1
|
Chen PWY, Olivia M, Gong GC, Jan S, Tsai AY. Viral Dynamics in the Tropical Pacific Ocean: A Comparison between Within and Outside a Warm Eddy. Viruses 2024; 16:937. [PMID: 38932229 PMCID: PMC11209615 DOI: 10.3390/v16060937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In mesoscale eddies, the chemical properties and biological composition are different from those in the surrounding water due to their unique physical processes. The mechanism of physical-biological coupling in warm-core eddies is unclear, especially because no studies have examined the effects of environmental factors on bacteria and viruses. The purpose of the present study was to examine the influence of an anticyclonic warm eddy on the relationship between bacterial and viral abundances, as well as viral activity (viral production), at different depths. At the core of the warm eddy, the bacterial abundance (0.48 to 2.82 × 105 cells mL-1) fluctuated less than that outside the eddy (1.12 to 7.03 × 105 cells mL-1). In particular, there was a four-fold higher viral-bacterial abundance ratio (VBR) estimated within the eddy, below the layer of the deep chlorophyll maximum, than outside the eddy. An anticyclonic warm eddy with downwelling at its center may contribute to viruses being transmitted directly into the deep ocean through adsorption on particulate organic matter while sinking. Overall, our findings provide valuable insights into the interaction between bacterial and viral abundances and their ecological mechanisms within a warm eddy.
Collapse
Affiliation(s)
- Patrichka Wei-Yi Chen
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 202-24, Taiwan; (P.W.-Y.C.); (M.O.); (G.-C.G.)
- Doctoral Degree Program in Ocean Resource and Environmental Changes, National Taiwan Ocean University, Keelung 202-24, Taiwan
| | - Madeline Olivia
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 202-24, Taiwan; (P.W.-Y.C.); (M.O.); (G.-C.G.)
- Doctoral Degree Program in Ocean Resource and Environmental Changes, National Taiwan Ocean University, Keelung 202-24, Taiwan
| | - Gwo-Ching Gong
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 202-24, Taiwan; (P.W.-Y.C.); (M.O.); (G.-C.G.)
- Doctoral Degree Program in Ocean Resource and Environmental Changes, National Taiwan Ocean University, Keelung 202-24, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202-24, Taiwan
| | - Sen Jan
- Institute of Oceanography, National Taiwan University, Taipei 106319, Taiwan;
| | - An-Yi Tsai
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 202-24, Taiwan; (P.W.-Y.C.); (M.O.); (G.-C.G.)
- Doctoral Degree Program in Ocean Resource and Environmental Changes, National Taiwan Ocean University, Keelung 202-24, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202-24, Taiwan
| |
Collapse
|
2
|
Du X, Li X, Cheng K, Zhao W, Cai Z, Chen G, Zhou J. Virome reveals effect of Ulva prolifera green tide on the structural and functional profiles of virus communities in coastal environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163609. [PMID: 37100126 DOI: 10.1016/j.scitotenv.2023.163609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 06/03/2023]
Abstract
Viruses are widely distributed in marine environments, where they influence the transformation of matter and energy by modulating host metabolism. Driven by eutrophication, green tides are a rising concern in Chinese coastal areas, and are a serious ecological disaster that negatively affects coastal ecosystems and disrupts biogeochemical cycles. Although the composition of bacterial communities in green algae has been investigated, the diversity and roles of viruses in green algal blooms are largely unexplored. Therefore, the diversity, abundance, lifestyle, and metabolic potential of viruses in a natural bloom in Qingdao coastal area were investigated at three different stages (pre-bloom, during-bloom, and post-bloom) by metagenomics analysis. The dsDNA viruses, Siphoviridae, Myoviridae, Podoviridae, and Phycodnaviridae, were found to dominate the viral community. The viral dynamics exhibited distinct temporal patterns across different stages. The composition of the viral community varied during the bloom, especially in populations with low abundance. The lytic cycle was most predominant, and the abundance of lytic viruses increased slightly in the post-bloom stage. The diversity and richness of the viral communities varied distinctly during the green tide, and the post-bloom stage favored viral diversity and richness. The total organic carbon, dissolved oxygen, NO3-, NO2-, PO43-, chlorophyll-a contents, and temperature variably co-influenced the viral communities. The primary hosts included bacteria, algae, and other microplankton. Network analysis revealed the closer links between the viral communities as the bloom progressed. Functional prediction revealed that the viruses possibly influenced the biodegradation of microbial hydrocarbons and carbon by metabolic augmentation via auxiliary metabolic genes. The composition, structure, metabolic potential, and interaction taxonomy of the viromes differed significantly across the different stages of the green tide. The study demonstrated that the ecological event shaped the viral communities during algal bloom, and the viral communities played a significant role in phycospheric microecology.
Collapse
Affiliation(s)
- Xiaopeng Du
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xinyang Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Wei Zhao
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong Province, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
3
|
DiPietro AG, Bryant SA, Zanger MM, Williamson KE. Understanding Viral Impacts in Soil Microbial Ecology Through the Persistence and Decay of Infectious Bacteriophages. Curr Microbiol 2023; 80:276. [PMID: 37432469 DOI: 10.1007/s00284-023-03386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
Marine bacteriophages have been well characterized in terms of decay rates, population dynamics in relation to their hosts, and their impacts on biogeochemical cycles in the global ocean. Knowledge in soil bacteriophage ecology lags considerably behind, with few studies documenting population dynamics with hosts and even fewer reporting phage decay rates. By using sterile soil or aquatic microcosms inoculated with single bacteriophage isolates, phage decay rates (loss of infectivity over time) were determined, independent of host interactions, for 5 model phage isolates. Decay rates varied by phage from 0.11-2.07% h-1 in soils to 0.07-0.28% h-1 in aquatic microcosms. For phages incubated in both soil and aquatic microcosms, the observed decay rate was consistently higher in soil microcosms than in aquatic microcosms by at least a factor of two. However, when decay rates for soil phage isolates in the present study were compared to those reported for marine and freshwater phage isolates from previous studies, the decay constants for soil phages were, on average, 4 times lower than those for aquatic phages. Slower rates of phage decay in soils indicate a lower turnover rate, which may have subsequent and potentially far-reaching impacts on virus-mediated mortality and bacterial activity. The wide range of decay rates observed in the present study and the lack of information on this critical aspect of virus-host dynamics in soil emphasizes the need for continued research in this field.
Collapse
Affiliation(s)
- Alessandra G DiPietro
- Biology Department, The College of William and Mary, 3037 Integrated Science Center, Williamsburg, VA, 23185, USA
| | - Shawn A Bryant
- Biology Department, The College of William and Mary, 3037 Integrated Science Center, Williamsburg, VA, 23185, USA
| | - Matthew M Zanger
- Biology Department, The College of William and Mary, 3037 Integrated Science Center, Williamsburg, VA, 23185, USA
| | - Kurt E Williamson
- Biology Department, The College of William and Mary, 3037 Integrated Science Center, Williamsburg, VA, 23185, USA.
| |
Collapse
|
4
|
Korajkic A, McMinn BR, Harwood VJ. The Effect of Protozoa Indigenous to Lakewater and Wastewater on Decay of Fecal Indicator Bacteria and Coliphage. Pathogens 2023; 12:pathogens12030378. [PMID: 36986300 PMCID: PMC10053992 DOI: 10.3390/pathogens12030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Fecal indicator bacteria (FIB: Escherichia coli and enterococci) are used to assess recreational water quality. Viral indicators (i.e., somatic and F+ coliphage), could improve the prediction of viral pathogens in recreational waters, however, the impact of environmental factors, including the effect of predatory protozoa source, on their survival in water is poorly understood. We investigated the effect of lakewater or wastewater protozoa, on the decay (decreasing concentrations over time) of culturable FIB and coliphages under sunlight and shaded conditions. FIB decay was generally greater than the coliphages and was more rapid when indicators were exposed to lake vs. wastewater protozoa. F+ coliphage decay was the least affected by experimental variables. Somatic coliphage decayed fastest in the presence of wastewater protozoa and sunlight, though their decay under shaded conditions was-10-fold less than F+ after 14 days. The protozoa source consistently contributed significantly to the decay of FIB, and somatic, though not the F+ coliphage. Sunlight generally accelerated decay, and shade reduced somatic coliphage decay to the lowest level among all the indicators. Differential responses of FIB, somatic, and F+ coliphages to environmental factors support the need for studies that address the relationship between the decay of coliphages and viral pathogens under environmentally relevant conditions.
