1
|
Lawrence P, Padamsee M, Lee K, Lacap-Bugler DC. Soil microbial functional gene dataset associated with Agathis australis. Data Brief 2023; 51:109791. [PMID: 38053586 PMCID: PMC10694058 DOI: 10.1016/j.dib.2023.109791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Agathis australis (New Zealand kauri) is a significant and iconic native tree of Aotearoa New Zealand. Currently, Phytophthora agathidicida that causes kauri-dieback disease is killing kauri trees. Only 1% of the New Zealand virgin kauri forest remains [1,2]. Recent studies revealed that many soil-borne microorganisms had been found to systemically boost the defensive capacity of the trees by providing competition to pathogens for nutrient intake, thus preventing pathogen colonization and modulating plant immunity [3,4]. In addition, the root microbiome consists of an entire complex rhizosphere-associated microbes with their genetic elements and interactions that have influenced plant health. To date, very few studies have been conducted to investigate the microorganisms in the kauri soil and possible environmental drivers. To characterize the functional gene profile in relation to soil microbial diversity of the kauri trees at Auckland Botanic Gardens (ABG), Auckland, New Zealand the GeoChip 5.0 M (Glomics Inc. USA), a microarray-based metagenomics tool, was used. GeoChip 5.0 M comprises of 162,000 probes from 365,000 target genes (coding DNA sequence - CDS), which covers all taxonomic groups (archaea, bacteria, fungi, protists, algae, and viruses) [5]. The ABG has kauri trees that are approximately 20 years old, located in three distinct man-made environments: Native Forest, Kauri Grove, and Rose Garden. We selected two trees from the Native Forest and two from the Kauri Grove for our experiment. Soil samples were collected from the four cardinal points of each tree, at 10 cm depth. Pooled environmental DNA was sent to Glomics (USA) and the data were preprocessed using GeoChip data analysis pipeline described in http://www.ou.edu/ieg/tools/data-analysispipeline.html. Based on the GeoChip data generated from the soil samples, we have detected a total of 946 genes, 4342 taxa, 102 phyla, and 995 genera. The data presented here provide an overview of functional genes associated with kauri soil, which can serve as baseline for other kauri soil microbiome analysis at forest-scale studies. The raw data has been uploaded to Mendeley Data https://doi.org/10.17632/T22NNN385K.1.
Collapse
Affiliation(s)
- Praveenth Lawrence
- School of Science, Faculty of Health and Environmental Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Mahajabeen Padamsee
- Manaaki Whenua Landcare Research, 231 Morrin Road, Auckland 1072, New Zealand
| | - Kevin Lee
- School of Science, Faculty of Health and Environmental Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Donnabella C. Lacap-Bugler
- School of Science, Faculty of Health and Environmental Science, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Zhu Q, Ruan M, Hu Z, Miao K, Ye C. The Relationship between Acid Production and the Microbial Community of Newly Produced Coal Gangue in the Early Oxidation Stage. Microorganisms 2023; 11:2626. [PMID: 38004638 PMCID: PMC10673393 DOI: 10.3390/microorganisms11112626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Coal gangue is a solid waste formed during coal production, and the acid mine drainage it generates during open-pit storage severely pollutes the ecological environment of mining areas. Microorganisms play a crucial catalytic role in acidification, and their species and gene functions change during the oxidation process of coal gangue. In this study, the changes in microbial community structure were investigated during the initial acidification process for newly produced gangue exposed to moisture by monitoring the changes in pH, EC, sulfate ion concentration, and the iron oxidation rate of gangue leaching solutions. Moreover, the composition and functional abundance of microbial communities on the surface of the gangue were analyzed with rainfall simulation experiments and 16S rRNA sequencing. The study yielded the following findings: (1) The critical period for newly produced gangue oxidation spanned from 0~15 d after its exposure to water; the pH of leaching solutions decreased from 4.65 to 4.09 during this time, and the concentration and oxidation rate of iron in the leaching solutions remained at low levels, indicating that iron oxidation was not the main driver for acidification during this stage. (2) When the gangue was kept dry, Burkholderia spp. dominated the gangue microbial community. When the gangue was exposed to moisture, the rate of acidification accelerated, and Pseudomonas replaced Burkholderia as the dominant genus in the community. (3) In terms of gene function, the microbial community of the acidified gangue had stronger nitrogen cycling functions, and an increase in the abundance of microorganisms related to the sulfur cycle occurred after day 15 of the experiment. The microbial community in the acidified gangue had more stress resistance than the community of the newly formed gangue, but its potential to decompose environmental pollutants decreased.
Collapse
Affiliation(s)
- Qi Zhu
- Chinese Research Academy of Environmental Sciences, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Beijing 100012, China; (K.M.); (C.Y.)
| | - Mengying Ruan
- Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology-Beijing, Beijing 100083, China;
| | - Zhenqi Hu
- Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology-Beijing, Beijing 100083, China;
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Kexin Miao
- Chinese Research Academy of Environmental Sciences, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Beijing 100012, China; (K.M.); (C.Y.)
| | - Chun Ye
- Chinese Research Academy of Environmental Sciences, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Beijing 100012, China; (K.M.); (C.Y.)
| |
Collapse
|
3
|
Jiang Z, Qian L, Cui M, Jiang Y, Shi L, Dong Y, Li J, Wang Y. Bacterial Sulfate Reduction Facilitates Iodine Mobilization in the Deep Confined Aquifer of the North China Plain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15277-15287. [PMID: 37751521 DOI: 10.1021/acs.est.3c05513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Bacterial sulfate reduction plays a crucial role in the mobilization of toxic substances in aquifers. However, the role of bacterial sulfate reduction on iodine mobilization in geogenic high-iodine groundwater systems has been unexplored. In this study, the enrichment of groundwater δ34SSO4 (15.56 to 69.31‰) and its significantly positive correlation with iodide and total iodine concentrations in deep groundwater samples of the North China Plain suggested that bacterial sulfate reduction participates in the mobilization of groundwater iodine. Similar significantly positive correlations were further observed between the concentrations of iodide and total iodine and the relative abundance of the dsrB gene by qPCR, as well as the composition and abundance of sulfate-reducing bacteria (SRB) predicted from 16S rRNA gene high-throughput sequencing data. Subsequent batch culture experiments by the SRB Desulfovibrio sp. B304 demonstrated that SRB could facilitate iodine mobilization through the enzyme-driven biotic and sulfide-driven abiotic reduction of iodate to iodide. In addition, the dehalogenation of organoiodine compounds by SRB and the reductive dissolution of iodine-bearing iron minerals by biogenic sulfide could liberate bound or adsorbed iodine into groundwater. The role of bacterial sulfate reduction in iodine mobilization revealed in this study provides new insights into our understanding of iodide enrichment in iodine-rich aquifers worldwide.
Collapse
Affiliation(s)
- Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Li Qian
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Mengjie Cui
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan ,Hubei 430074, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, Hubei 430074, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Junxia Li
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, Hubei 430074, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan ,Hubei 430074, China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan ,Hubei 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan ,Hubei 430074, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, Hubei 430074, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan ,Hubei 430074, China
| |
Collapse
|
4
|
Lacroix EM, Aeppli M, Boye K, Brodie E, Fendorf S, Keiluweit M, Naughton HR, Noël V, Sihi D. Consider the Anoxic Microsite: Acknowledging and Appreciating Spatiotemporal Redox Heterogeneity in Soils and Sediments. ACS EARTH & SPACE CHEMISTRY 2023; 7:1592-1609. [PMID: 37753209 PMCID: PMC10519444 DOI: 10.1021/acsearthspacechem.3c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/07/2023] [Accepted: 07/21/2023] [Indexed: 09/28/2023]
Abstract
Reduction-oxidation (redox) reactions underlie essentially all biogeochemical cycles. Like most soil properties and processes, redox is spatiotemporally heterogeneous. However, unlike other soil features, redox heterogeneity has yet to be incorporated into mainstream conceptualizations of soil biogeochemistry. Anoxic microsites, the defining feature of redox heterogeneity in bulk oxic soils and sediments, are zones of oxygen depletion in otherwise oxic environments. In this review, we suggest that anoxic microsites represent a critical component of soil function and that appreciating anoxic microsites promises to advance our understanding of soil and sediment biogeochemistry. In sections 1 and 2, we define anoxic microsites and highlight their dynamic properties, specifically anoxic microsite distribution, redox gradient magnitude, and temporality. In section 3, we describe the influence of anoxic microsites on several key elemental cycles, organic carbon, nitrogen, iron, manganese, and sulfur. In section 4, we evaluate methods for identifying and characterizing anoxic microsites, and in section 5, we highlight past and current approaches to modeling anoxic microsites. Finally, in section 6, we suggest steps for incorporating anoxic microsites and redox heterogeneities more broadly into our understanding of soils and sediments.
Collapse
Affiliation(s)
- Emily M. Lacroix
- Institut
des Dynamiques de la Surface Terrestre (IDYST), Université de Lausanne, 1015 Lausanne, Switzerland
- Department
of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Meret Aeppli
- Institut
d’ingénierie de l’environnement (IIE), École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Kristin Boye
- Environmental
Geochemistry Group, SLAC National Accelerator
Laboratory, Menlo Park, California 94025, United States
| | - Eoin Brodie
- Lawrence
Berkeley Laboratory, Earth and Environmental
Sciences Area, Berkeley, California 94720, United States
| | - Scott Fendorf
- Department
of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Marco Keiluweit
- Institut
des Dynamiques de la Surface Terrestre (IDYST), Université de Lausanne, 1015 Lausanne, Switzerland
| | - Hannah R. Naughton
- Lawrence
Berkeley Laboratory, Earth and Environmental
Sciences Area, Berkeley, California 94720, United States
| | - Vincent Noël
- Environmental
Geochemistry Group, SLAC National Accelerator
Laboratory, Menlo Park, California 94025, United States
| | - Debjani Sihi
- Department
of Environmental Sciences, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
5
|
Song D, Jiang Z, Ma T, Dong Y, Shi L. Bacterial and Archaeal Diversity and Abundance in Shallow Subsurface Clay Sediments at Jianghan Plain, China. Front Microbiol 2020; 11:572560. [PMID: 33193171 PMCID: PMC7642157 DOI: 10.3389/fmicb.2020.572560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
Clay layers are common in subsurface where microbial activities play an important role in impacting the biogeochemical properties of adjacent aquifers. In this study, we analyzed the community structure and abundance of bacteria and archaea in response to geochemical properties of six clay sediments at different depths in a borehole (112°34'0″E, 30°36'21″N) of Jianghan Plain (JHP), China. Our results suggested that the top two clay layers were oxic, while the remaining bottom four clay layers were anoxic. Both high-throughput sequencing and qPCR of 16S rRNA gene showed relatively high abundance of archaea (up to 60%) in three of the anoxic clay layers. Furthermore, microbial communities in these clay sediments showed distinct vertical stratification, which may be impacted by changes in concentrations of sulfate, HCl-extractable Fe2+ and total organic carbon (TOC) in the sediments. In the upper two oxic clay layers, identification of phyla Thaumarchaeota (11.2%) and Nitrosporales (1.2%) implied nitrification in these layers. In the two anoxic clay layers beneath the oxic zone, high abundances of Anaeromyxobacter, Chloroflexi bacterium RBG 16_58_14 and Deltaproteobacteria, suggested the reductions of nitrate, iron and sulfate. Remarkably, a significant portion of Bathyarchaeota (∼25%) inhabited in the bottom two anoxic clay layers, which may indicate archaeal anaerobic degradation of TOC by these organisms. The results of this study provide the first systematic understandings of microbial activities in subsurface clay layers at JHP, which may help develop microorganism-based solutions for mitigating subsurface contaminations.
