1
|
Li CY, Cao HY, Payet RD, Todd JD, Zhang YZ. Dimethylsulfoniopropionate (DMSP): From Biochemistry to Global Ecological Significance. Annu Rev Microbiol 2024; 78:513-532. [PMID: 39231449 DOI: 10.1146/annurev-micro-041222-024055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Dimethylsulfoniopropionate (DMSP) is one of Earth's most abundant organosulfur compounds with important roles in stress tolerance, chemotaxis, global carbon and sulfur cycling, and climate-active gas production. Diverse marine prokaryotes and eukaryotes produce DMSP via three known pathways (methylation, transamination, and decarboxylation) and metabolize DMSP via three further pathways (demethylation, cleavage, and oxidation). Over 20 key enzymes from these pathways have been identified that demonstrate the biodiversity and importance of DMSP cycling. The last dozen years have seen significant changes in our understanding of the enzymology and molecular mechanisms of these DMSP cycling enzymes through the application of biochemistry and structural biology. This has yielded more than 10 crystal structures and, in many cases, detailed explanations as to how and why organisms synthesis and metabolize DMSP. In this review, we describe recent progress in biochemical and mechanistic understandings of DMSP synthesis and metabolism, highlighting the important knowledge gleaned and current challenges that warrant further exploration.
Collapse
Affiliation(s)
- Chun-Yang Li
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
- MOE Key Laboratory of Evolution and Marine Biodiversity; Frontiers Science Center for Deep Ocean Multispheres and Earth System; and College of Marine Life Sciences, Ocean University of China, Qingdao, China;
| | - Hai-Yan Cao
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
- MOE Key Laboratory of Evolution and Marine Biodiversity; Frontiers Science Center for Deep Ocean Multispheres and Earth System; and College of Marine Life Sciences, Ocean University of China, Qingdao, China;
| | - Rocky D Payet
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- MOE Key Laboratory of Evolution and Marine Biodiversity; Frontiers Science Center for Deep Ocean Multispheres and Earth System; and College of Marine Life Sciences, Ocean University of China, Qingdao, China;
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China;
- MOE Key Laboratory of Evolution and Marine Biodiversity; Frontiers Science Center for Deep Ocean Multispheres and Earth System; and College of Marine Life Sciences, Ocean University of China, Qingdao, China;
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
2
|
Li J, Todd J, Yu Z. The production of dimethylsulfoniopropionate by bacteria with mmtN linked to non-ribosomal peptide synthase gene. ENVIRONMENTAL TECHNOLOGY 2024; 45:5016-5024. [PMID: 37970872 DOI: 10.1080/09593330.2023.2283792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
Dimethylsulfoniopropionate (DMSP) is a vital sulfur-containing compound with worldwide significance, serving as the primary precursor for dimethyl sulfide (DMS), a volatile sulfur compound that plays a role in atmospheric chemistry and influences the Earth's climate on a global scale. The study investigated the ability of four bacterial strains, namely Acidimangrovimonas sediminis MS2-2 (MS2-2), Hartmannibacter diazotrophicus E18T (E18T), Rhizobium lusitanum 22705 (22705), and Nitrospirillum iridis DSM22198 (DSM22198), to produce and degrade DMSP. These strains were assessed for their DMSP synthesis ability with the mmtN linked to non-ribosomal peptide synthase (NRPS) gene. The results showed that MS2-2, and E18T bacteria, which contained the mmtN but not linked to an NRPS gene, increased DMSP production with increasing salinity. The highest production of DMSP was achieved at 25 PSU when either methionine was added or low nitrogen conditions were present, yielding 1656.03 ± 41.04 and 265.59 ± 9.17 nmol/mg protein, respectively, and subsequently under the conditions of methionine addition or low nitrogen, both strains reached their maximum DMSP production at 25 PSU. Furthermore, the strains MS2-2, E18T, and 22705 with the mmtN gene but not linked to an NRPS gene were found to be involved in DMS production. This research contributes to the understanding of the genes involved in DMSP biosynthesis in bacteria that produce DMSP.
Collapse
Affiliation(s)
- Jinmei Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Biological Sciences, University of East Anglia, Norwich, UK
- RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, People's Republic of China
| | - Jonathan Todd
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, People's Republic of China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City People's Republic of China
| |
Collapse
|
3
|
Wang J, Curson ARJ, Zhou S, Carrión O, Liu J, Vieira AR, Walsham KS, Monaco S, Li CY, Dong QY, Wang Y, Rivera PPL, Wang XD, Zhang M, Hanwell L, Wallace M, Zhu XY, Leão PN, Lea-Smith DJ, Zhang YZ, Zhang XH, Todd JD. Alternative dimethylsulfoniopropionate biosynthesis enzymes in diverse and abundant microorganisms. Nat Microbiol 2024; 9:1979-1992. [PMID: 38862603 PMCID: PMC11306096 DOI: 10.1038/s41564-024-01715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/29/2024] [Indexed: 06/13/2024]
Abstract
Dimethylsulfoniopropionate (DMSP) is an abundant marine organosulfur compound with roles in stress protection, chemotaxis, nutrient and sulfur cycling and climate regulation. Here we report the discovery of a bifunctional DMSP biosynthesis enzyme, DsyGD, in the transamination pathway of the rhizobacterium Gynuella sunshinyii and some filamentous cyanobacteria not previously known to produce DMSP. DsyGD produces DMSP through its N-terminal DsyG methylthiohydroxybutyrate S-methyltransferase and C-terminal DsyD dimethylsulfoniohydroxybutyrate decarboxylase domains. Phylogenetically distinct DsyG-like proteins, termed DSYE, with methylthiohydroxybutyrate S-methyltransferase activity were found in diverse and environmentally abundant algae, comprising a mix of low, high and previously unknown DMSP producers. Algae containing DSYE, particularly bloom-forming Pelagophyceae species, were globally more abundant DMSP producers than those with previously described DMSP synthesis genes. This work greatly increases the number and diversity of predicted DMSP-producing organisms and highlights the importance of Pelagophyceae and other DSYE-containing algae in global DMSP production and sulfur cycling.
Collapse
Affiliation(s)
- Jinyan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Andrew R J Curson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Shun Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ornella Carrión
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ji Liu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Ana R Vieira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Keanu S Walsham
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Chun-Yang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qing-Yu Dong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Peter Paolo L Rivera
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Xiao-Di Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Min Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Libby Hanwell
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Matthew Wallace
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Xiao-Yu Zhu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - David J Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yu-Zhong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China.
| | - Jonathan D Todd
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
4
|
Hamamoto K, Mizuyama M, Nishijima M, Maeda A, Gibu K, Poliseno A, Iguchi A, Reimer JD. Diversity, composition and potential roles of sedimentary microbial communities in different coastal substrates around subtropical Okinawa Island, Japan. ENVIRONMENTAL MICROBIOME 2024; 19:54. [PMID: 39080706 PMCID: PMC11290285 DOI: 10.1186/s40793-024-00594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Marine benthic prokaryotic communities play crucial roles in material recycling within coastal environments, including coral reefs. Coastal sedimentary microbiomes are particularly important as potential reservoirs of symbiotic, beneficial, and pathogenic bacteria in coral reef environments, and therefore presumably play a core role in local ecosystem functioning. However, there is a lack of studies comparing different environments with multiple sites on the island scale, particularly studies focusing on prokaryotic communities, as previous investigations have focused mainly on a single site or on specific environmental conditions. In our study, we collected coastal sediments from seven sites around Okinawa Island, Japan, including three different benthic types; sandy bottoms, seagrass meadows, and hard substratum with living scleractinian corals. We then used metabarcoding to identify prokaryotic compositions and estimate enzymes encoded by genes to infer their functions. RESULTS The results showed that the three substrata had significantly different prokaryotic compositions. Seagrass meadow sites exhibited significantly higher prokaryotic alpha-diversity compared to sandy bottom sites. ANCOM analysis revealed that multiple bacterial orders were differentially abundant within each substratum. At coral reef sites, putative disease- and thermal stress-related opportunistic bacteria such as Rhodobacterales, Verrucomicrobiales, and Cytophagales were comparatively abundant, while seagrass meadow sites abundantly harbored Desulfobacterales, Steroidobacterales and Chromatiales, which are common bacterial orders in seagrass meadows. According to our gene-coded enzyme analyses the numbers of differentially abundant enzymes were highest in coral reef sites. Notably, superoxide dismutase, an important enzyme for anti-oxidative stress in coral tissue, was abundant at coral sites. Our results provide a list of prokaryotes to look into in each substrate, and further emphasize the importance of considering the microbiome, especially when focusing on environmental conservation. CONCLUSION Our findings prove that prokaryotic metabarcoding is capable of capturing compositional differences and the diversity of microbial communities in three different environments. Furthermore, several taxa were suggested to be differentially more abundant in specific environments, and gene-coded enzymic compositions also showed possible differences in ecological functions. Further study, in combination with field observations and temporal sampling, is key to achieving a better understanding of the interactions between the local microbiome and the surrounding benthic community.
Collapse
Affiliation(s)
- Kohei Hamamoto
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan.
| | - Masaru Mizuyama
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
- Department of Health Informatics, Faculty of Human Health Sciences, Meio University, Nago, Okinawa, 905-8585, Japan
| | - Miyuki Nishijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
| | - Ayumi Maeda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, 277-8564, Japan
| | - Kodai Gibu
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
| | - Angelo Poliseno
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
- Research Laboratory on Environmentally-Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
5
|
Cui H, Fan S, Ding W, Zhang W. Genomic Analysis of Novel Sulfitobacter Bacterial Strains Isolated from Marine Biofilms. Mar Drugs 2024; 22:289. [PMID: 39057398 PMCID: PMC11278168 DOI: 10.3390/md22070289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Bacteria from the genus Sulfitobacter are distributed across various marine habitats and play a significant role in sulfur cycling. However, the metabolic features of Sulfitobacter inhabiting marine biofilms are still not well understood. Here, complete genomes and paired metatranscriptomes of eight Sulfitobacter strains, isolated from biofilms on subtidal stones, have been analyzed to explore their central energy metabolism and potential of secondary metabolite biosynthesis. Based on average nucleotide identity and phylogenetic analysis, the eight strains were classified into six novel species and two novel strains. The reconstruction of the metabolic pathways indicated that all strains had a complete Entner-Doudoroff pathway, pentose phosphate pathway, and diverse pathways for amino acid metabolism, suggesting the presence of an optimized central carbon metabolism. Pangenome analysis further revealed the differences between the gene cluster distribution patterns among the eight strains, suggesting significant functional variation. Moreover, a total of 47 biosynthetic gene clusters were discovered, which were further classified into 37 gene cluster families that showed low similarity with previously documented clusters. Furthermore, metatranscriptomic analysis revealed the expressions of key functional genes involved in the biosynthesis of ribosomal peptides in in situ marine biofilms. Overall, this study sheds new light on the metabolic features, adaptive strategies, and value of genome mining in this group of biofilm-associated Sulfitobacter bacteria.
Collapse
Affiliation(s)
- Han Cui
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.C.); (S.F.)
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
| | - Shen Fan
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.C.); (S.F.)