Collapse
Affiliation(s)
- Asja Korajkic
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
- Correspondence: ; Tel.: +1-513-569-7306
| | - Brian R. McMinn
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
5
|
Gao Y, Lu Y, Dungait JAJ, Liu J, Lin S, Jia J, Yu G. The "Regulator" Function of Viruses on Ecosystem Carbon Cycling in the Anthropocene. Front Public Health 2022; 10:858615. [PMID: 35425734 PMCID: PMC9001988 DOI: 10.3389/fpubh.2022.858615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/07/2022] [Indexed: 01/18/2023] Open
Abstract
Viruses act as "regulators" of the global carbon cycle because they impact the material cycles and energy flows of food webs and the microbial loop. The average contribution of viruses to the Earth ecosystem carbon cycle is 8.6‰, of which its contribution to marine ecosystems (1.4‰) is less than its contribution to terrestrial (6.7‰) and freshwater (17.8‰) ecosystems. Over the past 2,000 years, anthropogenic activities and climate change have gradually altered the regulatory role of viruses in ecosystem carbon cycling processes. This has been particularly conspicuous over the past 200 years due to rapid industrialization and attendant population growth. The progressive acceleration of the spread and reproduction of viruses may subsequently accelerate the global C cycle.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yao Lu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jennifer A J Dungait
- Geography, College of Life and Environmental Science, University of Exeter, Exeter, United Kingdom.,Carbon Management Centre, SRUC-Scotland's Rural College, Edinburgh, United Kingdom
| | - Jianbao Liu
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences (CAS) Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shunhe Lin
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Junjie Jia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Top-Down Controls of Bacterial Metabolism: A Case Study from a Temperate Freshwater Lake Ecosystem. Microorganisms 2022; 10:microorganisms10040715. [PMID: 35456766 PMCID: PMC9031129 DOI: 10.3390/microorganisms10040715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
In freshwater environments, limited data exist on the impact of mortality forces (viruses and heterotrophic nanoflagellates) on bacterial growth efficiency (BGE, index of bacterial carbon metabolism) compared to resource availability. An investigation to determine the relative influence of viral lysis and flagellate predation (top-down forces) on BGE was conducted in a mesotrophic freshwater system (Lake Goule, France) with time and space. Viral abundance was significantly (p < 0.001) related to bacterial abundance by a power law function with an exponent less than 1, emphasizing that the increases in host population (bacteria) together with viruses were not proportionate. A lytic viral strategy was evident throughout the study period, with high lysis of the bacterial population (up to 60%) supported by viral production rates. Viral processes (lysis and production) that were influenced by bacterial production and heterotrophic nanoflagellate abundance had a positive impact on BGE. Estimates of BGE were variable (9.9−45.5%) due to uncoupling between two metabolic parameters—namely bacterial production and respiration. The existence of a synergistic relationship between viruses and flagellates with bacteria in Lake Goule highlighted the decisive impact of top-down agents in sustaining the bacterial carbon metabolism of non-infected population through the nature of vital resources released via mortality processes.
Collapse
|
7
|
Gupta A, Peng S, Leung CY, Borin JM, Medina S, Weitz JS, Meyer JR. Leapfrog dynamics in phage‐bacteria coevolution revealed by joint analysis of cross‐infection phenotypes and whole genome sequencing. Ecol Lett 2022; 25:876-888. [PMID: 35092147 PMCID: PMC10167754 DOI: 10.1111/ele.13965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 11/10/2021] [Indexed: 01/21/2023]
Abstract
Viruses and their hosts can undergo coevolutionary arms races where hosts evolve increased resistance and viruses evolve counter-resistance. Given these arms race dynamics (ARD), both players are predicted to evolve along a single trajectory as more recently evolved genotypes replace their predecessors. By coupling phenotypic and genomic analyses of coevolving populations of bacteriophage λ and Escherichia coli, we find conflicting evidence for ARD. Virus-host infection phenotypes fit the ARD model, yet genomic analyses revealed fluctuating selection dynamics. Rather than coevolution unfolding along a single trajectory, cryptic genetic variation emerges and is maintained at low frequency for generations until it eventually supplants dominant lineages. These observations suggest a hybrid 'leapfrog' dynamic, revealing weaknesses in the predictive power of standard coevolutionary models. The findings shed light on the mechanisms that structure coevolving ecological networks and reveal the limits of using phenotypic or genomic data alone to differentiate coevolutionary dynamics.
Collapse
Affiliation(s)
- Animesh Gupta
- Department of Physics University of California San Diego La Jolla California USA
| | - Shengyun Peng
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Chung Yin Leung
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Joshua M. Borin
- Division of Biological Science University of California San Diego La Jolla California USA
| | - Sarah J. Medina
- Division of Biological Science University of California San Diego La Jolla California USA
| | - Joshua S. Weitz
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
- School of Physics Georgia Institute of Technology Atlanta Georgia USA
| | - Justin R. Meyer
- Division of Biological Science University of California San Diego La Jolla California USA
| |
Collapse
|
8
|
Kopylov AI, Zabotkina EA. Virioplankton as an important component of plankton in the Volga Reservoirs. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The distribution of virioplankton, abundance and production, frequency of visibly infected cells of heterotrophic bacteria and autotrophic picocyanobacteria and their virus-induced mortality have been studied in mesotrophic and eutrophic reservoirs of the Upper and Middle Volga (Ivankovo, Uglich, Rybinsk, Gorky, Cheboksary, and Sheksna reservoirs). The abundance of planktonic viruses (VA) is on average by 4.6 ± 1.2 times greater than the abundance of bacterioplankton (BA). The distribution of VA in the Volga reservoirs was largely determined by the distribution of BA and heterotrophic bacterioplankton production (PB). There was a positive correlation between VA and BA and between VA and PB. In addition, BA and VA were both positively correlated with primary production of phytoplankton. Viral particles of 60 to 100 µm in size dominated in the phytoplankton composition. A large number of bacteria and picocyanobacteria with viruses attached to the surface of their cells were found in the reservoirs. Viruses as the most numerous component of plankton make a significant contribution to the formation of the planktonic microbial community biomass. The number of phages inside infected cells of bacteria and picocyanobacteria reached 74‒109 phages/cell. Easily digestible organic matter, which entered the aquatic environment as a result of viral lysis of bacteria and picocyanobacteria, could be an additional source of carbon for living bacteria. The results of long-term studies indicate a significant role of viruses in functioning of planktonic microbial communities in the Volga reservoirs.
Collapse
|
9
|
Sabbagh EI, Huete-Stauffer TM, Calleja MLL, Silva L, Viegas M, Morán XAG. Weekly variations of viruses and heterotrophic nanoflagellates and their potential impact on bacterioplankton in shallow waters of the central Red Sea. FEMS Microbiol Ecol 2020; 96:5800985. [PMID: 32149360 PMCID: PMC7104677 DOI: 10.1093/femsec/fiaa033] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/08/2020] [Indexed: 11/14/2022] Open
Abstract
Bacterioplankton play a pivotal role in marine ecosystems. However, their temporal dynamics and underlying control mechanisms are poorly understood in tropical regions such as the Red Sea. Here, we assessed the impact of bottom-up (resource availability) and top-down (viruses and heterotrophic nanoflagellates) controls on bacterioplankton abundances by weekly sampling a coastal central Red Sea site in 2017. We monitored microbial abundances by flow cytometry together with a set of environmental variables including temperature, salinity, dissolved organic and inorganic nutrients and chlorophyll a. We distinguished five groups of heterotrophic bacteria depending on their physiological properties relative nucleic acid content, membrane integrity and cell-specific respiratory activity, two groups of Synechococcus cyanobacteria and three groups of viruses. Viruses controlled heterotrophic bacteria for most of the year, as supported by a negative correlation between their respective abundances and a positive one between bacterial mortality rates and mean viral abundances. On the contrary, heterotrophic nanoflagellates abundance covaried with that of heterotrophic bacteria. Heterotrophic nanoflagellates showed preference for larger bacteria from both the high and low nucleic acid content groups. Our results demonstrate that top-down control is fundamental in keeping heterotrophic bacterioplankton abundances low (< 5 × 10 5 cells mL−1) in Red Sea coastal waters.
Collapse
Affiliation(s)
- Eman I Sabbagh
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| | - Tamara M Huete-Stauffer
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| | - Maria L L Calleja
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia.,Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
| | - Luis Silva
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| | - Miguel Viegas
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| | - Xosé Anxelu G Morán
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Virus and Potential Host Microbes from Viral-Enriched Metagenomic Characterization in the High-Altitude Wetland, Salar de Huasco, Chile. Microorganisms 2020; 8:microorganisms8071077. [PMID: 32698305 PMCID: PMC7409041 DOI: 10.3390/microorganisms8071077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Salar de Huasco is a wetland in the Andes mountains, located 3800 m above sea level at the Chilean Altiplano. Here we present a study aimed at characterizing the viral fraction and the microbial communities through metagenomic analysis. Two ponds (H0 and H3) were examined in November 2015. Water samples were processed using tangential flow filtration to obtain metagenomes from which the DNA fraction of the sample was amplified and sequenced (HiSeq system, Illumina). The ponds were characterized by freshwater and the viral-like particles to picoplankton ratio was 12.1 and 2.3 for H0 and H3, respectively. A great number of unassigned viral sequences were found in H0 (55.8%) and H3 (32.8%), followed by the family Fuselloviridae 20.8% (H0) and other less relatively abundant groups such as Microviridae (H0, 11.7% and H3, 3.3%) and Inoviridae (H3, 2.7%). The dominant viral sequences in both metagenomes belong to the order Caudovirales, with Siphoviridae being the most important family, especially in H3 (32.7%). The most important bacteria phyla were Proteobacteria, Bacteroidetes and Firmicutes in both sites, followed by Cyanobacteria (H0). Genes encoding lysogenic and lytic enzymes (i.e., recombinases and integrases) were found in H0 and H3, indicating a potential for active viral replication at the time of sampling; this was supported by the presence of viral metabolic auxiliary genes at both sites (e.g., cysteine hydrolase). In total, our study indicates a great novelty of viral groups, differences in taxonomic diversity and replication pathways between sites, which contribute to a better understanding of how viruses balance the cycling of energy and matter in this extreme environment.