Collapse
Affiliation(s)
- Dandan Song
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Teng Ma
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
6
|
Luan X, Zhang H, Tian Z, Yang M, Wen X, Zhang Y. Microbial community functional structure in an aerobic biofilm reactor: Impact of streptomycin and recovery. CHEMOSPHERE 2020; 255:127032. [PMID: 32417519 DOI: 10.1016/j.chemosphere.2020.127032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics can affect microbial community structure and promote antibiotic resistance. However, the course of microbial community recovery in wastewater treatment systems after antibiotic disturbance remains unclear. Herein, multiple molecular biology tools, including 16S amplicon sequencing, GeoChip 5.0, quantitative polymerase chain reaction (qPCR), and metagenomic sequencing, were used to investigate the year-long (352 d) recovery of the microbial community functional structure in an aerobic biofilm reactor. Nitrification was completely inhibited under 50 mg/L of streptomycin spiking (STM_50) due to the significant reduction of ammonia-oxidizing bacteria, but recovered to original pre-disturbance levels after streptomycin removal, indicating the high resilience of ammonia-oxidizing bacteria. Bacterial community richness and diversity decreased significantly under STM_50 (p < 0.05), but recovered to levels similar to those observed before disturbance after 352 d. In contrast, bacterial composition did not recover to the original structure. The carbon degradation and nitrogen cycling functional community significantly changed after recovery compared to that observed pre-disturbance (p < 0.05), thus indicating functional redundancy. Additionally, levels of aminoglycoside and total antibiotic resistance genes under STM_50 (relative abundance, 0.33 and 0.80, respectively) and after one year of recovery (0.12 and 0.29, respectively) were higher than the levels detected pre-disturbance (0.04 and 0.24, respectively). This study provides an overall depiction of the recovery of the microbial community functional structure after antibiotic exposure. Our findings give notice that recovery caused by antibiotic disturbance in the water environment should be taken more seriously, and that engineering control strategies should be implemented to prevent the antibiotic pollution of wastewater.
Collapse
Affiliation(s)
- Xiao Luan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianghua Wen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Reith F, Falconer DM, Van Nostrand J, Craw D, Shuster J, Wakelin S. Functional capabilities of bacterial biofilms on gold particles. FEMS Microbiol Ecol 2019; 96:5663612. [DOI: 10.1093/femsec/fiz196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/04/2019] [Indexed: 11/13/2022] Open
Abstract
ABSTRACT
Gold particles contain gold and other toxic, heavy metals, making them ‘extreme’ geochemical microenvironments. To date, the functional capabilities of bacterial biofilms to deal with these conditions have been inferred from taxonomic analyses. The aims of this study are to evaluate the functional capabilities of bacterial communities on gold particles from six key locations using GeoChip 5.0 and to link functional and taxonomic data. Biofilm communities displayed a wide range of functional capabilities, with up to 53 505 gene probes detected. The capability of bacterial communities to (re)cycle carbon, nitrogen, and sulphur were detected. The cycling of major nutrients is important for maintaining the biofilm community as well as enabling the biogeochemical cycling and mobilisation of heavy and noble metals. Additionally, a multitude of stress- and heavy metal resistance capabilities were also detected, most notably from the α/β/γ-Proteobacteria and Actinobacteria. The multi-copper-oxidase gene copA, which is directly involved in gold resistance and biomineralisation, was the 15th most intense response and was detected in 246 genera. The Parker Road and Belle Brooke sites were consistently the most different from other sites, which may be a result of local physicochemical conditions (extreme nutrient poverty and sulphur-richness, respectively). In conclusion, biofilms on gold particles display wide-ranging metabolic and stress-related capabilities, which may enable them to survive in these niche environments and drive biotransformation of gold particles.
Collapse
Affiliation(s)
- Frank Reith
- The University of Adelaide, School of Biological Sciences, Department of Molecular and Cellular Biology, Adelaide, South Australia 5005, Australia
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia
| | - Donna M Falconer
- University of Otago, Geology Department, North Dunedin, Dunedin 9016, New Zealand
| | - Joy Van Nostrand
- University of Oklahoma, Institute for Environmental Genomics and Microbiology and Plant Biology, Norman, Oklahoma 73019, United States
| | - David Craw
- University of Otago, Geology Department, North Dunedin, Dunedin 9016, New Zealand
| | - Jeremiah Shuster
- The University of Adelaide, School of Biological Sciences, Department of Molecular and Cellular Biology, Adelaide, South Australia 5005, Australia
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia
| | - Steven Wakelin
- Scion, PO Box 29237, Riccarton, Christchurch 8440, New Zealand
- BioProtection Research Centre, PO Box 85084, Lincoln University, Canterbury 7647, New Zealand
| |
Collapse
|
8
|
Mandeng EPB, Bidjeck LMB, Bessa AZE, Ntomb YD, Wadjou JW, Doumo EPE, Dieudonné LB. Contamination and risk assessment of heavy metals, and uranium of sediments in two watersheds in Abiete-Toko gold district, Southern Cameroon. Heliyon 2019; 5:e02591. [PMID: 31667413 PMCID: PMC6812242 DOI: 10.1016/j.heliyon.2019.e02591] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/19/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022] Open
Abstract
In this investigation, the level of toxic metals (Cd, Pb, Hg, Cu, Ni, Al, Zn and U) was determined in sediment samples from two watersheds (Kienké and Tchangué) in the Abiete-Toko gold district, southern Cameroon. The potential contamination and toxicity of studied metals was determined by evaluating enrichment factor (EF), geo-accumulation index (Igeo) and ecological risk assessment (ERA). Considering the spatial distribution patterns, metal concentrations were lower than the average shale values, except for Cu and Ni of site 4 in the Kienké watershed and only Ni in the Tchangué watershed. In this study, the EF and Igeo values revealed that sediments were moderately polluted by Ni and Cu and unpolluted by other metals. The evaluation of the ERA based on ecological risk index (RI), ecological risk factor (Er), contamination factor (CF) and pollution load index (PLI) revealed that the sediments from the Abiete-Toko watersheds have significant to very high ecological risk assessment and are generally unpolluted by trace metals and U, except for Ni and Cu. Little quantities of heavy metals with low U levels and distribution were found at the sites close to the vicinity of artisanal mining and peri-urban areas. This proximity reveals that artisanal gold mining activities, agricultural runoff, and other anthropogenic inputs in the study area are probable sources of slight metal contamination. However, the non-use of toxic effluents for gold mining and pesticides for agriculture can be an advantage of the unpolluted status of the watersheds. The physical degradation of the ecosystem through excavations, wells and other stream diversion methods is expanding in the zone. Appropriate measures should be taken by artisans to rehabilitate the gold mining sites, to ensure appropriate treatment of wastewater and non-use of toxic effluents into nearby tributaries.
Collapse
Affiliation(s)
- Eugène Pascal Binam Mandeng
- Centre for Geological and Mining Research, Garoua, Cameroon.,Department of Earth Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | | | | | | | | | | | - Lucien Bitom Dieudonné
- Department of Earth Sciences, University of Yaoundé I, Yaoundé, Cameroon.,Faculté d'Agronomie et des Sciences Agricoles, University of Dschang, Cameroon
| |
Collapse
|
9
|
Functional Gene Array-Based Ultrasensitive and Quantitative Detection of Microbial Populations in Complex Communities. mSystems 2019; 4:4/4/e00296-19. [PMID: 31213523 PMCID: PMC6581690 DOI: 10.1128/msystems.00296-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The rapid development of metagenomic technologies, including microarrays, over the past decade has greatly expanded our understanding of complex microbial systems. However, because of the ever-expanding number of novel microbial sequences discovered each year, developing a microarray that is representative of real microbial communities, is specific and sensitive, and provides quantitative information remains a challenge. The newly developed GeoChip 5.0 is the most comprehensive microarray available to date for examining the functional capabilities of microbial communities important to biogeochemistry, ecology, environmental sciences, and human health. The GeoChip 5 is highly specific, sensitive, and quantitative based on both computational and experimental assays. Use of the array on a contaminated groundwater sample provided novel insights on the impacts of environmental contaminants on groundwater microbial communities. While functional gene arrays (FGAs) have greatly expanded our understanding of complex microbial systems, specificity, sensitivity, and quantitation challenges remain. We developed a new generation of FGA, GeoChip 5.0, using the Agilent platform. Two formats were created, a smaller format (GeoChip 5.0S), primarily covering carbon-, nitrogen-, sulfur-, and phosphorus-cycling genes and others providing ecological services, and a larger format (GeoChip 5.0M) containing the functional categories involved in biogeochemical cycling of C, N, S, and P and various metals, stress response, microbial defense, electron transport, plant growth promotion, virulence, gyrB, and fungus-, protozoan-, and virus-specific genes. GeoChip 5.0M contains 161,961 oligonucleotide probes covering >365,000 genes of 1,447 gene families from broad, functionally divergent taxonomic groups, including bacteria (2,721 genera), archaea (101 genera), fungi (297 genera), protists (219 genera), and viruses (167 genera), mainly phages. Computational and experimental evaluation indicated that designed probes were highly specific and could detect as little as 0.05 ng of pure culture DNAs within a background of 1 μg community DNA (equivalent to 0.005% of the population). Additionally, strong quantitative linear relationships were observed between signal intensity and amount of pure genomic (∼99% of probes detected; r > 0.9) or soil (∼97%; r > 0.9) DNAs. Application of the GeoChip to a contaminated groundwater microbial community indicated that environmental contaminants (primarily heavy metals) had significant impacts on the biodiversity of the communities. This is the most comprehensive FGA to date, capable of directly linking microbial genes/populations to ecosystem functions. IMPORTANCE The rapid development of metagenomic technologies, including microarrays, over the past decade has greatly expanded our understanding of complex microbial systems. However, because of the ever-expanding number of novel microbial sequences discovered each year, developing a microarray that is representative of real microbial communities, is specific and sensitive, and provides quantitative information remains a challenge. The newly developed GeoChip 5.0 is the most comprehensive microarray available to date for examining the functional capabilities of microbial communities important to biogeochemistry, ecology, environmental sciences, and human health. The GeoChip 5 is highly specific, sensitive, and quantitative based on both computational and experimental assays. Use of the array on a contaminated groundwater sample provided novel insights on the impacts of environmental contaminants on groundwater microbial communities.