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
| | - Wei Ding
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
| | - Weipeng Zhang
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.C.); (S.F.)
| |
Collapse
|
6
|
Xu X, He M, Xue Q, Li X, Liu A. Genome-based taxonomic classification of the genus Sulfitobacter along with the proposal of a new genus Parasulfitobacter gen. nov. and exploring the gene clusters associated with sulfur oxidation. BMC Genomics 2024; 25:389. [PMID: 38649849 PMCID: PMC11034169 DOI: 10.1186/s12864-024-10269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The genus Sulfitobacter, a member of the family Roseobacteraceae, is widely distributed in the ocean and is believed to play crucial roles in the global sulfur cycle. However, gene clusters associated with sulfur oxidation in genomes of the type strains of this genus have been poorly studied. Furthermore, taxonomic errors have been identified in this genus, potentially leading to significant confusion in ecological and evolutionary interpretations in subsequent studies of the genus Sulfitobacter. This study aims to investigate the taxonomic status of this genus and explore the metabolism associated with sulfur oxidation. RESULTS This study suggests that Sulfitobacter algicola does not belong to Sulfitobacter and should be reclassified into a novel genus, for which we propose the name Parasulfitobacter gen. nov., with Parasulfitobacter algicola comb. nov. as the type species. Additionally, enzymes involved in the sulfur oxidation process, such as the sulfur oxidization (Sox) system, the disulfide reductase protein family, and the sulfite dehydrogenase (SoeABC), were identified in almost all Sulfitobacter species. This finding implies that the majority of Sulfitobacter species can oxidize reduced sulfur compounds. Differences in the modular organization of sox gene clusters among Sulfitobacter species were identified, along with the presence of five genes with unknown function located in some of the sox gene clusters. Lastly, this study revealed the presence of the demethylation pathway and the cleavage pathway used by many Sulfitobacter species to degrade dimethylsulfoniopropionate (DMSP). These pathways enable these bacteria to utilize DMSP as important source of sulfur and carbon or as a defence strategy. CONCLUSIONS Our findings contribute to interpreting the mechanism by which Sulfitobacter species participate in the global sulfur cycle. The taxonomic rearrangement of S. algicola into the novel genus Parasulfitobacter will prevent confusion in ecological and evolutionary interpretations in future studies of the genus Sulfitobacter.
Collapse
Affiliation(s)
- Xiaokun Xu
- Department of Pathogenic Biology, College of Basic Medicine, Jining Medical University, 272067, Jining, Shandong, P. R. China
| | - Mengdan He
- School of Basic Medical Sciences, Shandong Second Medical University, 261042, Weifang, Shandong, P. R. China
| | - Qingjie Xue
- Department of Pathogenic Biology, College of Basic Medicine, Jining Medical University, 272067, Jining, Shandong, P. R. China
| | - Xiuzhen Li
- Department of Pathogenic Biology, College of Basic Medicine, Jining Medical University, 272067, Jining, Shandong, P. R. China
| | - Ang Liu
- Department of Pathogenic Biology, College of Basic Medicine, Jining Medical University, 272067, Jining, Shandong, P. R. China.
| |
Collapse
|
7
|
Chhalodia AK, Dickschat JS. The Stereochemical Course of DmdC, an Enzyme Involved in the Degradation of Dimethylsulfoniopropionate. Chembiochem 2024; 25:e202300795. [PMID: 38084863 DOI: 10.1002/cbic.202300795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Indexed: 01/18/2024]
Abstract
The acyl-CoA dehydrogenase DmdC is involved in the degradation of the marine sulfur metabolite dimethylsulfonio propionate (DMSP) through the demethylation pathway. The stereochemical course of this reaction was investigated through the synthesis of four stereoselectively deuterated substrate surrogates carrying stereoselective deuterations at the α- or the β-carbon. Analysis of the products revealed a specific abstraction of the 2-pro-R proton and of the 3-pro-S hydride, establishing an anti elimination for the DmdC reaction.
Collapse
Affiliation(s)
- Anuj K Chhalodia
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
8
|
Connors E, Dutta A, Trinh R, Erazo N, Dasarathy S, Ducklow H, Weissman JL, Yeh YC, Schofield O, Steinberg D, Fuhrman J, Bowman JS. Microbial community composition predicts bacterial production across ocean ecosystems. THE ISME JOURNAL 2024; 18:wrae158. [PMID: 39105280 PMCID: PMC11385589 DOI: 10.1093/ismejo/wrae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/28/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Microbial ecological functions are an emergent property of community composition. For some ecological functions, this link is strong enough that community composition can be used to estimate the quantity of an ecological function. Here, we apply random forest regression models to compare the predictive performance of community composition and environmental data for bacterial production (BP). Using data from two independent long-term ecological research sites-Palmer LTER in Antarctica and Station SPOT in California-we found that community composition was a strong predictor of BP. The top performing model achieved an R2 of 0.84 and RMSE of 20.2 pmol L-1 hr-1 on independent validation data, outperforming a model based solely on environmental data (R2 = 0.32, RMSE = 51.4 pmol L-1 hr-1). We then operationalized our top performing model, estimating BP for 346 Antarctic samples from 2015 to 2020 for which only community composition data were available. Our predictions resolved spatial trends in BP with significance in the Antarctic (P value = 1 × 10-4) and highlighted important taxa for BP across ocean basins. Our results demonstrate a strong link between microbial community composition and microbial ecosystem function and begin to leverage long-term datasets to construct models of BP based on microbial community composition.
Collapse
Affiliation(s)
- Elizabeth Connors
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, United States
- Scripps Polar Center, UC San Diego, La Jolla, CA 92037, United States
| | - Avishek Dutta
- Department of Geology, University of Georgia, Athens, GA 30602, United States
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, United States
| | - Rebecca Trinh
- Lamont-Doherty Earth Observatory, Columbia University, New York, NY 10964, United States
| | - Natalia Erazo
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, United States
| | - Srishti Dasarathy
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, United States
| | - Hugh Ducklow
- Lamont-Doherty Earth Observatory, Columbia University, New York, NY 10964, United States
| | - J L Weissman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
- Department of Biology, The City College of New York, New York, NY 10003, United States
| | - Yi-Chun Yeh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Oscar Schofield
- Coastal Ocean Observation Laboratory, Institute of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, United States
| | - Deborah Steinberg
- Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA 23062, United States
| | - Jed Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Jeff S Bowman
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, United States
- Scripps Polar Center, UC San Diego, La Jolla, CA 92037, United States
| |
Collapse
|
9
|
Hameed A, Suchithra KV, Lin SY, Stothard P, Young CC. Genomic potential for inorganic carbon sequestration and xenobiotic degradation in marine bacterium Youngimonas vesicularis CC-AMW-E T affiliated to family Paracoccaceae. Antonie Van Leeuwenhoek 2023; 116:1247-1259. [PMID: 37740842 DOI: 10.1007/s10482-023-01881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Ecological studies on marine microbial communities largely focus on fundamental biogeochemical processes or the most abundant constituents, while minor biological fractions are frequently neglected. Youngimonas vesicularis CC-AMW-ET, isolated from coastal surface seawater in Taiwan, is an under-represented marine Paracoccaceae (earlier Rhodobacteraceae) member. The CC-AMW-ET genome was sequenced to gain deeper insights into its role in marine carbon and sulfur cycles. The draft genome (3.7 Mb) contained 63.6% GC, 3773 coding sequences and 51 RNAs, and displayed maximum relatedness (79.06%) to Thalassobius litoralis KU5D5T, a Roseobacteraceae member. While phototrophic genes were absent, genes encoding two distinct subunits of carbon monoxide dehydrogenases (CoxL, BMS/Form II and a novel form III; CoxM and CoxS), and proteins involved in HCO3- uptake and interconversion, and anaplerotic HCO3- fixation were found. In addition, a gene coding for ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO, form II), which fixes atmospheric CO2 was found in CC-AMW-ET. Genes for complete assimilatory sulfate reduction, sulfide oxidation (sulfide:quinone oxidoreductase, SqrA type) and dimethylsulfoniopropionate (DMSP) cleavage (DMSP lyase, DddL) were also identified. Furthermore, genes that degrade aromatic hydrocarbons such as quinate, salicylate, salicylate ester, p-hydroxybenzoate, catechol, gentisate, homogentisate, protocatechuate, 4-hydroxyphenylacetic acid, N-heterocyclic aromatic compounds and aromatic amines were present. Thus, Youngimonas vesicularis CC-AMW-ET is a potential chemolithoautotroph equipped with genetic machinery for the metabolism of aromatics, and predicted to play crucial roles in the biogeochemical cycling of marine carbon and sulfur.
Collapse
Affiliation(s)
- Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, India.
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Kokkarambath Vannadil Suchithra
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, India
| | - Shih-Yao Lin
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Chiu-Chung Young
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
10
|
Wang S, Zhang N, Teng Z, Wang X, Todd JD, Zhang Y, Cao H, Li C. A new dimethylsulfoniopropionate lyase of the cupin superfamily in marine bacteria. Environ Microbiol 2023; 25:1238-1249. [PMID: 36808192 PMCID: PMC11497337 DOI: 10.1111/1462-2920.16355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Dimethylsulfoniopropionate (DMSP) is a marine organosulfur compound with important roles in stress protection, marine biogeochemical cycling, chemical signalling and atmospheric chemistry. Diverse marine microorganisms catabolize DMSP via DMSP lyases to generate the climate-cooling gas and info-chemical dimethyl sulphide. Abundant marine heterotrophs of the Roseobacter group (MRG) are well known for their ability to catabolize DMSP via diverse DMSP lyases. Here, a new DMSP lyase DddU within the MRG strain Amylibacter cionae H-12 and other related bacteria was identified. DddU is a cupin superfamily DMSP lyase like DddL, DddQ, DddW, DddK and DddY, but shares <15% amino acid sequence identity with these enzymes. Moreover, DddU proteins forms a distinct clade from these other cupin-containing DMSP lyases. Structural prediction and mutational analyses suggested that a conserved tyrosine residue is the key catalytic amino acid residue in DddU. Bioinformatic analysis indicated that the dddU gene, mainly from Alphaproteobacteria, is widely distributed in the Atlantic, Pacific, Indian and polar oceans. For reference, dddU is less abundant than dddP, dddQ and dddK, but much more frequent than dddW, dddY and dddL in marine environments. This study broadens our knowledge on the diversity of DMSP lyases, and enhances our understanding of marine DMSP biotransformation.
Collapse
Affiliation(s)
- Shu‐Yan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life SciencesOcean University of ChinaQingdaoChina
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research CenterShandong UniversityQingdaoChina
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Nan Zhang
- School of BioengineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Zhao‐Jie Teng
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research CenterShandong UniversityQingdaoChina
| | - Xiao‐Di Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | | | - Yu‐Zhong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life SciencesOcean University of ChinaQingdaoChina
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research CenterShandong UniversityQingdaoChina
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Hai‐Yan Cao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life SciencesOcean University of ChinaQingdaoChina
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research CenterShandong UniversityQingdaoChina
| | - Chun‐Yang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
11
|
Chhalodia AK, Dickschat JS. Discovery of dimethylsulfoxonium propionate lyases - a missing enzyme relevant to the global sulfur cycle. Org Biomol Chem 2023; 21:3083-3089. [PMID: 36943339 DOI: 10.1039/d2ob02288e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Six dimethylsulfoniopropionate (DMSP) lyases have been shown to cleave the marine sulfur metabolite dimethylsulfoxonium propionate (DMSOP) into DMSO and acrylate. This discovery characterises a missing enzyme relevant to the global sulfur cycle.
