine bacteria either by cleavage to dimethylsulfide (DMS) or demethylation to 3-methiolpropionate. The abundance and diversity of genes encoding bacterial DMS production (dddP) and demethylation (dmdA) were measured in the North Pacific subtropical gyre (NPSG) between May 2008 and February 2009 at Station ALOHA (22°45'N, 158°00'W) at two depths: 25 m and the deep chlorophyll maximum (DCM; ∼100 m). The highest abundance of dmdA genes was in May 2008 at 25 m, with ∼16.5% of cells harboring a gene in one of the eight subclades surveyed, while the highest abundance of dddP genes was in July 2008 at 25 m, with ∼2% of cells harboring a gene. The dmdA gene pool was consistently dominated by homologs from SAR11 subclades, which was supported by findings in metagenomic data sets derived from Station ALOHA. Expression of the SAR11 dmdA genes was low, with typical transcript:gene ratios between 1:350 and 1:1,400. The abundance of DMSP genes was statistically different between 25 m and the DCM and correlated with a number of environmental variables, including primary production, photosynthetically active radiation, particulate DMSP, and DMS concentrations. At 25 m, dddP abundance was positively correlated with pigments that are diagnostic of diatoms; at the DCM, dmdA abundance was positively correlated with temperature. Based on gene abundance, we hypothesize that SAR11 bacterioplankton dominate DMSP cycling in the oligotrophic NPSG, with lesser but consistent involvement of other members of the bacterioplankton community.
Collapse
|
25
|
Moran MA, Reisch CR, Kiene RP, Whitman WB. Genomic insights into bacterial DMSP transformations. ANNUAL REVIEW OF MARINE SCIENCE 2012; 4:523-542. [PMID: 22457986 DOI: 10.1146/annurev-marine-120710-100827] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Genomic and functional genomic methods applied to both model organisms and natural communities have rapidly advanced understanding of bacterial dimethylsulfoniopropionate (DMSP) degradation in the ocean. The genes for the two main pathways in bacterial degradation, routing DMSP to distinctly different biogeochemical fates, have recently been identified. The genes dmdA, -B, -C, and -D mediate the demethylation of DMSP and facilitate retention of carbon and sulfur in the marine microbial food web. The genes dddD, -L, -P, -Q, -W, and -Y mediate the cleavage of DMSP to dimethylsulfide (DMS), with important consequences for ocean-atmosphere sulfur flux. In ocean metagenomes, sufficient copies of these genes are present for approximately 60% of surface ocean bacterial cells to directly participate in DMSP degradation. The factors that regulate these two competing pathways remain elusive, but gene transcription analyses of natural bacterioplankton communities are making headway in unraveling the intricacies of bacterial DMSP processing in the ocean.
Collapse
Affiliation(s)
- Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, Georgia 30602, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
The compatible solute dimethylsulphoniopropionate (DMSP) has important roles in marine environments. It is an anti-stress compound made by many single-celled plankton, some seaweeds and a few land plants that live by the shore. Furthermore, in the oceans it is a major source of carbon and sulphur for marine bacteria that break it down to products such as dimethyl sulphide, which are important in their own right and have wide-ranging effects, from altering animal behaviour to seeding cloud formation. In this Review, we describe how recent genetic and genomic work on the ways in which several different bacteria, and some fungi, catabolize DMSP has provided new and surprising insights into the mechanisms, regulation and possible evolution of DMSP catabolism in microorganisms.