Collapse
|
10
|
Ouyang E, Liu Y, Ouyang J, Wang X. Effects of different wastewater characteristics and treatment techniques on the bacterial community structure in three pharmaceutical wastewater treatment systems. ENVIRONMENTAL TECHNOLOGY 2019; 40:329-341. [PMID: 29037124 DOI: 10.1080/09593330.2017.1393010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Pharmaceutical wastewater is a typical type of wastewater with high concentrations of organic pollutants, but research on this subject is limited. The aeration tanks of three different pharmaceutical wastewater treatment systems were seeded with the same inocula and stably operated for 40 days. Then, aerobic sludge samples from the three aeration tanks were collected to provide insight into the bacterial community composition of the activated sludges. Additionally, we investigated the effects of wastewater characteristics and the type and operation of the technological system on the microbial communities. High-throughput sequencing analysis demonstrated that the communities enriched in the three reactors had differing. The dominant phyla detected were Proteobacteria, Chloroflexi, Bacteroidetes and candidate division TM7, while the dominant clones were uncultured Candidatus Saccharibacteria bacterium, uncultured Saprospiraceae bacterium, PHOS-HE51(AF314433.1), uncultured Anaerolineaceae bacterium and Blastocatella, suggesting their importance in pharmaceutical wastewater treatment plants. According to the wastewater parameters and canonical correspondence analyses, we can conclude that uncultured Candidatus Saccharibacteria bacterium, uncultured Anaerolineaceae bacterium and Blastocatella contribute to ammonium nitrogen ( ) removal; uncultured Saprospiraceae bacterium plays an important role in treating nitrogen; and chemical oxygen demand and PHOS-HE51 contribute to total phosphorus removal.
Collapse
Affiliation(s)
- Erming Ouyang
- a School of Civil Engineering and Architecture , Nanchang University , Nanchang , People's Republic of China
| | - Yuan Liu
- a School of Civil Engineering and Architecture , Nanchang University , Nanchang , People's Republic of China
| | - Jiating Ouyang
- a School of Civil Engineering and Architecture , Nanchang University , Nanchang , People's Republic of China
| | - Xiaohui Wang
- b Beijing Engineering Research Center of Environmental Material for Water Purification , Beijing University of Chemical Technology , Beijing , People's Republic of China
| |
Collapse
|
11
|
Bacterial Community Shift and Coexisting/Coexcluding Patterns Revealed by Network Analysis in a Uranium-Contaminated Site after Bioreduction Followed by Reoxidation. Appl Environ Microbiol 2018; 84:AEM.02885-17. [PMID: 29453264 DOI: 10.1128/aem.02885-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/10/2018] [Indexed: 11/20/2022] Open
Abstract
A site in Oak Ridge, TN, USA, has sediments that contain >3% iron oxides and is contaminated with uranium (U). The U(VI) was bioreduced to U(IV) and immobilized in situ through intermittent injections of ethanol. It then was allowed to reoxidize via the invasion of low-pH (3.6 to 4.0), high-nitrate (up to 200 mM) groundwater back into the reduced zone for 1,383 days. To examine the biogeochemical response, high-throughput sequencing and network analysis were applied to characterize bacterial population shifts, as well as cooccurrence and coexclusion patterns among microbial communities. A paired t test indicated no significant changes of α-diversity for the bioactive wells. However, both nonmetric multidimensional scaling and analysis of similarity confirmed a significant distinction in the overall composition of the bacterial communities between the bioreduced and the reoxidized sediments. The top 20 major genera accounted for >70% of the cumulative contribution to the dissimilarity in the bacterial communities before and after the groundwater invasion. Castellaniella had the largest dissimilarity contribution (17.7%). For the bioactive wells, the abundance of the U(VI)-reducing genera Geothrix, Desulfovibrio, Ferribacterium, and Geobacter decreased significantly, whereas the denitrifying Acidovorax abundance increased significantly after groundwater invasion. Additionally, seven genera, i.e., Castellaniella, Ignavibacterium, Simplicispira, Rhizomicrobium, Acidobacteria Gp1, Acidobacteria Gp14, and Acidobacteria Gp23, were significant indicators of bioactive wells in the reoxidation stage. Canonical correspondence analysis indicated that nitrate, manganese, and pH affected mostly the U(VI)-reducing genera and indicator genera. Cooccurrence patterns among microbial taxa suggested the presence of taxa sharing similar ecological niches or mutualism/commensalism/synergism interactions.IMPORTANCE High-throughput sequencing technology in combination with a network analysis approach were used to investigate the stabilization of uranium and the corresponding dynamics of bacterial communities under field conditions with regard to the heterogeneity and complexity of the subsurface over the long term. The study also examined diversity and microbial community composition shift, the common genera, and indicator genera before and after long-term contaminated-groundwater invasion and the relationship between the target functional community structure and environmental factors. Additionally, deciphering cooccurrence and coexclusion patterns among microbial taxa and environmental parameters could help predict potential biotic interactions (cooperation/competition), shared physiologies, or habitat affinities, thus, improving our understanding of ecological niches occupied by certain specific species. These findings offer new insights into compositions of and associations among bacterial communities and serve as a foundation for future bioreduction implementation and monitoring efforts applied to uranium-contaminated sites.
Collapse
|
12
|
Abstract
Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as uranium or nitrate increased. These key microbial functional genes could be used to successfully predict environmental contamination and ecosystem functioning. This study represents a significant advance in using functional gene markers to predict the spatial distribution of environmental contaminants and ecosystem functioning toward predictive microbial ecology, which is an ultimate goal of microbial ecology.
Collapse
|
13
|
Qi Q, Zhao M, Wang S, Ma X, Wang Y, Gao Y, Lin Q, Li X, Gu B, Li G, Zhou J, Yang Y. The Biogeographic Pattern of Microbial Functional Genes along an Altitudinal Gradient of the Tibetan Pasture. Front Microbiol 2017; 8:976. [PMID: 28659870 PMCID: PMC5468456 DOI: 10.3389/fmicb.2017.00976] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/15/2017] [Indexed: 01/30/2023] Open
Abstract
As the highest place of the world, the Tibetan plateau is a fragile ecosystem. Given the importance of microbial communities in driving soil nutrient cycling, it is of interest to document the microbial biogeographic pattern here. We adopted a microarray-based tool named GeoChip 4.0 to investigate grassland microbial functional genes along an elevation gradient from 3200 to 3800 m above sea level open to free grazing by local herdsmen and wild animals. Interestingly, microbial functional diversities increase with elevation, so does the relative abundances of genes associated with carbon degradation, nitrogen cycling, methane production, cold shock and oxygen limitation. The range of Shannon diversities (10.27–10.58) showed considerably smaller variation than what was previously observed at ungrazed sites nearby (9.95–10.65), suggesting the important role of livestock grazing on microbial diversities. Closer examination showed that the dissimilarity of microbial community at our study sites increased with elevations, revealing an elevation-decay relationship of microbial functional genes. Both microbial functional diversity and the number of unique genes increased with elevations. Furthermore, we detected a tight linkage of greenhouse gas (CO2) and relative abundances of carbon cycling genes. Our biogeographic study provides insights on microbial functional diversity and soil biogeochemical cycling in Tibetan pastures.
Collapse
Affiliation(s)
- Qi Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua UniversityBeijing, China
| | - Mengxin Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua UniversityBeijing, China
| | - Shiping Wang
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of SciencesBeijing, China.,CAS Center for Excellence in Tibetan Plateau Earth ScienceBeijing, China
| | - Xingyu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua UniversityBeijing, China
| | - Yuxuan Wang
- Department of Earth System Science, Tsinghua UniversityBeijing, China.,Department of Earth and Atmospheric Sciences, University of Houston, HoustonTX, United States
| | - Ying Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua UniversityBeijing, China
| | - Qiaoyan Lin
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak RidgeTN, United States
| | - Guoxue Li
- College of Resources and Environmental Science, China Agricultural UniversityBeijing, China
| | - Jizhong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua UniversityBeijing, China.,Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, NormanOK, United States.,Earth Sciences Division, Lawrence Berkeley National Laboratory, BerkeleyCA, United States.,Collaborative Innovation Center for Regional Environmental Quality, School of Environment, Tsinghua UniversityBeijing, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua UniversityBeijing, China
| |
Collapse
|
14
|
Abstract
Unraveling the drivers controlling the response and adaptation of biological communities to environmental change, especially anthropogenic activities, is a central but poorly understood issue in ecology and evolution. Comparative genomics studies suggest that lateral gene transfer (LGT) is a major force driving microbial genome evolution, but its role in the evolution of microbial communities remains elusive. To delineate the importance of LGT in mediating the response of a groundwater microbial community to heavy metal contamination, representative Rhodanobacter reference genomes were sequenced and compared to shotgun metagenome sequences. 16S rRNA gene-based amplicon sequence analysis indicated that Rhodanobacter populations were highly abundant in contaminated wells with low pHs and high levels of nitrate and heavy metals but remained rare in the uncontaminated wells. Sequence comparisons revealed that multiple geochemically important genes, including genes encoding Fe2+/Pb2+ permeases, most denitrification enzymes, and cytochrome c553, were native to Rhodanobacter and not subjected to LGT. In contrast, the Rhodanobacter pangenome contained a recombinational hot spot in which numerous metal resistance genes were subjected to LGT and/or duplication. In particular, Co2+/Zn2+/Cd2+ efflux and mercuric resistance operon genes appeared to be highly mobile within Rhodanobacter populations. Evidence of multiple duplications of a mercuric resistance operon common to most Rhodanobacter strains was also observed. Collectively, our analyses indicated the importance of LGT during the evolution of groundwater microbial communities in response to heavy metal contamination, and a conceptual model was developed to display such adaptive evolutionary processes for explaining the extreme dominance of Rhodanobacter populations in the contaminated groundwater microbiome. Lateral gene transfer (LGT), along with positive selection and gene duplication, are the three main mechanisms that drive adaptive evolution of microbial genomes and communities, but their relative importance is unclear. Some recent studies suggested that LGT is a major adaptive mechanism for microbial populations in response to changing environments, and hence, it could also be critical in shaping microbial community structure. However, direct evidence of LGT and its rates in extant natural microbial communities in response to changing environments is still lacking. Our results presented in this study provide explicit evidence that LGT played a crucial role in driving the evolution of a groundwater microbial community in response to extreme heavy metal contamination. It appears that acquisition of genes critical for survival, growth, and reproduction via LGT is the most rapid and effective way to enable microorganisms and associated microbial communities to quickly adapt to abrupt harsh environmental stresses.
