1
|
Gupta R, Anand G, Pandey R, Bar M, Yadav D. Employing Bacillus and Pseudomonas for phytonematode management in agricultural crops. World J Microbiol Biotechnol 2024; 40:331. [PMID: 39358574 DOI: 10.1007/s11274-024-04137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Phytonematodes are responsible for causing significant harm and reducing yields in various agricultural crops. To minimize losses caused by phytonematodes and meet the high demand for agricultural production, it is important to develop effective strategies with minimal environmental impact to manage this biotic stress. Due to the adverse environmental effects associated with synthetic pesticides, it is imperative to use beneficial bacteria, such as Bacillus and Pseudomonas spp., for biocontrol purposes to control phytonematode infestation in agricultural settings. This approach has gained considerable attraction, as there is a promising market for eco-friendly biopesticides based on bacteria that can effectively manage phytonematodes. Furthermore, biocontrol strains of Bacillus and Pseudomonas have the potential to enhance crop productivity by producing various substances that promote plant growth and development. This review aims to explore the role of Bacillus and Pseudomonas spp. in phytonematode management, elucidate different mechanisms by which these bacteria suppress nematode populations, and discuss the future prospects of utilizing these bacteria in agriculture.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Gautam Anand
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology, CSIR- Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, India
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel.
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India.
| |
Collapse
|
2
|
Tienda S, Vida C, Villar-Moreno R, de Vicente A, Cazorla FM. Development of a Pseudomonas-based biocontrol consortium with effective root colonization and extended beneficial side effects for plants under high-temperature stress. Microbiol Res 2024; 285:127761. [PMID: 38761488 DOI: 10.1016/j.micres.2024.127761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
The root microbiota plays a crucial role in plant performance. The use of microbial consortia is considered a very useful tool for studying microbial interactions in the rhizosphere of different agricultural crop plants. Thus, a consortium of 3 compatible beneficial rhizospheric Pseudomonas strains previously isolated from the avocado rhizosphere, was constructed. The consortium is composed of two compatible biocontrol P. chlororaphis strains (PCL1601 and PCL1606), and the biocontrol rhizobacterium Pseudomonas alcaligenes AVO110, which are all efficient root colonizers of avocado and tomato plants. These three strains were compatible with each other and reached stable levels both in liquid media and on plant roots. Bacterial strains were fluorescent tagged, and colonization-related traits were analyzed in vitro, revealing formation of mixed biofilm networks without exclusion of any of the strains. Additionally, bacterial colonization patterns compatible with the different strains were observed, with high survival traits on avocado and tomato roots. The bacteria composing the consortium shared the same root habitat and exhibited biocontrol activity against soil-borne fungal pathogens at similar levels to those displayed by the individual strains. As expected, because these strains were isolated from avocado roots, this Pseudomonas-based consortium had more stable bacterial counts on avocado roots than on tomato roots; however, inoculation of tomato roots with this consortium was shown to protect tomato plants under high-temperature stress. The results revealed that this consortium has side beneficial effect for tomato plants under high-temperature stress, thus improving the potential performance of the individual strains. We concluded that this rhizobacterial consortium do not improve the plant protection against soil-borne phytopathogenic fungi displayed by the single strains; however, its inoculation can show an specific improvement of plant performance on a horticultural non-host plant (such as tomato) when the plant was challenged by high temperature stress, thus extending the beneficial role of this bacterial consortium.
Collapse
Affiliation(s)
- Sandra Tienda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Carmen Vida
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Rafael Villar-Moreno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain
| | - Francisco M Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, Málaga 29071, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, Málaga 29010, Spain.
| |
Collapse
|
3
|
Lorch MG, Valverde C, Agaras BC. Variability in Maize Seed Bacterization and Survival Correlating with Root Colonization by Pseudomonas Isolates with Plant-Probiotic Traits. PLANTS (BASEL, SWITZERLAND) 2024; 13:2130. [PMID: 39124248 PMCID: PMC11314135 DOI: 10.3390/plants13152130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Seed treatment with plant growth-promoting bacteria represents the primary strategy to incorporate them into agricultural ecosystems, particularly for crops under extensive management, such as maize. In this study, we evaluated the seed bacterization levels, root colonization patterns, and root competitiveness of a collection of autochthonous Pseudomonas isolates that have demonstrated several plant-probiotic abilities in vitro. Our findings indicate that the seed bacterization level, both with and without the addition of various protectants, is specific to each Pseudomonas strain, including their response to seed pre-hydration. Bacterization kinetics revealed that while certain isolates persisted on seed surfaces for up to 4 days post-inoculation (dpi), others experienced a rapid decline in viability after 1 or 2 dpi. The observed differences in seed bacterization levels were consistent with the root colonization densities observed through confocal microscopy analysis, and with root competitiveness quantified via selective plate counts. Notably, isolates P. protegens RBAN4 and P. chlororaphis subsp. aurantiaca SMMP3 demonstrated effective competition with the natural microflora for colonizing the maize rhizosphere and both promoted shoot and root biomass production in maize assessed at the V3 grown stage. Conversely, P. donghuensis SVBP6 was detected at very low levels in the maize rhizosphere, but still exhibited a positive effect on plant parameters, suggesting a growth-stimulatory effect during the early stages of plant development. In conclusion, there is a considerable strain-specific variability in the maize seed bacterization and survival capacities of Pseudomonas isolates with plant-probiotic traits, with a correlation in their root competitiveness under natural conditions. This variability must be understood to optimize their adoption as inputs for the agricultural system. Our experimental approach emphasizes the critical importance of tailoring seed bacterization treatments for each inoculant candidate, including the selection and incorporation of protective substances. It should not be assumed that all bacterial cells exhibit a similar performance.
Collapse
Affiliation(s)
- Melani G. Lorch
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina; (M.G.L.); (C.V.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Claudio Valverde
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina; (M.G.L.); (C.V.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Betina C. Agaras
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina; (M.G.L.); (C.V.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| |
Collapse
|
4
|
Liu Y, Xu Z, Chen L, Xun W, Shu X, Chen Y, Sun X, Wang Z, Ren Y, Shen Q, Zhang R. Root colonization by beneficial rhizobacteria. FEMS Microbiol Rev 2024; 48:fuad066. [PMID: 38093453 PMCID: PMC10786197 DOI: 10.1093/femsre/fuad066] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Rhizosphere microbes play critical roles for plant's growth and health. Among them, the beneficial rhizobacteria have the potential to be developed as the biofertilizer or bioinoculants for sustaining the agricultural development. The efficient rhizosphere colonization of these rhizobacteria is a prerequisite for exerting their plant beneficial functions, but the colonizing process and underlying mechanisms have not been thoroughly reviewed, especially for the nonsymbiotic beneficial rhizobacteria. This review systematically analyzed the root colonizing process of the nonsymbiotic rhizobacteria and compared it with that of the symbiotic and pathogenic bacteria. This review also highlighted the approaches to improve the root colonization efficiency and proposed to study the rhizobacterial colonization from a holistic perspective of the rhizosphere microbiome under more natural conditions.