Collapse
|
27
|
Johnson NG, Burnett LE, Burnett KG. Properties of bacteria that trigger hemocytopenia in the Atlantic blue crab, Callinectes sapidus. THE BIOLOGICAL BULLETIN 2011; 221:164-175. [PMID: 22042435 DOI: 10.1086/bblv221n2p164] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In the blue crab Callinectes sapidus, injection with the bacterial pathogen Vibrio campbellii causes a decrease in oxygen consumption. Histological and physiological evidence suggests that the physical obstruction of hemolymph flow through the gill vasculature, caused by aggregations of bacteria and hemocytes, underlies the decrease in aerobic function associated with bacterial infection. We sought to elucidate the bacterial properties sufficient to induce a decrease in circulating hemocytes (hemocytopenia) as an indicator for the initiation of hemocyte aggregation and subsequent impairment of respiration. Lipopolysaccharide (LPS), the primary component of the gram-negative bacterial cell wall, is known to interact with crustacean hemocytes. Purified LPS was covalently bound to the surfaces of polystyrene beads resembling bacteria in size. Injection of these "LPS beads" caused a decrease in circulating hemocytes comparable to that seen with V. campbellii injection, while beads alone failed to do so. These data suggest that in general, gram-negative bacteria could stimulate hemocytopenia. To test this hypothesis, crabs were injected with different bacteria--seven gram-negative and one gram-positive species--and their effects on circulating hemocytes were assessed. With one exception, all gram-negative strains caused decreases in circulating hemocytes, suggesting an important role for LPS in the induction of this response. However, LPS is not necessary to provoke the immune response given that Bacillus coral, a gram-positive species that lacks LPS, caused a decrease in circulating hemocytes. These results suggest that a wide range of bacteria could impair metabolism in C. sapidus.
Collapse
Affiliation(s)
- Nathaniel G Johnson
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Rd., Charleston, South Carolina 29412, USA.
| | | | | |
Collapse
|
28
|
Christie-Oleza JA, Fernandez B, Nogales B, Bosch R, Armengaud J. Proteomic insights into the lifestyle of an environmentally relevant marine bacterium. ISME JOURNAL 2011; 6:124-35. [PMID: 21776030 DOI: 10.1038/ismej.2011.86] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In terms of lifestyle, free-living bacteria are classified as either oligotrophic/specialist or opportunist/generalist. Heterogeneous marine environments such as coastal waters favour the establishment of marine generalist bacteria, which code for a large pool of functions. This is basically foreseen to cope with the heterogeneity of organic matter supplied to these systems. Nevertheless, it is not known what fraction of a generalist proteome is needed for house-keeping functions or what fraction is modified to cope with environmental changes. Here, we used high-throughput proteomics to define the proteome of Ruegeria pomeroyi DSS-3, a model marine generalist bacterium of the Roseobacter clade. We evaluated its genome expression under several natural environmental conditions, revealing the versatility of the bacterium to adapt to anthropogenic influence, poor nutrient concentrations or the presence of the natural microbial community. We also assayed 30 different laboratory incubations to increase proteome coverage and to dig further into the functional genomics of the bacterium. We established its core proteome and the proteome devoted to adaptation to general cellular physiological variations (almost 50%). We suggest that the other half of its theoretical proteome is the opportunist genetic pool devoted exclusively to very specific environmental conditions.
Collapse
|
29
|
Peplinski K, Ehrenreich A, Döring C, Bömeke M, Steinbüchel A. Investigations on the microbial catabolism of the organic sulfur compounds TDP and DTDP in Ralstonia eutropha H16 employing DNA microarrays. Appl Microbiol Biotechnol 2010; 88:1145-59. [PMID: 20924576 PMCID: PMC3128720 DOI: 10.1007/s00253-010-2915-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/05/2010] [Accepted: 09/08/2010] [Indexed: 11/27/2022]
Abstract
In this study, we have investigated the transcriptome of Ralstonia eutropha H16 during cultivation with gluconate in presence of 3,3′-thiodipropionic acid (TDP) or 3,3′-dithiodipropionic acid (DTDP) during biosynthesis of poly(3-hydroxybutyrate-co-3-mercaptopropionate). Genome-wide transcriptome analyses revealed several genes which were upregulated during cultivation in presence of the above-mentioned compounds. Obtained data strongly suggest that two ABC-type transport system and three probable extracytoplasmic solute receptors mediate the uptake of TDP and DTDP, respectively. In addition, genes encoding the hydrolase S-adenosylhomocysteinase AhcY and the thiol-disulfide interchange proteins DsbA, DsbD, and FrnE were upregulated during cultivation on DTDP and, in case of AhcY and FrnE, on TDP as well. It is assumed that the corresponding enzymes are involved in the cleavage of TDP and DTDP. Several genes of the fatty acid metabolism exhibited increased expression levels: genes encoding two acetyltransferases, a predicted acyltransferase, the acetoacetyl-CoA reductase phaB3, an enoyl-CoA hydratase as well as an acyl dehydratase, an acetyl-CoA synthetase, two acyl-CoA dehydrogenases, the methylmalonyl-CoA mutase encoded by sbm1 and sbm2 and phaY1 were detected. Furthermore, ORF H16_A0217 encoding a hypothetical protein and exhibiting 54% amino acids identical to an acyl-CoA thioesterase from Saccharomonospora viridis was found to be highly upregulated. As the 2-methylcitrate synthase PrpC exhibited a three- to fourfold increased activity in cells grown in presence of TDP or DTDP as compared to gluconate, metabolization of the cleavage products 3MP and 3-hydroxypropionate to propionyl-CoA is proposed.