Collapse
|
15
|
Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP. Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids. FRONTIERS IN PLANT SCIENCE 2016; 7:303. [PMID: 27014323 PMCID: PMC4791364 DOI: 10.3389/fpls.2016.00303] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 02/25/2016] [Indexed: 05/18/2023]
Abstract
Global mechanization, urbanization, and various natural processes have led to the increased release of toxic compounds into the biosphere. These hazardous toxic pollutants include a variety of organic and inorganic compounds, which pose a serious threat to the ecosystem. The contamination of soil and water are the major environmental concerns in the present scenario. This leads to a greater need for remediation of contaminated soils and water with suitable approaches and mechanisms. The conventional remediation of contaminated sites commonly involves the physical removal of contaminants, and their disposition. Physical remediation strategies are expensive, non-specific and often make the soil unsuitable for agriculture and other uses by disturbing the microenvironment. Owing to these concerns, there has been increased interest in eco-friendly and sustainable approaches such as bioremediation, phytoremediation and rhizoremediation for the cleanup of contaminated sites. This review lays particular emphasis on biotechnological approaches and strategies for heavy metal and metalloid containment removal from the environment, highlighting the advances and implications of bioremediation and phytoremediation as well as their utilization in cleaning-up toxic pollutants from contaminated environments.
Collapse
Affiliation(s)
- Kareem A. Mosa
- Department of Applied Biology, College of Sciences, University of SharjahSharjah, UAE
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar UniversityCairo, Egypt
- *Correspondence: Kareem A. Mosa,
| | - Ismail Saadoun
- Department of Applied Biology, College of Sciences, University of SharjahSharjah, UAE
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa CampusGoa, India
| | - Mohamed Helmy
- The Donnelly Centre for Cellular and Biomedical Research, University of Toronto, TorontoON, Canada
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of MassachusettsAmherst, MA, USA
| |
Collapse
|
16
|
Hemme CL, Tu Q, Shi Z, Qin Y, Gao W, Deng Y, Nostrand JDV, Wu L, He Z, Chain PSG, Tringe SG, Fields MW, Rubin EM, Tiedje JM, Hazen TC, Arkin AP, Zhou J. Comparative metagenomics reveals impact of contaminants on groundwater microbiomes. Front Microbiol 2015; 6:1205. [PMID: 26583008 PMCID: PMC4628106 DOI: 10.3389/fmicb.2015.01205] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/16/2015] [Indexed: 11/15/2022] Open
Abstract
To understand patterns of geochemical cycling in pristine versus contaminated groundwater ecosystems, pristine shallow groundwater (FW301) and contaminated groundwater (FW106) samples from the Oak Ridge Integrated Field Research Center (OR-IFRC) were sequenced and compared to each other to determine phylogenetic and metabolic difference between the communities. Proteobacteria (e.g., Burkholderia, Pseudomonas) are the most abundant lineages in the pristine community, though a significant proportion ( >55%) of the community is composed of poorly characterized low abundance (individually <1%) lineages. The phylogenetic diversity of the pristine community contributed to a broader diversity of metabolic networks than the contaminated community. In addition, the pristine community encodes redundant and mostly complete geochemical cycles distributed over multiple lineages and appears capable of a wide range of metabolic activities. In contrast, many geochemical cycles in the contaminated community appear truncated or minimized due to decreased biodiversity and dominance by Rhodanobacter populations capable of surviving the combination of stresses at the site. These results indicate that the pristine site contains more robust and encodes more functional redundancy than the stressed community, which contributes to more efficient nutrient cycling and adaptability than the stressed community.
Collapse
Affiliation(s)
- Christopher L Hemme
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK, USA
| | - Qichao Tu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK, USA
| | - Zhou Shi
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK, USA
| | - Yujia Qin
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK, USA
| | - Weimin Gao
- The Biodesign Institute, Arizona State University, Tempe AZ, USA
| | - Ye Deng
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK, USA ; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing, China
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK, USA
| | - Liyou Wu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK, USA
| | - Zhili He
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK, USA
| | - Patrick S G Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos NM, USA
| | - Susannah G Tringe
- United States Department of Energy, Joint Genome Institute, Walnut Creek CA, USA
| | - Matthew W Fields
- Department of Microbiology, Montana State University, Bozeman MT, USA
| | - Edward M Rubin
- United States Department of Energy, Joint Genome Institute, Walnut Creek CA, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing MI, USA
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee-Knoxville, Knoxville TN, USA ; Department of Earth and Planetary Sciences, University of Tennessee-Knoxville, Knoxville TN, USA ; Department of Microbiology, University of Tennessee-Knoxville, Knoxville TN, USA ; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN, USA
| | - Adam P Arkin
- Department of Bioengineering, Lawrence Berkeley National Laboratory, Berkeley CA, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK, USA ; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA, USA ; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University Beijing, China
| |
Collapse
|
17
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
18
|
Newsome L, Morris K, Lloyd JR. Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions. PLoS One 2015; 10:e0132392. [PMID: 26132209 PMCID: PMC4488441 DOI: 10.1371/journal.pone.0132392] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/13/2015] [Indexed: 11/19/2022] Open
Abstract
Stimulating the microbially-mediated precipitation of uranium biominerals may be used to treat groundwater contamination at nuclear sites. The majority of studies to date have focussed on the reductive precipitation of uranium as U(IV) by U(VI)- and Fe(III)-reducing bacteria such as Geobacter and Shewanella species, although other mechanisms of uranium removal from solution can occur, including the precipitation of uranyl phosphates via bacterial phosphatase activity. Here we present the results of uranium biomineralisation experiments using an isolate of Serratia obtained from a sediment sample representative of the Sellafield nuclear site, UK. When supplied with glycerol phosphate, this Serratia strain was able to precipitate 1 mM of soluble U(VI) as uranyl phosphate minerals from the autunite group, under anaerobic and fermentative conditions. Under phosphate-limited anaerobic conditions and with glycerol as the electron donor, non-growing Serratia cells could precipitate 0.5 mM of uranium supplied as soluble U(VI), via reduction to nano-crystalline U(IV) uraninite. Some evidence for the reduction of solid phase uranyl(VI) phosphate was also observed. This study highlights the potential for Serratia and related species to play a role in the bioremediation of uranium contamination, via a range of different metabolic pathways, dependent on culturing or in situ conditions.
Collapse
Affiliation(s)
- Laura Newsome
- Research Centre for Radwaste Disposal and Williamson Research Centre, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester, United Kingdom
- * E-mail:
| | - Katherine Morris
- Research Centre for Radwaste Disposal and Williamson Research Centre, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester, United Kingdom
| | - Jonathan. R. Lloyd
- Research Centre for Radwaste Disposal and Williamson Research Centre, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester, United Kingdom
| |
Collapse
|
19
|
Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction. Appl Environ Microbiol 2015; 81:4164-72. [PMID: 25862231 DOI: 10.1128/aem.00043-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/05/2015] [Indexed: 11/20/2022] Open
Abstract
A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3 (-), Mn(IV), Fe(III), U(VI), and SO4 (2-) significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3 (-), Mn(II), Fe(II), U(VI), and SO4 (2-). Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.
Collapse
|
20
|
Dopheide A, Lear G, He Z, Zhou J, Lewis GD. Functional gene composition, diversity and redundancy in microbial stream biofilm communities. PLoS One 2015; 10:e0123179. [PMID: 25849814 PMCID: PMC4388685 DOI: 10.1371/journal.pone.0123179] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/17/2015] [Indexed: 11/18/2022] Open
Abstract
We surveyed the functional gene composition and diversity of microbial biofilm communities in 18 New Zealand streams affected by different types of catchment land use, using a comprehensive functional gene array, GeoChip 3.0. A total of 5,371 nutrient cycling and energy metabolism genes within 65 gene families were detected among all samples (342 to 2,666 genes per stream). Carbon cycling genes were most common, followed by nitrogen cycling genes, with smaller proportions of sulphur, phosphorus cycling and energy metabolism genes. Samples from urban and native forest streams had the most similar functional gene composition, while samples from exotic forest and rural streams exhibited the most variation. There were significant differences between nitrogen and sulphur cycling genes detected in native forest and urban samples compared to exotic forest and rural samples, attributed to contrasting proportions of nitrogen fixation, denitrification, and sulphur reduction genes. Most genes were detected only in one or a few samples, with only a small minority occurring in all samples. Nonetheless, 42 of 65 gene families occurred in every sample and overall proportions of gene families were similar among samples from contrasting streams. This suggests the existence of functional gene redundancy among different stream biofilm communities despite contrasting taxonomic composition.
Collapse
Affiliation(s)
- Andrew Dopheide
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Zhili He
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States of America
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States of America
| | - Gillian D. Lewis
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Bayer K, Moitinho-Silva L, Brümmer F, Cannistraci CV, Ravasi T, Hentschel U. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater. FEMS Microbiol Ecol 2014; 90:832-43. [PMID: 25318900 DOI: 10.1111/1574-6941.12441] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 12/12/2022] Open
Abstract
The GeoChip 4.2 gene array was employed to interrogate the microbial functional gene repertoire of sponges and seawater collected from the Red Sea and the Mediterranean. Complementary amplicon sequencing confirmed the microbial community composition characteristic of high microbial abundance (HMA) and low microbial abundance (LMA) sponges. By use of GeoChip, altogether 20,273 probes encoding for 627 functional genes and representing 16 gene categories were identified. Minimum curvilinear embedding analyses revealed a clear separation between the samples. The HMA/LMA dichotomy was stronger than any possible geographic pattern, which is shown here for the first time on the level of functional genes. However, upon inspection of individual genes, very few specific differences were discernible. Differences were related to microbial ammonia oxidation, ammonification, and archaeal autotrophic carbon fixation (higher gene abundance in sponges over seawater) as well as denitrification and radiation-stress-related genes (lower gene abundance in sponges over seawater). Except for few documented specific differences the functional gene repertoire between the different sources appeared largely similar. This study expands previous reports in that functional gene convergence is not only reported between HMA and LMA sponges but also between sponges and seawater.
Collapse
Affiliation(s)
- Kristina Bayer
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Hai R, Wang Y, Wang X, Du Z, Li Y. Impacts of multiwalled carbon nanotubes on nutrient removal from wastewater and bacterial community structure in activated sludge. PLoS One 2014; 9:e107345. [PMID: 25238404 PMCID: PMC4169552 DOI: 10.1371/journal.pone.0107345] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/15/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The increasing use of multiwalled carbon nanotubes (MWCNTs) will inevitably lead to the exposure of wastewater treatment facilities. However, knowledge of the impacts of MWCNTs on wastewater nutrient removal and bacterial community structure in the activated sludge process is sparse. AIMS To investigate the effects of MWCNTs on wastewater nutrient removal, and bacterial community structure in activated sludge. METHODS Three triplicate sequencing batch reactors (SBR) were exposed to wastewater which contained 0, 1, and 20 mg/L MWCNTs. MiSeq sequencing was used to investigate the bacterial community structures in activated sludge samples which were exposed to different concentrations of MWCNTs. RESULTS Exposure to 1 and 20 mg/L MWCNTs had no acute (1 day) impact on nutrient removal from wastewater. After long-term (180 days) exposure to 1 mg/L MWCNTs, the average total nitrogen (TN) removal efficiency was not significantly affected. TN removal efficiency decreased from 84.0% to 71.9% after long-term effects of 20 mg/L MWCNTs. After long-term exposure to 1 and 20 mg/L MWCNTs, the total phosphorus removal efficiencies decreased from 96.8% to 52.3% and from 98.2% to 34.0% respectively. Further study revealed that long-term exposure to 20 mg/L MWCNTs inhibited activities of ammonia monooxygenase and nitrite oxidoreductase. Long-term exposure to 1 and 20 mg/L MWCNTs both inhibited activities of exopolyphosphatase and polyphosphate kinase. MiSeq sequencing data indicated that 20 mg/L MWCNTs significantly decreased the diversity of bacterial community in activated sludge. Long-term exposure to 1 and 20 mg/L MWCNTs differentially decreased the abundance of nitrifying bacteria, especially ammonia-oxidizing bacteria. The abundance of PAOs was decreased after long-term exposure to 20 mg/L MWCNTs. The abundance of glycogen accumulating organisms (GAOs) was increased after long-term exposure to 1 mg/L MWCNTs. CONCLUSION MWCNTs have adverse effects on biological wastewater nutrient removal, and altered the diversity and structure of bacterial community in activated sludge.