Collapse
Affiliation(s)
- Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, 1 Shuizha West Road, Beijing 102300, P.R. China
| | - Weibing Xun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xia Shu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, P.R. China
| | - Yu Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xinli Sun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Zhengqi Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Yi Ren
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Ruifu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| |
Collapse
|
5
|
Wu D, Wang W, Yao Y, Li H, Wang Q, Niu B. Microbial interactions within beneficial consortia promote soil health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165801. [PMID: 37499809 DOI: 10.1016/j.scitotenv.2023.165801] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/26/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
By ecologically interacting with various biotic and abiotic agents acting in soil ecosystems, highly diverse soil microorganisms establish complex and stable assemblages and survive in a community context in natural settings. Besides facilitating soil microbiome to maintain great levels of population homeostasis, such microbial interactions drive soil microbes to function as the major engine of terrestrial biogeochemical cycling. It is verified that the regulative effect of microbe-microbe interplay plays an instrumental role in microbial-mediated promotion of soil health, including bioremediation of soil pollutants and biocontrol of soil-borne phytopathogens, which is considered an environmentally friendly strategy for ensuring the healthy condition of soils. Specifically, in microbial consortia, it has been proven that microorganism-microorganism interactions are involved in enhancing the soil health-promoting effectiveness (i.e., efficacies of pollution reduction and disease inhibition) of the beneficial microbes, here defined as soil health-promoting agents. These microbial interactions can positively regulate the soil health-enhancing effect by supporting those soil health-promoting agents utilized in combination, as multi-strain soil health-promoting agents, to overcome three main obstacles: inadequate soil colonization, insufficient soil contaminant eradication and inefficient soil-borne pathogen suppression, all of which can restrict their probiotic functionality. Yet the mechanisms underlying such beneficial interaction-related adjustments and how to efficiently assemble soil health-enhancing consortia with the guidance of microbe-microbe communications remain incompletely understood. In this review, we focus on bacterial and fungal soil health-promoting agents to summarize current research progress on the utilization of multi-strain soil health-promoting agents in the control of soil pollution and soil-borne plant diseases. We discuss potential microbial interaction-relevant mechanisms deployed by the probiotic microorganisms to upgrade their functions in managing soil health. We emphasize the interplay-related factors that should be taken into account when building soil health-promoting consortia, and propose a workflow for assembling them by employing a reductionist synthetic community approach.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Weixiong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yanpo Yao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hongtao Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
6
|
Blanco-Romero E, Durán D, Garrido-Sanz D, Redondo-Nieto M, Martín M, Rivilla R. Adaption of Pseudomonas ogarae F113 to the Rhizosphere Environment-The AmrZ-FleQ Hub. Microorganisms 2023; 11:microorganisms11041037. [PMID: 37110460 PMCID: PMC10146422 DOI: 10.3390/microorganisms11041037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Motility and biofilm formation are two crucial traits in the process of rhizosphere colonization by pseudomonads. The regulation of both traits requires a complex signaling network that is coordinated by the AmrZ-FleQ hub. In this review, we describe the role of this hub in the adaption to the rhizosphere. The study of the direct regulon of AmrZ and the phenotypic analyses of an amrZ mutant in Pseudomonas ogarae F113 has shown that this protein plays a crucial role in the regulation of several cellular functions, including motility, biofilm formation, iron homeostasis, and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) turnover, controlling the synthesis of extracellular matrix components. On the other hand, FleQ is the master regulator of flagellar synthesis in P. ogarae F113 and other pseudomonads, but its implication in the regulation of multiple traits related with environmental adaption has been shown. Genomic scale studies (ChIP-Seq and RNA-Seq) have shown that in P. ogarae F113, AmrZ and FleQ are general transcription factors that regulate multiple traits. It has also been shown that there is a common regulon shared by the two transcription factors. Moreover, these studies have shown that AmrZ and FleQ form a regulatory hub that inversely regulate traits such as motility, extracellular matrix component production, and iron homeostasis. The messenger molecule c-di-GMP plays an essential role in this hub since its production is regulated by AmrZ and it is sensed by FleQ and required for its regulatory role. This regulatory hub is functional both in culture and in the rhizosphere, indicating that the AmrZ-FleQ hub is a main player of P. ogarae F113 adaption to the rhizosphere environment.
Collapse
Affiliation(s)
- Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
7
|
Tang T, Sun X, Liu Q, Dong Y, Zha M. Treatment with organic manure inoculated with a biocontrol agent induces soil bacterial communities to inhibit tomato Fusarium wilt disease. Front Microbiol 2023; 13:1006878. [PMID: 36687620 PMCID: PMC9849813 DOI: 10.3389/fmicb.2022.1006878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Organic manure, plant growth-promoting microorganisms, and biocontrol agents are widely used to sustainably control soil-borne diseases. However, how and whether organic manure inoculated with biocontrol agents alters soil microbiota and reduces disease severity is poorly understood. Methods Here, we examined changes to the soil microbial community, soil properties, and incidence of Fusarium wilt disease in response to several fertilization regimes. Specifically, we studied the effects of inorganic chemical fertilization (CF), organic manure fertilization (OF), and Erythrobacter sp. YH-07-inoculated organic manure fertilization (BF) on the incidence of Fusarium wilt in tomato across three seasons. Results BF-treated soils showed increased microbial abundance, richness, and diversity compared to other treatments, and this trend was stable across seasons. BF-treated soils also exhibited a significantly altered microbial community composition, including increased abundances of Bacillus, Altererythrobacter, Cryptococcus, and Saprospiraceae, and decreased abundances of Chryseolinea and Fusarium. Importantly, BF treatment significantly suppressed the incidence of Fusarium wilt in tomato, likely due to direct suppression by Erythrobacter sp. YH-07 and indirect suppression through changes to the microbial community composition and soil properties. Discussion Taken together, these results suggest that Erythrobacter sp. YH-07-inoculated organic manure is a stable and sustainable soil amendment for the suppression of Fusarium wilt diseases.
Collapse
Affiliation(s)
- Tongtong Tang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, China
| | - Xing Sun
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, China
| | - Qin Liu
- Institute of Soil Science Chinese Academy of Sciences, Nanjing, China,Institute of Soil Science Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Qin Liu,
| | - Yuanhua Dong
- Institute of Soil Science Chinese Academy of Sciences, Nanjing, China,Institute of Soil Science Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mingfang Zha
- Chuzhou Agricultural and Rural Technology Extension Center, Chuzhou, China
| |
Collapse
|
8
|
Villar-Moreno R, Tienda S, Gutiérrez-Barranquero JA, Carrión VJ, de Vicente A, Cazorla FM, Arrebola E. Interplay between rhizospheric Pseudomonas chlororaphis strains lays the basis for beneficial bacterial consortia. FRONTIERS IN PLANT SCIENCE 2022; 13:1063182. [PMID: 36589057 PMCID: PMC9797978 DOI: 10.3389/fpls.2022.1063182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Pseudomonas chlororaphis (Pc) representatives are found as part of the rhizosphere-associated microbiome, and different rhizospheric Pc strains frequently perform beneficial activities for the plant. In this study we described the interactions between the rhizospheric Pc strains PCL1601, PCL1606 and PCL1607 with a focus on their effects on root performance. Differences among the three rhizospheric Pc strains selected were first observed in phylogenetic studies and confirmed by genome analysis, which showed variation in the presence of genes related to antifungal compounds or siderophore production, among others. Observation of the interactions among these strains under lab conditions revealed that PCL1606 has a better adaptation to environments rich in nutrients, and forms biofilms. Interaction experiments on plant roots confirmed the role of the different phenotypes in their lifestyle. The PCL1606 strain was the best adapted to the habitat of avocado roots, and PCL1607 was the least, and disappeared from the plant root scenario after a few days of interaction. These results confirm that 2 out 3 rhizospheric Pc strains were fully compatible (PCL1601 and PCL1606), efficiently colonizing avocado roots and showing biocontrol activity against the fungal pathogen Rosellinia necatrix. The third strain (PCL1607) has colonizing abilities when it is alone on the root but displayed difficulties under the competition scenario, and did not cause deleterious effects on the other Pc competitors when they were present. These results suggest that strains PCL1601 and PCL1606 are very well adapted to the avocado root environment and could constitute a basis for constructing a more complex beneficial microbial synthetic community associated with avocado plant roots.
Collapse
Affiliation(s)
- Rafael Villar-Moreno
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Sandra Tienda
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Jose A. Gutiérrez-Barranquero
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Víctor J. Carrión
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Antonio de Vicente
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Francisco M. Cazorla
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Eva Arrebola
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| |
Collapse
|
9
|
Bonaterra A, Badosa E, Daranas N, Francés J, Roselló G, Montesinos E. Bacteria as Biological Control Agents of Plant Diseases. Microorganisms 2022; 10:microorganisms10091759. [PMID: 36144361 PMCID: PMC9502092 DOI: 10.3390/microorganisms10091759] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
Biological control is an effective and sustainable alternative or complement to conventional pesticides for fungal and bacterial plant disease management. Some of the most intensively studied biological control agents are bacteria that can use multiple mechanisms implicated in the limitation of plant disease development, and several bacterial-based products have been already registered and marketed as biopesticides. However, efforts are still required to increase the commercially available microbial biopesticides. The inconsistency in the performance of bacterial biocontrol agents in the biological control has limited their extensive use in commercial agriculture. Pathosystem factors and environmental conditions have been shown to be key factors involved in the final levels of disease control achieved by bacteria. Several biotic and abiotic factors can influence the performance of the biocontrol agents, affecting their mechanisms of action or the multitrophic interaction between the plant, the pathogen, and the bacteria. This review shows some relevant examples of known bacterial biocontrol agents, with especial emphasis on research carried out by Spanish groups. In addition, the importance of the screening process and of the key steps in the development of bacterial biocontrol agents is highlighted. Besides, some improvement approaches and future trends are considered.