Collapse
|
11
|
Abstract
Wastewater is a rich source of microbial life and contains bacteria, viruses, and other microbes found in human waste as well as environmental runoff sources. As part of an effort to characterize the New York City wastewater metagenome, we profiled the viral community of sewage samples across all five boroughs of NYC and found that local sampling sites have unique sets of viruses. We focused on bacteriophages, or viruses of bacteria, to understand how they may influence the microbial ecology of this system. We identified several new clusters of phages and successfully associated them with bacterial hosts, providing insight into virus-host interactions in urban wastewater. This study provides a first look into the viral communities present across the wastewater system in NYC and points to their functional importance in this environment. Bacteriophages are abundant members of all microbiomes studied to date, influencing microbial communities through interactions with their bacterial hosts. Despite their functional importance and ubiquity, phages have been underexplored in urban environments compared to their bacterial counterparts. We profiled the viral communities in New York City (NYC) wastewater using metagenomic data collected in November 2014 from 14 wastewater treatment plants. We show that phages accounted for the largest viral component of the sewage samples and that specific virus communities were associated with local environmental conditions within boroughs. The vast majority of the virus sequences had no homology matches in public databases, forming an average of 1,700 unique virus clusters (putative genera). These new clusters contribute to elucidating the overwhelming proportion of data that frequently goes unidentified in viral metagenomic studies. We assigned potential hosts to these phages, which appear to infect a wide range of bacterial genera, often outside their presumed host. We determined that infection networks form a modular-nested pattern, indicating that phages include a range of host specificities, from generalists to specialists, with most interactions organized into distinct groups. We identified genes in viral contigs involved in carbon and sulfur cycling, suggesting functional importance of viruses in circulating pathways and gene functions in the wastewater environment. In addition, we identified virophage genes as well as a nearly complete novel virophage genome. These findings provide an understanding of phage abundance and diversity in NYC wastewater, previously uncharacterized, and further examine geographic patterns of phage-host association in urban environments. IMPORTANCE Wastewater is a rich source of microbial life and contains bacteria, viruses, and other microbes found in human waste as well as environmental runoff sources. As part of an effort to characterize the New York City wastewater metagenome, we profiled the viral community of sewage samples across all five boroughs of NYC and found that local sampling sites have unique sets of viruses. We focused on bacteriophages, or viruses of bacteria, to understand how they may influence the microbial ecology of this system. We identified several new clusters of phages and successfully associated them with bacterial hosts, providing insight into virus-host interactions in urban wastewater. This study provides a first look into the viral communities present across the wastewater system in NYC and points to their functional importance in this environment.
Collapse
|
12
|
Bonetti G, Trevathan-Tackett SM, Carnell PE, Macreadie PI. Implication of Viral Infections for Greenhouse Gas Dynamics in Freshwater Wetlands: Challenges and Perspectives. Front Microbiol 2019; 10:1962. [PMID: 31507569 PMCID: PMC6718870 DOI: 10.3389/fmicb.2019.01962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/09/2019] [Indexed: 01/07/2023] Open
Abstract
Viruses are non-living, acellular entities, and the most abundant biological agents on earth. They are widely acknowledged as having the capacity to influence global biogeochemical cycles by infecting the bacterial and archaeal populations that regulate carbon and nutrient turnover. Evidence suggests that the majority of viruses in wetlands are bacteriophages, but despite their importance, studies on how viruses control the prokaryotic community and the concomitant impacts on ecosystem function (such as carbon cycling and greenhouse gas flux) in wetlands are rare. Here we investigate virus-prokaryote interactions in freshwater wetland ecosystems in the context of their potential influence on biogeochemical cycling. Specifically, we (1) synthesize existing literature to establish current understanding of virus-prokaryote interactions, focusing on the implications for wetland greenhouse gas dynamics and (2) identify future research priorities. Viral dynamics in freshwater wetlands have received much less attention compared to those in marine ecosystems. However, based on our literature review, within the last 10 years, viral ecology studies on freshwater wetlands have increased twofold. Despite this increase in literature, the potential implication of viral infections on greenhouse gas emission dynamics is still a knowledge gap. We hypothesize that the rate of greenhouse gas emissions and the pool of sequestered carbon could be strongly linked to the type and rate of viral infection. Viral replication mechanism choice will consequently influence the microbial efficiency of organic matter assimilation and thus the ultimate fate of carbon as a greenhouse gas or stored in soils.
Collapse
Affiliation(s)
- Giuditta Bonetti
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Burwood, VIC, Australia
| | - Stacey M Trevathan-Tackett
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Burwood, VIC, Australia
| | - Paul E Carnell
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Burwood, VIC, Australia
| | - Peter I Macreadie
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Burwood, VIC, Australia
| |
Collapse
|
13
|
Diversity, Dynamics, and Distribution of Bdellovibrio and Like Organisms in Perialpine Lakes. Appl Environ Microbiol 2019; 85:AEM.02494-18. [PMID: 30635378 DOI: 10.1128/aem.02494-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/30/2018] [Indexed: 11/20/2022] Open
Abstract
Microbes drive a variety of ecosystem processes and services, but many of them remain largely unexplored because of a lack of knowledge on both the diversity and functionality of some potentially crucial microbiological compartments. This is the case with and within the group of bacterial predators collectively known as Bdellovibrio and like organisms (BALOs). Here, we report the abundance, distribution, and diversity of three families of these obligate predatory Gram-negative bacteria in three perialpine lakes (Lakes Annecy, Bourget, and Geneva). The study was conducted at different depths (near-surface versus 45 or 50 m) from August 2015 to January 2016. Using PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and cloning-sequencing approaches, we show that the diversity of BALOs is relatively low and very specific to freshwaters or even the lakes themselves. While the Peredibacteraceae family was represented mainly by a single species (Peredibacter starrii), it could represent up to 7% of the total bacterial cell abundances. Comparatively, the abundances of the two other families (Bdellovibrionaceae and Bacteriovoracaceae) were significantly lower. In addition, the distributions in the water column were very different between the three groups, suggesting various life strategies/niches, as follows: Peredibacteraceae dominated near the surface, while Bdellovibrionaceae and Bacteriovoracaceae were more abundant at greater depths. Statistical analyses revealed that BALOs seem mainly to be driven by depth and temperature. Finally, this original study was also the opportunity to design new quantitative PCR (qPCR) primers for Peredibacteraceae quantification.IMPORTANCE This study highlights the abundance, distribution, and diversity of a poorly known microbial compartment in natural aquatic ecosystems, the Bdellovibrio and like organisms (BALOs). These obligate bacterial predators of other bacteria may have an important functional role. This study shows the relative quantitative importance of the three main families of this group, with the design of a new primer pair, and their diversity. While both the diversity and the abundances of these BALOs were globally low, it is noteworthy that the abundance of the Peredibacteraceae could reach important values.
Collapse
|
14
|
Holguín AV, Cárdenas P, Prada-Peñaranda C, Rabelo Leite L, Buitrago C, Clavijo V, Oliveira G, Leekitcharoenphon P, Møller Aarestrup F, Vives MJ. Host Resistance, Genomics and Population Dynamics in a Salmonella Enteritidis and Phage System. Viruses 2019; 11:E188. [PMID: 30813274 PMCID: PMC6410252 DOI: 10.3390/v11020188] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages represent an alternative solution to control bacterial infections. When interacting, bacteria and phage can evolve, and this relationship is described as antagonistic coevolution, a pattern that does not fit all models. In this work, the model consisted of a microcosm of Salmonella enterica serovar Enteritidis and φSan23 phage. Samples were taken for 12 days every 48 h. Bacteria and phage samples were collected; and isolated bacteria from each time point were challenged against phages from previous, contemporary, and subsequent time points. The phage plaque tests, with the genomics analyses, showed a mutational asymmetry dynamic in favor of the bacteria instead of antagonistic coevolution. This is important for future phage-therapy applications, so we decided to explore the population dynamics of Salmonella under different conditions: pressure of one phage, a combination of phages, and phages plus an antibiotic. The data from cultures with single and multiple phages, and antibiotics, were used to create a mathematical model exploring population and resistance dynamics of Salmonella under these treatments, suggesting a nonlethal, growth-inhibiting antibiotic may decrease resistance to phage-therapy cocktails. These data provide a deep insight into bacterial dynamics under different conditions and serve as additional criteria to select phages and antibiotics for phage-therapy.
