1
|
Kiørboe T. Organismal trade-offs and the pace of planktonic life. Biol Rev Camb Philos Soc 2024; 99:1992-2002. [PMID: 38855937 DOI: 10.1111/brv.13108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
No one is perfect, and organisms that perform well in some habitat or with respect to some tasks, do so at the cost of performance in others: there are inescapable trade-offs. Organismal trade-offs govern the structure and function of ecosystems and attempts to demonstrate and quantify trade-offs have therefore been an important goal for ecologists. In addition, trade-offs are a key component in trait-based ecosystem models. Here, I synthesise evidence of trade-offs in plankton organisms, from bacteria to zooplankton, and show how a slow-fast gradient in life histories emerges. I focus on trade-offs related to the main components of an organism's Darwinian fitness, that is resource acquisition, survival, and propagation. All consumers need to balance the need to eat without being eaten, and diurnal vertical migration, where zooplankton hide at depth during the day to avoid visual predators but at the cost of missed feeding opportunities in the productive surface layer, is probably the best documented result of this trade-off. However, there are many other more subtle but equally important behaviours that similarly are the result of an optimisation of these trade-offs. Most plankton groups have also developed more explicit defence mechanisms, such as toxin production or evasive behaviours that are harnessed in the presence of their predators; the costs of these have often proved difficult to quantify or even demonstrate, partly because they only materialise under natural conditions. Finally, all multicellular organisms must allocate time and resources among growth, reproduction, and maintenance (e.g. protein turnover and DNA repair), and mate finding may compromise both survival and feeding. The combined effects of all these trade-offs is the emergence of a slow-fast gradient in the pace-of-life, likely the most fundamental principle for the organisation of organismal life histories. This crystallisation of trade-offs may offer a path to further simplification of trait-based models of marine ecosystems.
Collapse
Affiliation(s)
- Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, 2800 Kgs, Kemitorvet, Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Nieto EE, Jurburg SD, Steinbach N, Festa S, Morelli IS, Coppotelli BM, Chatzinotas A. DNA stable isotope probing reveals the impact of trophic interactions on bioaugmentation of soils with different pollution histories. MICROBIOME 2024; 12:146. [PMID: 39113100 PMCID: PMC11305082 DOI: 10.1186/s40168-024-01865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Bioaugmentation is considered a sustainable and cost-effective methodology to recover contaminated environments, but its outcome is highly variable. Predation is a key top-down control mechanism affecting inoculum establishment, however, its effects on this process have received little attention. This study focused on the impact of trophic interactions on bioaugmentation success in two soils with different pollution exposure histories. We inoculated a 13C-labelled pollutant-degrading consortium in these soils and tracked the fate of the labelled biomass through stable isotope probing (SIP) of DNA. We identified active bacterial and eukaryotic inoculum-biomass consumers through amplicon sequencing of 16S rRNA and 18S rRNA genes coupled to a novel enrichment factor calculation. RESULTS Inoculation effectively increased PAH removal in the short-term, but not in the long-term polluted soil. A decrease in the relative abundance of the inoculated genera was observed already on day 15 in the long-term polluted soil, while growth of these genera was observed in the short-term polluted soil, indicating establishment of the inoculum. In both soils, eukaryotic genera dominated as early incorporators of 13C-labelled biomass, while bacteria incorporated the labelled biomass at the end of the incubation period, probably through cross-feeding. We also found different successional patterns between the two soils. In the short-term polluted soil, Cercozoa and Fungi genera predominated as early incorporators, whereas Ciliophora, Ochrophyta and Amoebozoa were the predominant genera in the long-term polluted soil. CONCLUSION Our results showed differences in the inoculum establishment and predator community responses, affecting bioaugmentation efficiency. This highlights the need to further study predation effects on inoculum survival to increase the applicability of inoculation-based technologies. Video Abstract.
Collapse
Affiliation(s)
- Esteban E Nieto
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET), CINDEFI (UNLP, CCT-La Plata Street 50 N°227, 1900, La Plata, Argentina.
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
| | - Stephanie D Jurburg
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nicole Steinbach
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Sabrina Festa
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET), CINDEFI (UNLP, CCT-La Plata Street 50 N°227, 1900, La Plata, Argentina
| | - Irma S Morelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET), CINDEFI (UNLP, CCT-La Plata Street 50 N°227, 1900, La Plata, Argentina
- Comisión de Investigaciones Científicas de La Provincia de Buenos Aires, La Plata, Argentina
| | - Bibiana M Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET), CINDEFI (UNLP, CCT-La Plata Street 50 N°227, 1900, La Plata, Argentina
| | - Antonis Chatzinotas
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
- Institute of Biology, Leipzig University, Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
3
|
Kiørboe T. Predation in a Microbial World: Mechanisms and Trade-Offs of Flagellate Foraging. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:361-381. [PMID: 37368955 DOI: 10.1146/annurev-marine-020123-102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Heterotrophic nanoflagellates are the main consumers of bacteria and picophytoplankton in the ocean and thus play a key role in ocean biogeochemistry. They are found in all major branches of the eukaryotic tree of life but are united by all being equipped with one or a few flagella that they use to generate a feeding current. These microbial predators are faced with the challenges that viscosity at this small scale impedes predator-prey contact and that their foraging activity disturbs the ambient water and thus attracts their own flow-sensing predators. Here, I describe some of the diverse adaptations of the flagellum to produce sufficient force to overcome viscosity and of the flagellar arrangement to minimize fluid disturbances, and thus of the various solutions to optimize the foraging-predation risk trade-off. I demonstrate how insights into this trade-off can be used to develop robust trait-based models of microbial food webs.