Collapse
|
10
|
Samaras A, Kamou N, Tzelepis G, Karamanoli K, Menkissoglu-Spiroudi U, Karaoglanidis GS. Root Transcriptional and Metabolic Dynamics Induced by the Plant Growth Promoting Rhizobacterium (PGPR) Bacillus subtilis Mbi600 on Cucumber Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:1218. [PMID: 35567219 PMCID: PMC9102019 DOI: 10.3390/plants11091218] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 05/14/2023]
Abstract
Bacillus subtilis MBI600 is a commercialized plant growth-promoting bacterial species used as a biocontrol agent in many crops, controlling various plant pathogens via direct or indirect mechanisms. In the present study, a detailed transcriptomic analysis of cucumber roots upon response to the Bs MBI600 strain is provided. Differentially expressed genes (DEGs) analysis showed altered gene expression in more than 1000 genes at 24 and 48 h post-application of Bs MBI600. Bs MBI600 induces genes involved in ISR and SAR signaling. In addition, genes involved in phytohormone production and nutrient availability showed an upregulation pattern, justifying the plant growth promotion. Biocontrol ability of Bs MBI600 seems also to be related to the activation of defense-related genes, such as peroxidase, endo-1,3(4)-beta-glucanase, PR-4, and thaumatin-like. Moreover, KEGG enriched results showed that differentially expressed genes were classified into biocontrol-related pathways. To further investigate the plant's response to the presence of PGPR, a profile of polar metabolites of cucumber treated with Bs MBI600 was performed and compared to that of untreated plants. The results of the current study gave insights into the mechanisms deployed by this biocontrol agent to promote plant resistance, helping to understand the molecular interactions in this system.
Collapse
Affiliation(s)
- Anastasios Samaras
- Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Nathalie Kamou
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.K.); (U.M.-S.)
| | - Georgios Tzelepis
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala Biocenter, Box 7026, SE-750 07 Uppsala, Sweden;
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Urania Menkissoglu-Spiroudi
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.K.); (U.M.-S.)
| | - George S. Karaoglanidis
- Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
11
|
Interplay between Arabidopsis thaliana Genotype, Plant Growth and Rhizosphere Colonization by Phytobeneficial Phenazine-Producing Pseudomonas chlororaphis. Microorganisms 2022; 10:microorganisms10030660. [PMID: 35336236 PMCID: PMC8950391 DOI: 10.3390/microorganisms10030660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Rhizosphere colonization by phytobeneficial Pseudomonas spp. is pivotal in triggering their positive effects on plant health. Many Pseudomonas spp. Determinants, involved in rhizosphere colonization, have already been deciphered. However, few studies have explored the role played by specific plant genes in rhizosphere colonization by these bacteria. Using isogenic Arabidopsis thaliana mutants, we studied the effect of 20 distinct plant genes on rhizosphere colonization by two phenazine-producing P. chlororaphis strains of biocontrol interest, differing in their colonization abilities: DTR133, a strong rhizosphere colonizer and ToZa7, which displays lower rhizocompetence. The investigated plant mutations were related to root exudation, immunity, and root system architecture. Mutations in smb and shv3, both involved in root architecture, were shown to positively affect rhizosphere colonization by ToZa7, but not DTR133. While these strains were not promoting plant growth in wild-type plants, increased plant biomass was measured in inoculated plants lacking fez, wrky70, cbp60g, pft1 and rlp30, genes mostly involved in plant immunity. These results point to an interplay between plant genotype, plant growth and rhizosphere colonization by phytobeneficial Pseudomonas spp. Some of the studied genes could become targets for plant breeding programs to improve plant-beneficial Pseudomonas rhizocompetence and biocontrol efficiency in the field.
Collapse
|
12
|
The Rhizobacterium Pseudomonas alcaligenes AVO110 Induces the Expression of Biofilm-Related Genes in Response to Rosellinia necatrix Exudates. Microorganisms 2021; 9:microorganisms9071388. [PMID: 34202389 PMCID: PMC8304167 DOI: 10.3390/microorganisms9071388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
The rhizobacterium Pseudomonas alcaligenes AVO110 exhibits antagonism toward the phytopathogenic fungus Rosellinia necatrix. This strain efficiently colonizes R. necatrix hyphae and is able to feed on their exudates. Here, we report the complete genome sequence of P. alcaligenes AVO110. The phylogeny of all available P. alcaligenes genomes separates environmental isolates, including AVO110, from those obtained from infected human blood and oyster tissues, which cluster together with Pseudomonas otitidis. Core and pan-genome analyses showed that P. alcaligenes strains encode highly heterogenic gene pools, with the AVO110 genome encoding the largest and most exclusive variable region (~1.6 Mb, 1795 genes). The AVO110 singletons include a wide repertoire of genes related to biofilm formation, several of which are transcriptionally modulated by R. necatrix exudates. One of these genes (cmpA) encodes a GGDEF/EAL domain protein specific to Pseudomonas spp. strains isolated primarily from the rhizosphere of diverse plants, but also from soil and water samples. We also show that CmpA has a role in biofilm formation and that the integrity of its EAL domain is involved in this function. This study contributes to a better understanding of the niche-specific adaptations and lifestyles of P. alcaligenes, including the mycophagous behavior of strain AVO110.
Collapse
|
13
|
Booth SC, Rice SA. Influence of interspecies interactions on the spatial organization of dual species bacterial communities. Biofilm 2021; 2:100035. [PMID: 33447820 PMCID: PMC7798468 DOI: 10.1016/j.bioflm.2020.100035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Interspecies interactions in bacterial biofilms have important impacts on the composition and function of communities in natural and engineered systems. To investigate these interactions, synthetic communities provide experimentally tractable systems. Biofilms grown on agar-surfaces have been used for investigating the eco-evolutionary and biophysical forces that determine community composition and spatial distribution of bacteria. Prior studies have used genetically identical bacterial strains and strains with specific mutations, that express different fluorescent proteins, to investigate intraspecies interactions. Here, we investigated interspecies interactions and, specifically, determined the community composition and spatial distribution in synthetic communities of Pseudomonas aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae. Using quantitative microscopic imaging, we found that interspecies interactions in multispecies colonies were influenced by type IV pilus mediated motility, extracellular matrix secretion, environmental parameters, and these effects were also influenced by the specific partner in the dual species combinations. These results indicate that the patterns observable in mixed species colonies can be used to understand the mechanisms that drive interspecies interactions, which are dependent on the interplay between specific species’ physiology and environmental conditions. Spatial patterns in bacterial colonies are species and interaction dependent. Surface motility and extracellar matrix production affect interspecies interactions. Agar surface colonies show how bacteria interact in biofilms.
Collapse
Affiliation(s)
- Sean C Booth
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore
| | - Scott A Rice
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore.,The School of Biological Sciences, Nanyang Technological University, Singapore.,The Ithree Institute, The University of Technology Sydney, Australia
| |
Collapse
|
14
|
Zboralski A, Filion M. Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. Comput Struct Biotechnol J 2020; 18:3539-3554. [PMID: 33304453 PMCID: PMC7711191 DOI: 10.1016/j.csbj.2020.11.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) actively colonize the soil portion under the influence of plant roots, called the rhizosphere. Many plant-beneficial Pseudomonas spp. have been characterized as PGPR. They are ubiquitous rod-shaped motile Gram-negative bacteria displaying a high metabolic versatility. Their capacity to protect plants from pathogens and improve plant growth closely depends on their rhizosphere colonization abilities. Various molecular and cellular mechanisms are involved in this complex process, such as chemotaxis, biofilm formation, secondary metabolites biosynthesis, metabolic versatility, and evasion of plant immunity. The burst in Pseudomonas spp. genome sequencing in recent years has been crucial to better understand how they colonize the rhizosphere. In this review, we discuss the recent advances regarding these mechanisms and the underlying bacterial genetic factors required for successful rhizosphere colonization.