Collapse
Affiliation(s)
- Katja Peplinski
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, 48149 Münster, Germany
| | - Armin Ehrenreich
- Institut für Mikrobiologie, Technische Universität München, Am Hochanger 4, 85354 Freising, Germany
| | - Christina Döring
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Mechthild Bömeke
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, 48149 Münster, Germany
| |
Collapse
|
30
|
Rinta-Kanto JM, Bürgmann H, Gifford SM, Sun S, Sharma S, del Valle DA, Kiene RP, Moran MA. Analysis of sulfur-related transcription by Roseobacter communities using a taxon-specific functional gene microarray. Environ Microbiol 2010; 13:453-67. [DOI: 10.1111/j.1462-2920.2010.02350.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Todd JD, Curson ARJ, Kirkwood M, Sullivan MJ, Green RT, Johnston AWB. DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. Environ Microbiol 2010; 13:427-38. [PMID: 20880330 DOI: 10.1111/j.1462-2920.2010.02348.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ruegeria (previously Silicibacter) pomeroyi DSS-3, a marine roseobacter, can catabolize dimethylsulfoniopropionate (DMSP), a compatible solute that is made in large amounts by marine plankton and algae. This strain was known to demethylate DMSP via a demethylase, encoded by the dmdA gene, and it can also cleave DMSP, releasing the environmentally important volatile dimethyl sulfide (DMS) in the process. We found that this strain has two different genes, dddP and dddQ, which encode enzymes that cleave DMSP, generating DMS plus acrylate. DddP had earlier been found in other roseobacters and is a member of the M24 family of peptidases. The newly discovered DddQ polypeptide contains a predicted cupin metal-binding pocket, but has no other similarity to any other polypeptide with known function. DddP(-) and DddQ(-) mutants each produced DMS at significantly reduced levels compared with wild-type R. pomeroyi DSS-3, and transcription of the corresponding ddd genes was enhanced when cells were pre-grown with DMSP. Ruegeria pomeroyi DSS-3 also has a gene product that is homologous to DddD, a previously identified enzyme that cleaves DMSP, but which forms DMS plus 3-OH-propionate as the initial catabolites. However, mutations in this dddD-like gene did not affect DMS production, and it was not transcribed under our conditions. Another roseobacter strain, Roseovarius nubinhibens ISM, also contains dddP and has two functional copies of dddQ, encoded by adjacent genes. Judged by their frequencies in the Global Ocean Sampling metagenomic databases, DddP and DddQ are relatively abundant among marine bacteria compared with the previously identified DddL and DddD enzymes.