Collapse
Affiliation(s)
- Reti Hai
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, China
| | - Yulin Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, China
- * E-mail:
| | - Zhize Du
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, China
| | - Yuan Li
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
23
|
Abstract
Worldwide industrialization activities create vast amounts of organic and inorganic waste streams that frequently result in significant soil and groundwater contamination. Metals and radionuclides are of particular concern due to their mobility and long-term persistence in aquatic and terrestrial environments. As the global population increases, the demand for safe, contaminant-free soil and groundwater will increase as will the need for effective and inexpensive remediation strategies. Remediation strategies that include physical and chemical methods (i.e., abiotic) or biological activities have been shown to impede the migration of radionuclide and metal contaminants within soil and groundwater. However, abiotic remediation methods are often too costly owing to the quantities and volumes of soils and/or groundwater requiring treatment. The in situ sequestration of metals and radionuclides mediated by biological activities associated with microbial phosphorus metabolism is a promising and less costly addition to our existing remediation methods. This review highlights the current strategies for abiotic and microbial phosphate-mediated techniques for uranium and metal remediation.
Collapse
|
24
|
Yu H, Chen C, Ma J, Liu W, Zhou J, Lee DJ, Ren N, Wang A. GeoChip-based analysis of the microbial community functional structures in simultaneous desulfurization and denitrification process. J Environ Sci (China) 2014; 26:1375-1382. [PMID: 25079984 DOI: 10.1016/j.jes.2014.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/02/2013] [Accepted: 12/31/2013] [Indexed: 06/03/2023]
Abstract
The elemental sulfur (S°) recovery was evaluated in the presence of nitrate in two development models of simultaneous desulfurization and denitrification (SDD) process. At the loading rates of 0.9 kg S/(m³·day) for sulfide and 0.4 kg N/(m³·day) for nitrate, S° conversion rate was 91.1% in denitrifying sulfide removal (DSR) model which was higher than in integrated simultaneous desulfurization and denitrification (ISDD) model (25.6%). A comprehensive analysis of functional diversity, structure and metabolic potential of microbial communities was examined in two models by using functional gene array (GeoChip 2.0). GeoChip data indicated that diversity indices, community structure, and abundance of functional genes were distinct between two models. Diversity indices (Simpson's diversity index (1/D) and Shannon-Weaver index (H')) of all detected genes showed that with elevated influent loading rate, the functional diversity decreased in ISDD model but increased in DSR model. In contrast to ISDD model, the overall abundance of dsr genes was lower in DSR model, while some functional genes targeting from nitrate-reducing sulfide-oxidizing bacteria (NR-SOB), such as Thiobacillus denitrificans, Sulfurimonas denitrificans, and Paracoccus pantotrophus were more abundant in DSR model which were highly associated with the change of S(0) conversion rate obtained in two models. The results obtained in this study provide additional insights into the microbial metabolic mechanisms involved in ISDD and DSR models, which in turn will improve the overall performance of SDD process.
Collapse
Affiliation(s)
- Hao Yu
- School of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jincai Ma
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Wenzong Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
25
|
Sun Y, Shen YX, Liang P, Zhou J, Yang Y, Huang X. Linkages between microbial functional potential and wastewater constituents in large-scale membrane bioreactors for municipal wastewater treatment. WATER RESEARCH 2014; 56:162-71. [PMID: 24675272 DOI: 10.1016/j.watres.2014.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 02/11/2014] [Accepted: 03/02/2014] [Indexed: 05/17/2023]
Abstract
Large-scale membrane bioreactors (MBRs) have been widely used for the municipal wastewater treatment, whose performance relies on microbial communities of activated sludge. Nevertheless, microbial functional structures in MBRs remain little understood. To gain insight into functional genes and their steering environmental factors, we adopted GeoChip, a high-throughput microarray-based tool, to examine microbial genes in four large-scale, in-operation MBRs located in Beijing, China. The results revealed substantial microbial gene heterogeneity (43.7-85.1% overlaps) among different MBRs. Mantel tests indicated that microbial nutrient cycling genes were significantly (P < 0.05) correlated to influent COD, [Formula: see text] -N, TP or sulfate, which signified the importance of microbial mediation of wastewater constituent removal. In addition, functional genes shared by all four MBRs contained a large number of genes involved in antibiotics resistance, metal resistance and organic remediation, suggesting that they were required for degradation or resistance to toxic compounds in wastewater. The linkages between microbial functional structures and environmental variables were also unveiled by the finding of hydraulic retention time, influent COD, [Formula: see text] -N, mixed liquid temperature and humic substances as major factors shaping microbial communities. Together, the results presented demonstrate the utility of GeoChip-based microarray approach in examining microbial communities of wastewater treatment plants and provide insights into the forces driving important processes of element cycling.
Collapse
Affiliation(s)
- Yanmei Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yue-xiao Shen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jizhong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
26
|
Kappell AD, Wei Y, Newton RJ, Van Nostrand JD, Zhou J, McLellan SL, Hristova KR. The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico native coastal microbial communities after the Deepwater Horizon oil spill. Front Microbiol 2014; 5:205. [PMID: 24847320 PMCID: PMC4023046 DOI: 10.3389/fmicb.2014.00205] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/18/2014] [Indexed: 11/13/2022] Open
Abstract
The Deepwater Horizon (DWH) blowout resulted in oil transport, including polycyclic aromatic hydrocarbons (PAHs) to the Gulf of Mexico shoreline. The microbial communities of these shorelines are thought to be responsible for the intrinsic degradation of PAHs. To investigate the Gulf Coast beach microbial community response to hydrocarbon exposure, we examined the functional gene diversity, bacterial community composition, and PAH degradation capacity of a heavily oiled and non-oiled beach following the oil exposure. With a non-expression functional gene microarray targeting 539 gene families, we detected 28,748 coding sequences. Of these sequences, 10% were uniquely associated with the severely oil-contaminated beach and 6.0% with the non-oiled beach. There was little variation in the functional genes detected between the two beaches; however the relative abundance of functional genes involved in oil degradation pathways, including polycyclic aromatic hydrocarbons (PAHs), were greater in the oiled beach. The microbial PAH degradation potentials of both beaches, were tested in mesocosms. Mesocosms were constructed in glass columns using sands with native microbial communities, circulated with artificial sea water and challenged with a mixture of PAHs. The low-molecular weight PAHs, fluorene and naphthalene, showed rapid depletion in all mesocosms while the high-molecular weight benzo[α]pyrene was not degraded by either microbial community. Both the heavily oiled and the non-impacted coastal communities showed little variation in their biodegradation ability for low molecular weight PAHs. Massively-parallel sequencing of 16S rRNA genes from mesocosm DNA showed that known PAH degraders and genera frequently associated with oil hydrocarbon degradation represented a major portion of the bacterial community. The observed similar response by microbial communities from beaches with a different recent history of oil exposure suggests that Gulf Coast beach communities are primed for PAH degradation.
Collapse
Affiliation(s)
- Anthony D Kappell
- Department of Biological Sciences, Marquette University Milwaukee, WI, USA
| | - Yin Wei
- Department of Biological Sciences, Marquette University Milwaukee, WI, USA
| | - Ryan J Newton
- School of Freshwater Sciences, Great Lakes WATER Institute, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Joy D Van Nostrand
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma Norman, OK, USA
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma Norman, OK, USA
| | - Sandra L McLellan
- School of Freshwater Sciences, Great Lakes WATER Institute, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | | |
Collapse
|
27
|
Li X, Zhang H, Ma Y, Liu P, Krumholz LR. Genes required for alleviation of uranium toxicity in sulfate reducing bacterium Desulfovibrio alaskensis G20 [corrected]. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:726-733. [PMID: 24510447 DOI: 10.1007/s10646-014-1201-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
The sulfate reducing bacterium Desulfovibrio alaskensis strain G20 can grow in lactate sulfate medium with up to 4 mM uranyl acetate. In order to identify the genes that are required for the growth of strain G20 at toxic levels of uranium(VI) (U(VI)), 5,760 transposon insertion mutants were screened for U(VI) resistance defects, and 24 of them showed loss of U(VI) resistance in lactate sulfate medium with 2 mM uranyl acetate. In the 24 mutants, 23 genes were disrupted by transposon insertions, and one transposon is located in a non-coding region. In the ten mutants that were completely inhibited by 2 mM uranyl acetate, the disrupted genes are involved in DNA repair, rRNA methylation, regulation of expression and RNA polymerase renaturation. The remaining 14 mutants showed partial inhibition of growth by 2 mM U(VI), in which the disrupted genes participate in DNA repair, regulation of transcription, membrane transport, etc. In addition, none except one of these 24 mutants showed loss in its ability to reduce U(VI) to U(IV) in the washed cell test. These results altogether suggest that U(VI) toxicity mainly involves damage to nucleic acids and proteins.
Collapse
Affiliation(s)
- Xiangkai Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, People's Republic of China
| | | | | | | | | |
Collapse
|
28
|
Tu Q, Yu H, He Z, Deng Y, Wu L, Van Nostrand JD, Zhou A, Voordeckers J, Lee YJ, Qin Y, Hemme CL, Shi Z, Xue K, Yuan T, Wang A, Zhou J. GeoChip 4: a functional gene-array-based high-throughput environmental technology for microbial community analysis. Mol Ecol Resour 2014; 14:914-28. [PMID: 24520909 DOI: 10.1111/1755-0998.12239] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/02/2014] [Accepted: 02/05/2014] [Indexed: 01/21/2023]
Abstract
Micro-organisms play critical roles in many important biogeochemical processes in the Earth's biosphere. However, understanding and characterizing the functional capacity of microbial communities are still difficult due to the extremely diverse and often uncultivable nature of most micro-organisms. In this study, we developed a new functional gene array, GeoChip 4, for analysing the functional diversity, composition, structure, metabolic potential/activity and dynamics of microbial communities. GeoChip 4 contained approximately 82 000 probes covering 141 995 coding sequences from 410 functional gene families related to microbial carbon (C), nitrogen (N), sulphur (S), and phosphorus (P) cycling, energy metabolism, antibiotic resistance, metal resistance/reduction, organic remediation, stress responses, bacteriophage and virulence. A total of 173 archaeal, 4138 bacterial, 404 eukaryotic and 252 viral strains were targeted, providing the ability to analyse targeted functional gene families of micro-organisms included in all four domains. Experimental assessment using different amounts of DNA suggested that as little as 500 ng environmental DNA was required for good hybridization, and the signal intensities detected were well correlated with the DNA amount used. GeoChip 4 was then applied to study the effect of long-term warming on soil microbial communities at a Central Oklahoma site, with results indicating that microbial communities respond to long-term warming by enriching carbon degradation, nutrient cycling (nitrogen and phosphorous) and stress response gene families. To the best of our knowledge, GeoChip 4 is the most comprehensive functional gene array for microbial community analysis.