Collapse
Affiliation(s)
| | - Pablo Cárdenas
- Department of Biological Sciences, Universidad de Los Andes, 111711 Bogotá, Colombia.
| | | | - Laura Rabelo Leite
- Instituto René Rachou, Fundação Oswaldo Cruz, 21040-900 Belo Horizonte, Brazil.
| | - Camila Buitrago
- Department of Biological Sciences, Universidad de Los Andes, 111711 Bogotá, Colombia.
| | - Viviana Clavijo
- Department of Biological Sciences, Universidad de Los Andes, 111711 Bogotá, Colombia.
| | - Guilherme Oliveira
- Instituto René Rachou, Fundação Oswaldo Cruz, 21040-900 Belo Horizonte, Brazil.
- Instituto Tecnológico Vale, 66055-090 Belém, Brazil.
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Frank Møller Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Martha J Vives
- Department of Biological Sciences, Universidad de Los Andes, 111711 Bogotá, Colombia.
| |
Collapse
|
15
|
Rastelli E, Corinaldesi C, Dell'Anno A, Tangherlini M, Martorelli E, Ingrassia M, Chiocci FL, Lo Martire M, Danovaro R. High potential for temperate viruses to drive carbon cycling in chemoautotrophy-dominated shallow-water hydrothermal vents. Environ Microbiol 2017; 19:4432-4446. [DOI: 10.1111/1462-2920.13890] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/06/2017] [Accepted: 08/08/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Eugenio Rastelli
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
- Stazione Zoologica Anton Dohrn; Villa Comunale; Naples 80121 Italy
| | - Cinzia Corinaldesi
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Michael Tangherlini
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Eleonora Martorelli
- Institute of Environmental Geology and Geoengineering; Italian National Research Council; Rome Italy
| | - Michela Ingrassia
- Institute of Environmental Geology and Geoengineering; Italian National Research Council; Rome Italy
- Department of Earth Science; University of Rome Sapienza; Rome Italy
| | - Francesco L. Chiocci
- Institute of Environmental Geology and Geoengineering; Italian National Research Council; Rome Italy
- Department of Earth Science; University of Rome Sapienza; Rome Italy
| | - Marco Lo Martire
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences; Polytechnic University of Marche; Ancona 60131 Italy
- Stazione Zoologica Anton Dohrn; Villa Comunale; Naples 80121 Italy
| |
Collapse
|
16
|
Zhang J, Gao Q, Zhang Q, Wang T, Yue H, Wu L, Shi J, Qin Z, Zhou J, Zuo J, Yang Y. Bacteriophage-prokaryote dynamics and interaction within anaerobic digestion processes across time and space. MICROBIOME 2017; 5:57. [PMID: 28569210 PMCID: PMC5452288 DOI: 10.1186/s40168-017-0272-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/28/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND Bacteriophage-prokaryote dynamics and interaction are believed to be important in governing microbiome composition and ecosystem functions, yet our limited knowledge of the spatial and temporal variation in phage and prokaryotic community compositions precludes accurate assessment of their roles and impacts. Anaerobic digesters are ideal model systems to examine phage-host interaction, owing to easy access, stable operation, nutrient-rich environment, and consequently enormous numbers of phages and prokaryotic cells. RESULTS Equipped with high-throughput, cutting-edge environmental genomics techniques, we examined phage and prokaryotic community composition of four anaerobic digesters in full-scale wastewater treatment plants across China. Despite the relatively stable process performance in biogas production, phage and prokaryotic groups fluctuated monthly over a year of study period, showing significant correlations between those two groups at the α- and β-diversity levels. Strikingly, phages explained 40.6% of total variations of the prokaryotic community composition, much higher than the explanatory power by abiotic factors (14.5%). Consequently, phages were significantly (P < 0.010) linked to parameters related to process performance including biogas production and volatile solid concentrations. Association network analyses showed phage-prokaryote pairs were shallowly conserved since they were detected only within small viral clades. CONCLUSIONS Those results collectively demonstrate phages as a major biotic factor in controlling prokaryotic composition and process performance. Therefore, phages may play a larger role in shaping prokaryotic community dynamics and process performance of anaerobic digesters than currently appreciated.
Collapse
Affiliation(s)
- Junyu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 10084, China
| | - Qun Gao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 10084, China
| | - Qiuting Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 10084, China
| | - Tengxu Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 10084, China
| | - Haowei Yue
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 10084, China
| | - Linwei Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 10084, China
| | - Jason Shi
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Ziyan Qin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 10084, China
| | - Jizhong Zhou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 10084, China
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
- Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94270, USA
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 10084, China.
| | - Yunfeng Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 10084, China.
| |
Collapse
|
17
|
Louca S, Doebeli M. Taxonomic variability and functional stability in microbial communities infected by phages. Environ Microbiol 2017; 19:3863-3878. [PMID: 28371143 DOI: 10.1111/1462-2920.13743] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/16/2017] [Accepted: 03/24/2017] [Indexed: 11/28/2022]
Abstract
Microbial communities can display large variation in taxonomic composition, yet this variation can coincide with stable metabolic functional structure and performance. The mechanisms driving the taxonomic variation within functional groups remain largely unknown. Biotic interactions, such as predation by phages, have been suggested as potential cause of taxonomic turnover, but the conditions for this scenario have not been rigorously examined. Further, it is unknown how predation by phages affects community function, and how these effects are modulated by functional redundancy in the communities. Here, we address these questions using a model for a methanogenic microbial community that includes several interacting metabolic functional groups. Each functional group comprises multiple competing clades, and each clade is attacked by a specialist lytic phage. Our model predicts that phages induce intense taxonomic turnover, resembling the variability observed in previous experiments. The functional structure and performance of the community are also disturbed by phage predation, but they become more stable as the functional redundancy in the community increases. The extent of this stabilization depends on the particular functions considered. Our model suggests mechanisms by which functional redundancy stabilizes community function and supports the interpretation that biotic interactions promote taxonomic turnover within microbial functional groups.
Collapse
Affiliation(s)
- Stilianos Louca
- Biodiversity Research Centre, University of British Columbia, Canada.,Department of Zoology, University of British Columbia, Canada
| | - Michael Doebeli
- Biodiversity Research Centre, University of British Columbia, Canada.,Department of Zoology, University of British Columbia, Canada.,Department of Mathematics, University of British Columbia, Canada
| |
Collapse
|
18
|
Knowles B, Bailey B, Boling L, Breitbart M, Cobián-Güemes A, Del Campo J, Edwards R, Felts B, Grasis J, Haas AF, Katira P, Kelly LW, Luque A, Nulton J, Paul L, Peters G, Robinett N, Sandin S, Segall A, Silveira C, Youle M, Rohwer F. Variability and host density independence in inductions-based estimates of environmental lysogeny. Nat Microbiol 2017; 2:17064. [PMID: 28452987 DOI: 10.1038/nmicrobiol.2017.64] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/22/2017] [Indexed: 11/09/2022]
Abstract
Temperate bacterial viruses (phages) may enter a symbiosis with their host cell, forming a unit called a lysogen. Infection and viral replication are disassociated in lysogens until an induction event such as DNA damage occurs, triggering viral-mediated lysis. The lysogen-lytic viral reproduction switch is central to viral ecology, with diverse ecosystem impacts. It has been argued that lysogeny is favoured in phages at low host densities. This paradigm is based on the fraction of chemically inducible cells (FCIC) lysogeny proxy determined using DNA-damaging mitomycin C inductions. Contrary to the established paradigm, a survey of 39 inductions publications found FCIC to be highly variable and pervasively insensitive to bacterial host density at global, within-environment and within-study levels. Attempts to determine the source(s) of variability highlighted the inherent complications in using the FCIC proxy in mixed communities, including dissociation between rates of lysogeny and FCIC values. Ultimately, FCIC studies do not provide robust measures of lysogeny or consistent evidence of either positive or negative host density dependence to the lytic-lysogenic switch. Other metrics are therefore needed to understand the drivers of the lytic-lysogenic decision in viral communities and to test models of the host density-dependent viral lytic-lysogenic switch.