Collapse
Affiliation(s)
- Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | | | | | | | | |
Collapse
|
32
|
He S, Wurtzel O, Singh K, Froula JL, Yilmaz S, Tringe SG, Wang Z, Chen F, Lindquist EA, Sorek R, Hugenholtz P. Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nat Methods 2010; 7:807-12. [DOI: 10.1038/nmeth.1507] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 08/30/2010] [Indexed: 01/16/2023]
|
33
|
Gifford SM, Sharma S, Rinta-Kanto JM, Moran MA. Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. ISME JOURNAL 2010; 5:461-72. [PMID: 20844569 DOI: 10.1038/ismej.2010.141] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The potential of metatranscriptomic sequencing to provide insights into the environmental factors that regulate microbial activities depends on how fully the sequence libraries capture community expression (that is, sample-sequencing depth and coverage depth), and the sensitivity with which expression differences between communities can be detected (that is, statistical power for hypothesis testing). In this study, we use an internal standard approach to make absolute (per liter) estimates of transcript numbers, a significant advantage over proportional estimates that can be biased by expression changes in unrelated genes. Coastal waters of the southeastern United States contain 1 × 10(12) bacterioplankton mRNA molecules per liter of seawater (~200 mRNA molecules per bacterial cell). Even for the large bacterioplankton libraries obtained in this study (~500,000 possible protein-encoding sequences in each of two libraries after discarding rRNAs and small RNAs from >1 million 454 FLX pyrosequencing reads), sample-sequencing depth was only 0.00001%. Expression levels of 82 genes diagnostic for transformations in the marine nitrogen, phosphorus and sulfur cycles ranged from below detection (<1 × 10(6) transcripts per liter) for 36 genes (for example, phosphonate metabolism gene phnH, dissimilatory nitrate reductase subunit napA) to >2.7 × 10(9) transcripts per liter (ammonia transporter amt and ammonia monooxygenase subunit amoC). Half of the categories for which expression was detected, however, had too few copy numbers for robust statistical resolution, as would be required for comparative (experimental or time-series) expression studies. By representing whole community gene abundance and expression in absolute units (per volume or mass of environment), 'omics' data can be better leveraged to improve understanding of microbially mediated processes in the ocean.
Collapse
Affiliation(s)
- Scott M Gifford
- Department of Marine Sciences, University of Georgia, Athens, GA 30602-3636, USA
| | | | | | | |
Collapse
|
34
|
In-depth analysis of exoproteomes from marine bacteria by shotgun liquid chromatography-tandem mass spectrometry: the Ruegeria pomeroyi DSS-3 case-study. Mar Drugs 2010; 8:2223-39. [PMID: 20948905 PMCID: PMC2953401 DOI: 10.3390/md8082223] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 12/16/2022] Open
Abstract
Microorganisms secrete into their extracellular environment numerous compounds that are required for their survival. Many of these compounds could be of great interest for biotechnology applications and their genes used in synthetic biology design. The secreted proteins and the components of the translocation systems themselves can be scrutinized in-depth by the most recent proteomic tools. While the secretomes of pathogens are well-documented, those of non-pathogens remain largely to be established. Here, we present the analysis of the exoproteome from the marine bacterium Ruegeria pomeroyi DSS-3 grown in standard laboratory conditions. We used a shotgun approach consisting of trypsin digestion of the exoproteome, and identification of the resulting peptides by liquid chromatography coupled to tandem mass spectrometry. Three different proteins that have domains homologous to those observed in RTX toxins were uncovered and were semi-quantified as the most abundantly secreted proteins. One of these proteins clearly stands out from the catalogue, representing over half of the total exoproteome. We also listed many soluble proteins related to ABC and TRAP transporters implied in the uptake of nutrients. The Ruegeria pomeroyi DSS-3 case-study illustrates the power of the shotgun nano-LC-MS/MS strategy to decipher the exoproteome from marine bacteria and to contribute to environmental proteomics.