Collapse
Affiliation(s)
- Anuj K Chhalodia
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
12
|
Liu X, Zhang Y, Sun H, Tan S, Zhang XH. Highly active bacterial DMSP metabolism in the surface microlayer of the eastern China marginal seas. Front Microbiol 2023; 14:1135083. [PMID: 37032870 PMCID: PMC10076866 DOI: 10.3389/fmicb.2023.1135083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The microbial cycling of dimethylsulfoniopropionate (DMSP) and the resulting gaseous catabolites dimethylsulfide (DMS) or methylmercaptan (MeSH) play key roles in the global sulfur cycle and potentially climate regulation. As the ocean-atmosphere boundary, the sea surface microlayer (SML) is important for the generation and emission of DMS and MeSH. However, understanding of the microbial DMSP metabolism remains limited in the SML. Here, we studied the spatiotemporal differences for DMS/DMSP, bacterial community structure and the key bacterial DMSP metabolic genes between SML and subsurface seawater (SSW) samples in the eastern China marginal seas (the East China Sea and Yellow Sea). In general, DMSPd and DMSPt concentrations, and the abundance of total, free-living and particle-associated bacteria were higher in SML than that in SSW. DMSP synthesis (~7.81-fold for dsyB, ~2.93-fold for mmtN) and degradation genes (~5.38-fold for dmdA, ~6.27-fold for dddP) detected in SML were more abundant compared with SSW samples. Free-living bacteria were the main DMSP producers and consumers in eastern Chinese marginal sea. Regionally, the bacterial community structure was distinct between the East China Sea and the Yellow Sea. The abundance of DMSP metabolic genes (dsyB, dmdA, and dddP) and genera in the East China Sea were higher than those of the Yellow Sea. Seasonally, DMSP/DMS level and DMSP metabolic genes and bacteria were more abundant in SML of the East China Sea in summer than in spring. Different from those in spring, Ruegeria was the dominant DMSP metabolic bacteria. In conclusion, the DMSP synthesis and degradation showed significant spatiotemporal differences in the SML of the eastern China marginal seas, and were consistently more active in the SML than in the SSW.
Collapse
Affiliation(s)
- Xiujie Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunhui Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hao Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Siyin Tan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- *Correspondence: Xiao-Hua Zhang,
| |
Collapse
|
13
|
Wang T, Huang Q, Burns AS, Moran MA, Whitman WB. Oxidative Stress Regulates a Pivotal Metabolic Switch in Dimethylsulfoniopropionate Degradation by the Marine Bacterium Ruegeria pomeroyi. Microbiol Spectr 2022; 10:e0319122. [PMID: 36301115 PMCID: PMC9769926 DOI: 10.1128/spectrum.03191-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/03/2022] [Indexed: 01/10/2023] Open
Abstract
Dimethylsulfoniopropionate (DMSP) is an abundant organic compound in marine surface water and source of dimethyl sulfide (DMS), the largest natural sulfur source to the upper atmosphere. Marine bacteria either mineralize DMSP through the demethylation pathway or transform it to DMS through the cleavage pathway. Factors that regulate which pathway is utilized are not fully understood. In chemostat experiments, the marine Roseobacter Ruegeria pomeroyi DSS-3 was exposed to oxidative stress either during growth with H2O2 or by mutation of the gene encoding catalase. Oxidative stress reduced expression of the genes in the demethylation pathway and increased expression of those encoding the cleavage pathway. These results are contrary to the sulfur demand hypothesis, which theorizes that DMSP metabolism is driven by sulfur requirements of bacterial cells. Instead, we find strong evidence consistent with oxidative stress control over the switch in DMSP metabolism from demethylation to DMS production in an ecologically relevant marine bacterium. IMPORTANCE Dimethylsulfoniopropionate (DMSP) is the most abundant low-molecular-weight organic compound in marine surface water and source of dimethyl sulfide (DMS), a climatically active gas that connects the marine and terrestrial sulfur cycles. Marine bacteria are the major DMSP consumers, either generating DMS or consuming DMSP as a source of reduced carbon and sulfur. However, the factors regulating the DMSP catabolism in bacteria are not well understood. Marine bacteria are also exposed to oxidative stress. RNA sequencing (RNA-seq) experiments showed that oxidative stress induced in the laboratory reduced expression of the genes encoding the consumption of DMSP via the demethylation pathway and increased the expression of genes encoding DMS production via the cleavage pathway in the marine bacterium Ruegeria pomeroyi. These results support a model where DMS production in the ocean is regulated in part by oxidative stress.
Collapse
Affiliation(s)
- Tao Wang
- Department of Microbiology, University of Georgia, Georgia, USA
| | - Qiuyuan Huang
- Department of Microbiology, University of Georgia, Georgia, USA
| | - Andrew S. Burns
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
14
|
Liu J, Xue CX, Wang J, Crombie AT, Carrión O, Johnston AWB, Murrell JC, Liu J, Zheng Y, Zhang XH, Todd JD. Oceanospirillales containing the DMSP lyase DddD are key utilisers of carbon from DMSP in coastal seawater. MICROBIOME 2022; 10:110. [PMID: 35883169 PMCID: PMC9327192 DOI: 10.1186/s40168-022-01304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ubiquitous and diverse marine microorganisms utilise the abundant organosulfur molecule dimethylsulfoniopropionate (DMSP), the main precursor of the climate-active gas dimethylsulfide (DMS), as a source of carbon, sulfur and/or signalling molecules. However, it is currently difficult to discern which microbes actively catabolise DMSP in the environment, why they do so and the pathways used. RESULTS Here, a novel DNA-stable isotope probing (SIP) approach, where only the propionate and not the DMS moiety of DMSP was 13C-labelled, was strategically applied to identify key microorganisms actively using DMSP and also likely DMS as a carbon source, and their catabolic enzymes, in North Sea water. Metagenomic analysis of natural seawater suggested that Rhodobacterales (Roseobacter group) and SAR11 bacteria were the major microorganisms degrading DMSP via demethylation and, to a lesser extent, DddP-driven DMSP lysis pathways. However, neither Rhodobacterales and SAR11 bacteria nor their DMSP catabolic genes were prominently labelled in DNA-SIP experiments, suggesting they use DMSP as a sulfur source and/or in signalling pathways, and not primarily for carbon requirements. Instead, DNA-SIP identified gammaproteobacterial Oceanospirillales, e.g. Amphritea, and their DMSP lyase DddD as the dominant microorganisms/enzymes using DMSP as a carbon source. Supporting this, most gammaproteobacterial (with DddD) but few alphaproteobacterial seawater isolates grew on DMSP as sole carbon source and produced DMS. Furthermore, our DNA-SIP strategy also identified Methylophaga and other Piscirickettsiaceae as key bacteria likely using the DMS, generated from DMSP lysis, as a carbon source. CONCLUSIONS This is the first study to use DNA-SIP with 13C-labelled DMSP and, in a novel way, it identifies the dominant microbes utilising DMSP and DMS as carbon sources. It highlights that whilst metagenomic analyses of marine environments can predict microorganisms/genes that degrade DMSP and DMS based on their abundance, it cannot disentangle those using these important organosulfur compounds for their carbon requirements. Note, the most abundant DMSP degraders, e.g. Rhodobacterales with DmdA, are not always the key microorganisms using DMSP for carbon and releasing DMS, which in this coastal system were Oceanospirillales containing DddD. Video abstract.
Collapse
Affiliation(s)
- Jingli Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences , Ocean University of China, Qingdao, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Chun-Xu Xue
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences , Ocean University of China, Qingdao, China
| | - Jinyan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences , Ocean University of China, Qingdao, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andrew T Crombie
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ornella Carrión
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andrew W B Johnston
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ji Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences , Ocean University of China, Qingdao, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yanfen Zheng
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences , Ocean University of China, Qingdao, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences , Ocean University of China, Qingdao, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
15
|
Transcriptome analysis of Antarctic Rhodococcus sp. NJ-530 in the response to dimethylsulfoniopropionate. Polar Biol 2022. [DOI: 10.1007/s00300-022-03049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Shaw DK, Sekar J, Ramalingam PV. Recent insights into oceanic dimethylsulfoniopropionate biosynthesis and catabolism. Environ Microbiol 2022; 24:2669-2700. [PMID: 35611751 DOI: 10.1111/1462-2920.16045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Dimethylsulfoniopropionate (DMSP), a globally important organosulfur compound is produced in prodigious amounts (2.0 Pg sulfur) annually in the marine environment by phytoplankton, macroalgae, heterotrophic bacteria, some corals and certain higher plants. It is an important marine osmolyte and a major precursor molecule for the production of climate-active volatile gas dimethyl sulfide (DMS). DMSP synthesis take place via three pathways: a transamination 'pathway-' in some marine bacteria and algae, a Met-methylation 'pathway-' in angiosperms and bacteria and a decarboxylation 'pathway-' in the dinoflagellate, Crypthecodinium. The enzymes DSYB and TpMMT are involved in the DMSP biosynthesis in eukaryotes while marine heterotrophic bacteria engage key enzymes such as DsyB and MmtN. Several marine bacterial communities import DMSP and degrade it via cleavage or demethylation pathways or oxidation pathway, thereby generating DMS, methanethiol, and dimethylsulfoxonium propionate, respectively. DMSP is cleaved through diverse DMSP lyase enzymes in bacteria and via Alma1 enzyme in phytoplankton. The demethylation pathway involves four different enzymes, namely DmdA, DmdB, DmdC and DmdD/AcuH. However, enzymes involved in the oxidation pathway have not been yet identified. We reviewed the recent advances on the synthesis and catabolism of DMSP and enzymes that are involved in these processes.
Collapse
Affiliation(s)
- Deepak Kumar Shaw
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Jegan Sekar
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Prabavathy Vaiyapuri Ramalingam
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| |
Collapse
|
17
|
O'Brien J, McParland EL, Bramucci AR, Siboni N, Ostrowski M, Kahlke T, Levine NM, Brown MV, van de Kamp J, Bodrossy L, Messer LF, Petrou K, Seymour JR. Biogeographical and seasonal dynamics of the marine Roseobacter community and ecological links to DMSP-producing phytoplankton. ISME COMMUNICATIONS 2022; 2:16. [PMID: 37938744 PMCID: PMC9723663 DOI: 10.1038/s43705-022-00099-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/09/2023]
Abstract
Ecological interactions between marine bacteria and phytoplankton play a pivotal role in governing the ocean's major biogeochemical cycles. Among these, members of the marine Roseobacter Group (MRG) can establish mutualistic relationships with phytoplankton that are, in part, maintained by exchanges of the organosulfur compound, dimethylsulfoniopropionate (DMSP). Yet most of what is known about these interactions has been derived from culture-based laboratory studies. To investigate temporal and spatial co-occurrence patterns between members of the MRG and DMSP-producing phytoplankton we analysed 16S and 18S rRNA gene amplicon sequence variants (ASVs) derived from 5 years of monthly samples from seven environmentally distinct Australian oceanographic time-series. The MRG and DMSP-producer communities often displayed contemporaneous seasonality, which was greater in subtropical and temperate environments compared to tropical environments. The relative abundance of both groups varied latitudinally, displaying a poleward increase, peaking (MRG at 33% of total bacteria, DMSP producers at 42% of eukaryotic phototrophs) during recurrent spring-summer phytoplankton blooms in the most temperate site (Maria Island, Tasmania). Network analysis identified 20,140 significant positive correlations between MRG ASVs and DMSP producers and revealed that MRGs exhibit significantly stronger correlations to high DMSP producers relative to other DMSP-degrading bacteria (Pelagibacter, SAR86 and Actinobacteria). By utilising the power of a continental network of oceanographic time-series, this study provides in situ confirmation of interactions found in laboratory studies and demonstrates that the ecological dynamics of an important group of marine bacteria are shaped by the production of an abundant and biogeochemically significant organosulfur compound.