Collapse
Affiliation(s)
- Ben Knowles
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Barbara Bailey
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Lance Boling
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Mya Breitbart
- College of Marine Science, University of South Florida, 140 Seventh Avenue South, St Petersburg, Florida 33701, USA
| | - Ana Cobián-Güemes
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Javier Del Campo
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
| | - Rob Edwards
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA.,Department of Computer Science, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Ben Felts
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Juris Grasis
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Andreas F Haas
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Linda Wegley Kelly
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Antoni Luque
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA.,Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Jim Nulton
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Lauren Paul
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Gregory Peters
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Nate Robinett
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Stuart Sandin
- Scripps Institution of Oceanography, University of California San Diego, 950 Gilman Drive, California 92903, USA
| | - Anca Segall
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | - Cynthia Silveira
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | | | - Forest Rohwer
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| |
Collapse
|
19
|
Parikka KJ, Le Romancer M, Wauters N, Jacquet S. Deciphering the virus-to-prokaryote ratio (VPR): insights into virus-host relationships in a variety of ecosystems. Biol Rev Camb Philos Soc 2016; 92:1081-1100. [DOI: 10.1111/brv.12271] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 02/18/2016] [Accepted: 03/01/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Kaarle J. Parikka
- Laboratory of Microbiology of Extreme Environments; lnstitut Universitaire Européen de la Mer; Plouzané 29280 France
- LabMCT, Belgian Department of Defense; Queen Astrid Military Hospital; Brussels 1120 Belgium
| | - Marc Le Romancer
- Laboratory of Microbiology of Extreme Environments; lnstitut Universitaire Européen de la Mer; Plouzané 29280 France
| | - Nina Wauters
- Biological Evolution and Ecology; Université Libre de Bruxelles; Brussels 1050 Belgium
| | | |
Collapse
|
20
|
Long AM, Short SM. Seasonal determinations of algal virus decay rates reveal overwintering in a temperate freshwater pond. ISME JOURNAL 2016; 10:1602-12. [PMID: 26943625 DOI: 10.1038/ismej.2015.240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/30/2015] [Accepted: 11/18/2015] [Indexed: 11/09/2022]
Abstract
To address questions about algal virus persistence (i.e., continued existence) in the environment, rates of decay of infectivity for two viruses that infect Chlorella-like algae, ATCV-1 and CVM-1, and a virus that infects the prymnesiophyte Chrysochromulina parva, CpV-BQ1, were estimated from in situ incubations in a temperate, seasonally frozen pond. A series of experiments were conducted to estimate rates of decay of infectivity in all four seasons with incubations lasting 21 days in spring, summer and autumn, and 126 days in winter. Decay rates observed across this study were relatively low compared with previous estimates obtained for other algal viruses, and ranged from 0.012 to 11% h(-1). Overall, the virus CpV-BQ1 decayed most rapidly whereas ATCV-1 decayed most slowly, but for all viruses the highest decay rates were observed during the summer and the lowest were observed during the winter. Furthermore, the winter incubations revealed the ability of each virus to overwinter under ice as ATCV-1, CVM-1 and CpV-BQ1 retained up to 48%, 19% and 9% of their infectivity after 126 days, respectively. The observed resilience of algal viruses in a seasonally frozen freshwater pond provides a mechanism that can support the maintenance of viral seed banks in nature. However, the high rates of decay observed in the summer demonstrate that virus survival and therefore environmental persistence can be subject to seasonal bottlenecks.
Collapse
Affiliation(s)
- Andrew M Long
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Steven M Short
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
21
|
Dann LM, Paterson JS, Newton K, Oliver R, Mitchell JG. Distributions of Virus-Like Particles and Prokaryotes within Microenvironments. PLoS One 2016; 11:e0146984. [PMID: 26785114 PMCID: PMC4718716 DOI: 10.1371/journal.pone.0146984] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/23/2015] [Indexed: 11/18/2022] Open
Abstract
Microbial interactions are important for ecosystem function, but occur at the microscale and so are difficult to observe. Previous studies in marine systems have shown significant shifts in microbial community abundance and composition over scales of micrometres to centimetres. This study investigates the microscale abundance distributions of virus-like particles (VLPs) and prokaryotes in the lower reaches of a river to determine the extent to which microscale microbial patchiness exists in freshwater systems. Here we report local hotspots surrounded by gradients that reach a maximum 80 and 107 fold change in abundance over 0.9 cm for prokaryotic and VLP subpopulations. Changes in prokaryotic and VLP hotspots were tightly coupled. There were no gradients at tens of centimetres across the boundary layers, which is consistent with strong mixing and turbulence-driven aggregation found in river systems. Quantification of the patchiness shows a marked asymmetry with patches 10 times greater than background common, but depletions being rare or absent in most samples. This consistent asymmetry suggests that coldspots depleted by grazing and lysis are rapidly mixed to background concentrations, while the prevalence of hotspots indicates persistence against disruption. The hotspot to coldspot relative abundance may be useful for understanding microbial river dynamics. The patchiness indicates that the mean- field approach of bulk phase sampling misses the microbially relevant community variation and may underestimate the concentrations of these important microbial groups.
Collapse
Affiliation(s)
- Lisa M. Dann
- School of Biological Sciences at Flinders University, Adelaide, South Australia
- * E-mail:
| | - James S. Paterson
- School of Biological Sciences at Flinders University, Adelaide, South Australia
| | - Kelly Newton
- School of Biological Sciences at Flinders University, Adelaide, South Australia
| | - Rod Oliver
- Land and Water Research Division at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia
| | - James G. Mitchell
- School of Biological Sciences at Flinders University, Adelaide, South Australia
| |
Collapse
|
22
|
Meunier A, Jacquet S. Do phages impact microbial dynamics, prokaryotic community structure and nutrient dynamics in Lake Bourget? Biol Open 2015; 4:1528-37. [PMID: 26500223 PMCID: PMC4728344 DOI: 10.1242/bio.013003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phages are the most abundant and diversified biological entities in aquatic ecosystems. Understanding their functional role requires laboratory experiments on a short time-scale. Using samples of surface waters of Lake Bourget, we studied whether viruses impact (i) the abundance patterns of the bacterial and phytoplankton communities, (ii) a part of the prokaryotic community composition (both for Eubacteria and Archaea), and (iii) the recycling of nutrients and/or organic matter. Three experiments were performed (one each in February, March and April) at the transition between winter and spring in 2013. The experiment reduced or increased the abundance of virus-like particles in samples containing only the picoplanktonic fraction. Viral and cellular abundances, bacterial and archaeal community structures as well as nutrient concentrations were analysed every 24 h for 3 days. Some of the results reveal that increasing the phage abundance increased the diversity of the eubacterial community. Consistent with the ‘killing the winner’ concept, viruses are thus likely to significantly change the composition of the bacterial community. This suggests a positive association between viral abundance and bacterial diversity. In contrast, the composition of the archaeal community did not seem to be affected by phage abundance, suggesting the absence of viral control on this community or the inability to observe it at this period of year, either based on the time scale of the investigation or because the archaeal virus titre was too low to induce a significant and visible effect. Lastly, we were unable to demonstrate viruses driving the cycling of nutrients or the response of plankton to nutrient concentration changes in a significant way, suggesting that the role of viruses may be subtle or difficult to assess through the use of such experimental procedures. Summary: Phages can exert important control on the structure of the bacterial community. By contrast, neither the archaeal community nor the cycling of nutrients seems to be affected by phage abundance.
Collapse
Affiliation(s)
- Antony Meunier
- INRA, UMR CARRTEL, 75 avenue de Corzent, Thonon-les-Bains 74203, Cedex, France
| | - Stéphan Jacquet
- INRA, UMR CARRTEL, 75 avenue de Corzent, Thonon-les-Bains 74203, Cedex, France
| |
Collapse
|
23
|
Brum JR, Hurwitz BL, Schofield O, Ducklow HW, Sullivan MB. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME JOURNAL 2015; 10:437-49. [PMID: 26296067 PMCID: PMC4737935 DOI: 10.1038/ismej.2015.125] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 11/09/2022]
Abstract
Rapid warming in the highly productive western Antarctic Peninsula (WAP) region of the Southern Ocean has affected multiple trophic levels, yet viral influences on microbial processes and ecosystem function remain understudied in the Southern Ocean. Here we use cultivation-independent quantitative ecological and metagenomic assays, combined with new comparative bioinformatic techniques, to investigate double-stranded DNA viruses during the WAP spring–summer transition. This study demonstrates that (i) temperate viruses dominate this region, switching from lysogeny to lytic replication as bacterial production increases, and (ii) Southern Ocean viral assemblages are genetically distinct from lower-latitude assemblages, primarily driven by this temperate viral dominance. This new information suggests fundamentally different virus–host interactions in polar environments, where intense seasonal changes in bacterial production select for temperate viruses because of increased fitness imparted by the ability to switch replication strategies in response to resource availability. Further, temperate viral dominance may provide mechanisms (for example, bacterial mortality resulting from prophage induction) that help explain observed temporal delays between, and lower ratios of, bacterial and primary production in polar versus lower-latitude marine ecosystems. Together these results suggest that temperate virus–host interactions are critical to predicting changes in microbial dynamics brought on by warming in polar marine systems.