Collapse
|
35
|
Hewson I, Poretsky RS, Tripp HJ, Montoya JP, Zehr JP. Spatial patterns and light-driven variation of microbial population gene expression in surface waters of the oligotrophic open ocean. Environ Microbiol 2010; 12:1940-56. [PMID: 20406287 DOI: 10.1111/j.1462-2920.2010.02198.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Because bacterioplankton production rates do not vary strongly across vast expanses of the ocean, it is unclear how variability in community structure corresponds with functional variability in the open ocean. We surveyed community transcript functional profiles at eight locations in the open ocean, in both the light and in the dark, using the genomic subsystems approach, to understand variability in gene expression patterns in surface waters. Metatranscriptomes from geographically distinct areas and collected during the day and night shared a large proportion of metabolic functional similarity (74%) at the finest metabolic resolution possible. The variability between metatranscriptomes could be explained by phylogenetic differences between libraries (Mantel test, P < 0.0001). Several key gene expression pathways, including Photosystem I, Photosystem II and ammonium uptake, demonstrated the most variability both geographically and between light and dark. Libraries were dominated by transcripts of the cyanobacterium Prochlorocococcus marinus, where most geographical and diel variability between metatranscriptomes reflected between-station differences in cyanobacterial phototrophic metabolism. Our results demonstrate that active genetic machinery in surface waters of the ocean is dominated by photosynthetic microorganisms and their site-to-site variability, while variability in the remainder of assemblages is dependent on local taxonomic composition.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Wing Hall 403, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
36
|
Todd JD, Curson ARJ, Nikolaidou-Katsaraidou N, Brearley CA, Watmough NJ, Chan Y, Page PCB, Sun L, Johnston AWB. Molecular dissection of bacterial acrylate catabolism - unexpected links with dimethylsulfoniopropionate catabolism and dimethyl sulfide production. Environ Microbiol 2010; 12:327-43. [DOI: 10.1111/j.1462-2920.2009.02071.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME. The expanding world of methylotrophic metabolism. Annu Rev Microbiol 2009; 63:477-99. [PMID: 19514844 DOI: 10.1146/annurev.micro.091208.073600] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the past few years, the field of methylotrophy has undergone a significant transformation in terms of discovery of novel types of methylotrophs, novel modes of methylotrophy, and novel metabolic pathways. This time has also been marked by the resolution of long-standing questions regarding methylotrophy and the challenge of long-standing dogmas. This chapter is not intended to provide a comprehensive review of metabolism of methylotrophic bacteria. Instead we focus on significant recent discoveries that are both refining and transforming the current understanding of methylotrophy as a metabolic phenomenon. We also review new directions in methylotroph ecology that improve our understanding of the role of methylotrophy in global biogeochemical processes, along with an outlook for the future challenges in the field.
Collapse
Affiliation(s)
- Ludmila Chistoserdova
- Departments of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
38
|
Abstract
Two bacteriophages, DSS3Phi2 and EE36Phi1, which infect marine roseobacters Silicibacter pomeroyi DSS-3 and Sulfitobacter sp. EE-36, respectively, were isolated from Baltimore Inner Harbor water. These two roseophages resemble bacteriophage N4, a large, short-tailed phage infecting Escherichia coli K12, in terms of their morphology and genomic structure. The full genome sequences of DSS3Phi2 and EE36Phi1 reveal that their genome sizes are 74.6 and 73.3 kb, respectively, and they both contain a highly conserved N4-like DNA replication and transcription system. Both roseophages contain a large virion-encapsidated RNA polymerase gene (> 10 kb), which was first discovered in N4. DSS3Phi2 and EE36Phi1 also possess several genes (i.e. ribonucleotide reductase and thioredoxin) that are most similar to the genes in roseobacters. Overall, the two roseophages are highly closely related, and share 80-94% nucleotide sequence identity over 85% of their ORFs. This is the first report of N4-like phages infecting marine bacteria and the second report of N4-like phage since the discovery of phage N4 40 years ago. The finding of these two N4-like roseophages will allow us to further explore the specific phage-host interaction and evolution for this unique group of bacteriophages.
Collapse
Affiliation(s)
- Yanlin Zhao
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD 21202, USA
| | | | | | | |
Collapse
|
39
|
Smith CJ, Osborn AM. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 2009; 67:6-20. [PMID: 19120456 DOI: 10.1111/j.1574-6941.2008.00629.x] [Citation(s) in RCA: 420] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Quantitative PCR (Q-PCR or real-time PCR) approaches are now widely applied in microbial ecology to quantify the abundance and expression of taxonomic and functional gene markers within the environment. Q-PCR-based analyses combine 'traditional' end-point detection PCR with fluorescent detection technologies to record the accumulation of amplicons in 'real time' during each cycle of the PCR amplification. By detection of amplicons during the early exponential phase of the PCR, this enables the quantification of gene (or transcript) numbers when these are proportional to the starting template concentration. When Q-PCR is coupled with a preceding reverse transcription reaction, it can be used to quantify gene expression (RT-Q-PCR). This review firstly addresses the theoretical and practical implementation of Q-PCR and RT-Q-PCR protocols in microbial ecology, highlighting key experimental considerations. Secondly, we review the applications of (RT)-Q-PCR analyses in environmental microbiology and evaluate the contribution and advances gained from such approaches. Finally, we conclude by offering future perspectives on the application of (RT)-Q-PCR in furthering understanding in microbial ecology, in particular, when coupled with other molecular approaches and more traditional investigations of environmental systems.