Collapse
Affiliation(s)
- James O'Brien
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia.
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia.
| | - Erin L McParland
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Anna R Bramucci
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - Martin Ostrowski
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - Naomi M Levine
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Mark V Brown
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | | | | | - Lauren F Messer
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Katherina Petrou
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia.
| |
Collapse
|
18
|
Zhang Y, Zheng L, Wang S, Zhao Y, Xu X, Han B, Hu T. Quorum Sensing Bacteria in the Phycosphere of HAB Microalgae and Their Ecological Functions Related to Cross-Kingdom Interactions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010163. [PMID: 35010421 PMCID: PMC8750903 DOI: 10.3390/ijerph19010163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 12/28/2022]
Abstract
It has been proven that the relationship between microalgae and bacteria affects the dynamic process of harmful algal blooms (HABs). Microalgae-associated microorganisms widely exist in the phycosphere and play an essential role in algae-bacteria cross-kingdom interactions. Among these processes, quorum sensing (QS), as a communication system of bacteria, is thought to participate in algae-bacteria interactions. However, the species of QS bacteria in the phycosphere and their ecological function are still unknown. In this study, microalgae-associated microorganisms with a QS system were screened by the biosensor method and identified based on 16S rRNA gene analysis. The types and number of acyl-L-homoserine lactone (AHL) signalling molecules produced by QS bacteria were analysed by thin layer chromatography (TLC) bioautography and gas chromatography-mass spectrometer (GC-MS). The film formation, β-dimethylmercaptopropionic (DMSP) degradation and algae growth effects of QS bacteria were investigated. The results showed that 113 QS bacteria were isolated from 842 microalgae-associated bacteria. Detection of AHL molecules in 10 different species of QS bacteria showed that most of them were N-(3-Oxodecanoyl)-L-homoserine lactone (OC10-HSL), N-Octanoyl-L-homoserine lactone (C8-HSL) and N-(3-Oxooctanoyl)-L-homoserine lactone (OC8-HSL). All 10 QS bacteria had film-forming ability, and they could degrade DMSP (except strain E26). The crude metabolic extracts of the 10 QS bacteria can inhibit or promote microalgae growth to different degrees. Our study is helpful to understand the role of microalgae-associated microorganisms with the QS system in algae-bacteria interactions and community succession of HAB microalgae.
Collapse
Affiliation(s)
- Yanchao Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (Y.Z.); (Y.Z.)
| | - Li Zheng
- Key Laboratory of Marine Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.W.); (X.X.); (T.H.)
- Qingdao National Laboratory of Marine Science and Technology Pilot, Functional Laboratory of Marine Ecology and Environmental Science, Qingdao 266071, China;
- Correspondence:
| | - Shuai Wang
- Key Laboratory of Marine Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.W.); (X.X.); (T.H.)
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (Y.Z.); (Y.Z.)
| | - Xiyuan Xu
- Key Laboratory of Marine Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.W.); (X.X.); (T.H.)
| | - Bin Han
- Qingdao National Laboratory of Marine Science and Technology Pilot, Functional Laboratory of Marine Ecology and Environmental Science, Qingdao 266071, China;
| | - Tianyi Hu
- Key Laboratory of Marine Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.W.); (X.X.); (T.H.)
| |
Collapse
|
19
|
Dubé CE, Ziegler M, Mercière A, Boissin E, Planes S, Bourmaud CAF, Voolstra CR. Naturally occurring fire coral clones demonstrate a genetic and environmental basis of microbiome composition. Nat Commun 2021; 12:6402. [PMID: 34737272 PMCID: PMC8568919 DOI: 10.1038/s41467-021-26543-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
Coral microbiomes are critical to holobiont functioning, but much remains to be understood about how prevailing environment and host genotype affect microbial communities in ecosystems. Resembling human identical twin studies, we examined bacterial community differences of naturally occurring fire coral clones within and between contrasting reef habitats to assess the relative contribution of host genotype and environment to microbiome structure. Bacterial community composition of coral clones differed between reef habitats, highlighting the contribution of the environment. Similarly, but to a lesser extent, microbiomes varied across different genotypes in identical habitats, denoting the influence of host genotype. Predictions of genomic function based on taxonomic profiles suggest that environmentally determined taxa supported a functional restructuring of the microbial metabolic network. In contrast, bacteria determined by host genotype seemed to be functionally redundant. Our study suggests microbiome flexibility as a mechanism of environmental adaptation with association of different bacterial taxa partially dependent on host genotype.
Collapse
Affiliation(s)
- C. E. Dubé
- grid.11642.300000 0001 2111 2608UMR 9220 ENTROPIE, UR-IRD-CNRS-UNC-IFREMER, Université de La Réunion, 15 Avenue René Cassin, CS 92003, 97744 Saint-Denis Cedex, La Réunion France ,grid.11136.340000 0001 2192 5916PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan, France ,Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea French Polynesia ,grid.23856.3a0000 0004 1936 8390Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, G1V 0A6 Canada
| | - M. Ziegler
- grid.8664.c0000 0001 2165 8627Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 IFZ, 35392 Giessen, Germany ,grid.45672.320000 0001 1926 5090Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Saudi Arabia
| | - A. Mercière
- grid.11136.340000 0001 2192 5916PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan, France ,Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea French Polynesia
| | - E. Boissin
- grid.11136.340000 0001 2192 5916PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan, France ,Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea French Polynesia
| | - S. Planes
- grid.11136.340000 0001 2192 5916PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan, France ,Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea French Polynesia
| | - C. A. -F. Bourmaud
- grid.11642.300000 0001 2111 2608UMR 9220 ENTROPIE, UR-IRD-CNRS-UNC-IFREMER, Université de La Réunion, 15 Avenue René Cassin, CS 92003, 97744 Saint-Denis Cedex, La Réunion France ,Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea French Polynesia
| | - C. R. Voolstra
- grid.45672.320000 0001 1926 5090Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Saudi Arabia ,grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
20
|
Paix B, Potin P, Schires G, Le Poupon C, Misson B, Leblanc C, Culioli G, Briand JF. Synergistic effects of temperature and light affect the relationship between Taonia atomaria and its epibacterial community: a controlled conditions study. Environ Microbiol 2021; 23:6777-6797. [PMID: 34490980 DOI: 10.1111/1462-2920.15758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022]
Abstract
In the context of global warming, this study aimed to assess the effect of temperature and irradiance on the macroalgal Taonia atomaria holobiont dynamics. We developed an experimental set-up using aquaria supplied by natural seawater with three temperatures combined with three irradiances. The holobiont response was monitored over 14 days using a multi-omics approach coupling algal surface metabolomics and metabarcoding. Both temperature and irradiance appeared to shape the microbiota and the surface metabolome, but with a distinct temporality. Epibacterial community first changed according to temperature, and later in relation to irradiance, while the opposite occurred for the surface metabolome. An increased temperature revealed a decreasing richness of the epiphytic community together with an increase of several bacterial taxa. Irradiance changes appeared to quickly impact surface metabolites production linked with the algal host photosynthesis (e.g. mannitol, fucoxanthin, dimethylsulfoniopropionate), which was hypothesized to explain modifications of the structure of the epiphytic community. Algal host may also directly adapt its surface metabolome to changing temperature with time (e.g. lipids content) and also in response to changing microbiota (e.g. chemical defences). Finally, this study brought new insights highlighting complex direct and indirect responses of seaweeds and their associated microbiota under changing environments.
Collapse
Affiliation(s)
- Benoit Paix
- Université de Toulon, Laboratoire MAPIEM, La Garde, EA 4323, France
| | - Philippe Potin
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), UMR 8227, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Gaëtan Schires
- Sorbonne Université, CNRS, Center for Biological Marine Resources (CRBM), FR 2424, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Christophe Le Poupon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, La Garde, France
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, La Garde, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), UMR 8227, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Gérald Culioli
- Université de Toulon, Laboratoire MAPIEM, La Garde, EA 4323, France
| | | |
Collapse
|
21
|
Maire J, Blackall LL, van Oppen MJH. Microbiome characterization of defensive tissues in the model anemone Exaiptasia diaphana. BMC Microbiol 2021; 21:152. [PMID: 34020587 PMCID: PMC8140459 DOI: 10.1186/s12866-021-02211-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/29/2021] [Indexed: 01/04/2023] Open
Abstract
Background Coral reefs are among the most diverse and productive ecosystems on Earth. This success relies on the coral’s association with a wide range of microorganisms, including dinoflagellates of the family Symbiodiniaceae that provide coral hosts with most of their organic carbon requirements. While bacterial associates have long been overlooked, research on these microorganisms is gaining traction, and deciphering bacterial identity and function is greatly enhancing our understanding of cnidarian biology. Here, we investigated bacterial communities in defensive tissues (acontia) of the coral model, the sea anemone Exaiptasia diaphana. Acontia are internal filaments that are ejected upon detection of an external threat and release toxins to repel predators. Results Using culturing techniques and 16S rRNA gene metabarcoding we identified bacterial communities associated with acontia of four Great Barrier Reef-sourced E. diaphana genotypes. We show that bacterial communities are similar across genotypes, and dominated by Alteromonadaceae, Vibrionaceae, Rhodobacteraceae, and Saprospiraceae. By analyzing abundant amplicon sequence variants (ASVs) from metabarcoding data from acontia and comparing these to data from whole anemones, we identified five potentially important bacterial genera of the acontia microbiome: Vibrio, Sulfitobacter, Marivita, Alteromonas, and Lewinella. The role of these bacteria within the acontia remains uninvestigated but could entail assistance in defense processes such as toxin production. Conclusions This study provides insight into potential bacterial involvement in cnidarian defense tissues and highlights the need to study bacterial communities in individual compartments within a holobiont. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02211-4.
Collapse
Affiliation(s)
- Justin Maire
- School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia.
| | - Linda L Blackall
- School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
22
|
Baker KD, Kellogg CTE, McClelland JW, Dunton KH, Crump BC. The Genomic Capabilities of Microbial Communities Track Seasonal Variation in Environmental Conditions of Arctic Lagoons. Front Microbiol 2021; 12:601901. [PMID: 33643234 PMCID: PMC7906997 DOI: 10.3389/fmicb.2021.601901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022] Open
Abstract
In contrast to temperate systems, Arctic lagoons that span the Alaska Beaufort Sea coast face extreme seasonality. Nine months of ice cover up to ∼1.7 m thick is followed by a spring thaw that introduces an enormous pulse of freshwater, nutrients, and organic matter into these lagoons over a relatively brief 2–3 week period. Prokaryotic communities link these subsidies to lagoon food webs through nutrient uptake, heterotrophic production, and other biogeochemical processes, but little is known about how the genomic capabilities of these communities respond to seasonal variability. Replicate water samples from two lagoons and one coastal site near Kaktovik, AK were collected in April (full ice cover), June (ice break up), and August (open water) to represent winter, spring, and summer, respectively. Samples were size fractionated to distinguish free-living and particle-attached microbial communities. Multivariate analysis of metagenomes indicated that seasonal variability in gene abundances was greater than variability between size fractions and sites, and that June differed significantly from the other months. Spring (June) gene abundances reflected the high input of watershed-sourced nutrients and organic matter via spring thaw, featuring indicator genes for denitrification possibly linked to greater organic carbon availability, and genes for processing phytoplankton-derived organic matter associated with spring blooms. Summer featured fewer indicator genes, but had increased abundances of anoxygenic photosynthesis genes, possibly associated with elevated light availability. Winter (April) gene abundances suggested low energy inputs and autotrophic bacterial metabolism, featuring indicator genes for chemoautotrophic carbon fixation, methane metabolism, and nitrification. Winter indicator genes for nitrification belonged to Thaumarchaeota and Nitrosomonadales, suggesting these organisms play an important role in oxidizing ammonium during the under-ice period. This study shows that high latitude estuarine microbial assemblages shift metabolic capabilities as they change phylogenetic composition between these extreme seasons, providing evidence that these communities may be resilient to large hydrological events in a rapidly changing Arctic.