Collapse
Affiliation(s)
- Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kongens Lyngby, Denmark;
| |
Collapse
|
4
|
Watson SB, Jüttner F. Isopropylthiol emission by bloom-forming Microcystis: Biochemistry, ecophysiology and semiochemistry of a volatile organosulfur compound. HARMFUL ALGAE 2023; 130:102527. [PMID: 38061818 DOI: 10.1016/j.hal.2023.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/22/2023] [Accepted: 10/15/2023] [Indexed: 12/18/2023]
Abstract
Microcystis species not only produce toxic cyanobacterial blooms, but can be a significant source of taste and odour. Previous studies have associated foul-smelling volatile organic sulfur compounds (VOSCs) with Microcystis blooms, but have largely attributed these compounds to bacterial bloom decomposition. However, earlier reports of the production of isopropylthio compounds by several Microcystis strains suggests that these cyanobacteria may themselves be a source of these VOSCs. Sulphur compounds have been shown to play important semiochemical roles in algal cell protection and grazer interactions in marine systems, but little is known about the production and chemical ecology of freshwater cyanobacterial VOSCs. To address this knowledge gap, we undertook the first detailed investigation of the biochemistry, ecophysiology and semiochemistry of these compounds and their production by Microcystis, and tested the hypothesis that they act as multifunctional semiochemicals in processes related to cell protection and grazer defence. Using short-term incubations and an adapted headspace-GC-MS technique, we investigated VOSC production by axenic and non-axenic strains, and verified that isopropylthio compounds are in fact produced by these cyanobacteria, identifying 5 isopropyl moiety-containing VOSCs (isopropylthiol (ISH), isopropylmethyl sulfide, isopropyl methyl disulfide, diisopropyl disulfide (ISSI) and diisopropyl trisulfide) as well as methanethiol in three strains. Further studies with the axenic strain Microcystis PCC 7806 using different light regimes, metabolic inhibitors (sodium azide, DCMU), the antioxidant enzyme catalase and stable labelled precursors (hydrogencarbonate, acetates and sulfate) demonstrated that ISH is a true exo-metabolite, synthesized via the acetate pathway. It is actively produced and continuously excreted by the cyanobacteria during growth, with minimal internal storage or post-lysis catalytic generation. The molar ratios of the redox pair ISH/ISSI are not directly involved in the photosynthetic and respiratory electron transport chains, but dependant on the redox state of the cell - likely mediated by reactive oxygen species (ROS), as shown by a marked effect of catalase. These results, along with toxicological and behavioural assays using the two aquatic invertebrates Thamnocephalus platyurus and Daphnia magna indicate that ISH plays multiple important physiological and ecological roles. It acts as an effective antioxidant against high ROS levels, as often experienced in surface blooms, it elicits avoidance-related behavioural responses in grazer communities and at high levels, it can be toxic to some invertebrates.
Collapse
Affiliation(s)
- Susan B Watson
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada.
| | - Friedrich Jüttner
- Limnological Station, University of Zürich, Seestrasse 187, CH-8802 Kilchberg, Switzerland
| |
Collapse
|
5
|
Guillonneau R, Baraquet C, Molmeret M. Marine Bacteria Display Different Escape Mechanisms When Facing Their Protozoan Predators. Microorganisms 2020; 8:microorganisms8121982. [PMID: 33322808 PMCID: PMC7763514 DOI: 10.3390/microorganisms8121982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Free-living amoeba are members of microbial communities such as biofilms in terrestrial, fresh, and marine habitats. Although they are known to live in close association with bacteria in many ecosystems such as biofilms, they are considered to be major bacterial predators in many ecosystems. Little is known on the relationship between protozoa and marine bacteria in microbial communities, more precisely on how bacteria are able survive in environmental niches where these bacterial grazers also live. The objective of this work is to study the interaction between the axenized ubiquitous amoeba Acanthamoeba castellanii and four marine bacteria isolated from immersed biofilm, in order to evaluate if they would be all grazed upon by amoeba or if they would be able to survive in the presence of their predator. At a low bacteria-to-amoeba ratio, we show that each bacterium is phagocytized and follows a singular intracellular path within this host cell, which appears to delay or to prevent bacterial digestion. In particular, one of the bacteria was found in the amoeba nucleolar compartment whereas another strain was expelled from the amoeba in vesicles. We then looked at the fate of the bacteria grown in a higher bacteria-to-amoeba ratio, as a preformed mono- or multi-species biofilm in the presence of A. castellanii. We show that all biofilms were subjected to detachment from the surface in the presence of the amoeba or its supernatant. Overall, these results show that bacteria, when facing the same predator, exhibit a variety of escape mechanisms at the cellular and population level, when we could have expected a simple bacterial grazing. Therefore, this study unravels new insights into the survival of environmental bacteria when facing predators that they could encounter in the same microbial communities.