Collapse
Affiliation(s)
- Qichao Tu
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics (IEG), University of Oklahoma, Norman, OK, 73019, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Störmer R, Wichels A, Gerdts G. Geo-Chip analysis reveals reduced functional diversity of the bacterial community at a dumping site for dredged Elbe sediment. MARINE POLLUTION BULLETIN 2013; 77:113-122. [PMID: 24229782 DOI: 10.1016/j.marpolbul.2013.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 06/02/2023]
Abstract
The dumping of dredged sediments represents a major stressor for coastal ecosystems. The impact on the ecosystem function is determined by its complexity not easy to assess. In the present study, we evaluated the potential of bacterial community analyses to act as ecological indicators in environmental monitoring programmes. We investigated the functional structure of bacterial communities, applying functional gene arrays (GeoChip4.2). The relationship between functional genes and environmental factors was analysed using distance-based multivariate multiple regression. Apparently, both the function and structure of the bacterial communities are impacted by dumping activities. The bacterial community at the dumping centre displayed a significant reduction of its entire functional diversity compared with that found at a reference site. DDX compounds separated bacterial communities of the dumping site from those of un-impacted sites. Thus, bacterial community analyses show great potential as ecological indicators in environmental monitoring.
Collapse
Affiliation(s)
- Rebecca Störmer
- Microbial Ecology Group Alfred Wegener, Institute for Polar and Marine Research, Kurpromenade 201, 27498 Helgoland, Germany.
| | | | | |
Collapse
|
30
|
Antony-Babu S, Deveau A, Van Nostrand JD, Zhou J, Le Tacon F, Robin C, Frey-Klett P, Uroz S. Black truffle-associated bacterial communities during the development and maturation ofTuber melanosporumascocarps and putative functional roles. Environ Microbiol 2013; 16:2831-47. [DOI: 10.1111/1462-2920.12294] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/20/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Sanjay Antony-Babu
- INRA; Interactions Arbres - Microorganismes; UMR1136 F-54280 Champenoux France
- Interactions Arbres - Microorganismes; Université de Lorraine; UMR1136 F-54500 Vandoeuvre-lès-Nancy France
| | - Aurélie Deveau
- INRA; Interactions Arbres - Microorganismes; UMR1136 F-54280 Champenoux France
- Interactions Arbres - Microorganismes; Université de Lorraine; UMR1136 F-54500 Vandoeuvre-lès-Nancy France
| | - Joy D. Van Nostrand
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology; University of Oklahoma; Norman OK 73072 USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology; University of Oklahoma; Norman OK 73072 USA
- Earth Sciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control; School of Environment; Tsinghua University; Beijing 100084 China
| | - François Le Tacon
- INRA; Interactions Arbres - Microorganismes; UMR1136 F-54280 Champenoux France
- Interactions Arbres - Microorganismes; Université de Lorraine; UMR1136 F-54500 Vandoeuvre-lès-Nancy France
| | - Christophe Robin
- Agronomie & Environnement; Université de Lorraine; Nancy-Colmar UMR 1121 F-54500 Vandoeuvre-lès-Nancy France
- INRA; Agronomie & Environnement; Centre INRA de Nancy-Lorraine; Nancy-Colmar UMR 1121 F-54500 Vandoeuvre-lès-Nancy France
| | - Pascale Frey-Klett
- INRA; Interactions Arbres - Microorganismes; UMR1136 F-54280 Champenoux France
- Interactions Arbres - Microorganismes; Université de Lorraine; UMR1136 F-54500 Vandoeuvre-lès-Nancy France
| | - Stéphane Uroz
- INRA; Interactions Arbres - Microorganismes; UMR1136 F-54280 Champenoux France
- Interactions Arbres - Microorganismes; Université de Lorraine; UMR1136 F-54500 Vandoeuvre-lès-Nancy France
| |
Collapse
|
31
|
Zhang Y, Xie J, Liu M, Tian Z, He Z, van Nostrand JD, Ren L, Zhou J, Yang M. Microbial community functional structure in response to antibiotics in pharmaceutical wastewater treatment systems. WATER RESEARCH 2013; 47:6298-6308. [PMID: 23981791 DOI: 10.1016/j.watres.2013.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/15/2013] [Accepted: 08/03/2013] [Indexed: 06/02/2023]
Abstract
It is widely demonstrated that antibiotics in the environment affect microbial community structure. However, direct evidence regarding the impacts of antibiotics on microbial functional structures in wastewater treatment systems is limited. Herein, a high-throughput functional gene array (GeoChip 3.0) in combination with quantitative PCR and clone libraries were used to evaluate the microbial functional structures in two biological wastewater treatment systems, which treat antibiotic production wastewater mainly containing oxytetracycline. Despite the bacteriostatic effects of antibiotics, the GeoChip detected almost all key functional gene categories, including carbon cycling, nitrogen cycling, etc., suggesting that these microbial communities were functionally diverse. Totally 749 carbon-degrading genes belonging to 40 groups (24 from bacteria and 16 from fungi) were detected. The abundance of several fungal carbon-degrading genes (e.g., glyoxal oxidase (glx), lignin peroxidase or ligninase (lip), manganese peroxidase (mnp), endochitinase, exoglucanase_genes) was significantly correlated with antibiotic concentrations (Mantel test; P < 0.05), showing that the fungal functional genes have been enhanced by the presence of antibiotics. However, from the fact that the majority of carbon-degrading genes were derived from bacteria and diverse antibiotic resistance genes were detected in bacteria, it was assumed that many bacteria could survive in the environment by acquiring antibiotic resistance and may have maintained the position as a main player in nutrient removal. Variance partitioning analysis showed that antibiotics could explain 24.4% of variations in microbial functional structure of the treatment systems. This study provides insights into the impacts of antibiotics on microbial functional structure of a unique system receiving antibiotic production wastewater, and reveals the potential importance of the cooperation between fungi and bacteria with antibiotic resistance in maintaining the stability and performance of the systems.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME JOURNAL 2013; 8:430-40. [PMID: 23985745 DOI: 10.1038/ismej.2013.146] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 11/08/2022]
Abstract
Tibet is one of the most threatened regions by climate warming, thus understanding how its microbial communities function may be of high importance for predicting microbial responses to climate changes. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, along four sites/elevations of a Tibetan mountainous grassland, aiming to explore the potential microbial responses to climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 4.0, we showed that microbial communities were distinct for most but not all of the sites. Substantial variations were apparent in stress, N and C-cycling genes, but they were in line with the functional roles of these genes. Cold shock genes were more abundant at higher elevations. Also, gdh converting ammonium into urea was more abundant at higher elevations, whereas ureC converting urea into ammonium was less abundant, which was consistent with soil ammonium contents. Significant correlations were observed between N-cycling genes (ureC, gdh and amoA) and nitrous oxide flux, suggesting that they contributed to community metabolism. Lastly, we found by Canonical correspondence analysis, Mantel tests and the similarity tests that soil pH, temperature, NH4(+)-N and vegetation diversity accounted for the majority (81.4%) of microbial community variations, suggesting that these four attributes were major factors affecting soil microbial communities. On the basis of these observations, we predict that climate changes in the Tibetan grasslands are very likely to change soil microbial community functional structure, with particular impacts on microbial N-cycling genes and consequently microbe-mediated soil N dynamics.
Collapse
|
33
|
Watson DB, Wu WM, Mehlhorn T, Tang G, Earles J, Lowe K, Gihring TM, Zhang G, Phillips J, Boyanov MI, Spalding BP, Schadt C, Kemner KM, Criddle CS, Jardine PM, Brooks SC. In situ bioremediation of uranium with emulsified vegetable oil as the electron donor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6440-6448. [PMID: 23697787 DOI: 10.1021/es3033555] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A field test with a one-time emulsified vegetable oil (EVO) injection was conducted to assess the capacity of EVO to sustain uranium bioreduction in a high-permeability gravel layer with groundwater concentrations of (mM) U, 0.0055; Ca, 2.98; NO3(-), 0.11; HCO3(-), 5.07; and SO4(2-), 1.23. Comparison of bromide and EVO migration and distribution indicated that a majority of the injected EVO was retained in the subsurface from the injection wells to 50 m downgradient. Nitrate, uranium, and sulfate were sequentially removed from the groundwater within 1-2 weeks, accompanied by an increase in acetate, Mn, Fe, and methane concentrations. Due to the slow release and degradation of EVO with time, reducing conditions were sustained for approximately one year, and daily U discharge to a creek, located approximately 50 m from the injection wells, decreased by 80% within 100 days. Total U discharge was reduced by 50% over the one-year period. Reduction of U(VI) to U(IV) was confirmed by synchrotron analysis of recovered aquifer solids. Oxidants (e.g., dissolved oxygen, nitrate) flowing in from upgradient appeared to reoxidize and remobilize uranium after the EVO was exhausted as evidenced by a transient increase of U concentration above ambient values. Occasional (e.g., annual) EVO injection into a permeable Ca and bicarbonate-containing aquifer can sustain uranium bioreduction/immobilization and decrease U migration/discharge.
Collapse
Affiliation(s)
- David B Watson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6038, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lee YJ, van Nostrand JD, Tu Q, Lu Z, Cheng L, Yuan T, Deng Y, Carter MQ, He Z, Wu L, Yang F, Xu J, Zhou J. The PathoChip, a functional gene array for assessing pathogenic properties of diverse microbial communities. ISME JOURNAL 2013; 7:1974-84. [PMID: 23765101 DOI: 10.1038/ismej.2013.88] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/10/2013] [Accepted: 04/20/2013] [Indexed: 12/21/2022]
Abstract
Pathogens present in the environment pose a serious threat to human, plant and animal health as evidenced by recent outbreaks. As many pathogens can survive and proliferate in the environment, it is important to understand their population dynamics and pathogenic potential in the environment. To assess pathogenic potential in diverse habitats, we developed a functional gene array, the PathoChip, constructed with key virulence genes related to major virulence factors, such as adherence, colonization, motility, invasion, toxin, immune evasion and iron uptake. A total of 3715 best probes were selected from 13 virulence factors, covering 7417 coding sequences from 1397 microbial species (2336 strains). The specificity of the PathoChip was computationally verified, and approximately 98% of the probes provided specificity at or below the species level, proving its excellent capability for the detection of target sequences with high discrimination power. We applied this array to community samples from soil, seawater and human saliva to assess the occurrence of virulence genes in natural environments. Both the abundance and diversity of virulence genes increased in stressed conditions compared with their corresponding controls, indicating a possible increase in abundance of pathogenic bacteria under environmental perturbations such as warming or oil spills. Statistical analyses showed that microbial communities harboring virulence genes were responsive to environmental perturbations, which drove changes in abundance and distribution of virulence genes. The PathoChip provides a useful tool to identify virulence genes in microbial populations, examine the dynamics of virulence genes in response to environmental perturbations and determine the pathogenic potential of microbial communities.