Collapse
Affiliation(s)
- Kristina D Baker
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | | | - James W McClelland
- The University of Texas at Austin Marine Science Institute, Port Aransas, TX, United States
| | - Kenneth H Dunton
- The University of Texas at Austin Marine Science Institute, Port Aransas, TX, United States
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
23
|
Chhalodia AK, Dickschat JS. Breakdown of 3-(allylsulfonio)propanoates in bacteria from the Roseobacter group yields garlic oil constituents. Beilstein J Org Chem 2021; 17:569-580. [PMID: 33727980 PMCID: PMC7934745 DOI: 10.3762/bjoc.17.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/19/2021] [Indexed: 11/24/2022] Open
Abstract
Two analogues of 3-(dimethylsulfonio)propanoate (DMSP), 3-(diallylsulfonio)propanoate (DAllSP), and 3-(allylmethylsulfonio)propanoate (AllMSP), were synthesized and fed to marine bacteria from the Roseobacter clade. These bacteria are able to degrade DMSP into dimethyl sulfide and methanethiol. The DMSP analogues were also degraded, resulting in the release of allylated sulfur volatiles known from garlic. For unknown compounds, structural suggestions were made based on their mass spectrometric fragmentation pattern and confirmed by the synthesis of reference compounds. The results of the feeding experiments allowed to conclude on the substrate tolerance of DMSP degrading enzymes in marine bacteria.
Collapse
Affiliation(s)
- Anuj Kumar Chhalodia
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| |
Collapse
|
24
|
Chhalodia AK, Rinkel J, Konvalinkova D, Petersen J, Dickschat JS. Identification of volatiles from six marine Celeribacter strains. Beilstein J Org Chem 2021; 17:420-430. [PMID: 33633810 PMCID: PMC7884881 DOI: 10.3762/bjoc.17.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/02/2021] [Indexed: 01/20/2023] Open
Abstract
The volatiles emitted from six marine Rhodobacteraceae species of the genus Celeribacter were investigated by GC-MS. Besides several known compounds including dimethyl trisulfide and S-methyl methanethiosulfonate, the sulfur-containing compounds ethyl (E)-3-(methylsulfanyl)acrylate and 2-(methyldisulfanyl)benzothiazole were identified and their structures were verified by synthesis. Feeding experiments with [methyl-2H3]methionine, [methyl-13C]methionine and [34S]-3-(dimethylsulfonio)propanoate (DMSP) resulted in the high incorporation into dimethyl trisulfide and S-methyl methanethiosulfonate, and revealed the origin of the methylsulfanyl group of 2-(methyldisulfanyl)benzothiazole from methionine or DMSP, while the biosynthetic origin of the benzothiazol-2-ylsulfanyl portion could not be traced. The heterocyclic moiety of this compound is likely of anthropogenic origin, because 2-mercaptobenzothiazole is used in the sulfur vulcanization of rubber. Also in none of the feeding experiments incorporation into ethyl (E)-3-(methylsulfanyl)acrylate could be observed, questioning its bacterial origin. Our results demonstrate that the Celeribacter strains are capable of methionine and DMSP degradation to widespread sulfur volatiles, but the analysis of trace compounds in natural samples must be taken with care.
Collapse
Affiliation(s)
- Anuj Kumar Chhalodia
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Jan Rinkel
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Dorota Konvalinkova
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Jörn Petersen
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7b, 38124 Braunschweig, Germany
| | - Jeroen S Dickschat
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| |
Collapse
|
25
|
Complete Genome Sequence of Sulfitobacter Phage ϕGT1, Isolated from a Tidal Flat. Microbiol Resour Announc 2020; 9:9/33/e00779-20. [PMID: 32817157 PMCID: PMC7427195 DOI: 10.1128/mra.00779-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sulfitobacter bacteria are ubiquitous and important players in organic sulfur cycling in marine environments. Here, we report the complete genome sequence of ϕGT1 infecting Sulfitobacter sp. HGT1, both of which were isolated from coastal sediment. ϕGT1 has a 40,019-bp genome containing 69 predicted protein-encoding genes. The Sulfitobacter bacteria are ubiquitous and important players in organic sulfur cycling in marine environments. Here, we report the complete genome sequence of ϕGT1 infecting Sulfitobacter sp. HGT1, both of which were isolated from coastal sediment. ϕGT1 has a 40,019-bp genome containing 69 predicted protein-encoding genes.
Collapse
|
26
|
Sun H, Zhang Y, Tan S, Zheng Y, Zhou S, Ma QY, Yang GP, Todd JD, Zhang XH. DMSP-Producing Bacteria Are More Abundant in the Surface Microlayer than Subsurface Seawater of the East China Sea. MICROBIAL ECOLOGY 2020; 80:350-365. [PMID: 32335713 DOI: 10.1007/s00248-020-01507-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Microbial production and catabolism of dimethylsulfoniopropionate (DMSP), generating the climatically active gases dimethyl sulfide (DMS) and methanethiol (MeSH), have key roles in global carbon and sulfur cycling, chemotaxis, and atmospheric chemistry. Microorganisms in the sea surface microlayer (SML), the interface between seawater and atmosphere, likely play an important role in the generation of DMS and MeSH and their exchange to the atmosphere, but little is known about these SML microorganisms. Here, we investigated the differences between bacterial community structure and the distribution and transcription profiles of the key bacterial DMSP synthesis (dsyB and mmtN) and catabolic (dmdA and dddP) genes in East China Sea SML and subsurface seawater (SSW) samples. Per equivalent volume, bacteria were far more abundant (~ 7.5-fold) in SML than SSW, as were those genera predicted to produce DMSP. Indeed, dsyB (~ 7-fold) and mmtN (~ 4-fold), robust reporters for bacterial DMSP production, were also far more abundant in SML than SSW. In addition, the SML had higher dsyB transcripts (~ 3-fold) than SSW samples, which may contribute to the significantly higher DMSP level observed in SML compared with SSW. Furthermore, the abundance of bacteria with dmdA and their transcription were higher in SML than SSW samples. Bacteria with dddP and transcripts were also prominent, but less than dmdA and presented at similar levels in both layers. These data indicate that the SML might be an important hotspot for bacterial DMSP production as well as generating the climatically active gases DMS and MeSH, a portion of which are likely transferred to the atmosphere.
Collapse
Affiliation(s)
- Hao Sun
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yunhui Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Siyin Tan
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yanfen Zheng
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shun Zhou
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Qian-Yao Ma
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China
| | - Gui-Peng Yang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China
- Institute of Marine Chemistry, Ocean University of China, Qingdao, 266100, China
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
27
|
Kim S, Kim JH, Lim JH, Jeong JH, Heo JM, Kim IN. Distribution and Control of Bacterial Community Composition in Marian Cove Surface Waters, King George Island, Antarctica during the Summer of 2018. Microorganisms 2020; 8:microorganisms8081115. [PMID: 32722258 PMCID: PMC7464920 DOI: 10.3390/microorganisms8081115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
Marian Cove is experiencing some of the most rapid environmental changes in the Antarctic region; however, little is known about the response of bacterial communities to these changes. The main purpose of this study was to investigate the spatial variation of physical‒biogeochemical‒bacterial community features in the Marian Cove surface waters and the environmental parameters governing the spatial variation in the bacterial community composition during the summer of 2018. The Marian Cove surface waters are largely composed of two different characteristics of water masses: relatively low-temperature, -salinity, and -nutrient surface glacier water (named SGW) and relatively high-temperature, -salinity, and -nutrient surface Maxwell Bay water (named SMBW). The SGW bacterial communities were dominated by unclassified Cryomorphaceae, Sedimenticola, and Salibacter genera, while the SMBW bacterial communities were dominated by Sulfitobacter, Arcobacter, and Odoribacter genera. Spatial variations in bacterial community composition were mainly attributed to physical and biogeochemical characteristics, suggesting that the bacterial community composition of the Marian Cove surface waters is mainly determined by environmental characteristics. These findings provide a foundation to improve the understanding of bacterial community variations in response to a rapidly changing Marian Cove in the Antarctic.
Collapse
Affiliation(s)
- Soyeon Kim
- Department of Marine Science, Incheon National University, Incheon 22012, Korea; (S.K.); (J.-M.H.)
| | - Ju-Hyoung Kim
- Faculty of Marine Applied Biosciences, Kunsan National University, Gunsan 54150, Korea
- Correspondence: (J.-H.K.); (I.-N.K.)
| | - Jae-Hyun Lim
- Fisheries Resources and Environmental Research Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science, Gangneung 25435, Korea;
| | - Jin-Hyun Jeong
- Korea National Ocean Science Museum, Uljin 36315, Korea;
| | - Jang-Mu Heo
- Department of Marine Science, Incheon National University, Incheon 22012, Korea; (S.K.); (J.-M.H.)
| | - Il-Nam Kim
- Department of Marine Science, Incheon National University, Incheon 22012, Korea; (S.K.); (J.-M.H.)
- Correspondence: (J.-H.K.); (I.-N.K.)
| |
Collapse
|
28
|
Tandon K, Lu CY, Chiang PW, Wada N, Yang SH, Chan YF, Chen PY, Chang HY, Chiou YJ, Chou MS, Chen WM, Tang SL. Comparative genomics: Dominant coral-bacterium Endozoicomonas acroporae metabolizes dimethylsulfoniopropionate (DMSP). THE ISME JOURNAL 2020; 14:1290-1303. [PMID: 32055028 PMCID: PMC7174347 DOI: 10.1038/s41396-020-0610-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 01/24/2023]
Abstract
Dominant coral-associated Endozoicomonas bacteria species are hypothesized to play a role in the coral sulfur cycle by metabolizing dimethylsulfoniopropionate (DMSP) into dimethylsulfide (DMS); however, no sequenced genome to date harbors genes for this process. In this study, we assembled high-quality (>95% complete) draft genomes of strains of the recently added species Endozoicomonas acroporae (Acr-14T, Acr-1, and Acr-5) isolated from the coral Acropora sp. and performed a comparative genomic analysis on the genus Endozoicomonas. We identified DMSP CoA-transferase/lyase-a dddD gene homolog in all sequenced genomes of E. acroporae strains-and functionally characterized bacteria capable of metabolizing DMSP into DMS via the DddD cleavage pathway using RT-qPCR and gas chromatography (GC). Furthermore, we demonstrated that E. acroporae strains can use DMSP as a carbon source and have genes arranged in an operon-like manner to link DMSP metabolism to the central carbon cycle. This study confirms the role of Endozoicomonas in the coral sulfur cycle.
Collapse
Affiliation(s)
- Kshitij Tandon
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
- Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chih-Ying Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Naohisa Wada
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Shan-Hua Yang
- Institute of Fisheries Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Ya-Fan Chan
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Ping-Yun Chen
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Hsiao-Yu Chang
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Yu-Jing Chiou
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, 10617, Taiwan
| | - Ming-Shean Chou
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Wen-Ming Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd, Nan-Tzu, Kaohsiung City, 811, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan.
- Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
29
|
Zeng YX, Zhang YH, Li HR, Luo W. Complete genome of Sulfitobacter sp. BSw21498 isolated from seawater of Arctic Kongsfjorden. Mar Genomics 2020; 53:100769. [PMID: 32229098 DOI: 10.1016/j.margen.2020.100769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
The genus Sulfitobacter has been mostly found in marine and hypersaline environments. Members of this genus were observed to be associated with marine microalgae by inducing cell death of algae and degrading of algae-derived dimethylsulfoniopropionate (DMSP). Here we reported the complete genome sequence of strain Sulfitobacter sp. BSw21498 isolated from seawater of Kongsfjorden, an Arctic fjord in Svalbard. The strain contained a circular chromosome of 3,097,372 bp with G+C content of 58.55 mol% and a plasmid of 147,547 bp with G+C content of 56.53 mol%. In particular, a gene for DMSP lyase DddL was found in the genome, rendering Sulfitobacter sp. strain BSw21498 one of the Rhodobacterales bacteria equipped with the potential for DMSP degradation.
Collapse
Affiliation(s)
- Yin-Xin Zeng
- Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, People's Republic of China.
| | - Yi-He Zhang
- Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, People's Republic of China; College of Life Sciences, Yantai University, Yantai 264005, People's Republic of China
| | - Hui-Rong Li
- Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, People's Republic of China
| | - Wei Luo
- Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, People's Republic of China
| |
Collapse
|
30
|
Gebser B, Thume K, Steinke M, Pohnert G. Phytoplankton-derived zwitterionic gonyol and dimethylsulfonioacetate interfere with microbial dimethylsulfoniopropionate sulfur cycling. Microbiologyopen 2020; 9:e1014. [PMID: 32113191 PMCID: PMC7221440 DOI: 10.1002/mbo3.1014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 11/29/2022] Open
Abstract
The marine sulfur cycle is substantially fueled by the phytoplankton osmolyte dimethylsulfoniopropionate (DMSP). This metabolite can be metabolized by bacteria, which results in the emission of the volatile sulfur species methanethiol (MeSH) and the climate‐cooling dimethylsulfide (DMS). It is generally accepted that bacteria contribute significantly to DMSP turnover. We show that the other low molecular weight zwitterionic dimethylsulfonio compounds dimethylsulfonioacetate (DMSA) and gonyol are also widely distributed in phytoplankton and can serve as alternative substrates for volatile production. DMSA was found in 11 of the 16 surveyed phytoplankton species, and gonyol was detected in all haptophytes and dinoflagellates. These prevalent zwitterions are also metabolized by marine bacteria. The patterns of bacterial MeSH and DMS release were dependent on the zwitterions present. Certain bacteria metabolize DMSA and gonyol and release MeSH, in others gonyol inhibited DMS‐producing enzymes. If added in addition to DMSP, gonyol entirely inhibited the formation of volatiles in Ruegeria pomeroyi. In contrast, no substantial effect of this compound was observed in the DMSP metabolism of Halomonas sp. We argue that the production of DMSA and gonyol and their inhibitory properties on the release of volatiles from DMSP has the potential to modulate planktonic sulfur cycling between species.
Collapse
Affiliation(s)
- Björn Gebser
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Kathleen Thume
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Steinke
- School of Life Sciences, University of Essex, Colchester, UK
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
31
|
Song D, Zhang Y, Liu J, Zhong H, Zheng Y, Zhou S, Yu M, Todd JD, Zhang XH. Metagenomic Insights Into the Cycling of Dimethylsulfoniopropionate and Related Molecules in the Eastern China Marginal Seas. Front Microbiol 2020; 11:157. [PMID: 32132981 PMCID: PMC7039863 DOI: 10.3389/fmicb.2020.00157] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
The microbial cycling of dimethylsulfoniopropionate (DMSP) and its gaseous catabolites dimethylsulfide (DMS) and methanethiol (MeSH) are important processes in the global sulfur cycle, marine microbial food webs, signaling pathways, atmospheric chemistry, and potentially climate regulation. Many functional genes have been identified and used to study the genetic potential of microbes to produce and catabolize these organosulfur compounds in different marine environments. Here, we sampled seawater, marine sediment and hydrothermal sediment, and polymetallic sulfide in the eastern Chinese marginal seas and analyzed their microbial communities for the genetic potential to cycle DMSP, DMS, and MeSH using metagenomics. DMSP was abundant in all sediment samples, but was fivefold less prominent in those from hydrothermal samples. Indeed, Yellow Sea (YS) sediment samples had DMSP concentrations two orders of magnitude higher than in surface water samples. Bacterial genetic potential to synthesize DMSP (mainly in Rhodobacteraceae bacteria) was far higher than for phytoplankton in all samples, but particularly in the sediment where no algal DMSP synthesis genes were detected. Thus, we propose bacteria as important DMSP producers in these marine sediments. DMSP catabolic pathways mediated by the DMSP lyase DddP (prominent in Pseudomonas and Mesorhizobium bacteria) and DMSP demethylase DmdA enzymes (prominent in Rhodobacteraceae bacteria) and MddA-mediated MeSH S-methylation were very abundant in Bohai Sea and Yellow Sea sediments (BYSS) samples. In contrast, the genetic potential for DMSP degradation was very low in the hydrothermal sediment samples-dddP was the only catabolic gene detected and in only one sample. However, the potential for DMS production from MeSH (mddA) and DMS oxidation (dmoA and ddhA) was relatively abundant. This metagenomics study does not provide conclusive evidence for DMSP cycling; however, it does highlight the potential importance of bacteria in the synthesis and catabolism of DMSP and related compounds in diverse sediment environments.
Collapse
Affiliation(s)
- Delei Song
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunhui Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ji Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Haohui Zhong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yanfen Zheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shun Zhou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Min Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Xiao-Hua Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
32
|
Latitudinal Distributions and Controls of Bacterial Community Composition during the Summer of 2017 in Western Arctic Surface Waters (from the Bering Strait to the Chukchi Borderland). Sci Rep 2019; 9:16822. [PMID: 31727995 PMCID: PMC6856522 DOI: 10.1038/s41598-019-53427-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/27/2019] [Indexed: 11/30/2022] Open
Abstract
The western Arctic Ocean is experiencing some of the most rapid environmental changes in the Arctic. However, little is known about the microbial community response to these changes. Employing observations from the summer of 2017, this study investigated latitudinal variations in bacterial community composition in surface waters between the Bering Strait and Chukchi Borderland and the factors driving the changes. Results indicate three distinctive communities. Southern Chukchi bacterial communities are associated with nutrient rich conditions, including genera such as Sulfitobacter, whereas the northern Chukchi bacterial community is dominated by SAR clades, Flavobacterium, Paraglaciecola, and Polaribacter genera associated with low nutrients and sea ice conditions. The frontal region, located on the boundary between the southern and northern Chukchi, is a transition zone with intermediate physical and biogeochemical properties; however, bacterial communities differed markedly from those found to the north and south. In the transition zone, Sphingomonas, with as yet undetermined ecological characteristics, are relatively abundant. Latitudinal distributions in bacterial community composition are mainly attributed to physical and biogeochemical characteristics, suggesting that these communities are susceptible to Arctic environmental changes. These findings provide a foundation to improve understanding of bacterial community variations in response to a rapidly changing Arctic Ocean.
Collapse
|
33
|
Zeng YX, Qiao ZY. Diversity of Dimethylsulfoniopropionate Degradation Genes Reveals the Significance of Marine Roseobacter Clade in Sulfur Metabolism in Coastal Areas of Antarctic Maxwell Bay. Curr Microbiol 2019; 76:967-974. [DOI: 10.1007/s00284-019-01709-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/21/2019] [Indexed: 11/24/2022]
|
34
|
Abstract
The organosulfur metabolite dimethylsulfoniopropionate (DMSP) and its enzymatic breakdown product dimethyl sulfide (DMS) have important implications in the global sulfur cycle and in marine microbial food webs. Enormous amounts of DMSP are produced in marine environments where microbial communities import and catabolize it via either the demethylation or the cleavage pathways. The enzymes that cleave DMSP are termed "DMSP lyases" and generate acrylate or hydroxypropionate, and ~107tons of DMS annually. An important environmental factor affecting DMS generation by the DMSP lyases is the availability of metal ions as these enzymes use various cofactors for catalysis. This chapter summarizes advances on bacterial DMSP catabolism, with an emphasis on various biochemical methods employed for the isolation and characterization of bacterial DMSP lyases. Strategies are presented for the purification of DMSP lyases expressed in bacterial cells. Specific conditions for the efficient isolation of apoproteins in Escherichia coli are detailed. DMSP cleavage is effectively inferred, utilizing the described HPLC-based acrylate detection assay. Finally, substrate and metal binding interactions are examined using fluorescence and UV-visible assays. Together, these methods are rapid and well suited for the biochemical and structural characterization of DMSP lyases and in the assessment of uncharacterized DMSP catabolic enzymes, and new metalloenzymes in general.
Collapse
|
35
|
Song J, Jang HJ, Joung Y, Kang I, Cho JC. Sulfitobacter profundi sp. nov., isolated from deep seawater. J Microbiol 2019; 57:661-667. [PMID: 31012058 DOI: 10.1007/s12275-019-9150-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
A Gram-stain-negative, rod-shaped, obligately aerobic, chemoheterotrophic bacterium which is motile by means of a single polar flagellum, designated SAORIC-263T, was isolated from deep seawater of the Pacific Ocean. Phylogenetic analyses based on 16S rRNA gene sequences and genomebased phylogeny revealed that strain SAORIC-263T belonged to the genus Sulfitobacter and shared 96.1-99.9% 16S rRNA gene sequence similarities with Sulfitobacter species. Wholegenome sequencing of strain SAORIC-263T revealed a genome size of 3.9Mbp and DNA G+C content of 61.3 mol%. The SAORIC-263T genome shared an average nucleotide identity and digital DNA-DNA hybridization of 79.1-88.5% and 18.9-35.0%, respectively, with other Sulfitobacter genomes. The SAORIC-263T genome contained the genes related to benzoate degradation, which are frequently found in deep-sea metagenome. The strain contained summed feature 8 (C18:1ω7c), C18:1ω7c 11-methyl, and C16:0 as the predominant cellular fatty acids as well as ubiquinone-10 (Q-10) as the major respiratory quinone. The major polar lipids of the strain were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, and aminolipid. On the basis of taxonomic data obtained in this study, it is suggested that strain SAORIC-263T represents a novel species of the genus Sulfitobacter, for which the name Sulfitobacter profundi sp. nov. is proposed. The type strain is SAORIC-263T (= KACC 21183T = NBRC 113428T).