Collapse
Affiliation(s)
- Richard Guillonneau
- Laboratoire MAPIEM, EA4323, Université de Toulon, 83130 La Garde, France; (R.G.); (C.B.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Claudine Baraquet
- Laboratoire MAPIEM, EA4323, Université de Toulon, 83130 La Garde, France; (R.G.); (C.B.)
| | - Maëlle Molmeret
- Laboratoire MAPIEM, EA4323, Université de Toulon, 83130 La Garde, France; (R.G.); (C.B.)
- Correspondence:
| |
Collapse
|
6
|
Ospina-Serna J, Huber P, Odriozola M, Fermani P, Unrein F. Picocyanobacteria aggregation as a response to predation pressure: direct contact is not necessary. FEMS Microbiol Ecol 2020; 96:5899723. [DOI: 10.1093/femsec/fiaa153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/28/2020] [Indexed: 01/08/2023] Open
Abstract
ABSTRACT
Picocyanobacteria (cells <2 µm) can be found either as single-cells (Pcy) or embedded in a mucilaginous sheath as microcolonies or colonies (CPcy). It has been demonstrated that phenotypic plasticity in picocyanobacteria (i.e. the capability of single-cells to aggregate into colonies) can be induced as a response to grazing pressure. The effect of the presence of different predators (cladocerans and rotifers) on the morphological composition of picocyanobacteria was studied in a natural community, and it was observed that the abundance of CPcy significantly increased in all treatments with zooplankton compared with the control without zooplankton. The aggregation capability was also evaluated in a single-cell strain by adding a conditioned medium of flagellates, rotifers and cladocerans. The proportion of cells forming colonies was significantly higher in all treatments with conditioned medium regardless of the predator. These results suggest that the aggregation of Pcy can be induced as a response to the predation pressure exerted by protists and different zooplankters, and also that Pcy has the capability to aggregate into CPcy even without direct contact with any predator, most probably due to the presence of an infochemical dissolved in the water that does not come from disrupted Pcy cells.
Collapse
Affiliation(s)
- Juliana Ospina-Serna
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET. Av. Intendente Marino Km 8,200, (7130) Chascomús, Buenos Aires, Argentina
| | - Paula Huber
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET. Av. Intendente Marino Km 8,200, (7130) Chascomús, Buenos Aires, Argentina
- Instituto Nacional de Limnología (INALI), CONICET-UNL. Ciudad Universitaria - Paraje el Pozo s/n, (3000) Santa Fé, Argentina
| | - Mariana Odriozola
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET. Av. Intendente Marino Km 8,200, (7130) Chascomús, Buenos Aires, Argentina
| | - Paulina Fermani
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET. Av. Intendente Marino Km 8,200, (7130) Chascomús, Buenos Aires, Argentina
| | - Fernando Unrein
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET. Av. Intendente Marino Km 8,200, (7130) Chascomús, Buenos Aires, Argentina
| |
Collapse
|
7
|
Tophøj J, Wollenberg RD, Sondergaard TE, Eriksen NT. Feeding and growth of the marine heterotrophic nanoflagellates, Procryptobia sorokini and Paraphysomonas imperforata on a bacterium, Pseudoalteromonas sp. with an inducible defence against grazing. PLoS One 2018; 13:e0195935. [PMID: 29652905 PMCID: PMC5898755 DOI: 10.1371/journal.pone.0195935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 04/03/2018] [Indexed: 11/19/2022] Open
Abstract
Heterotrophic marine nanoflagellates are important grazers on bacteria in the water column. Some marine bacteria appear more resistant to grazing than do others. Marine nanoflagellates can be grown in the laboratory in batch cultures fed specific bacterial isolates. In some cultures, the flagellates appear unable to completely deplete the bacterial prey even when the bacterial strain otherwise is an excellent prey. This may indicate that some marine bacteria are able to induce defence mechanisms if they are grazed by nanoflagellates. Four morphologically distinct marine heterotrophic nanoflagellates, of which 3 were still identified as Procryptobia sorokini (Kinetoplastea) and one as Paraphysomonas imperforata (Chrysophyceae) were isolated from a coastal location along with 3 isolates of the marine bacterium Pseudoalteromonas sp. Flagellate growth and grazing on bacterial prey were analysed in batch cultures. Pseudoalteromonas was a suitable prey for all 4 flagellate isolates. They grazed and grew on Pseudoalteromonas as sole prey with maximal cell-specific growth rates of 0.1–0.25 h-1 and gross growth efficiencies of 38–61%. Exposure to dense flagellate cultures or their supernatants did, however, cause a fraction of the Pseudoalteromonas cells to aggregate and the bacterium became apparently resistant to grazing. Concentrations of suspended Pseudoalteromonas cells were therefore not decreased below 1,700–7,500 cells μL-1 by any of the flagellate isolates. These results indicate that Pseudoalteromonas sp. can be an excellent prey to marine nanoflagellates but also that is in possession of inducible mechanisms that protect against flagellate grazing.