Collapse
Affiliation(s)
- Yong-Jin Lee
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhu J, Zhang J, Li Q, Han T, Xie J, Hu Y, Chai L. Phylogenetic analysis of bacterial community composition in sediment contaminated with multiple heavy metals from the Xiangjiang River in China. MARINE POLLUTION BULLETIN 2013; 70:134-139. [PMID: 23507235 DOI: 10.1016/j.marpolbul.2013.02.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 01/26/2013] [Accepted: 02/11/2013] [Indexed: 06/01/2023]
Abstract
Understanding the ecology of sediments that are contaminated with heavy metals is critical for bioremediating these sediments, which has become a public concern over the course of the development of modern industry. To investigate the bacterial community composition of sediments that are contaminated with heavy metals in the Xiangjiang River, a total of four sediment samples contaminated with multiple heavy metals were obtained, and a culture-independent molecular analysis, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), was performed. The results revealed that heavy metal pollution affected the sediment microbial community diversity, and the greatest species diversity appeared in the moderately polluted sediment X sample. The dominant family in these sediments includes α-Proteobacteria, β-Proteobacteria and Firmicutes. Moreover, α-Proteobacteria was significantly increased with increases in heavy metal. A redundancy analysis (RDA) also confirmed this phenomenon.
Collapse
Affiliation(s)
- Jianyu Zhu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Tang G, Wu WM, Watson DB, Parker JC, Schadt CW, Shi X, Brooks SC. U(VI) bioreduction with emulsified vegetable oil as the electron donor--microcosm tests and model development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3209-3217. [PMID: 23397992 DOI: 10.1021/es304641b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We conducted microcosm tests and biogeochemical modeling to study U(VI) reduction in contaminated sediments amended with emulsified vegetable oil (EVO). Indigenous microorganisms in the sediments degraded EVO and stimulated Fe(III), U(VI), and sulfate reduction, and methanogenesis. Acetate concentration peaked in 100-120 days in the EVO microcosms versus 10-20 days in the oleate microcosms, suggesting that triglyceride hydrolysis was a rate-limiting step in EVO degradation and subsequent reactions. Acetate persisted 50 days longer in oleate- and EVO- than in ethanol-amended microcosms, indicating that acetate-utilizing methanogenesis was slower in the oleate and EVO than ethanol microcosms. We developed a comprehensive biogeochemical model to couple EVO hydrolysis, production, and oxidation of long-chain fatty acids (LCFA), glycerol, acetate, and hydrogen, reduction of Fe(III), U(VI) and sulfate, and methanogenesis with growth and decay of multiple functional microbial groups. By estimating EVO, LCFA, and glycerol degradation rate coefficients, and introducing a 100 day lag time for acetoclastic methanogenesis for oleate and EVO microcosms, the model approximately matched observed sulfate, U(VI), and acetate concentrations. Our results confirmed that EVO could stimulate U(VI) bioreduction in sediments and the slow EVO hydrolysis and acetate-utilizing methanogens growth could contribute to longer term bioreduction than simple substrates (e.g., ethanol, acetate, etc.) in the subsurface.
Collapse
Affiliation(s)
- Guoping Tang
- Environmental Sciences Division, Oak Ridge National Laboratory, PO Box 2008, MS-6038, Oak Ridge, Tennessee 37831-6038, United States.
| | | | | | | | | | | | | |
Collapse
|
37
|
Yang Y, Wu L, Lin Q, Yuan M, Xu D, Yu H, Hu Y, Duan J, Li X, He Z, Xue K, van Nostrand J, Wang S, Zhou J. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. GLOBAL CHANGE BIOLOGY 2013; 19:637-648. [PMID: 23504798 DOI: 10.1111/gcb.12065] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Abstract
Microbes play key roles in various biogeochemical processes, including carbon (C) and nitrogen (N) cycling. However, changes of microbial community at the functional gene level by livestock grazing, which is a global land-use activity, remain unclear. Here we use a functional gene array, GeoChip 4.0, to examine the effects of free livestock grazing on the microbial community at an experimental site of Tibet, a region known to be very sensitive to anthropogenic perturbation and global warming. Our results showed that grazing changed microbial community functional structure, in addition to aboveground vegetation and soil geochemical properties. Further statistical tests showed that microbial community functional structures were closely correlated with environmental variables, and variations in microbial community functional structures were mainly controlled by aboveground vegetation, soil C/N ratio, and NH4 (+) -N. In-depth examination of N cycling genes showed that abundances of N mineralization and nitrification genes were increased at grazed sites, but denitrification and N-reduction genes were decreased, suggesting that functional potentials of relevant bioprocesses were changed. Meanwhile, abundances of genes involved in methane cycling, C fixation, and degradation were decreased, which might be caused by vegetation removal and hence decrease in litter accumulation at grazed sites. In contrast, abundances of virulence, stress, and antibiotics resistance genes were increased because of the presence of livestock. In conclusion, these results indicated that soil microbial community functional structure was very sensitive to the impact of livestock grazing and revealed microbial functional potentials in regulating soil N and C cycling, supporting the necessity to include microbial components in evaluating the consequence of land-use and/or climate changes.
Collapse
Affiliation(s)
- Yunfeng Yang
- School of Environment, Tsinghua University, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Assessing the microbial community and functional genes in a vertical soil profile with long-term arsenic contamination. PLoS One 2012; 7:e50507. [PMID: 23226297 PMCID: PMC3511582 DOI: 10.1371/journal.pone.0050507] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/22/2012] [Indexed: 11/19/2022] Open
Abstract
Arsenic (As) contamination in soil and groundwater has become a serious problem to public health. To examine how microbial communities and functional genes respond to long-term arsenic contamination in vertical soil profile, soil samples were collected from the surface to the depth of 4 m (with an interval of 1 m) after 16-year arsenic downward infiltration. Integrating BioLog and functional gene microarray (GeoChip 3.0) technologies, we showed that microbial metabolic potential and diversity substantially decreased, and community structure was markedly distinct along the depth. Variations in microbial community functional genes, including genes responsible for As resistance, carbon and nitrogen cycling, phosphorus utilization and cytochrome c oxidases were detected. In particular, changes in community structures and activities were correlated with the biogeochemical features along the vertical soil profile when using the rbcL and nifH genes as biomarkers, evident for a gradual transition from aerobic to anaerobic lifestyles. The C/N showed marginally significant correlations with arsenic resistance (p = 0.069) and carbon cycling genes (p = 0.073), and significant correlation with nitrogen fixation genes (p = 0.024). The combination of C/N, NO3− and P showed the highest correlation (r = 0.779, p = 0.062) with the microbial community structure. Contradict to our hypotheses, a long-term arsenic downward infiltration was not the primary factor, while the spatial isolation and nutrient availability were the key forces in shaping the community structure. This study provides new insights about the heterogeneity of microbial community metabolic potential and future biodiversity preservation for arsenic bioremediation management.
Collapse
|
39
|
Bai S, Li J, He Z, Van Nostrand JD, Tian Y, Lin G, Zhou J, Zheng T. GeoChip-based analysis of the functional gene diversity and metabolic potential of soil microbial communities of mangroves. Appl Microbiol Biotechnol 2012; 97:7035-48. [PMID: 23135227 DOI: 10.1007/s00253-012-4496-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 11/25/2022]
Abstract
Mangroves are unique and highly productive ecosystems and harbor very special microbial communities. Although the phylogenetic diversity of sediment microbial communities of mangrove habitats has been examined extensively, little is known regarding their functional gene diversity and metabolic potential. In this study, a high-throughput functional gene array (GeoChip 4.0) was used to analyze the functional diversity, composition, structure, and metabolic potential of microbial communities in mangrove habitats from mangrove national nature reserves in China. GeoChip data indicated that these microbial communities were functionally diverse as measured by the number of genes detected, unique genes, and various diversity indices. Almost all key functional gene categories targeted by GeoChip 4.0 were detected in the mangrove microbial communities, including carbon (C) fixation, C degradation, methane generation, nitrogen (N) fixation, nitrification, denitrification, ammonification, N reduction, sulfur (S) metabolism, metal resistance, antibiotic resistance, and organic contaminant degradation. Detrended correspondence analysis (DCA) of all detected genes showed that Spartina alterniflora (HH), an invasive species, did not harbor significantly different microbial communities from Aegiceras corniculatum (THY), a native species, but did differ from other species, Kenaelia candel (QQ), Aricennia marina (BGR), and mangrove-free mud flat (GT). Canonical correspondence analysis (CCA) results indicated the microbial community structure was largely shaped by surrounding environmental variables, such as total nitrogen (TN), total carbon (TC), pH, C/N ratio, and especially salinity. This study presents a comprehensive survey of functional gene diversity of soil microbial communities from different mangrove habitats/species and provides new insights into our understanding of the functional potential of microbial communities in mangrove ecosystems.
Collapse
Affiliation(s)
- Shijie Bai
- State Key Lab. of Marine Environmental Sciences and Key Lab. of MOE for Coast and Wetland Ecosystem, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Nostrand JDV, He Z, Zhou J. Use of functional gene arrays for elucidating in situ biodegradation. Front Microbiol 2012; 3:339. [PMID: 23049526 PMCID: PMC3448134 DOI: 10.3389/fmicb.2012.00339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/03/2012] [Indexed: 12/18/2022] Open
Abstract
Microarrays have revolutionized the study of microbiology by providing a high-throughput method for examining thousands of genes with a single test and overcome the limitations of many culture-independent approaches. Functional gene arrays (FGA) probe a wide range of genes involved in a variety of functions of interest to microbial ecology (e.g., carbon degradation, N fixation, metal resistance) from many different microorganisms, cultured and uncultured. The most comprehensive FGA to date is the GeoChip array, which targets tens of thousands of genes involved in the geochemical cycling of carbon, nitrogen, phosphorus, and sulfur, metal resistance and reduction, energy processing, antibiotic resistance and contaminant degradation as well as phylogenetic information (gyrB). Since the development of GeoChips, many studies have been performed using this FGA and have shown it to be a powerful tool for rapid, sensitive, and specific examination of microbial communities in a high-throughput manner. As such, the GeoChip is well-suited for linking geochemical processes with microbial community function and structure. This technology has been used successfully to examine microbial communities before, during, and after in situ bioremediation at a variety of contaminated sites. These studies have expanded our understanding of biodegradation and bioremediation processes and the associated microorganisms and environmental conditions responsible. This review provides an overview of FGA development with a focus on the GeoChip and highlights specific GeoChip studies involving in situ bioremediation.