Collapse
Affiliation(s)
- Cindy J Smith
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | | |
Collapse
|
40
|
Poretsky RS, Hewson I, Sun S, Allen AE, Zehr JP, Moran MA. Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environ Microbiol 2009; 11:1358-75. [PMID: 19207571 DOI: 10.1111/j.1462-2920.2008.01863.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metatranscriptomic analyses of microbial assemblages (< 5 microm) from surface water at the Hawaiian Ocean Time-Series (HOT) revealed community-wide metabolic activities and day/night patterns of differential gene expression. Pyrosequencing produced 75 558 putative mRNA reads from a day transcriptome and 75 946 from a night transcriptome. Taxonomic binning of annotated mRNAs indicated that Cyanobacteria contributed a greater percentage of the transcripts (54% of annotated sequences) than expected based on abundance (35% of cell counts and 21% 16S rRNA of libraries), and may represent the most actively transcribing cells in this surface ocean community in both the day and night. Major heterotrophic taxa contributing to the community transcriptome included alpha-Proteobacteria (19% of annotated sequences, most of which were SAR11-related) and gamma-Proteobacteria (4%). The composition of transcript pools was consistent with models of prokaryotic gene expression, including operon-based transcription patterns and an abundance of genes predicted to be highly expressed. Metabolic activities that are shared by many microbial taxa (e.g. glycolysis, citric acid cycle, amino acid biosynthesis and transcription and translation machinery) were well represented among the community transcripts. There was an overabundance of transcripts for photosynthesis, C1 metabolism and oxidative phosphorylation in the day compared with night, and evidence that energy acquisition is coordinated with solar radiation levels for both autotrophic and heterotrophic microbes. In contrast, housekeeping activities such as amino acid biosynthesis, membrane synthesis and repair, and vitamin biosynthesis were overrepresented in the night transcriptome. Direct sequencing of these environmental transcripts has provided detailed information on metabolic and biogeochemical responses of a microbial community to solar forcing.
Collapse
Affiliation(s)
- Rachel S Poretsky
- University of Georgia, Department of Marine Sciences, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
41
|
Wübbeler JH, Bruland N, Kretschmer K, Steinbüchel A. Novel pathway for catabolism of the organic sulfur compound 3,3'-dithiodipropionic acid via 3-mercaptopropionic acid and 3-Sulfinopropionic acid to propionyl-coenzyme A by the aerobic bacterium Tetrathiobacter mimigardefordensis strain DPN7. Appl Environ Microbiol 2008; 74:4028-35. [PMID: 18456849 PMCID: PMC2446527 DOI: 10.1128/aem.00422-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 04/25/2008] [Indexed: 11/20/2022] Open
Abstract
The hitherto unstudied microbial degradation of the organic disulfide 3,3'-dithiodipropionic acid (DTDP) was investigated with the recently described bacterium Tetrathiobacter mimigardefordensis strain DPN7(T) (DSM 17166(T); LMG 22922(T)), which is able to use DTDP as the sole carbon source for growth. 3-Mercaptopropionic acid (3MP) and 3-sulfinopropionic acid (3SP) were detected in the growth medium and occurred as intermediates during DTDP degradation. To identify genes coding for enzymes of DTDP catabolism, Tn5::mob-induced mutants of T. mimigardefordensis were generated. Screening of transposon mutant libraries yielded many mutants fully or partially impaired in utilizing DTDP as a carbon source. Mapping of the insertion loci in some mutants identified four disrupted open reading frames (ORFs) with putative metabolic functions. The ORFs were assigned function on the basis of homologies with lpdA (EC 1.8.1.4), cdo (EC 1.13.11.20), sucCD (EC 6.2.1.5), and acnB (EC 4.2.1.3). Tn5::mob insertions occurred additionally in the vicinity of heat shock protein-encoding genes. The predicted function of the LpdA homologue in T. mimigardefordensis is cleavage of the disulfide bond of DTDP to form two molecules of 3MP. Cdo catalyzes the conversion of the sulfhydryl group of 3MP, yielding the corresponding sulfinic acid, 3SP. SucCD exhibits thiokinase activity, ligating coenzyme A (CoA) with 3SP to form 3SP-CoA. Afterwards, an elimination of sulfite via a putative desulfinase is expected. acnB encodes a putative 2-methylisocitrate dehydratase. Therefore, a new pathway is proposed for the catabolism of DTDP via 3MP, 3SP, and 3SP-CoA toward propionyl-CoA, which is then further catabolized via the 2-methylcitric acid cycle in T. mimigardefordensis.