Collapse
Affiliation(s)
- Jakob Tophøj
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | | | - Niels Thomas Eriksen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- * E-mail:
| |
Collapse
|
8
|
Callieri C, Amalfitano S, Corno G, Di Cesare A, Bertoni R, Eckert EM. The microbiome associated with two Synechococcus ribotypes at different levels of ecological interaction. JOURNAL OF PHYCOLOGY 2017; 53:1151-1158. [PMID: 28915336 DOI: 10.1111/jpy.12583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
Planktonic cyanobacteria belonging to the genus Synechococcus are ubiquitously distributed in marine and fresh waters, substantially contributing to total carbon fixation on a global scale. While their ecological relevance is acknowledged, increasing resolution in molecular techniques allows disentangling cyanobacteria's role at the micro-scale, where complex microbial interactions may drive the overall community assembly. The interplay between phylogenetically different Synechococcus clades and their associated bacterial communities can affect their ecological fate and susceptibility to protistan predation. In this study, we experimentally promoted different levels of ecological interaction by mixing two Synechococcus ribotypes (MW101C3 and LL) and their associated bacteria, with and without a nanoflagellate grazer (Poterioochromonas sp.) in laboratory cultures. The beta-diversity of the Synechococcus-associated microbiome in laboratory cultures indicated that the presence of the LL ribotype was the main factor determining community composition changes (41% of total variance), and prevailed over the effect of protistan predation (18% of total variance). Our outcomes also showed that species coexistence and predation may promote microbial diversity, thus highlighting the underrated ecological relevance of such micro-scale factors.
Collapse
Affiliation(s)
- Cristiana Callieri
- Institute of Ecosystem Study - CNR-ISE, Largo Tonolli 50, 28922, Verbania, Italy
| | - Stefano Amalfitano
- Water Research Institute - CNR-IRSA, Via Salaria km 29, 300, Monterotondo, Rome, Italy
| | - Gianluca Corno
- Institute of Ecosystem Study - CNR-ISE, Largo Tonolli 50, 28922, Verbania, Italy
| | - Andrea Di Cesare
- Institute of Ecosystem Study - CNR-ISE, Largo Tonolli 50, 28922, Verbania, Italy
| | - Roberto Bertoni
- Institute of Ecosystem Study - CNR-ISE, Largo Tonolli 50, 28922, Verbania, Italy
| | - Ester M Eckert
- Institute of Ecosystem Study - CNR-ISE, Largo Tonolli 50, 28922, Verbania, Italy
| |
Collapse
|
9
|
Baumgartner M, Roffler S, Wicker T, Pernthaler J. Letting go: bacterial genome reduction solves the dilemma of adapting to predation mortality in a substrate-restricted environment. ISME JOURNAL 2017; 11:2258-2266. [PMID: 28585936 DOI: 10.1038/ismej.2017.87] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/21/2017] [Indexed: 12/16/2022]
Abstract
Resource limitation and predation mortality are major determinants of microbial population dynamics, and optimization for either aspect is considered to imply a trade-off with respect to the other. Adaptation to these selective factors may, moreover, lead to disadvantages at rich growth conditions. We present an example of a concomitant evolutionary optimization to both, substrate limitation and predation in an aggregate-forming freshwater bacterial isolate, and we elucidate an underlying genomic mechanism. Bacteria were propagated in serial batch culture in a nutrient-restricted environment either with or without a bacterivorous flagellate. Strains isolated after 26 growth cycles of the predator-prey co-cultures formed as much total biomass as the ancestor at ancestral growth conditions, albeit largely reallocated to cell aggregates. A ~273 kbp genome fragment was lost in three strains that had independently evolved with predators. These strains had significantly higher growth yield on substrate-restricted media than others that were isolated from the same treatment before the excision event. Under predation pressure, the isolates with the deletion outcompeted both, the ancestor and the strains evolved without predators even at rich growth conditions. At the same time, genome reduction led to a growth disadvantage in the presence of benzoate due to the loss of the respective degradation pathway, suggesting that niche constriction might be the price for the bidirectional optimization.
Collapse
Affiliation(s)
- Michael Baumgartner
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Stefan Roffler
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| |
Collapse
|
10
|
Ding G, Li X, Lin W, Kimochi Y, Sudo R. Enhanced flocculation of two bioflocculation-producing bacteria by secretion of Philodina erythrophthalma. WATER RESEARCH 2017; 112:208-216. [PMID: 28161561 DOI: 10.1016/j.watres.2017.01.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/12/2017] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
Bdelloid rotifer are reported to play a promoting role in microbial aggregation and floc formation in activated sludge systems; however, the mechanisms involved in this process are unclear. This study explores the effect of a rotifer secretion (RS) from the species Philodina erythrophthalma on the flocculation and growth of two bioflocculation-producing bacteria isolated from activated sludge. Results show that although the secretion has weak bioflocculability in itself, it can significantly enhance the flocculability of bioflocculation-producing bacteria and promote formation of microbial aggregation and floc. The possible mechanism is that the RS causes an increase in the bacteria densities and extracellular polymeric substance contents. The improvement of flocculability using RS shows an S-curve changing tendency with collection time, and corresponds with the first-order model with secretion dosage. Chemical composition analysis shows that low contents of non-protein organic nitrogen and polysaccharides are found in the RS, which implies that RS acts more like a growth-promoting substance or infochemical than as a nutrient in the promotion of bacterial growth. In conclusion, the findings provide a novel and potential strategy for promoting sludge floc formation using the infochemical secreted by this rotifer.