Collapse
Affiliation(s)
- Jennifer R Brum
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Bonnie L Hurwitz
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Oscar Schofield
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Hugh W Ducklow
- Lamont-Doherty Earth Observatory, Department of Earth and Environmental Sciences, Columbia University, Palisades, NY, USA
| | - Matthew B Sullivan
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
24
|
Zhong X, Guidoni B, Jacas L, Jacquet S. Structure and diversity of ssDNA Microviridae viruses in two peri-alpine lakes (Annecy and Bourget, France). Res Microbiol 2015; 166:644-54. [PMID: 26226335 DOI: 10.1016/j.resmic.2015.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/30/2015] [Accepted: 07/10/2015] [Indexed: 11/26/2022]
Abstract
Microviridae is a subset of single-stranded DNA (ssDNA) viruses infecting bacteria. This group of phages has been previously observed to be very abundant (representing >90% of the total known viral metagenomic sequences) in Lake Bourget. However, this observation was made only during one period (in summer) and from a single sample collected at a single depth (near surface). This result suggests the importance of these viruses, poorly examined thus far, especially in fresh waters. In this study, performed on the two largest natural lakes in France (e.g. Lakes Annecy and Bourget), Microviridae structure was determined each month throughout the year (2011) using PCR-DGGE, with primers that target the major-capsid-protein-encoding gene VP1; cloning/sequencing was used to investigate their diversity. Our results confirm that Microviridae are diverse in peri-alpine lakes and are mainly represented by gokushoviruses. We also found for the first time ssDNA viruses belonging to Alpavirinae, another subfamily within Microviridae recently proposed by Krupovic and Forterre (2011), generally prophages infecting members of the Phylum Bacteroidetes. Our data also support highly variable community composition and dynamics of individual components whose patterns were different between lakes, suggesting distinct host communities and/or abiotic influences between the two ecosystems. We point out that most of the major observed ssDNA Microviridae viruses display boom-bust patterns (with a sharp increase/decline) in their dynamics, with high relative abundances, suggesting brutal control of hosts and rapid regulation of the host community structure.
Collapse
Affiliation(s)
- Xu Zhong
- INRA, UMR CARRTEL, 75 Avenue de Corzent, 74203 Thonon-les-Bains, France
| | - Baptiste Guidoni
- INRA, UMR CARRTEL, 75 Avenue de Corzent, 74203 Thonon-les-Bains, France
| | - Louis Jacas
- INRA, UMR CARRTEL, 75 Avenue de Corzent, 74203 Thonon-les-Bains, France
| | - Stéphan Jacquet
- INRA, UMR CARRTEL, 75 Avenue de Corzent, 74203 Thonon-les-Bains, France.
| |
Collapse
|
25
|
Peduzzi P. Virus ecology of fluvial systems: a blank spot on the map? Biol Rev Camb Philos Soc 2015; 91:937-949. [PMID: 26105126 PMCID: PMC5055098 DOI: 10.1111/brv.12202] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 11/29/2022]
Abstract
The ecology of viruses has been studied only in a limited number of rivers and streams. In light of a recent re-appraisal of the global fluvial surface area, issues such as abundance and production, host mortality and the influence of suspended particles and biofilms are addressed. Viral life cycles, potential impacts of viruses on water biochemistry and carbon flow, and viral diversity are considered. Variability in trophic levels along with the heterogeneous nature and hydrological dynamics of fluvial environments suggest a prevailingly physical control of virus-related processes under lotic conditions and more biological control under lentic conditions. Viral lysis likely contributes to a pool of rapidly cycling carbon in environments typically characterized by high proportions of recalcitrant terrestrial carbon. On average, 33.6% (equalling 0.605 Pg C year-1 ) of the globally respired carbon from fluvial systems may pass through a viral loop. Virus distribution and the proportion of organic material in horizontal transport versus processes in retention zones remain to be determined in detail. The need for up-scaling the contribution of virus-related processes in fluvial systems is of global relevance. Further, the role of climate change and the effect of anthropogenic alterations of fluvial systems on viruses require attention. The identification of these considerable knowledge gaps should foster future research efforts.
Collapse
Affiliation(s)
- Peter Peduzzi
- Department of Limnology & Bio-Oceanography, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria.
| |
Collapse
|
26
|
Coral Mucus Is a Hot Spot for Viral Infections. Appl Environ Microbiol 2015; 81:5773-83. [PMID: 26092456 DOI: 10.1128/aem.00542-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/04/2015] [Indexed: 11/20/2022] Open
Abstract
There is increasing suspicion that viral communities play a pivotal role in maintaining coral health, yet their main ecological traits still remain poorly characterized. In this study, we examined the seasonal distribution and reproduction pathways of viruses inhabiting the mucus of the scleractinians Fungia repanda and Acropora formosa collected in Nha Trang Bay (Vietnam) during an 11-month survey. The strong coupling between epibiotic viral and bacterial abundance suggested that phages are dominant among coral-associated viral communities. Mucosal viruses also exhibited significant differences in their main features between the two coral species and were also remarkably contrasted with their planktonic counterparts. For example, their abundance (inferred from epifluorescence counts), lytic production rates (KCN incubations), and the proportion of lysogenic cells (mitomycin C inductions) were, respectively, 2.6-, 9.5-, and 2.2-fold higher in mucus than in the surrounding water. Both lytic and lysogenic indicators were tightly coupled with temperature and salinity, suggesting that the life strategy of viral epibionts is strongly dependent upon environmental circumstances. Finally, our results suggest that coral mucus may represent a highly favorable habitat for viral proliferation, promoting the development of both temperate and virulent phages. Here, we discuss how such an optimized viral arsenal could be crucial for coral viability by presumably forging complex links with both symbiotic and adjacent nonsymbiotic microorganisms.
Collapse
|
27
|
Pradeep Ram AS, Colombet J, Perriere F, Thouvenot A, Sime-Ngando T. Viral and grazer regulation of prokaryotic growth efficiency in temperate freshwater pelagic environments. FEMS Microbiol Ecol 2015; 91:1-12. [PMID: 25764557 DOI: 10.1093/femsec/fiv002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In aquatic systems, limited data exists on the impact of mortality forces such as viral lysis and flagellate grazing when seeking to explain factors regulating prokaryotic metabolism. We explored the relative influence of top-down factors (viral lysis and heterotrophic nanoflagellate grazing) on prokaryotic mortality and their subsequent impact on their community metabolism in the euphotic zone of 21 temperate freshwater lakes located in the French Massif Central. Prokaryotic growth efficiency (PGE, index of prokaryotic community metabolism) determined from prokaryotic production and respiration measurements varied from 5 to 74% across the lakes. Viral and potential grazer-induced mortality of prokaryotes had contrasting impact on PGE. Potential flagellate grazing was found to enhance PGE whereas viral lysis had antagonistic impacts on PGE. The average PGE value in the grazing and viral lysis dominated lake water samples was 35.4% (±15.2%) and 17.2% (±8.1%), respectively. Selective viral lysis or flagellate grazing on prokaryotes together with the nature of contrasted substrates released through mortality processes can perhaps explain for the observed variation and differences in PGE among the studied lakes. The influences of such specific top-down processes on PGE can have strong implications on the carbon and nutrient fluxes in freshwater pelagic environments.
Collapse
Affiliation(s)
- A S Pradeep Ram
- Laboratoire Microorganismes : Génome et Environnement, UMR CNRS 6023, Clermont Université, Université Blaise Pascal, BP 80026, 63171 Aubière Cedex, France
| | - Jonathan Colombet
- Laboratoire Microorganismes : Génome et Environnement, UMR CNRS 6023, Clermont Université, Université Blaise Pascal, BP 80026, 63171 Aubière Cedex, France
| | - Fanny Perriere
- Laboratoire Microorganismes : Génome et Environnement, UMR CNRS 6023, Clermont Université, Université Blaise Pascal, BP 80026, 63171 Aubière Cedex, France
| | - Antoine Thouvenot
- Athos Environnement, Université Blaise Pascal, BP 80026, 63171 Aubière Cedex, France
| | - Telesphore Sime-Ngando
- Laboratoire Microorganismes : Génome et Environnement, UMR CNRS 6023, Clermont Université, Université Blaise Pascal, BP 80026, 63171 Aubière Cedex, France
| |
Collapse
|
28
|
Holmes DE, Giloteaux L, Chaurasia AK, Williams KH, Luef B, Wilkins MJ, Wrighton KC, Thompson CA, Comolli LR, Lovley DR. Evidence of Geobacter-associated phage in a uranium-contaminated aquifer. THE ISME JOURNAL 2015; 9:333-46. [PMID: 25083935 PMCID: PMC4303627 DOI: 10.1038/ismej.2014.128] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/27/2014] [Accepted: 06/14/2014] [Indexed: 11/08/2022]
Abstract
Geobacter species may be important agents in the bioremediation of organic and metal contaminants in the subsurface, but as yet unknown factors limit the in situ growth of subsurface Geobacter well below rates predicted by analysis of gene expression or in silico metabolic modeling. Analysis of the genomes of five different Geobacter species recovered from contaminated subsurface sites indicated that each of the isolates had been infected with phage. Geobacter-associated phage sequences were also detected by metagenomic and proteomic analysis of samples from a uranium-contaminated aquifer undergoing in situ bioremediation, and phage particles were detected by microscopic analysis in groundwater collected from sediment enrichment cultures. Transcript abundance for genes from the Geobacter-associated phage structural proteins, tail tube Gp19 and baseplate J, increased in the groundwater in response to the growth of Geobacter species when acetate was added, and then declined as the number of Geobacter decreased. Western blot analysis of a Geobacter-associated tail tube protein Gp19 in the groundwater demonstrated that its abundance tracked with the abundance of Geobacter species. These results suggest that the enhanced growth of Geobacter species in the subsurface associated with in situ uranium bioremediation increased the abundance and activity of Geobacter-associated phage and show that future studies should focus on how these phages might be influencing the ecology of this site.