Collapse
Affiliation(s)
- Antoine Zboralski
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Martin Filion
- Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|
15
|
Niu B, Wang W, Yuan Z, Sederoff RR, Sederoff H, Chiang VL, Borriss R. Microbial Interactions Within Multiple-Strain Biological Control Agents Impact Soil-Borne Plant Disease. Front Microbiol 2020; 11:585404. [PMID: 33162962 PMCID: PMC7581727 DOI: 10.3389/fmicb.2020.585404] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Major losses of crop yield and quality caused by soil-borne plant diseases have long threatened the ecology and economy of agriculture and forestry. Biological control using beneficial microorganisms has become more popular for management of soil-borne pathogens as an environmentally friendly method for protecting plants. Two major barriers limiting the disease-suppressive functions of biocontrol microbes are inadequate colonization of hosts and inefficient inhibition of soil-borne pathogen growth, due to biotic and abiotic factors acting in complex rhizosphere environments. Use of a consortium of microbial strains with disease inhibitory activity may improve the biocontrol efficacy of the disease-inhibiting microbes. The mechanisms of biological control are not fully understood. In this review, we focus on bacterial and fungal biocontrol agents to summarize the current state of the use of single strain and multi-strain biological control consortia in the management of soil-borne diseases. We discuss potential mechanisms used by microbial components to improve the disease suppressing efficacy. We emphasize the interaction-related factors to be considered when constructing multiple-strain biological control consortia and propose a workflow for assembling them by applying a reductionist synthetic community approach.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Weixiong Wang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhibo Yuan
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Rainer Borriss
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
| |
Collapse
|
16
|
Carroll D, Holden N, Gifford ML, Dupuy LX. Framework for Quantification of the Dynamics of Root Colonization by Pseudomonas fluorescens Isolate SBW25. Front Microbiol 2020; 11:585443. [PMID: 33101260 PMCID: PMC7545031 DOI: 10.3389/fmicb.2020.585443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 01/13/2023] Open
Abstract
Colonization of the root surface, or rhizoplane, is one of the first steps for soil-borne bacteria to become established in the plant microbiome. However, the relative contributions of processes, such as bacterial attachment and proliferation is not well characterized, and this limits our ability to comprehend the complex dynamics of microbial communities in the rhizosphere. The work presented here addresses this knowledge gap. A model system was developed to acquire quantitative data on the colonization process of lettuce (Lactuca sativa L. cultivar. All Year Round) roots by Pseudomonas fluorescens isolate SBW25. A theoretical framework is proposed to calculate attachment rate and quantify the relative contribution of bacterial attachment to colonization. This allows the assessment of attachment rates on the root surface beyond the short time period during which it can be quantified experimentally. All techniques proposed are generic and similar analyses could be applied to study various combinations of plants and bacteria, or to assess competition between species. In the future this could allow for selection of microbial traits that improve early colonization and maintenance of targeted isolates in cropping systems, with potential applications for the development of biological fertilizers.
Collapse
Affiliation(s)
- Daire Carroll
- Ecological Sciences, The James Hutton Institute, Dundee, United Kingdom.,School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Nicola Holden
- Northern Faculty, Scotland's Rural College, Aberdeen, United Kingdom
| | - Miriam L Gifford
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.,Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Lionel X Dupuy
- Neiker, Department of Conservation of Natural Resources, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
17
|
Tienda S, Vida C, Lagendijk E, de Weert S, Linares I, González-Fernández J, Guirado E, de Vicente A, Cazorla FM. Soil Application of a Formulated Biocontrol Rhizobacterium, Pseudomonas chlororaphis PCL1606, Induces Soil Suppressiveness by Impacting Specific Microbial Communities. Front Microbiol 2020; 11:1874. [PMID: 32849458 PMCID: PMC7426498 DOI: 10.3389/fmicb.2020.01874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Biocontrol bacteria can be used for plant protection against some plant diseases. Pseudomonas chlororaphis PCL1606 (PcPCL1606) is a model bacterium isolated from the avocado rhizosphere with strong antifungal antagonism mediated by the production of 2-hexyl, 5-propil resorcinol (HPR). Additionally, PcPCL1606 has biological control against different soil-borne fungal pathogens, including the causal agent of the white root rot of many woody crops and avocado in the Mediterranean area, Rosellinia necatrix. The objective of this study was to assess whether the semicommercial application of PcPCL1606 to soil can potentially affect avocado soil and rhizosphere microbial communities and their activities in natural conditions and under R. necatrix infection. To test the putative effects of PcPCL1606 on soil eukaryotic and prokaryotic communities, a formulated PcPCL1606 was prepared and applied to the soil of avocado plants growing in mesocosm experiments, and the communities were analyzed by using 16S/ITS metagenomics. PcPCL1606 survived until the end of the experiments. The effect of PcPCL1606 application on prokaryotic communities in soil and rhizosphere samples from natural soil was not detectable, and very minor changes were observed in eukaryotic communities. In the infested soils, the presence of R. necatrix strongly impacted the soil and rhizosphere microbial communities. However, after PcPCL1606 was applied to soil infested with R. necatrix, the prokaryotic community reacted by increasing the relative abundance of few families with protective features against fungal soilborne pathogens and organic matter decomposition (Chitinophagaceae, Cytophagaceae), but no new prokaryotic families were detected. The treatment of PcPCL1606 impacted the fungal profile, which strongly reduced the presence of R. necatrix in avocado soil and rhizosphere, minimizing its effect on the rest of the microbial communities. The bacterial treatment of formulated PcPCL1606 on avocado soils infested with R. necatrix resulted in biological control of the pathogen. This suppressiveness phenotype was analyzed, and PcPCL1606 has a key role in suppressiveness induction; in addition, this phenotype was strongly dependent on the production of HPR.
Collapse
Affiliation(s)
- Sandra Tienda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Carmen Vida
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Ellen Lagendijk
- Koppert Biological Systems, Berkel en Rodenrijs, Netherlands
| | - Sandra de Weert
- Koppert Biological Systems, Berkel en Rodenrijs, Netherlands
| | - Irene Linares
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Jorge González-Fernández
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Estación Experimental “La Mayora”, Algarrobo, Spain
| | - Emilio Guirado
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Estación Experimental “La Mayora”, Algarrobo, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Francisco M. Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| |
Collapse
|
18
|
Arrebola E, Cazorla FM. Aer Receptors Influence the Pseudomonas chlororaphis PCL1606 Lifestyle. Front Microbiol 2020; 11:1560. [PMID: 32754135 PMCID: PMC7367214 DOI: 10.3389/fmicb.2020.01560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/16/2020] [Indexed: 01/28/2023] Open
Abstract
Pseudomonas chlororaphis PCL1606 (PcPCL1606) is a rhizobacterium isolated from avocado roots, which is a favorable niche for its development. This strain extensively interacts with plant roots and surrounding microbes and is considered a biocontrol rhizobacterium. Genome sequencing has shown the presence of thirty-one potential methyl-accepting chemotaxis proteins (MCPs). Among these MCPs, two candidates are putative functional aerotaxis receptors, encoded at locus PCL1606_41090 (aer1-1) and locus PLC1606_20530 (aer1-2), that are homologous to the Aer receptor of Pseudomonas aeruginosa strain PaO1. Single- and double-deletion mutants in one or both genes have led to motility deficiencies in oxygen-rich areas, particularly reduced swimming motility compared with that of wildtype PcPCL1606. No differences in swarming tests were detected, and less adhesion by the aer double mutant was observed. However, the single and double mutants on avocado plant roots showed delayed biocontrol ability. During the first days of the biocontrol experiment, the aer-defective mutants also showed delayed root colonization. The current research characterizes the presence of aer transductors on P. chlororaphis. Thus, the functions of the PCL1606_41090 and PCL1606_20530 loci, corresponding to genes aer1-1 and aer1-2, respectively, are elucidated.
Collapse
Affiliation(s)
- Eva Arrebola
- Departamento de Microbiología, Faculta de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| | - Francisco M Cazorla
- Departamento de Microbiología, Faculta de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| |
Collapse
|
19
|
Zhang D, Yu S, Yang Y, Zhang J, Zhao D, Pan Y, Fan S, Yang Z, Zhu J. Antifungal Effects of Volatiles Produced by Bacillus subtilis Against Alternaria solani in Potato. Front Microbiol 2020; 11:1196. [PMID: 32625175 PMCID: PMC7311636 DOI: 10.3389/fmicb.2020.01196] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/12/2020] [Indexed: 11/30/2022] Open
Abstract
Antifungal activities of plant-beneficial Bacillus have been widely studied in recent years. Numerous studies have studied the antifungal mechanisms of soluble non-volatile bioactive compounds such as lipopeptides and proteins produced by Bacillus against soil-borne diseases. However, the antagonistic mechanisms of volatile organic compounds (VOCs) from Bacillus against airborne phytopathogens are still largely unknown, and the function of Alternaria solani pathogenic genes has not been well identified. Here, we first isolated a Bacillus strain with strong antifungal activity and finally identified it as B. subtilis ZD01. Then, the antagonistic mechanisms of VOCs produced by strain ZD01, against A. solani, an airborne fungal pathogen that can cause early blight diseases of potato, were studied. We showed that VOCs produced by strain ZD01 can reduce the colony size and mycelial penetration and can cause serious morphological changes of A. solani. Scanning electron microscope (SEM) observation showed that VOCs released by ZD01 could cause more flaccid and gapped hyphae of A. solani. Also, we found that VOCs produced by ZD01 can inhibit the conidia germination and reduce the lesion areas and number of A. solani in vivo significantly. Meanwhile, based on gas chromatography/mass spectrometry (GC/MS) analysis, 29 volatile compounds produced by strain ZD01 were identified. Out of 29 identified VOCs, 9 VOCs showed complete growth inhibition activities against A. solani. Moreover, we identified two virulence-associated genes (slt2 and sod) in A. solani. slt2 is a key gene that regulates the mycelial growth, penetration, sporulation, and virulence in vivo in A. solani. In addition, sod plays a significant role in the SOD synthetic pathway in A. solani. Results from qRT-PCR showed that the transcriptional expression of these two genes was down-regulated after being treated by VOCs produced by ZD01. These results are useful for a better understanding of the biocontrol mechanism of Bacillus and offer a potential method for potato early blight disease control.