Collapse
Affiliation(s)
- Guoji Ding
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Wei Lin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yuzuru Kimochi
- Center for Environmental Science in Saitama, Kamitanadare 914, Kisaimachi, Saitama 347-0115, Japan
| | - Ryuichi Sudo
- Graduate School of Engineering, Tohoku University, Aoba 06, Sendai 980-8579, Japan
| |
Collapse
|
11
|
Suzuki K, Yamauchi Y, Yoshida T. Interplay between microbial trait dynamics and population dynamics revealed by the combination of laboratory experiment and computational approaches. J Theor Biol 2017; 419:201-210. [PMID: 28212786 DOI: 10.1016/j.jtbi.2017.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 01/05/2017] [Accepted: 02/12/2017] [Indexed: 10/20/2022]
Abstract
Filament formation is a common bacterial defense mechanism and possibly has a broad impact on microbial community dynamics. In order to examine the impact of filament formation on population dynamics, we developed an experimental system with a filamentous bacterium Flectobacillus sp. MWH38 and a ciliate predator Tetrahymena pyriformis. In this system, the effective defense of Flectobacillus resulted in the extinction of Tetrahymena by allowing almost no population growth. The result of a kairomone experiment suggested the existence of chemical signals for filament formation. To examine the mechanism further, we developed a quantitative mechanistic model and optimized the model for the experimental result using the simulated annealing method. We also performed a global parameter sensitivity analysis using an approximated Bayesian computation based on the sequential Monte Carlo method to reveal parameters to which the model behavior is sensitive to. Our model reproduced the population dynamics, as well as the cell size dynamics of Flectobacillus. The model behavior is sensitive to the nutrient uptake of Flectobacillus and the propensity of filament formation. It robustly predicts the extinction of Tetrahymena at the condition used in the experiment and predicts the transition from equilibrium to population cycle at higher nutrient conditions. Contrary to the previous study that disproved the presence of chemical signals for filament formation, our result suggested the importance of chemical signals at low predator density, suggesting the variety in bacterial resistance mechanisms that act at different stages of predator-prey interactions.
Collapse
Affiliation(s)
- Kenta Suzuki
- Department of General Systems Studies, Graduate School of Arts and Sciences, University of Tokyo, Japan.
| | - Yuji Yamauchi
- Department of General Systems Studies, Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Takehito Yoshida
- Department of General Systems Studies, Graduate School of Arts and Sciences, University of Tokyo, Japan
| |
Collapse
|
12
|
Huber P, Diovisalvi N, Ferraro M, Metz S, Lagomarsino L, Llames ME, Royo-Llonch M, Bustingorry J, Escaray R, Acinas SG, Gasol JM, Unrein F. Phenotypic plasticity in freshwater picocyanobacteria. Environ Microbiol 2017; 19:1120-1133. [PMID: 27943603 DOI: 10.1111/1462-2920.13638] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/28/2016] [Indexed: 11/30/2022]
Abstract
Picocyanobacteria can occur as single-cell (Pcy) or as colonies (CPcy). Published evidence suggests that some Pcy strains have the capability to aggregate under certain culture conditions, however this has not been demonstrated to occur in natural environments. We investigated whether the Pcy and CPcy belong to the same species (i.e. phylotype), and the factors that determine their morphological and genetic variability in a hypertrophic shallow lake dominated by picocyanobacteria. Six main different morphologies and >30 phylotypes were observed. All sequences retrieved belonged to the 'Anathece + Cyanobium' clade (Synechococcales) that are known to have the capability of aggregation/disaggregation. The temporal variation of picocyanobacteria morphotype composition was weakly correlated with the DGGE temporal pattern, and could be explained by the composition of the zooplankton assemblage. Laboratory experiments confirmed that the small cladoceran Bosmina favoured the dominance of CPcy, i.e. Cyanodictyon doubled the size of the colonies when present, most likely through the aggregation of single-cell picocyanobacteria into colonies. Flow cytometry cell sorting and 16S rRNA + ITS sequencing of the Pcy and CPcy cytometrically-defined populations revealed that some phylotypes could be found in both sorted populations, suggesting phenotypic plasticity in which various Synechococcales phylotypes could be found in situ either as single-cells or as colonies.