Collapse
Affiliation(s)
- Joy D Van Nostrand
- Institute for Environmental Genomics, University of Oklahoma Norman, OK, USA ; Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| | | | | |
Collapse
|
41
|
Lu Z, He Z, Parisi VA, Kang S, Deng Y, Van Nostrand JD, Masoner JR, Cozzarelli IM, Suflita JM, Zhou J. GeoChip-based analysis of microbial functional gene diversity in a landfill leachate-contaminated aquifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:5824-5833. [PMID: 22533634 DOI: 10.1021/es300478j] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The functional gene diversity and structure of microbial communities in a shallow landfill leachate-contaminated aquifer were assessed using a comprehensive functional gene array (GeoChip 3.0). Water samples were obtained from eight wells at the same aquifer depth immediately below a municipal landfill or along the predominant downgradient groundwater flowpath. Functional gene richness and diversity immediately below the landfill and the closest well were considerably lower than those in downgradient wells. Mantel tests and canonical correspondence analysis (CCA) suggested that various geochemical parameters had a significant impact on the subsurface microbial community structure. That is, leachate from the unlined landfill impacted the diversity, composition, structure, and functional potential of groundwater microbial communities as a function of groundwater pH, and concentrations of sulfate, ammonia, and dissolved organic carbon (DOC). Historical geochemical records indicate that all sampled wells chronically received leachate, and the increase in microbial diversity as a function of distance from the landfill is consistent with mitigation of the impact of leachate on the groundwater system by natural attenuation mechanisms.
Collapse
Affiliation(s)
- Zhenmei Lu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Systems biology approach to bioremediation. Curr Opin Biotechnol 2012; 23:483-90. [DOI: 10.1016/j.copbio.2012.01.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/20/2012] [Accepted: 01/28/2012] [Indexed: 11/21/2022]
|
43
|
Ding C, He J. Molecular techniques in the biotechnological fight against halogenated compounds in anoxic environments. Microb Biotechnol 2012; 5:347-67. [PMID: 22070763 PMCID: PMC3821678 DOI: 10.1111/j.1751-7915.2011.00313.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/24/2011] [Accepted: 09/28/2011] [Indexed: 11/28/2022] Open
Abstract
Microbial treatment of environmental contamination by anthropogenic halogenated organic compounds has become popular in recent decades, especially in the subsurface environments. Molecular techniques such as polymerase chain reaction-based fingerprinting methods have been extensively used to closely monitor the presence and activities of dehalogenating microbes, which also lead to the discovery of new dehalogenating bacteria and novel functional genes. Nowadays, traditional molecular techniques are being further developed and optimized for higher sensitivity, specificity, and accuracy to better fit the contexts of dehalogenation. On the other hand, newly developed high throughput techniques, such as microarray and next-generation sequencing, provide unsurpassed detection ability, which has enabled large-scale comparative genomic and whole-genome transcriptomic analysis. The aim of this review is to summarize applications of various molecular tools in the field of microbially mediated dehalogenation of various halogenated organic compounds. It is expected that traditional molecular techniques and nucleic-acid-based biomarkers will still be favoured in the foreseeable future because of relative low costs and high flexibility. Collective analyses of metagenomic sequencing data are still in need of information from individual dehalogenating strains and functional reductive dehalogenase genes in order to draw reliable conclusions.
Collapse
Affiliation(s)
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| |
Collapse
|
44
|
Microbial functional gene diversity with a shift of subsurface redox conditions during In Situ uranium reduction. Appl Environ Microbiol 2012; 78:2966-72. [PMID: 22327592 DOI: 10.1128/aem.06528-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To better understand the microbial functional diversity changes with subsurface redox conditions during in situ uranium bioremediation, key functional genes were studied with GeoChip, a comprehensive functional gene microarray, in field experiments at a uranium mill tailings remedial action (UMTRA) site (Rifle, CO). The results indicated that functional microbial communities altered with a shift in the dominant metabolic process, as documented by hierarchical cluster and ordination analyses of all detected functional genes. The abundance of dsrAB genes (dissimilatory sulfite reductase genes) and methane generation-related mcr genes (methyl coenzyme M reductase coding genes) increased when redox conditions shifted from Fe-reducing to sulfate-reducing conditions. The cytochrome genes detected were primarily from Geobacter sp. and decreased with lower subsurface redox conditions. Statistical analysis of environmental parameters and functional genes indicated that acetate, U(VI), and redox potential (E(h)) were the most significant geochemical variables linked to microbial functional gene structures, and changes in microbial functional diversity were strongly related to the dominant terminal electron-accepting process following acetate addition. The study indicates that the microbial functional genes clearly reflect the in situ redox conditions and the dominant microbial processes, which in turn influence uranium bioreduction. Microbial functional genes thus could be very useful for tracking microbial community structure and dynamics during bioremediation.
Collapse
|
45
|
Microbial community succession during lactate amendment and electron acceptor limitation reveals a predominance of metal-reducing Pelosinus spp. Appl Environ Microbiol 2012; 78:2082-91. [PMID: 22267668 DOI: 10.1128/aem.07165-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The determination of the success of in situ bioremediation strategies is complex. By using controlled laboratory conditions, the influence of individual variables, such as U(VI), Cr(VI), and electron donors and acceptors on community structure, dynamics, and the metal-reducing potential can be studied. Triplicate anaerobic, continuous-flow reactors were inoculated with Cr(VI)-contaminated groundwater from the Hanford, WA, 100-H area, amended with lactate, and incubated for 95 days to obtain stable, enriched communities. The reactors were kept anaerobic with N(2) gas (9 ml/min) flushing the headspace and were fed a defined medium amended with 30 mM lactate and 0.05 mM sulfate with a 48-h generation time. The resultant diversity decreased from 63 genera within 12 phyla to 11 bacterial genera (from 3 phyla) and 2 archaeal genera (from 1 phylum). Final communities were dominated by Pelosinus spp. and to a lesser degree, Acetobacterium spp., with low levels of other organisms, including methanogens. Four new strains of Pelosinus were isolated, with 3 strains being capable of Cr(VI) reduction while one also reduced U(VI). Under limited sulfate, it appeared that the sulfate reducers, including Desulfovibrio spp., were outcompeted. These results suggest that during times of electron acceptor limitation in situ, organisms such as Pelosinus spp. may outcompete the more-well-studied organisms while maintaining overall metal reduction rates and extents. Finally, lab-scale simulations can test new strategies on a smaller scale while facilitating community member isolation, so that a deeper understanding of community metabolism can be revealed.
Collapse
|
46
|
Wawrik B, Mendivelso M, Parisi VA, Suflita JM, Davidova IA, Marks CR, Van Nostrand JD, Liang Y, Zhou J, Huizinga BJ, Strąpoć D, Callaghan AV. Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin. FEMS Microbiol Ecol 2012; 81:26-42. [PMID: 22146015 DOI: 10.1111/j.1574-6941.2011.01272.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/18/2011] [Accepted: 11/28/2011] [Indexed: 11/30/2022] Open
Abstract
The bioconversion of coal to methane in the San Juan Basin, New Mexico, was investigated. Production waters were analyzed via enrichment studies, metabolite-profiling, and culture-independent methods. Analysis of 16S rRNA gene sequences indicated the presence of methanogens potentially capable of acetoclastic, hydrogenotrophic, and methylotrophic metabolisms, predominantly belonging to the Methanosarcinales and Methanomicrobiales. Incubations of produced water and coal readily produced methane, but there was no correlation between the thermal maturity and methanogenesis. Coal methanogenesis was greater when samples with a greater richness of Firmicutes were utilized. A greater archaeal diversity was observed in the presence of several aromatic and short-chain fatty acid metabolites. Incubations amended with lactate, hydrogen, formate, and short-chain alcohols produced methane above un-amended controls. Methanogenesis from acetate was not observed. Metabolite profiling showed the widespread occurrence of putative aromatic ring intermediates including benzoate, toluic acids, phthalic acids, and cresols. The detection of saturated and unsaturated alkylsuccinic acids indicated n-alkane and cyclic alkane/alkene metabolism. Microarray analysis complemented observations based on hybridization to functional genes related to the anaerobic metabolism of aromatic and aliphatic substrates. These data suggest that coal methanogenesis is unlikely to be limited by methanogen biomass, but rather the activation and degradation of coal constituents.
Collapse
Affiliation(s)
- Boris Wawrik
- Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
He Z, Van Nostrand JD, Zhou J. Applications of functional gene microarrays for profiling microbial communities. Curr Opin Biotechnol 2012; 23:460-6. [PMID: 22226464 DOI: 10.1016/j.copbio.2011.12.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/23/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
Functional gene arrays (FGAs) have been considered as a specific, sensitive, quantitative, and high throughput metagenomic tool to detect, monitor and characterize microbial communities. Especially GeoChips, the most comprehensive FGAs have been applied to analyze the functional diversity, composition, structure, and metabolic potential or activity of a variety of microbial communities from different habitats, such as aquatic ecosystems, soils, contaminated sites, extreme environments, and bioreactors. FGAs are able to address fundamental questions related to global change, bioremediation, land use, human health, and ecological theories, and link the microbial community structure to environmental properties and ecosystem functioning. This review focuses on applications of FGA technology for profiling microbial communities, including target preparation, hybridization and data processing, and data analysis. We also discuss challenges and future directions of FGA applications.
Collapse
Affiliation(s)
- Zhili He
- Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | | | | |
Collapse
|
48
|
Asuming- Brempong S. Microarray Technology and Its Applicability in Soil Science – A Short Review. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojss.2012.23039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
16s rDNA based microbial diversity analysis of eleven acid mine drainages obtained from three Chinese copper mines. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11771-011-0925-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
He Z, Deng Y, Zhou J. Development of functional gene microarrays for microbial community analysis. Curr Opin Biotechnol 2011; 23:49-55. [PMID: 22100036 DOI: 10.1016/j.copbio.2011.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 01/21/2023]
Abstract
Functional gene arrays (FGAs) are a special type of microarrays containing probes for key genes involved in microbial functional processes, such as biogeochemical cycling of carbon, nitrogen, sulfur, phosphorus and metals, virulence and antibiotic resistance, biodegradation of environmental contaminants, and stress responses. FGAs have been demonstrated to be a specific, sensitive, and quantitative tool for rapid analysis of microbial communities from different habitats, such as waters, soils, extreme environments, bioreactors, and human microbiomes. In this review, we first summarize currently reported FGAs, and then focus on the FGA development. We will also discuss several key issues of FGA technology as well as challenges and directions in future FGA development.
Collapse
Affiliation(s)
- Zhili He
- Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA.
| | | | | |
Collapse
|