Collapse
Affiliation(s)
- Jaeho Song
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Hye-Jin Jang
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Yochan Joung
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
36
|
Nowinski B, Motard-Côté J, Landa M, Preston CM, Scholin CA, Birch JM, Kiene RP, Moran MA. Microdiversity and temporal dynamics of marine bacterial dimethylsulfoniopropionate genes. Environ Microbiol 2019; 21:1687-1701. [PMID: 30761723 DOI: 10.1111/1462-2920.14560] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/09/2019] [Indexed: 11/30/2022]
Abstract
Dimethylsulfoniopropionate (DMSP) is an abundant organic sulfur metabolite produced by many phytoplankton species and degraded by bacteria via two distinct pathways with climate-relevant implications. We assessed the diversity and abundance of bacteria possessing these pathways in the context of phytoplankton community composition over a 3-week time period spanning September-October, 2014 in Monterey Bay, CA. The dmdA gene from the DMSP demethylation pathway dominated the DMSP gene pool and was harboured mostly by members of the alphaproteobacterial SAR11 clade and secondarily by the Roseobacter group, particularly during the second half of the study. Novel members of the DMSP-degrading community emerged from dmdA sequences recovered from metagenome assemblies and single-cell sequencing, including largely uncharacterized gammaproteobacteria and alphaproteobacteria taxa. In the DMSP cleavage pathway, the SAR11 gene dddK was the most abundant early in the study, but was supplanted by dddP over time. SAR11 members, especially those harbouring genes for both DMSP degradation pathways, had a strong positive relationship with the abundance of dinoflagellates, and DMSP-degrading gammaproteobacteria co-occurred with haptophytes. This in situ study of the drivers of DMSP fate in a coastal ecosystem demonstrates for the first time correlations between specific groups of bacterial DMSP degraders and phytoplankton taxa.
Collapse
Affiliation(s)
- Brent Nowinski
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Jessie Motard-Côté
- Department of Marine Sciences, University of South Alabama, Mobile, AL, 36688, USA.,Dauphin Island Sea Lab, Dauphin Island, AL, 36528, USA
| | - Marine Landa
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | | | | | - James M Birch
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, 95039, USA
| | - Ronald P Kiene
- Department of Marine Sciences, University of South Alabama, Mobile, AL, 36688, USA.,Dauphin Island Sea Lab, Dauphin Island, AL, 36528, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
37
|
Liu J, Liu J, Zhang SH, Liang J, Lin H, Song D, Yang GP, Todd JD, Zhang XH. Novel Insights Into Bacterial Dimethylsulfoniopropionate Catabolism in the East China Sea. Front Microbiol 2018; 9:3206. [PMID: 30622530 PMCID: PMC6309047 DOI: 10.3389/fmicb.2018.03206] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/11/2018] [Indexed: 11/18/2022] Open
Abstract
The compatible solute dimethylsulfoniopropionate (DMSP), made by many marine organisms, is one of Earth's most abundant organosulfur molecules. Many marine bacteria import DMSP and can degrade it as a source of carbon and/or sulfur via DMSP cleavage or DMSP demethylation pathways, which can generate the climate active gases dimethyl sulfide (DMS) or methanthiol (MeSH), respectively. Here we used culture-dependent and -independent methods to study bacteria catabolizing DMSP in the East China Sea (ECS). Of bacterial isolates, 42.11% showed DMSP-dependent DMS (Ddd+) activity, and 12.28% produced detectable levels of MeSH. Interestingly, although most Ddd+ isolates were Alphaproteobacteria (mainly Roseobacters), many gram-positive Actinobacteria were also shown to cleave DMSP producing DMS. The mechanism by which these Actinobacteria cleave DMSP is unknown, since no known functional ddd genes have been identified in genome sequences of Ddd+Microbacterium and Agrococcus isolates or in any other sequenced Actinobacteria genomes. Gene probes to the DMSP demethylation gene dmdA and the DMSP lyase gene dddP demonstrated that these DMSP-degrading genes are abundant and widely distributed in ECS seawaters. dmdA was present in relatively high proportions in both surface (19.53% ± 6.70%) and bottom seawater bacteria (16.00% ± 8.73%). In contrast, dddP abundance positively correlated with chlorophyll a, and gradually decreased with the distance from land, which implies that the bacterial DMSP lyase gene dddP might be from bacterial groups that closely associate with phytoplankton. Bacterial community analysis showed positive correlations between Rhodobacteraceae abundance and concentrations of DMS and DMSP, further confirming the link between this abundant bacterial class and the environmental DMSP cycling.
Collapse
Affiliation(s)
- Jingli Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Ji Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Sheng-Hui Zhang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Jinchang Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Heyu Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Delei Song
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Gui-Peng Yang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
38
|
De Anda V, Zapata-Peñasco I, Blaz J, Poot-Hernández AC, Contreras-Moreira B, González-Laffitte M, Gámez-Tamariz N, Hernández-Rosales M, Eguiarte LE, Souza V. Understanding the Mechanisms Behind the Response to Environmental Perturbation in Microbial Mats: A Metagenomic-Network Based Approach. Front Microbiol 2018; 9:2606. [PMID: 30555424 PMCID: PMC6280815 DOI: 10.3389/fmicb.2018.02606] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
To date, it remains unclear how anthropogenic perturbations influence the dynamics of microbial communities, what general patterns arise in response to disturbance, and whether it is possible to predict them. Here, we suggest the use of microbial mats as a model of study to reveal patterns that can illuminate the ecological processes underlying microbial dynamics in response to stress. We traced the responses to anthropogenic perturbation caused by water depletion in microbial mats from Cuatro Cienegas Basin (CCB), Mexico, by using a time-series spatially resolved analysis in a novel combination of three computational approaches. First, we implemented MEBS (Multi-genomic Entropy-Based Score) to evaluate the dynamics of major biogeochemical cycles across spatio-temporal scales with a single informative value. Second, we used robust Time Series-Ecological Networks (TS-ENs) to evaluate the total percentage of interactions at different taxonomic levels. Lastly, we utilized network motifs to characterize specific interaction patterns. Our results indicate that microbial mats from CCB contain an enormous taxonomic diversity with at least 100 phyla, mainly represented by members of the rare biosphere (RB). Statistical ecological analyses point out a clear involvement of anaerobic guilds related to sulfur and methane cycles during wet versus dry conditions, where we find an increase in fungi, photosynthetic, and halotolerant taxa. TS-ENs indicate that in wet conditions, there was an equilibrium between cooperation and competition (positive and negative relationships, respectively), while under dry conditions there is an over-representation of negative relationships. Furthermore, most of the keystone taxa of the TS-ENs at family level are members of the RB and the microbial mat core highlighting their crucial role within the community. Our results indicate that microbial mats are more robust to perturbation due to redundant functions that are likely shared among community members in the highly connected TS-ENs with density values close to one (≈0.9). Finally, we provide evidence that suggests that a large taxonomic diversity where all community members interact with each other (low modularity), the presence of permanent of low-abundant taxa, and an increase in competition can be potential buffers against environmental disturbance in microbial mats.
Collapse
Affiliation(s)
- Valerie De Anda
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Icoquih Zapata-Peñasco
- Dirección de Investigación en Transformación de Hidrocarburos, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas, Ciudad de México, Mexico
| | - Jazmín Blaz
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Augusto Cesar Poot-Hernández
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Bruno Contreras-Moreira
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | | | - Niza Gámez-Tamariz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
39
|
Barak-Gavish N, Frada MJ, Ku C, Lee PA, DiTullio GR, Malitsky S, Aharoni A, Green SJ, Rotkopf R, Kartvelishvily E, Sheyn U, Schatz D, Vardi A. Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP. SCIENCE ADVANCES 2018; 4:eaau5716. [PMID: 30397652 PMCID: PMC6200362 DOI: 10.1126/sciadv.aau5716] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/17/2018] [Indexed: 05/12/2023]
Abstract
Emiliania huxleyi is a bloom-forming microalga that affects the global sulfur cycle by producing large amounts of dimethylsulfoniopropionate (DMSP) and its volatile metabolic product dimethyl sulfide. Top-down regulation of E. huxleyi blooms has been attributed to viruses and grazers; however, the possible involvement of algicidal bacteria in bloom demise has remained elusive. We demonstrate that a Roseobacter strain, Sulfitobacter D7, that we isolated from a North Atlantic E. huxleyi bloom, exhibited algicidal effects against E. huxleyi upon coculturing. Both the alga and the bacterium were found to co-occur during a natural E. huxleyi bloom, therefore establishing this host-pathogen system as an attractive, ecologically relevant model for studying algal-bacterial interactions in the oceans. During interaction, Sulfitobacter D7 consumed and metabolized algal DMSP to produce high amounts of methanethiol, an alternative product of DMSP catabolism. We revealed a unique strain-specific response, in which E. huxleyi strains that exuded higher amounts of DMSP were more susceptible to Sulfitobacter D7 infection. Intriguingly, exogenous application of DMSP enhanced bacterial virulence and induced susceptibility in an algal strain typically resistant to the bacterial pathogen. This enhanced virulence was highly specific to DMSP compared to addition of propionate and glycerol which had no effect on bacterial virulence. We propose a novel function for DMSP, in addition to its central role in mutualistic interactions among marine organisms, as a mediator of bacterial virulence that may regulate E. huxleyi blooms.
Collapse
Affiliation(s)
- Noa Barak-Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miguel José Frada
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
- The Interuniversity Institute for Marine Sciences, Eilat 88103, Israel
- Department of Ecology, Evolution and Behavior, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Chuan Ku
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Peter A. Lee
- Hollings Marine Laboratory, College of Charleston, Charleston, SC 29412, USA
| | - Giacomo R. DiTullio
- Hollings Marine Laboratory, College of Charleston, Charleston, SC 29412, USA
| | - Sergey Malitsky
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Biological Services, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Stefan J. Green
- DNA Services Facility, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ron Rotkopf
- Department of Biological Services, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elena Kartvelishvily
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uri Sheyn
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
- Corresponding author.
| |
Collapse
|
40
|
Kopejtka K, Tomasch J, Bunk B, Spröer C, Wagner-Döbler I, Koblížek M. The complete genome sequence of Rhodobaca barguzinensis alga05 (DSM 19920) documents its adaptation for life in soda lakes. Extremophiles 2018; 22:839-849. [PMID: 30022245 DOI: 10.1007/s00792-018-1041-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022]
Abstract
Soda lakes, with their high salinity and high pH, pose a very challenging environment for life. Microorganisms living in these harsh conditions have had to adapt their physiology and gene inventory. Therefore, we analyzed the complete genome of the haloalkaliphilic photoheterotrophic bacterium Rhodobaca barguzinensis strain alga05. It consists of a 3,899,419 bp circular chromosome with 3624 predicted coding sequences. In contrast to most of Rhodobacterales, this strain lacks any extrachromosomal elements. To identify the genes responsible for adaptation to high pH, we compared the gene inventory in the alga05 genome with genomes of 17 reference strains belonging to order Rhodobacterales. We found that all haloalkaliphilic strains contain the mrpB gene coding for the B subunit of the MRP Na+/H+ antiporter, while this gene is absent in all non-alkaliphilic strains, which indicates its importance for adaptation to high pH. Further analysis showed that alga05 requires organic carbon sources for growth, but it also contains genes encoding the ethylmalonyl-CoA pathway for CO2 fixation. Remarkable is the genetic potential to utilize organophosphorus compounds as a source of phosphorus. In summary, its genetic inventory indicates a large flexibility of the alga05 metabolism, which is advantageous in rapidly changing environmental conditions in soda lakes.