Collapse
Affiliation(s)
- Dai Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shuiqing Yu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yiqing Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jinglin Zhang
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Dongmei Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yang Pan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shasha Fan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
20
|
Malviya MK, Li CN, Solanki MK, Singh RK, Htun R, Singh P, Verma KK, Yang LT, Li YR. Comparative analysis of sugarcane root transcriptome in response to the plant growth-promoting Burkholderia anthina MYSP113. PLoS One 2020; 15:e0231206. [PMID: 32267863 PMCID: PMC7141665 DOI: 10.1371/journal.pone.0231206] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/18/2020] [Indexed: 12/23/2022] Open
Abstract
The diazotrophic Burkholderia anthina MYSP113 is a vital plant growth-promoting bacteria and sugarcane root association. The present study based on a detailed analysis of sugarcane root transcriptome by using the HiSeq-Illumina platform in response to the strain MYSP113. The bacterium was initially isolated from the rhizosphere of sugarcane. To better understand biological, cellular, and molecular mechanisms, a de novo transcriptomic assembly of sugarcane root was performed. HiSeq-Illumina platformwas employed for the sequencing of an overall of 16 libraries at a 2×100 bp configuration. Differentially expressed genes (DEGs) analysis identified altered gene expression in 370 genes (total of 199 up-regulated genes and 171 down-regulated genes). Deciphering the huge datasets, concerning the functioning and production of biological systems, a high throughput genome sequencing analysis was attempted with Gene ontology functional analyses and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The report revealed a total of 148930 unigenes. 70414 (47.28%) of them were annotated successfully to Gene Ontology (GO) terms. 774 at 45 days, 4985 of 30 days and 15 days of 6846 terms were significantly regulated. GO analysis revealed that many genes involved in the metabolic, oxidation-reduction process and biological regulatory processes in response to strain MYSP113 and significantly enriched as compare to the control. Moreover, KEGG enriched results show that differentially expressed genes were classified into different pathway categories involved in various processes, such as nitrogen metabolism, plant hormone signal transduction, etc. The sample correlation analyses could help examine the similarity at the gene expression level. The reliability of the observed differential gene expression patterns was validated with quantitative real-time PCR (qRT-PCR). Additionally, plant enzymes activities such as peroxidase and superoxide dismutase were significantly increased in plant roots after the inoculation of strain MYSP113. The results of the research may help in understanding the plant growth-promoting rhizobacteria and plant interaction.
Collapse
Affiliation(s)
- Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, Guangxi, China
| | - Chang-Ning Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Manoj Kumar Solanki
- Department of Food Quality & Safety, Institute for Post-Harvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, Guangxi, China
| | - Reemon Htun
- Department of Biotechnology, Mandalay Technological University, Mandalay, Myanmar
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, Guangxi, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, Guangxi, China
| | - Li-Tao Yang
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
- * E-mail:
| |
Collapse
|
21
|
Liu K, Cai M, Hu C, Sun X, Cheng Q, Jia W, Yang T, Nie M, Zhao X. Selenium (Se) reduces Sclerotinia stem rot disease incidence of oilseed rape by increasing plant Se concentration and shifting soil microbial community and functional profiles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113051. [PMID: 31450117 DOI: 10.1016/j.envpol.2019.113051] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/27/2019] [Accepted: 08/11/2019] [Indexed: 05/21/2023]
Abstract
Sclerotinia stem rot (SSR), a soil-borne plant disease, cause the yield loss of oilseed rape. Selenium (Se), a beneficial element of plant, improves plant resistance to pathogens, and regulates microbial communities in soil. Soil microbial communities has been identified to play an important role in plant health. We studied whether the changes in soil microbiome under influence of Se associated with oilseed rape health. SSR disease incidence of oilseed rape and soil biochemical properties were investigated in Enshi district, "The World Capital of Selenium", and soil bacterial and fungal communities were analyzed by 16S rRNA and ITS sequencing, respectively. Results showed that Se had a strong effect on SSR incidence, and disease incidence inversely related with plant Se concentration. Besides, soil Se enhanced the microbiome diversities and the relative abundance of PGPR (plant growth promoting rhizobacteria), such as Bryobacter, Nitrospirae, Rhizobiales, Xanthobacteraceae, Nitrosomonadaceae and Basidiomycota. Furthermore, Soil Se decreased the relative abundance of pathogenic fungi, such as Olpidium, Armillaria, Coniosporium, Microbotryomycetes and Chytridiomycetes. Additionally, Se increased nitrogen metabolism, carbohydrate metabolism and cell processes related functional profiles in soil. The enrichment of Se in plants and improvement of soil microbial community were related to increased plant resistance to pathogen infection. These findings suggested that Se has potential to be developed as an ecological fungicide for biological control of SSR.
Collapse
Affiliation(s)
- Kang Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Miaomiao Cai
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Cheng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Jia
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Nie
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohu Zhao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs/Hubei Provincial Engineering Laboratory for New Fertilizers/Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
22
|
Isolation and Characterization of Antagonistic Bacteria Paenibacillus jamilae HS-26 and Their Effects on Plant Growth. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3638926. [PMID: 31032343 PMCID: PMC6457365 DOI: 10.1155/2019/3638926] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/22/2019] [Accepted: 03/03/2019] [Indexed: 11/17/2022]
Abstract
Soilborne pathogens affect plant growth and food production worldwide. The application of chemical fertilizers and pesticides to control plant diseases has harmful effects; fortunately, plant growth-promoting rhizobacteria can be used as a potential alternative strategy. Here, Paenibacillus jamilae HS-26 was selected for its highly antagonistic activity against several soilborne pathogens. The bacterium synthesized hydrolytic enzymes and released extracellular antifungal metabolites and volatile organic compounds—primarily, N, N-diethyl-1, 4-phenylenediamine, which was detected by gas chromatography-mass spectrometry and shown to inhibit fungal mycelial growth. Furthermore, HS-26 was useful for nitrogen fixation, phosphate and potassium solubilization, and siderophore and indoleacetic acid production. In vitro tests and pot experiments revealed that HS-26 considerably increased plant biometric parameters. Illumina MiSeq sequencing data showed a significant reduction in soilborne pathogens and increase in beneficial bacteria in the wheat rhizosphere after treatment with strain HS-26.
Collapse
|
23
|
Response of the Biocontrol Agent Pseudomonas pseudoalcaligenes AVO110 to Rosellinia necatrix Exudate. Appl Environ Microbiol 2019; 85:AEM.01741-18. [PMID: 30478234 PMCID: PMC6344628 DOI: 10.1128/aem.01741-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/17/2018] [Indexed: 01/08/2023] Open
Abstract
Diseases associated with fungal root invasion cause a significant loss of fruit tree production worldwide. The bacterium Pseudomonas pseudoalcaligenes AVO110 controls avocado white root rot disease caused by Rosellinia necatrix by using mechanisms involving competition for nutrients and niches. Here, a functional genomics approach was conducted to identify the bacterial traits involved in the interaction with this fungal pathogen. Our results contribute to a better understanding of the multitrophic interactions established among bacterial biocontrol agents, the plant rhizosphere, and the mycelia of soilborne pathogens. The rhizobacterium Pseudomonas pseudoalcaligenes AVO110, isolated by the enrichment of competitive avocado root tip colonizers, controls avocado white root rot disease caused by Rosellinia necatrix. Here, we applied signature-tagged mutagenesis (STM) during the growth and survival of AVO110 in fungal exudate-containing medium with the goal of identifying the molecular mechanisms linked to the interaction of this bacterium with R. necatrix. A total of 26 STM mutants outcompeted by the parental strain in fungal exudate, but not in rich medium, were selected and named growth-attenuated mutants (GAMs). Twenty-one genes were identified as being required for this bacterial-fungal interaction, including membrane transporters, transcriptional regulators, and genes related to the metabolism of hydrocarbons, amino acids, fatty acids, and aromatic compounds. The bacterial traits identified here that are involved in the colonization of fungal hyphae include proteins involved in membrane maintenance (a dynamin-like protein and ColS) or cyclic-di-GMP signaling and chemotaxis. In addition, genes encoding a DNA helicase (recB) and a regulator of alginate production (algQ) were identified as being required for efficient colonization of the avocado rhizosphere. IMPORTANCE Diseases associated with fungal root invasion cause a significant loss of fruit tree production worldwide. The bacterium Pseudomonas pseudoalcaligenes AVO110 controls avocado white root rot disease caused by Rosellinia necatrix by using mechanisms involving competition for nutrients and niches. Here, a functional genomics approach was conducted to identify the bacterial traits involved in the interaction with this fungal pathogen. Our results contribute to a better understanding of the multitrophic interactions established among bacterial biocontrol agents, the plant rhizosphere, and the mycelia of soilborne pathogens.