Collapse
Affiliation(s)
- Paula Huber
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - Nadia Diovisalvi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - Marcela Ferraro
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - Sebastián Metz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - Leonardo Lagomarsino
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - María Eugenia Llames
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - Marta Royo-Llonch
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - José Bustingorry
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - Roberto Escaray
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - Silvia G Acinas
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Fernando Unrein
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| |
Collapse
|
13
|
Baumgartner M, Neu TR, Blom JF, Pernthaler J. Protistan predation interferes with bacterial long-term adaptation to substrate restriction by selecting for defence morphotypes. J Evol Biol 2016; 29:2297-2310. [PMID: 27488245 DOI: 10.1111/jeb.12957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/11/2016] [Accepted: 07/26/2016] [Indexed: 11/26/2022]
Abstract
Bacteria that are introduced into aquatic habitats face a low substrate environment interspersed with rare productive 'hotspots', as well as high protistan grazing. Whereas the former condition should select for growth performance, the latter should favour traits that reduce predation mortality, such as the formation of large cell aggregates. However, protected morphotypes often convey a growth disadvantage, and bacteria thus face a trade-off between investing in growth or defence traits. We set up an evolutionary experiment with the freshwater isolate Sphingobium sp. strain Z007 that conditionally increases aggregate formation in supernatants from a predator-prey coculture. We hypothesized that low substrate levels would favour growth performance and reduce the aggregated subpopulation, but that the concomitant presence of a flagellate predator might conserve the defence trait. After 26 (1-week) growth cycles either with (P+) or without (P-) predators, bacteria had evolved into strikingly different phenotypes. Strains from P- had low numbers of aggregates and increased growth yield, both at the original rich growth conditions and on various single carbon sources. By contrast, isolates from the P+ treatment formed elevated proportions of defence morphotypes, but exhibited lower growth yield and metabolic versatility. Moreover, the evolved strains from both treatments had lost phenotypic plasticity of aggregate formation. In summary, the (transient) residence of bacteria at oligotrophic conditions may promote a facultative oligotrophic life style, which is advantageous for survival in aquatic habitats. However, the investment in defence against predation mortality may constrain microbial adaptation to the abiotic environment.
Collapse
Affiliation(s)
- M Baumgartner
- Limnological Station, Department of Plant and Microbial Biology, University of Zürich, Kilchberg, Switzerland
| | - T R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - J F Blom
- Limnological Station, Department of Plant and Microbial Biology, University of Zürich, Kilchberg, Switzerland
| | - J Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zürich, Kilchberg, Switzerland.
| |
Collapse
|
14
|
Callieri C, Amalfitano S, Corno G, Bertoni R. Grazing-induced Synechococcus microcolony formation: experimental insights from two freshwater phylotypes. FEMS Microbiol Ecol 2016; 92:fiw154. [PMID: 27411979 DOI: 10.1093/femsec/fiw154] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2016] [Indexed: 11/13/2022] Open
Abstract
Freshwater cyanobacteria of the genus Synechococcus are ubiquitous and organized either as single cells of diverse morphology or as microcolonies of different size. We studied the formation of microcolonies induced by the mixotrophic nanoflagellate Poterioochromonas sp. grazing on two Synechococcus strains belonging to phylotypes with different content of phycobiliproteins (PE: phycoerythrin-rich cells, L.Albano Group A; PC: phycocyanin-rich cells, MW101C3 Group I). The quantitative variations in cell abundance, morphological and physiological conditions were assessed on short-term incubations in semi-continuous cultures, single culture (PE, PC) and co-culture (PE+PC), with and without predators, by flow cytometry, and PhytoPAM. Under grazing pressure, we observed that (i) the abundance of PE single cells decreased over time with a concomitant formation of PE microcolonies; (ii) in PC single cultures, no significant variation in single cells was found and microcolonies did not form; (iii) both PE and PC formed monoclonal microcolonies in co-culture; (iv) PC cells increased the photosynthetic efficiency of the PSII (higher Fv/Fm) in co-culture. In the aftermath of microcolony formation as a predation-induced adaptation, our findings indicated a different response of Synechococcus phylotypes potentially co-existing in natural environment and the importance of their interaction.
Collapse
Affiliation(s)
| | | | - Gianluca Corno
- Institute of Ecosystem Study, CNR-ISE, 28922 Verbania, Italy
| | - Roberto Bertoni
- Institute of Ecosystem Study, CNR-ISE, 28922 Verbania, Italy
| |
Collapse
|
15
|
Bettarel Y, Motegi C, Weinbauer MG, Mari X. Colonization and release processes of viruses and prokaryotes on artificial marine macroaggregates. FEMS Microbiol Lett 2015; 363:fnv216. [DOI: 10.1093/femsle/fnv216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2015] [Indexed: 11/12/2022] Open
|
16
|
Visaggio D, Pasqua M, Bonchi C, Kaever V, Visca P, Imperi F. Cell aggregation promotes pyoverdine-dependent iron uptake and virulence in Pseudomonas aeruginosa. Front Microbiol 2015; 6:902. [PMID: 26379660 PMCID: PMC4552172 DOI: 10.3389/fmicb.2015.00902] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
In Pseudomonas aeruginosa the Gac signaling system and the second messenger cyclic diguanylate (c-di-GMP) participate in the control of the switch between planktonic and biofilm lifestyles, by regulating the production of the two exopolysaccharides Pel and Psl. The Gac and c-di-GMP regulatory networks also coordinately promote the production of the pyoverdine siderophore, and the extracellular polysaccharides Pel and Psl have recently been found to mediate c-di-GMP-dependent regulation of pyoverdine genes. Here we demonstrate that Pel and Psl are also essential for Gac–mediated activation of pyoverdine production. A pel psl double mutant produces very low levels of pyoverdine and shows a marked reduction in the expression of the pyoverdine-dependent virulence factors exotoxin A and PrpL protease. While the exopolysaccharide-proficient parent strain forms multicellular planktonic aggregates in liquid cultures, the Pel and Psl-deficient mutant mainly grows as dispersed cells. Notably, artificially induced cell aggregation is able to restore pyoverdine-dependent gene expression in the pel psl mutant, in a way that appears to be independent of iron diffusion or siderophore signaling, as well as of recently described contact-dependent mechanosensitive systems. This study demonstrates that cell aggregation represents an important cue triggering the expression of pyoverdine-related genes in P. aeruginosa, suggesting a novel link between virulence gene expression, cell–cell interaction and the multicellular community lifestyle.