Collapse
Affiliation(s)
- Karel Kopejtka
- Laboratory of Anoxygenic Phototrophs, Center Algatech, Institute of Microbiology CAS, Třeboň, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jürgen Tomasch
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Boyke Bunk
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Institute of Microbiology, Braunschweig University of Technology, Braunschweig, Germany
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Center Algatech, Institute of Microbiology CAS, Třeboň, Czech Republic. .,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
41
|
Lei L, Alcolombri U, Tawfik DS. Biochemical Profiling of DMSP Lyases. Methods Enzymol 2018; 605:269-289. [PMID: 29909827 DOI: 10.1016/bs.mie.2018.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dimethyl sulfide (DMS) is released at rates of >107 tons annually and plays a key role in the oceanic sulfur cycle and ecology. Marine bacteria, algae, and possibly other organisms release DMS via cleavage of dimethylsulfoniopropionate (DMSP). DMSP lyases have been identified in various organisms, including bacteria, coral, and algae, thus comprising a range of gene families putatively assigned as DMSP lyases. Metagenomics may therefore provide insight regarding the presence of DMSP lyases in various marine environments, thereby promoting a better understanding of global DMS emission. However, gene counts, and even mRNA levels, do not necessarily reflect the level of DMSP cleavage activity in a given environmental sample, especially because some of the families assigned as DMSP lyases may merely exhibit promiscuous lyase activity. Here, we describe a range of biochemical profiling methods that can assign an observed DMSP lysis activity to a specific gene family. These methods include selective inhibitors and DMSP substrate analogues. Combined with genomics and metagenomics, biochemical profiling may enable a more reliable identification of the origins of DMS release in specific organisms and in crude environmental samples.
Collapse
Affiliation(s)
- Lei Lei
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Uria Alcolombri
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
42
|
Burkhardt I, Lauterbach L, Brock NL, Dickschat JS. Chemical differentiation of three DMSP lyases from the marine Roseobacter group. Org Biomol Chem 2018; 15:4432-4439. [PMID: 28485454 DOI: 10.1039/c7ob00913e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dimethylsulfoniopropionate (DMSP) catabolism of marine bacteria plays an important role in marine and global ecology. The genome of Ruegeria pomeroyi DSS-3, a model organism from the Roseobacter group, harbours no less than three genes for different DMSP lyases (DddW, DddP and DddQ) that catalyse the degradation of DMSP to dimethyl sulfide (DMS) and acrylate. Despite their apparent similar function these enzymes show no significant overall sequence identity. In this work DddQ and DddW from R. pomeroyi and the DddP homolog from Phaeobacter inhibens DSM 17395 were functionally characterised and their substrate scope was tested using several synthetic DMSP analogues. Comparative kinetic assays revealed differences in the conversion of DMSP and its analogues in terms of selectivity and overall velocity, giving additional insights into the molecular mechanisms of DMSP lyases and into their putatively different biological functions.
Collapse
Affiliation(s)
- Immo Burkhardt
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | | | | | | |
Collapse
|
43
|
Lei L, Cherukuri KP, Alcolombri U, Meltzer D, Tawfik DS. The Dimethylsulfoniopropionate (DMSP) Lyase and Lyase-Like Cupin Family Consists of Bona Fide DMSP lyases as Well as Other Enzymes with Unknown Function. Biochemistry 2018; 57:3364-3377. [DOI: 10.1021/acs.biochem.8b00097] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lei Lei
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Uria Alcolombri
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Diana Meltzer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan S. Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
44
|
Curson ARJ, Williams BT, Pinchbeck BJ, Sims LP, Martínez AB, Rivera PPL, Kumaresan D, Mercadé E, Spurgin LG, Carrión O, Moxon S, Cattolico RA, Kuzhiumparambil U, Guagliardo P, Clode PL, Raina JB, Todd JD. DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. Nat Microbiol 2018; 3:430-439. [PMID: 29483657 DOI: 10.1038/s41564-018-0119-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/29/2018] [Indexed: 01/08/2023]
Abstract
Dimethylsulfoniopropionate (DMSP) is a globally important organosulfur molecule and the major precursor for dimethyl sulfide. These compounds are important info-chemicals, key nutrients for marine microorganisms, and are involved in global sulfur cycling, atmospheric chemistry and cloud formation1-3. DMSP production was thought to be confined to eukaryotes, but heterotrophic bacteria can also produce DMSP through the pathway used by most phytoplankton 4 , and the DsyB enzyme catalysing the key step of this pathway in bacteria was recently identified 5 . However, eukaryotic phytoplankton probably produce most of Earth's DMSP, yet no DMSP biosynthesis genes have been identified in any such organisms. Here we identify functional dsyB homologues, termed DSYB, in many phytoplankton and corals. DSYB is a methylthiohydroxybutryate methyltransferase enzyme localized in the chloroplasts and mitochondria of the haptophyte Prymnesium parvum, and stable isotope tracking experiments support these organelles as sites of DMSP synthesis. DSYB transcription levels increased with DMSP concentrations in different phytoplankton and were indicative of intracellular DMSP. Identification of the eukaryotic DSYB sequences, along with bacterial dsyB, provides the first molecular tools to predict the relative contributions of eukaryotes and prokaryotes to global DMSP production. Furthermore, evolutionary analysis suggests that eukaryotic DSYB originated in bacteria and was passed to eukaryotes early in their evolution.
Collapse
Affiliation(s)
- Andrew R J Curson
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Beth T Williams
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | - Leanne P Sims
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | | - Deepak Kumaresan
- School of Biological Sciences and Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Elena Mercadé
- Laboratory of Microbiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Ornella Carrión
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | | - Paul Guagliardo
- The Centre for Microscopy Characterisation and Analysis, University of Western Australia, Crawley, Australia
| | - Peta L Clode
- The Centre for Microscopy Characterisation and Analysis, University of Western Australia, Crawley, Australia.,Oceans Institute, University of Western Australia, Crawley, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster (C3), Faculty of Science, University of Technology, Sydney, New South Wales, Australia
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
45
|
Li CY, Zhang D, Chen XL, Wang P, Shi WL, Li PY, Zhang XY, Qin QL, Todd JD, Zhang YZ. Mechanistic Insights into Dimethylsulfoniopropionate Lyase DddY, a New Member of the Cupin Superfamily. J Mol Biol 2017; 429:3850-3862. [DOI: 10.1016/j.jmb.2017.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/08/2017] [Accepted: 10/19/2017] [Indexed: 12/28/2022]
|
46
|
Repression of Salmonella Host Cell Invasion by Aromatic Small Molecules from the Human Fecal Metabolome. Appl Environ Microbiol 2017; 83:AEM.01148-17. [PMID: 28754707 DOI: 10.1128/aem.01148-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023] Open
Abstract
The human microbiome is a collection of microorganisms that inhabit every surface of the body that is exposed to the environment, generally coexisting peacefully with their host. These microbes have important functions, such as producing vitamins, aiding in maturation of the immune system, and protecting against pathogens. We have previously shown that a small-molecule extract from the human fecal microbiome has a strong repressive effect on Salmonella enterica serovar Typhimurium host cell invasion by modulating the expression of genes involved in this process. Here, we describe the characterization of this biological activity. Using a series of purification methods, we obtained fractions with biological activity and characterized them by mass spectrometry. These experiments revealed an abundance of aromatic compounds in the bioactive fraction. Selected compounds were obtained from commercial sources and tested with respect to their ability to repress the expression of hilA, the gene encoding the master regulator of invasion genes in Salmonella We found that the aromatic compound 3,4-dimethylbenzoic acid acts as a strong inhibitor of hilA expression and of invasion of cultured host cells by Salmonella Future studies should reveal the molecular details of this phenomenon, such as the signaling cascades involved in sensing this bioactive molecule.IMPORTANCE Microbes constantly sense and adapt to their environment. Often, this is achieved through the production and sensing of small extracellular molecules. The human body is colonized by complex communities of microbes, and, given their biological and chemical diversity, these ecosystems represent a platform where the production and sensing of molecules occur. In previous work, we showed that small molecules produced by microbes from the human gut can significantly impair the virulence of the enteric pathogen Salmonella enterica Here, we describe a specific compound from the human gut that produces this same effect. The results from this work not only shed light on an important biological phenomenon occurring in our bodies but also may represent an opportunity to develop drugs that can target these small-molecule interactions to protect us from enteric infections and other diseases.
Collapse
|
47
|
Bullock HA, Luo H, Whitman WB. Evolution of Dimethylsulfoniopropionate Metabolism in Marine Phytoplankton and Bacteria. Front Microbiol 2017; 8:637. [PMID: 28469605 PMCID: PMC5395565 DOI: 10.3389/fmicb.2017.00637] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/28/2017] [Indexed: 11/13/2022] Open
Abstract
The elucidation of the pathways for dimethylsulfoniopropionate (DMSP) synthesis and metabolism and the ecological impact of DMSP have been studied for nearly 70 years. Much of this interest stems from the fact that DMSP metabolism produces the climatically active gas dimethyl sulfide (DMS), the primary natural source of sulfur to the atmosphere. DMSP plays many important roles for marine life, including use as an osmolyte, antioxidant, predator deterrent, and cryoprotectant for phytoplankton and as a reduced carbon and sulfur source for marine bacteria. DMSP is hypothesized to have become abundant in oceans approximately 250 million years ago with the diversification of the strong DMSP producers, the dinoflagellates. This event coincides with the first genome expansion of the Roseobacter clade, known DMSP degraders. Structural and mechanistic studies of the enzymes of the bacterial DMSP demethylation and cleavage pathways suggest that exposure to DMSP led to the recruitment of enzymes from preexisting metabolic pathways. In some cases, such as DmdA, DmdD, and DddP, these enzymes appear to have evolved to become more specific for DMSP metabolism. By contrast, many of the other enzymes, DmdB, DmdC, and the acrylate utilization hydratase AcuH, have maintained broad functionality and substrate specificities, allowing them to carry out a range of reactions within the cell. This review will cover the experimental evidence supporting the hypothesis that, as DMSP became more readily available in the marine environment, marine bacteria adapted enzymes already encoded in their genomes to utilize this new compound.
Collapse
Affiliation(s)
- Hannah A Bullock
- Department of Microbiology, University of Georgia, AthensGA, USA
| | - Haiwei Luo
- School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
| | | |
Collapse
|
48
|
Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process. Nat Microbiol 2017; 2:17009. [PMID: 28191900 DOI: 10.1038/nmicrobiol.2017.9] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/11/2017] [Indexed: 11/08/2022]
Abstract
Dimethylsulfoniopropionate (DMSP) is one of the Earth's most abundant organosulfur molecules, a signalling molecule1, a key nutrient for marine microorganisms2,3 and the major precursor for gaseous dimethyl sulfide (DMS). DMS, another infochemical in signalling pathways4, is important in global sulfur cycling2 and affects the Earth's albedo, and potentially climate, via sulfate aerosol and cloud condensation nuclei production5,6. It was thought that only eukaryotes produce significant amounts of DMSP7-9, but here we demonstrate that many marine heterotrophic bacteria also produce DMSP, probably using the same methionine (Met) transamination pathway as macroalgae and phytoplankton10. We identify the first DMSP synthesis gene in any organism, dsyB, which encodes the key methyltransferase enzyme of this pathway and is a reliable reporter for bacterial DMSP synthesis in marine Alphaproteobacteria. DMSP production and dsyB transcription are upregulated by increased salinity, nitrogen limitation and lower temperatures in our model DMSP-producing bacterium Labrenzia aggregata LZB033. With significant numbers of dsyB homologues in marine metagenomes, we propose that bacteria probably make a significant contribution to oceanic DMSP production. Furthermore, because DMSP production is not solely associated with obligate phototrophs, the process need not be confined to the photic zones of marine environments and, as such, may have been underestimated.
Collapse
|
49
|
Hernandez-Agreda A, Gates RD, Ainsworth TD. Defining the Core Microbiome in Corals’ Microbial Soup. Trends Microbiol 2017; 25:125-140. [DOI: 10.1016/j.tim.2016.11.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/21/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023]
|
50
|
Enzymology of Microbial Dimethylsulfoniopropionate Catabolism. STRUCTURAL AND MECHANISTIC ENZYMOLOGY 2017; 109:195-222. [DOI: 10.1016/bs.apcsb.2017.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|