Collapse
|
24
|
Xie S, Zang H, Wu H, Uddin Rajer F, Gao X. Antibacterial effects of volatiles produced by Bacillus strain D13 against Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2018; 19:49-58. [PMID: 27682316 PMCID: PMC6637998 DOI: 10.1111/mpp.12494] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/29/2016] [Accepted: 09/24/2016] [Indexed: 05/26/2023]
Abstract
Recent investigations have demonstrated that bacteria employ the volatile compounds they produce during interactions with other organisms, such as plants, fungi, nematodes and bacteria. However, studies focused on the antibacterial activity of plant growth-promoting rhizobacteria (PGPR) volatiles against bacterial phytopathogens are still rare. In this study, Bacillus strain D13, which is antagonistic to Xanthomonas oryzae pv. oryzae (Xoo), was isolated and screened. Volatile compounds emitted from strain D13 reduced the colony diameter and cell motility of Xoo cultured in divided Petri plates. Transmission electron micrograph analysis showed concentration in cytoplasm and altered surface morphology in the majority of Xanthomonas cells after co-cultivation with strain D13. Transcriptional expression of virulence-associated genes in Xoo was repressed. Based on gas chromatography/mass spectrometry (GC/MS) analysis, 12 volatile compounds specifically produced by strain D13 were identified. Among them, decyl alcohol and 3,5,5-trimethylhexanol inhibited the growth of Xoo at minimum inhibitory amounts of 0.48 and 2.4 mg, respectively. Furthermore, transcriptional expression of virulence-associated genes was also repressed by decyl alcohol and 3,5,5-trimethylhexanol. These results are useful for a better understanding of the biocontrol mechanisms of Bacillus.
Collapse
Affiliation(s)
- Shanshan Xie
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Haoyu Zang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Faheem Uddin Rajer
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| |
Collapse
|
25
|
Vida C, Cazorla FM, de Vicente A. Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells. Res Microbiol 2017; 168:583-593. [PMID: 28373145 DOI: 10.1016/j.resmic.2017.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022]
Abstract
The improvement in soil quality of avocado crops through organic amendments with composted almond shells has a positive effect on crop yield and plant health, and enhances soil suppressiveness against the phytopathogenic fungus Rosellinia necatrix. In previous studies, induced soil suppressiveness against this pathogen was related to stimulation of Gammaproteobacteria, especially some members of Pseudomonas spp. with biocontrol-related activities. In this work, we isolated bacteria from this suppressiveness-induced amended soil using a selective medium for Pseudomonas-like microorganisms. We characterized the obtained bacterial collection to aid in identification, including metabolic profiles, antagonistic responses, hybridization to biosynthetic genes of antifungal compounds, production of lytic exoenzymatic activities and plant growth-promotion-related traits, and sequenced and compared amplified 16S rDNA genes from representative bacteria. The final selection of representative strains mainly belonged to the genus Pseudomonas, but also included the genera Serratia and Stenotrophomonas. Their biocontrol-related activities were assayed using the experimental avocado model, and results showed that all selected strains protected the avocado roots against R. necatrix. This work confirmed the biocontrol activity of these Gammaproteobacteria-related members against R. necatrix following specific stimulation in a suppressiveness-induced soil after a composted almond shell application.
Collapse
Affiliation(s)
- Carmen Vida
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain; Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, 29071 Málaga, Spain.
| | - Francisco M Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain; Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, 29071 Málaga, Spain.
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain; Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, 29071 Málaga, Spain.
| |
Collapse
|
26
|
Kai M, Effmert U, Piechulla B. Bacterial-Plant-Interactions: Approaches to Unravel the Biological Function of Bacterial Volatiles in the Rhizosphere. Front Microbiol 2016; 7:108. [PMID: 26903987 PMCID: PMC4746483 DOI: 10.3389/fmicb.2016.00108] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/21/2016] [Indexed: 11/13/2022] Open
Abstract
Rhizobacteria produce an enormous amount of volatile compounds, however, the function of these metabolites is scarcely understood. Investigations evaluating influences on plants performed in various laboratories using individually developed experimental setups revealed different and often contradictory results, e.g., ranging from a significant plant growth promotion to a dramatic suppression of plant development. In addition to these discrepancies, these test systems neglected properties and complexity of the rhizosphere. Therefore, to pursue further investigations of the role of bacterial volatiles in this underground habitat, the applied methods have to simulate its natural characteristics as much as possible. In this review, we will describe and discuss pros and cons of currently used bioassays, give insights into rhizosphere characteristics, and suggest improvements for test systems that would consider in natura conditions and would allow gaining further knowledge of the potential function and significance of rhizobacterial volatiles in plant life.
Collapse
Affiliation(s)
- Marco Kai
- Department of Biochemistry, Institute of Biological Science, University of Rostock Rostock, Germany
| | - Uta Effmert
- Department of Biochemistry, Institute of Biological Science, University of Rostock Rostock, Germany
| | - Birgit Piechulla
- Department of Biochemistry, Institute of Biological Science, University of Rostock Rostock, Germany
| |
Collapse
|
27
|
Aragon IM, Pérez-Mendoza D, Moscoso JA, Faure E, Guery B, Gallegos MT, Filloux A, Ramos C. Diguanylate cyclase DgcP is involved in plant and human Pseudomonas spp. infections. Environ Microbiol 2015; 17:4332-51. [PMID: 25809128 DOI: 10.1111/1462-2920.12856] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/06/2015] [Indexed: 12/22/2022]
Abstract
The second messenger cyclic di-GMP (c-di-GMP) controls the transition between different lifestyles in bacterial pathogens. Here, we report the identification of DgcP (diguanylate cyclase conserved in Pseudomonads), whose activity in the olive tree pathogen Pseudomonas savastanoi pv. savastanoi is dependent on the integrity of its GGDEF domain. Furthermore, deletion of the dgcP gene revealed that DgcP negatively regulates motility and positively controls biofilm formation in both the olive tree pathogen P. savastanoi pv. savastanoi and the human opportunistic pathogen Pseudomonas aeruginosa. Overexpression of the dgcP gene in P. aeruginosa PAK led to increased exopolysaccharide production and upregulation of the type VI secretion system; in turn, it repressed the type III secretion system, which is a hallmark of chronic infections and persistence for P. aeruginosa. Deletion of the dgcP gene in P. savastanoi pv. savastanoi NCPPB 3335 and P. aeruginosa PAK reduced their virulence in olive plants and in a mouse acute lung injury model respectively. Our results show that diguanylate cyclase DgcP is a conserved Pseudomonas protein with a role in virulence, and confirm the existence of common c-di-GMP signalling pathways that are capable of regulating plant and human Pseudomonas spp. infections.