Collapse
Affiliation(s)
- Dawn E Holmes
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
- Western New England University, Springfield, MA, USA
| | - Ludovic Giloteaux
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Akhilesh K Chaurasia
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Birgit Luef
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA
| | | | - Kelly C Wrighton
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Courtney A Thompson
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Luis R Comolli
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
29
|
Palesse S, Colombet J, Pradeep Ram AS, Sime-Ngando T. Linking host prokaryotic physiology to viral lifestyle dynamics in a temperate freshwater lake (Lake Pavin, France). MICROBIAL ECOLOGY 2014; 68:740-750. [PMID: 24910014 DOI: 10.1007/s00248-014-0441-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
In aquatic ecosystems, fluctuations in environmental conditions and prokaryotic host physiological states can strongly affect the dynamics of viral life strategies. The influence of prokaryote physiology and environmental factors on viral replication cycles (lytic and lysogeny) was investigated from April to September 2011 at three different strata (epi, meta, and hypolimnion) in the mixolimnion of deep volcanic temperate freshwater Lake Pavin (France). Overall, the euphotic region (epi and metalimnion) was more dynamic and showed significant variation in microbial standing stocks, prokaryotic physiological state, and viral life strategies compared to the aphotic hypolimnion which was stable within sampled months. The prokaryotic host physiology as inferred from the nucleic acid content of prokaryotic cells (high or low nucleic acid) was strongly regulated by the chlorophyll concentration. The predominance of the high nucleic acid (HNA) prokaryotes (cells) over low nucleic acid (LNA) prokaryotes (cells) in the spring (HNA/LNA = 1.2) and vice versa in the summer period (HNA/LNA = 0.4) suggest that the natural prokaryotic communities underwent major shifts in their physiological states during investigated time period. The increase in the percentage of inducible lysogenic prokaryotes in the summer period was associated with the switch in the dominance of LNA over HNA cells, which coincided with the periods of strong resource (nutrient) limitation. This supports the idea that lysogeny represents a maintenance strategy for viruses in unproductive or harsh nutrient/host conditions. A negative correlation of percentage of lysogenic prokaryotes with HNA cell abundance and chlorophyll suggest that lysogenic cycle is closely related to prokaryotic cells which are stressed or starved due to unavailability of resources for its growth and activity. Our results provide support to previous findings that changes in prokaryote physiology are critical for the promotion and establishment of lysogeny in aquatic ecosystems, which are prone to constant environmental fluctuations.
Collapse
Affiliation(s)
- S Palesse
- Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Clermont Université, Université Blaise Pascal, BP 80026, 63171, Aubière Cedex, France
| | | | | | | |
Collapse
|
30
|
Alaoui-Mhamdi M, Dhib A, Bouhaddioui A, Ziadi B, Turki S, Aleya L. Assessment of nitrogen and phosphate balance and the roles of bacteria and viruses at the water-sediment interface in the Allal El Fassi reservoir (Morocco). ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:5817-5829. [PMID: 24838859 DOI: 10.1007/s10661-014-3821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 05/09/2014] [Indexed: 06/03/2023]
Abstract
Balances of nitrogen and phosphate were studied in the Allal El Fassi reservoir (Morocco); the results showing that nitrogen input (296 mg m(-2) d(-1)) was 161% higher than output (183 mg m(-2) d(-1)). Phosphate input (35.65 mg m(-2) d(-1)) was 865% higher than output (4.12 mg m(-2) d(-1)), causing a progressive increase in the internal phosphate stock. Sedimentation flux was equally high (53.80 and 18 mg m(-2) d(-1)) for both nitrogen and phosphate input, mainly from the Sebou River and in particulate form which immediately settles upon arrival in the reservoir. The release of nitrogen and phosphate from the sediment (5.40 and 1.15 mg m(-2) d(-1), respectively) depended on physicochemical and biological (bacteria and viruses) variability and the calcareous nature of the catchment basin. Calcium-bound phosphate prevailed in the reservoir. Drastic control of phosphate input is suggested to avoid accumulation of calcium-bound phosphate which may dissociate and thereby contribute to eutrophication.
Collapse
|
31
|
Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev 2014; 38:916-31. [PMID: 24617569 PMCID: PMC4257071 DOI: 10.1111/1574-6976.12072] [Citation(s) in RCA: 484] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 02/06/2023] Open
Abstract
Bacteria-phage coevolution, the reciprocal evolution between bacterial hosts and the phages that infect them, is an important driver of ecological and evolutionary processes in microbial communities. There is growing evidence from both laboratory and natural populations that coevolution can maintain phenotypic and genetic diversity, increase the rate of bacterial and phage evolution and divergence, affect community structure, and shape the evolution of ecologically relevant bacterial traits. Although the study of bacteria-phage coevolution is still in its infancy, with open questions regarding the specificity of the interaction, the gene networks of coevolving partners, and the relative importance of the coevolving interaction in complex communities and environments, there have recently been major advancements in the field. In this review, we sum up our current understanding of bacteria-phage coevolution both in the laboratory and in nature, discuss recent findings on both the coevolutionary process itself and the impact of coevolution on bacterial phenotype, diversity and interactions with other species (particularly their eukaryotic hosts), and outline future directions for the field.
Collapse
|
32
|
Muck S, Griessler T, Köstner N, Klimiuk A, Winter C, Herndl GJ. Fracture zones in the Mid Atlantic Ridge lead to alterations in prokaryotic and viral parameters in deep-water masses. Front Microbiol 2014; 5:264. [PMID: 24917857 PMCID: PMC4040922 DOI: 10.3389/fmicb.2014.00264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 05/13/2014] [Indexed: 11/16/2022] Open
Abstract
We hypothesized that mixing zones of deep-water masses act as ecotones leading to alterations in microbial diversity and activity due to changes in the biogeochemical characteristics of these boundary systems. We determined the changes in prokaryotic and viral abundance and production in the Vema Fracture Zone (VFZ) of the subtropical North Atlantic Ocean, where North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) are funneled through this narrow canyon and therefore, are subjected to intense vertical mixing. Consequently, salinity, potential temperature, oxygen, PO4, SiO4, NO3 were altered in the NADW inside the VFZ as compared to the NADW outside of the VFZ. Also, viral abundance, lytic viral production (VP) and the virus-to-prokaryote ratio (VPR) were elevated in the NADW in the VFZ as compared to the NADW outside the VFZ. In contrast to lytic VP, lysogenic VP and both the frequency of lytically (FIC) and lysogenically infected cells (FLC) did not significantly differ between in- and outside the VFZ. Generally, FIC was higher than FLC throughout the water column. Prokaryotic (determined by T-RFLP) and viral (determined by RAPD-PCR) community composition was depth-stratified inside and outside the VFZ. The viral community was more modified both with depth and over distance inside the VFZ as compared to the northern section and to the prokaryotic communities. However, no clusters of prokaryotic and viral communities characteristic for the VFZ were identified. Based on our observations, we conclude that turbulent mixing of the deep water masses impacts not only the physico-chemical parameters of the mixing zone but also the interaction between viruses and prokaryotes due to a stimulation of the overall activity. However, only minor effects of deep water mixing were observed on the community composition of the dominant prokaryotes and viruses.