Collapse
Affiliation(s)
- Daniela Visaggio
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome Rome, Italy ; Department of Sciences, Universita degli Studi Roma Tre Rome, Italy
| | - Martina Pasqua
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome Rome, Italy
| | - Carlo Bonchi
- Department of Sciences, Universita degli Studi Roma Tre Rome, Italy
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Institute of Pharmacology, Hannover Medical School Hannover, Germany
| | - Paolo Visca
- Department of Sciences, Universita degli Studi Roma Tre Rome, Italy
| | - Francesco Imperi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome Rome, Italy ; Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome Rome, Italy
| |
Collapse
|
17
|
Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, Hoehler TM, Jørgensen BB. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev 2015; 39:688-728. [PMID: 25994609 DOI: 10.1093/femsre/fuv020] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 11/13/2022] Open
Abstract
The ability of microorganisms to withstand long periods with extremely low energy input has gained increasing scientific attention in recent years. Starvation experiments in the laboratory have shown that a phylogenetically wide range of microorganisms evolve fitness-enhancing genetic traits within weeks of incubation under low-energy stress. Studies on natural environments that are cut off from new energy supplies over geologic time scales, such as deeply buried sediments, suggest that similar adaptations might mediate survival under energy limitation in the environment. Yet, the extent to which laboratory-based evidence of starvation survival in pure or mixed cultures can be extrapolated to sustained microbial ecosystems in nature remains unclear. In this review, we discuss past investigations on microbial energy requirements and adaptations to energy limitation, identify gaps in our current knowledge, and outline possible future foci of research on life under extreme energy limitation.
Collapse
Affiliation(s)
- Mark A Lever
- Center for Geomicrobiology, Institute of Bioscience, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| | - Karyn L Rogers
- Rensselaer Polytechnic Institute, Earth and Environmental Sciences, Jonsson-Rowland Science Center, 1W19, 110 8th Street, Troy, NY 12180, USA
| | - Karen G Lloyd
- Department of Microbiology, University of Tennessee at Knoxville, M409 Walters Life Sciences, Knoxville, TN 37996-0845, USA
| | - Jörg Overmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, D-38124 Braunschweig, Germany
| | - Bernhard Schink
- Microbial Ecology, Department of Biology, University of Konstanz, P.O. Box 55 60, D-78457 Konstanz, Germany
| | - Rudolf K Thauer
- Max Planck Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße, D-35043 Marburg, Germany
| | - Tori M Hoehler
- NASA Ames Research Center, Mail Stop 239-4, Moffett Field, CA 94035-1000, USA
| | - Bo Barker Jørgensen
- Center for Geomicrobiology, Institute of Bioscience, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| |
Collapse
|
18
|
Corno G, Villiger J, Pernthaler J. Coaggregation in a microbial predator–prey system affects competition and trophic transfer efficiency. Ecology 2013. [DOI: 10.1890/12-1652.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Storelli N, Peduzzi S, Saad MM, Frigaard NU, Perret X, Tonolla M. CO2assimilation in the chemocline of Lake Cadagno is dominated by a few types of phototrophic purple sulfur bacteria. FEMS Microbiol Ecol 2013; 84:421-32. [DOI: 10.1111/1574-6941.12074] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
| | | | - Maged M. Saad
- Department of Botany and Plant Biology, Microbiology Unit; University of Geneva, Sciences III; Geneva; Switzerland
| | - Niels-Ulrik Frigaard
- Section for Marine Biology, Department of Biology; University of Copenhagen; Helsingør; Denmark
| | - Xavier Perret
- Department of Botany and Plant Biology, Microbiology Unit; University of Geneva, Sciences III; Geneva; Switzerland
| | | |
Collapse
|
20
|
Horňák K, Corno G. Every coin has a back side: invasion by Limnohabitans planktonicus promotes the maintenance of species diversity in bacterial communities. PLoS One 2012; 7:e51576. [PMID: 23251582 PMCID: PMC3520937 DOI: 10.1371/journal.pone.0051576] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/01/2012] [Indexed: 11/18/2022] Open
Abstract
One of the earliest challenges for ecologists has been to study the impact of invasive species on microbial communities. Although bacteria are fundamental in biological processes, current knowledge on invasion effects by aquatic non-pathogenic bacteria is still limited. Using pure cultures of diverse planktonic bacteria as model organisms at two different carbon concentration levels, we tested the response of an assembled community to the invasion by Limnohabitans planktonicus, an opportunistic bacterium, successful in freshwaters. The invader, introduced at the early stationary growth phase of the resident community, caused a strong decrement of the abundance of the dominant species. This was due to competition for nutrients and a potential allelopathic interaction. Simultaneously, resident species formerly unable to successfully compete within the community, thus potentially exposed to competitive exclusion, increased their abundances. The overall result of the invasion was preservation of species diversity, the higher the lower was the substrate content available. Our study provides new insights into bacterial invasions, offering an alternative interpretation of invasions for community ecology.