Collapse
Affiliation(s)
- Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | | | | | | |
Collapse
|
42
|
Howard EC, Sun S, Biers EJ, Moran MA. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environ Microbiol 2008; 10:2397-410. [PMID: 18510552 DOI: 10.1111/j.1462-2920.2008.01665.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An expanded analysis of oceanic metagenomic data indicates that the majority of prokaryotic cells in marine surface waters have the genetic capability to demethylate dimethylsulfoniopropionate (DMSP). The 1701 homologues of the DMSP demethylase gene, dmdA, identified in the (2007) Global Ocean Sampling (GOS) metagenome, are sufficient for 58% (+/-9%) of sampled cells to participate in this critical step in the marine sulfur cycle. This remarkable frequency of DMSP-demethylating cells is in accordance with biogeochemical data indicating that marine phytoplankton direct up to 10% of fixed carbon to DMSP synthesis, and that most of this DMSP is subsequently degraded by bacteria via demethylation. The GOS metagenomic data also revealed a new cluster of dmdA sequences (designated Clade E) that implicates marine gammaproteobacteria in DMSP demethylation, along with previously recognized alphaproteobacterial groups Roseobacter and SAR11. Analyses of G+C content and gene order indicate that lateral gene transfer is likely responsible for the wide distribution of dmdA among diverse taxa, contributing to the homogenization of biogeochemical roles among heterotrophic marine bacterioplankton. Candidate genes for the competing bacterial degradation process that converts DMSP to the climate-active gas dimethylsulfide (DMS) (dddD and dddL) occur infrequently in the (2007) GOS metagenome, suggesting either that the key DMS-producing bacterial genes are yet to be identified or that DMS formation by free-living bacterioplankton is insignificant relative to their demethylation activity.
Collapse
Affiliation(s)
- Erinn C Howard
- Departments of Microbiology, University of Georgia, Athens, GA, USA
| | | | | | | |
Collapse
|
43
|
Curson ARJ, Rogers R, Todd JD, Brearley CA, Johnston AWB. Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine alpha-proteobacteria and Rhodobacter sphaeroides. Environ Microbiol 2008; 10:757-67. [PMID: 18237308 DOI: 10.1111/j.1462-2920.2007.01499.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The alpha-proteobacterium Sulfitobacter EE-36 makes the gas dimethylsulfide (DMS) from dimethylsulfoniopropionate (DMSP), an abundant antistress molecule made by many marine phytoplankton. We screened a cosmid library of Sulfitobacter for clones that conferred to other bacteria the ability to make DMS. One gene, termed dddL, was sufficient for this phenotype when cloned in pET21a and introduced into Escherichia coli. Close DddL homologues exist in the marine alpha-proteobacteria Fulvimarina, Loktanella Oceanicola and Stappia, all of which made DMS when grown on DMSP. There was also a dddL homologue in Rhodobacter sphaeroides strain 2.4.1, but not in strain ATCC 17025; significantly, the former, but not the latter, emits DMS when grown with DMSP. Escherichia coli containing the cloned, overexpressed dddL genes of R. sphaeroides 2.4.1 and Sulfitobacter could convert DMSP to acrylate plus DMS. This is the first identification of such a 'DMSP lyase'. Thus, DMS can be made either by this DddL lyase or by a DMSP acyl CoA transferase, specified by dddD, a gene that we had identified in several other marine bacteria.
Collapse
Affiliation(s)
- A R J Curson
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | | | | | |
Collapse
|