Collapse
Affiliation(s)
- Isabel M Aragon
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Facultad de Ciencias, Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Área de Genética, Campus de Teatinos, Málaga, E-29010, Spain
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, South Kensington Campus, Flowers Building, London, SW7 2AZ, UK
| | - Daniel Pérez-Mendoza
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Joana A Moscoso
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, South Kensington Campus, Flowers Building, London, SW7 2AZ, UK
| | - Emmanuel Faure
- Pseudomonas aeruginosa host-pathogen translational research group, Lille School of Medicine, UDSL, Lille North of France University, Lille, France
| | - Benoit Guery
- Pseudomonas aeruginosa host-pathogen translational research group, Lille School of Medicine, UDSL, Lille North of France University, Lille, France
| | - María-Trinidad Gallegos
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, South Kensington Campus, Flowers Building, London, SW7 2AZ, UK
| | - Cayo Ramos
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Facultad de Ciencias, Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Área de Genética, Campus de Teatinos, Málaga, E-29010, Spain
| |
Collapse
|
28
|
Aragón IM, Pérez-Mendoza D, Gallegos MT, Ramos C. The c-di-GMP phosphodiesterase BifA is involved in the virulence of bacteria from the Pseudomonas syringae complex. MOLECULAR PLANT PATHOLOGY 2015; 16:604-15. [PMID: 25385023 PMCID: PMC6638514 DOI: 10.1111/mpp.12218] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In a recent screen for novel virulence factors involved in the interaction between Pseudomonas savastanoi pv. savastanoi and the olive tree, a mutant was selected that contained a transposon insertion in a putative cyclic diguanylate (c-di-GMP) phosphodiesterase-encoding gene. This gene displayed high similarity to bifA of Pseudomonas aeruginosa and Pseudomonas putida. Here, we examined the role of BifA in free-living and virulence-related phenotypes of two bacterial plant pathogens in the Pseudomonas syringae complex, the tumour-inducing pathogen of woody hosts, P. savastanoi pv. savastanoi NCPPB 3335, and the pathogen of tomato and Arabidopsis, P. syringae pv. tomato DC3000. We showed that deletion of the bifA gene resulted in decreased swimming motility of both bacteria and inhibited swarming motility of DC3000. In contrast, overexpression of BifA in P. savastanoi pv. savastanoi had a positive impact on swimming motility and negatively affected biofilm formation. Deletion of bifA in NCPPB 3335 and DC3000 resulted in reduced fitness and virulence of the microbes in olive (NCPPB 3335) and tomato (DC3000) plants. In addition, real-time monitoring of olive plants infected with green fluorescent protein (GFP)-tagged P. savastanoi cells displayed an altered spatial distribution of mutant ΔbifA cells inside olive knots compared with the wild-type strain. All free-living phenotypes that were altered in both ΔbifA mutants, as well as the virulence of the NCPPB 3335 ΔbifA mutant in olive plants, were fully rescued by complementation with P. aeruginosa BifA, whose phosphodiesterase activity has been demonstrated. Thus, these results suggest that P. syringae and P. savastanoi BifA are also active phosphodiesterases. This first demonstration of the involvement of a putative phosphodiesterase in the virulence of the P. syringae complex provides confirmation of the role of c-di-GMP signalling in the virulence of this group of plant pathogens.
Collapse
Affiliation(s)
- Isabel M Aragón
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, E-29010, Málaga, Spain
| | - Daniel Pérez-Mendoza
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - María-Trinidad Gallegos
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, E-29010, Málaga, Spain
| |
Collapse
|
29
|
Haldar S, Sengupta S. Plant-microbe Cross-talk in the Rhizosphere: Insight and Biotechnological Potential. Open Microbiol J 2015; 9:1-7. [PMID: 25926899 PMCID: PMC4406998 DOI: 10.2174/1874285801509010001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 11/22/2022] Open
Abstract
Rhizosphere, the interface between soil and plant roots, is a chemically complex environment which supports the development and growth of diverse microbial communities. The composition of the rhizosphere microbiome is dynamic and controlled by multiple biotic and abiotic factors that include environmental parameters, physiochemical properties of the soil, biological activities of the plants and chemical signals from the plants and bacteria which inhabit the soil adherent to root-system. Recent advancement in molecular and microbiological techniques has unravelled the interactions among rhizosphere residents at different levels. In this review, we elaborate on various factors that determine plant-microbe and microbe-microbe interactions in the rhizosphere, with an emphasis on the impact of host genotype and developmental stages which together play pivotal role in shaping the nature and diversity of root exudations. We also discuss about the coherent functional groups of microorganisms that colonize rhizosphere and enhance plant growth and development by several direct and indirect mechanisms. Insights into the underlying structural principles of indigenous microbial population and the key determinants governing rhizosphere ecology will provide directions for developing techniques for profitable applicability of beneficial microorganisms in sustainable agriculture and nature restoration.
Collapse
Affiliation(s)
- Shyamalina Haldar
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata-700019, India
| | - Sanghamitra Sengupta
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata-700019, India
| |
Collapse
|
30
|
Xie S, Wu H, Chen L, Zang H, Xie Y, Gao X. Transcriptome profiling of Bacillus subtilis OKB105 in response to rice seedlings. BMC Microbiol 2015; 15:21. [PMID: 25651892 PMCID: PMC4326333 DOI: 10.1186/s12866-015-0353-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 01/19/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Plant growth-promoting rhizobacteria (PGPR) are soil beneficial microorganisms that colonize plant roots for nutritional purposes and accordingly benefit plants by increasing plant growth or reducing disease. However, the mechanisms and pathways involved in the interactions between PGPR and plants remain unclear. In order to better understand these complex plant-PGPR interactions, changes in the transcriptome of the typical PGPR Bacillus subtilis in response to rice seedlings were analyzed. RESULTS Microarray technology was used to study the global transcriptionl response of B. subtilis OKB105 to rice seedlings after an interaction period of 2 h. A total of 176 genes representing 3.8% of the B. subtilis strain OKB105 transcriptome showed significantly altered expression levels in response to rice seedlings. Among these, 52 were upregulated, the majority of which are involved in metabolism and transport of nutrients, and stress responses, including araA, ywkA, yfls, mtlA, ydgG et al. The 124 genes that were downregulated included cheV, fliL, spmA and tua, and these are involved in chemotaxis, motility, sporulation and teichuronic acid biosynthesis, respectively. CONCLUSIONS We present a transcriptome analysis of the bacteria Bacillus subtilis OKB105 in response to rice seedings. Many of the 176 differentially expressed genes are likely to be involved in the interaction between Gram-positive bacteria and plants.
Collapse
Affiliation(s)
- Shanshan Xie
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing, 210095, People's Republic of China.
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing, 210095, People's Republic of China.
| | - Lina Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing, 210095, People's Republic of China.
| | - Haoyu Zang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing, 210095, People's Republic of China.
| | - Yongli Xie
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing, 210095, People's Republic of China.
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
31
|
Xie SS, Wu HJ, Zang HY, Wu LM, Zhu QQ, Gao XW. Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:655-63. [PMID: 24678831 DOI: 10.1094/mpmi-01-14-0010-r] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The interaction between plants and plant-growth-promoting rhizobacteria (PGPR) is a complex, reciprocal process. On the one hand, plant compounds such as carbohydrates and amino acids serve as energy sources for PGPR. On the other hand, PGPR promote plant growth by synthesizing plant hormones and increasing mineral availability in the soil. Here, we evaluated the growth-promoting activity of Bacillus subtilis OKB105 and identified genes associated with this activity. The genes yecA (encoding a putative amino acid/polyamine permease) and speB (encoding agmatinase) are involved in the secretion or synthesis of polyamine in B. subtilis OKB105. Disruption of either gene abolished the growth-promoting activity of the bacterium, which was restored when polyamine synthesis was complemented. Moreover, high-performance liquid chromatography analysis of culture filtrates of OKB105 and its derivatives demonstrated that spermidine, a common polyamine, is the pivotal plant-growth-promoting compound. In addition, real-time polymerase chain reaction analysis revealed that treatment with B. subtilis OKB105 induced expansin gene (Nt-EXPA1 and Nt-EXPA2) expression and inhibited the expression of the ethylene biosynthesis gene ACO1. Furthermore, enzyme-linked immunosorbent assay analysis showed that the ethylene content in plant root cells decreased in response to spermidine produced by OKB105. Therefore, during plant interactions, OKB105 may produce and secrete spermidine, which induces expansin production and lowers ethylene levels.
Collapse
|
32
|
Kurzbaum E, Kirzhner F, Armon R. A hydroponic system for growing gnotobiotic vs. sterile plants to study phytoremediation processes. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2014; 16:267-274. [PMID: 24912223 DOI: 10.1080/15226514.2013.773278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In some phytoremediation studies it is desirable to separate and define the specific contribution of plants and root-colonizing bacteria towards contaminant removal. Separating the influence of plants and associated bacteria is a difficult task for soil root environments. Growing plants hydroponically provides more control over the biological factors in contaminant removal. In this study, a hydroponic system was designed to evaluate the role of sterile plant roots, rhizodeposition, and root-associated bacteria in the removal of a model contaminant, phenol. A strain of Pseudomonas pseudoalcaligenes that grows on phenol was inoculated onto plant roots. The introduced biofilm persisted in the root zone and promoted phenol removal over non-augmented controls. These findings indicate that this hydroponic system can be a valuable tool for phytoremediation studies that investigate the effects of biotic and abiotic factors on pollution remediation.