Collapse
Affiliation(s)
- Karel Horňák
- Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Institute of Hydrobiology, České Budějovice, Czech Republic.
| | | |
Collapse
|
21
|
Maszczyk P, Bartosiewicz M. Threat or treat: the role of fish exudates in the growth and life history ofDaphnia. Ecosphere 2012. [DOI: 10.1890/es12-00146.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Fujii M, Kojima H, Iwata T, Urabe J, Fukui M. Dissolved organic carbon as major environmental factor affecting bacterioplankton communities in mountain lakes of eastern Japan. MICROBIAL ECOLOGY 2012; 63:496-508. [PMID: 22109097 DOI: 10.1007/s00248-011-9983-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/05/2011] [Indexed: 05/31/2023]
Abstract
Relationships between environmental factors and bacterial communities were investigated in 41 freshwater lakes located in mountainous regions of eastern Japan. Bacterioplankton community composition (BCC) was determined by polymerase chain reaction-denaturing gradient gel electrophoresis of the 16S rRNA gene and then evaluated on the basis of physicochemical and biological variables of the lakes. Canonical correspondence analysis revealed that BCC of oligotrophic lakes was significantly influenced by dissolved organic carbon (DOC) content, but its effect was not apparent in the analysis covering all lakes including mesotrophic and eutrophic ones. The generalized linear model showed the negative association of DOC on the taxon richness of bacterioplankton communities. DOC was positively correlated with the catchment area per lake volume, suggesting that a large fraction of DOC supplied to the lake was derived from terrestrial sources. These results suggest that allochthonous DOC has a significant effect on bacterioplankton communities especially in oligotrophic lakes. The genus Polynucleobacter was detected most frequently. The occurrence of Polynucleobacter species was positively associated with DOC and negatively associated with total phosphorus (TP) levels. In addition, TP had a stronger effect than DOC, suggesting that oligotrophy is the most important factor on the occurrence of this genus.
Collapse
Affiliation(s)
- Masanori Fujii
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
| | | | | | | | | |
Collapse
|
23
|
An experimental model for the spatial structuring and selection of bacterial communities. J Microbiol Methods 2011; 87:165-8. [DOI: 10.1016/j.mimet.2011.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 11/27/2022]
|
24
|
Abstract
Bacterial communities are often heavily consumed by microfaunal predators, such as protozoa and nematodes. Predation is an important cause of mortality and determines the structure and activity of microbial communities in both terrestrial and aquatic ecosystems, and bacteria evolved various defence mechanisms helping them to resist predation. In this review, I summarize known antipredator defence strategies and their regulation, and explore their importance for bacterial fitness in various environmental conditions, and their implications for bacterial evolution and diversification under predation pressure. I discuss how defence mechanisms affect competition and cooperation within bacterial communities. Finally I present some implications of bacterial defence mechanisms for ecosystem services provided by microbial communities, such as nutrient cycling, virulence and the biological control of plant diseases.
Collapse
Affiliation(s)
- Alexandre Jousset
- Georg-August University Göttingen, JF Blumenbach Institute of Zoology and Anthropology, Animal Ecology, Berliner Str. 28, 37073 Göttingen, Germany.
| |
Collapse
|
25
|
Scent of danger: floc formation by a freshwater bacterium is induced by supernatants from a predator-prey coculture. Appl Environ Microbiol 2010; 76:6156-63. [PMID: 20656874 DOI: 10.1128/aem.01455-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated predator-prey interactions in a model system consisting of the bacterivorous flagellate Poterioochromonas sp. strain DS and the freshwater bacterium Sphingobium sp. strain Z007. This bacterial strain tends to form a subpopulation of grazing-resistant microscopic flocs, presumably by aggregation. Enhanced formation of such flocs could be demonstrated in static batch culture experiments in the presence of the predator. The ratio of aggregates to single cells reached >0.1 after 120 h of incubation in an oligotrophic growth medium. The inoculation of bacteria into supernatants from cocultures of bacteria and flagellates (grown in oligotrophic or in rich media) also resulted in a substantially higher level of floc formation than that in supernatants from bacterial monocultures only. After separation of supernatants on a C(18) cartridge, the aggregate-inducing activity could be assigned to the 50% aqueous methanolic fraction, and further separation of this bioactive fraction could be achieved by high-pressure liquid chromatography. These results strongly suggest the involvement of one or several chemical factors in the induction of floc formation by Sphingobium sp. strain Z007 that are possibly released into the surrounding medium by flagellate grazing.
Collapse
|