Collapse
|
33
|
Sang M, Kim K. The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J Appl Microbiol 2012; 113:383-98. [DOI: 10.1111/j.1365-2672.2012.05330.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl Environ Microbiol 2011; 77:5412-9. [PMID: 21685161 DOI: 10.1128/aem.00320-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Motility is one of the most important traits for efficient rhizosphere colonization by Pseudomonas fluorescens F113rif (F113). In this bacterium, motility is a polygenic trait that is repressed by at least three independent pathways, including the Gac posttranscriptional system, the Wsp chemotaxis-like pathway, and the SadB pathway. Here we show that the kinB gene, which encodes a signal transduction protein that together with AlgB has been implicated in alginate production, participates in swimming motility repression through the Gac pathway, acting downstream of the GacAS two-component system. Gac mutants are impaired in secondary metabolite production and are unsuitable as biocontrol agents. However, the kinB mutant and a triple mutant affected in kinB, sadB, and wspR (KSW) possess a wild-type phenotype for secondary metabolism. The KSW strain is hypermotile and more competitive for rhizosphere colonization than the wild-type strain. We have compared the biocontrol activity of KSW with those of the wild-type strain and a phenotypic variant (F113v35 [V35]) which is hypermotile and hypercompetitive but is affected in secondary metabolism since it harbors a gacS mutation. Biocontrol experiments in the Fusarium oxysporum f. sp. radicis-lycopersici/Lycopersicum esculentum (tomato) and Phytophthora cactorum/Fragaria vesca (strawberry) pathosystems have shown that the three strains possess biocontrol activity. Biocontrol activity was consistently lower for V35, indicating that the production of secondary metabolites was the most important trait for biocontrol. Strain KSW showed improved biocontrol compared with the wild-type strain, indicating that an increase in competitive colonization ability resulted in improved biocontrol and that the rational design of biocontrol agents by mutation is feasible.
Collapse
|
35
|
Barahona E, Navazo A, Yousef-Coronado F, Aguirre de Cárcer D, Martínez-Granero F, Espinosa-Urgel M, Martín M, Rivilla R. Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces. Environ Microbiol 2010; 12:3185-95. [DOI: 10.1111/j.1462-2920.2010.02291.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Kurzbaum E, Kirzhner F, Sela S, Zimmels Y, Armon R. Efficiency of phenol biodegradation by planktonic Pseudomonas pseudoalcaligenes (a constructed wetland isolate) vs. root and gravel biofilm. WATER RESEARCH 2010; 44:5021-5031. [PMID: 20705318 DOI: 10.1016/j.watres.2010.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/10/2010] [Accepted: 07/08/2010] [Indexed: 05/29/2023]
Abstract
In the last two decades, constructed wetland systems gained increasing interest in wastewater treatment and as such have been intensively studied around the world. While most of the studies showed excellent removal of various pollutants, the exact contribution, in kinetic terms, of its particular components (such as: root, gravel and water) combined with bacteria is almost nonexistent. In the present study, a phenol degrader bacterium identified as Pseudomonas pseudoalcaligenes was isolated from a constructed wetland, and used in an experimental set-up containing: plants and gravel. Phenol removal rate by planktonic and biofilm bacteria (on sterile Zea mays roots and gravel surfaces) was studied. Specific phenol removal rates revealed significant advantage of planktonic cells (1.04 × 10(-9) mg phenol/CFU/h) compared to root and gravel biofilms: 4.59 × 10(-11)-2.04 × 10(-10) and 8.04 × 10(-11)-4.39 × 10(-10) (mg phenol/CFU/h), respectively. In batch cultures, phenol biodegradation kinetic parameters were determined by biomass growth rates and phenol removal as a function of time. Based on Haldane equation, kinetic constants such as μ(max) = 1.15/h, K(s) = 35.4 mg/L and K(i) = 198.6 mg/L fit well phenol removal by P. pseudoalcaligenes. Although P. pseudoalcaligenes planktonic cells showed the highest phenol removal rate, in constructed wetland systems and especially in those with sub-surface flow, it is expected that surface associated microorganisms (biofilms) will provide a much higher contribution in phenol and other organics removal, due to greater bacterial biomass. Factors affecting the performance of planktonic vs. biofilm bacteria in sub-surface flow constructed wetlands are further discussed.
Collapse
Affiliation(s)
- Eyal Kurzbaum
- Faculty of Civil & Environmental Engineering, Division of Environmental, Water & Agricultural Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|
37
|
González-Sánchez MÁ, Pérez-Jiménez RM, Pliego C, Ramos C, de Vicente A, Cazorla FM. Biocontrol bacteria selected by a direct plant protection strategy against avocado white root rot show antagonism as a prevalent trait. J Appl Microbiol 2009; 109:65-78. [PMID: 19961545 DOI: 10.1111/j.1365-2672.2009.04628.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM This study was undertaken to study bacterial strains obtained directly for their efficient direct control of the avocado white root rot, thus avoiding prescreening by any other possible mechanism of biocontrol which could bias the selection. METHODS AND RESULTS A collection of 330 bacterial isolates was obtained from the roots and soil of healthy avocado trees. One hundred and forty-three representative bacterial isolates were tested in an avocado/Rosellinia test system, resulting in 22 presumptive protective strains, all of them identified mainly as Pseudomonas and Bacillus species. These 22 candidate strains were screened in a more accurate biocontrol trial, confirming protection of some strains (4 out of the 22). Analyses of the potential bacterial traits involved in the biocontrol activity suggest that different traits could act jointly in the final biocontrol response, but any of these traits were neither sufficient nor generalized for all the active bacteria. All the protective strains selected were antagonistic against some fungal root pathogens. CONCLUSIONS Diverse bacteria with biocontrol activity could be obtained by a direct plant protection strategy of selection. All the biocontrol strains finally selected in this work were antagonistic, showing that antagonism is a prevalent trait in the biocontrol bacteria selected by a direct plant protection strategy. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report on the isolation of biocontrol bacterial strains using direct plant protection strategy in the system avocado/Rosellinia. Characterization of selected biocontrol bacterial strains obtained by a direct plant protection strategy showed that antagonism is a prevalent trait in the selected strains in this experimental system. This suggests that antagonism could be used as useful strategy to select biocontrol strains.
Collapse
Affiliation(s)
- M Á González-Sánchez
- IFAPA-CICE-Málaga, CAP-Junta de Andalucía, Cortijo de Cruz s/n, Churriana, Málaga, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Ben Lugtenberg
- Leiden University, Institute of Biology, Clusius Laboratory, 2333 AL Leiden, The Netherlands; ,
| | - Faina Kamilova
- Leiden University, Institute of Biology, Clusius Laboratory, 2333 AL Leiden, The Netherlands; ,
| |
Collapse
|
39
|
Pliego C, Kanematsu S, Ruano-Rosa D, de Vicente A, López-Herrera C, Cazorla FM, Ramos C. GFP sheds light on the infection process of avocado roots by Rosellinia necatrix. Fungal Genet Biol 2008; 46:137-45. [PMID: 19100853 DOI: 10.1016/j.fgb.2008.11.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 11/19/2008] [Accepted: 11/20/2008] [Indexed: 11/24/2022]
Abstract
In order to monitor Rosellinia necatrix infection of avocado roots, we generated a plasmid vector (pCPXHY1eGFP) constitutively expressing EGFP and developed a protoplast transformation protocol. Using this protocol, four R. necatrix isolates were efficiently transformed and were shown to stably express EGFP homogeneously while not having any observable effect on pathogenicity. Confocal laser scanning microscopy (CLSM) images of avocado roots infected with the highly virulent isolate CH53-GFP demonstrated that fungal penetration of avocado roots occurs simultaneously at several random sites, but it occurs preferentially in the crown region as well as throughout the lenticels and in the junctions between epidermal cells. Not only were R. necatrix hyphae observed invading the epidermal and cortical root cells, but they were also able to penetrate the primary and secondary xylem. Scanning electron microscopy (SEM) images allowed detailed visualisation of the hyphal network generated by invasion of R. necatrix through the epidermal, cortical and vascular cells, including hyphal anastomosis and branching points. To our knowledge, this is the first report describing the construction of GFP-tagged strains belonging to the genus Rosellinia for monitoring white root rot using CLSM and SEM.
Collapse
Affiliation(s)
- C Pliego
- IFAPA, Centro de Churriana, Cortijo de la Cruz s/n, 29140-Churriana, Málaga, Spain
| | | | | | | | | | | | | |
Collapse
|