Collapse
Affiliation(s)
- Simone Muck
- Department of Limnology and Oceanography, Center of Ecology, University of ViennaVienna, Austria
| | - Thomas Griessler
- Department of Limnology and Oceanography, Center of Ecology, University of ViennaVienna, Austria
| | - Nicole Köstner
- Department of Limnology and Oceanography, Center of Ecology, University of ViennaVienna, Austria
| | - Adam Klimiuk
- Department of Limnology and Oceanography, Center of Ecology, University of ViennaVienna, Austria
| | - Christian Winter
- Department of Limnology and Oceanography, Center of Ecology, University of ViennaVienna, Austria
| | - Gerhard J. Herndl
- Department of Limnology and Oceanography, Center of Ecology, University of ViennaVienna, Austria
- Department of Biological Oceanography, Royal Netherlands Institute for Sea Research (NIOZ)Den Burg, Netherlands
| |
Collapse
|
33
|
Johnke J, Cohen Y, de Leeuw M, Kushmaro A, Jurkevitch E, Chatzinotas A. Multiple micro-predators controlling bacterial communities in the environment. Curr Opin Biotechnol 2014; 27:185-90. [PMID: 24598212 DOI: 10.1016/j.copbio.2014.02.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 12/24/2022]
Abstract
Predator-prey interactions are a main issue in ecological theory, including multispecies predator-prey relationships and intraguild predation. This knowledge is mainly based on the study of plants and animals, while its relevance for microorganisms is not well understood. The three key groups of micro-predators include protists, predatory bacteria and bacteriophages. They greatly differ in size, in prey specificity, in hunting strategies and in the resulting population dynamics. Yet, their potential to jointly control bacterial populations and reducing biomass in complex environments such as wastewater treatment plants is vast. Here, we present relevant ecological concepts and recent findings on micropredators, and propose that an integrative approach to predation at the microscale should be developed enabling the exploitation of this potential.
Collapse
Affiliation(s)
- Julia Johnke
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Yossi Cohen
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Marina de Leeuw
- Department of Biotechnology Engineering and The National Institute for Biotechnology, Ben Gurion University, 84105 Beer Sheva, Israel
| | - Ariel Kushmaro
- Department of Biotechnology Engineering and The National Institute for Biotechnology, Ben Gurion University, 84105 Beer Sheva, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel.
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| |
Collapse
|
34
|
Zhong X, Ram ASP, Colombet J, Jacquet S. Variations in abundance, genome size, morphology, and functional role of the virioplankton in Lakes Annecy and Bourget over a 1-year period. MICROBIAL ECOLOGY 2014; 67:66-82. [PMID: 24253662 DOI: 10.1007/s00248-013-0320-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/24/2013] [Indexed: 06/02/2023]
Abstract
We sampled the surface waters (2-50 m) of two deep peri-alpine lakes over a 1-year period in order to examine (1) the abundance, vertical distribution, genome size, and morphology structures of the virioplankton; (2) the virus-mediated bacterial mortality; and (3) the specific genome size range of double-stranded DNA (dsDNA) phytoplankton viruses. Virus-like particle (VLP) concentrations varied between 4.16 × 10(7) (January) and 2.08 × 10(8) part mL(-1) (May) in Lake Bourget and between 2.7 × 10(7) (June) and 8.39 × 10(7) part mL(-1) (November) in Lake Annecy. Our flow cytometry analysis revealed at least three viral groups (referred to as virus-like particles 1, 2, and 3) that exhibited distinctive dynamics suggestive of different host types. Phage-induced bacterial mortality varied between 6.1% (June) and 33.2% (October) in Lake Bourget and between 7.4% (June) and 52.6% (November) in Lake Annecy, suggesting that viral lysis may be a key cause of mortality of the bacterioplankton. Virioplankton genome size ranged from 27 to 486 kb in Lake Bourget, while it reached 620 kb in Lake Annecy for which larger genome sizes were recorded. Our analysis of pulsed field gel electrophoresis bands using different PCR primers targeting both cyanophages and algal viruses showed that (1) dsDNA viruses infecting phytoplankton may range from 65 to 486 kb, and (2) both cyanophage and algal "diversity" were higher in Lake Annecy. Lakes Annecy and Bourget also differed regarding the proportions of both viral families (with the dominance of myoviruses vs. podoviruses) and infected bacterial morphotypes (short rods vs. elongated rods), in each of these lakes, respectively. Overall, our results reveal that (1) viruses displayed distinct temporal and vertical distribution, dynamics, community structure in terms of genome size and morphology, and viral activity in the two lakes; (2) the Myoviridae seemed to be the main cause of bacterial mortality in both lakes and this group seemed to be related to VLP2; and (3) phytoplankton viruses may have a broader range of genome size than previously thought. This study adds to growing evidence that viruses are diverse and play a significant role in freshwater microbial dynamics and more globally lake functioning. It highlights the importance of further considering this biological compartment for a better understanding of plankton ecology in peri-alpine lakes.
Collapse
Affiliation(s)
- Xu Zhong
- INRA, UMR 042 CARRTEL, 75 Avenue de Corzent, 74203, Thonon-les-Bains cx, France
| | | | | | | |
Collapse
|
35
|
McDaniel LD, Rosario K, Breitbart M, Paul JH. Comparative metagenomics: natural populations of induced prophages demonstrate highly unique, lower diversity viral sequences. Environ Microbiol 2013; 16:570-85. [PMID: 23879711 DOI: 10.1111/1462-2920.12184] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/20/2013] [Accepted: 06/06/2013] [Indexed: 01/31/2023]
Abstract
To understand the similarities and differences between a free living viral population and its co-occurring temperate population, metagenomes of each type were prepared from the same seawater sample from Tampa Bay, FL. Libraries were prepared from extracted DNA of the ambient viruses and induced prophages from the co-occurring, viral-reduced microbial assemblage. Duplicate libraries were also prepared using the same DNA amplified by multiple displacement amplification. A non-viral-reduced, induced, amplified viral dataset from the same site in 2005 was reanalysed for temporal comparison. The induced viral metagenome was higher in identifiable virus sequences and differed from the other three datasets based on principal component, rarefaction, trinucleotide composition and contig spectrum analyses. This study indicated that induced prophages are unique and have lower overall community diversity than ambient viral populations from the same site. Both of the amplified contemporary metagenomes were enriched in single-stranded DNA (ssDNA) viral sequences. Six and 16 complete, circular ssDNA viral genomes were assembled from the amplified induced and ambient libraries, respectively, mostly similar to circoviruses. The amplified ambient metagenome contained genomes similar to an RNA-DNA hybrid virus recently identified in a hot spring and to an ssDNA virus infecting the diatom Chaetoceros.
Collapse
Affiliation(s)
- Lauren D McDaniel
- College of Marine Science, University of South Florida, 140 7th Avenue South, St Petersburg, FL, 33701, USA
| | | | | | | |
Collapse
|
36
|
Zhong X, Berdjeb L, Jacquet S. Temporal dynamics and structure of picocyanobacteria and cyanomyoviruses in two large and deep peri-alpine lakes. FEMS Microbiol Ecol 2013; 86:312-26. [PMID: 23772675 DOI: 10.1111/1574-6941.12166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 11/29/2022] Open
Abstract
We conducted a 1-year survey of the surface waters of two deep peri-alpine lakes, and investigated the abundances and community structure of picocyanobacteria and co-occurring cyanomyophages. Picocyanobacterial abundances ranged between 4.5 × 10(4) and 1.6 × 10(5) cells mL(-1) in Lake Annecy vs. 2.2 × 10(3) and 1.6 × 10(5) cells mL(-1) in Lake Bourget. Cyanomyoviruses ranged between 2.8 × 10(3) and 3.7 × 10(5) copies of g 20 mL(-1) in Lake Annecy vs. between 9.4 × 10(3) and 9.4 × 10(5) copies of g 20 mL(-1) in Lake Bourget. The structures of picocyanobacteria and cyanomyoviruses differed in the two lakes, and a more pronounced dynamic pattern with greater seasonality was observed in Lake Bourget. At the annual scale, there was no relationship between cyanomyovirus and picocyanobacterial abundances or structures, but we could observe that abundances of the two communities covaried in spring in Lake Bourget. We showed that (i) the changes of picocyanobacteria and cyanomyoviruses were caused by the combined effect of several environmental and biological factors the importance of which differed over time and between the lakes, and (ii) the viral control of the picocyanobacterial community was probably relatively weak at the scale of the investigation.
Collapse
Affiliation(s)
- Xu Zhong
- INRA, UMR CARRTEL, Thonon-les-Bains cx, France
| | | | | |
Collapse
|
37
|
Seasonal and spatial variability of virioplanktonic abundance in Haihe River, China. BIOMED RESEARCH INTERNATIONAL 2013; 2013:526362. [PMID: 23844363 PMCID: PMC3703425 DOI: 10.1155/2013/526362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/07/2013] [Accepted: 05/28/2013] [Indexed: 11/21/2022]
Abstract
In order to understand the composition and dynamics of planktonic viruses and their relationship with environmental parameters in natural freshwater, flow cytometry was optimized with filtration/fixation/staining/dilution and then applied to the analysis of samples collected from 9 stations (covering urban, rural, and estuarial areas) along the Haihe River, China, over a one-year period of study. The total viral abundance exhibited an apparent peak in the spring. Spatially, the highest viral abundance was recorded in estuarial areas. The correlation analysis indicated that the bacteria in the Haihe River significantly influenced viral abundance. The relationship between abiotic variables and viral abundance remained the same as with bacterial abundance, indicating that environmental parameters could possibly influence viral abundance in virtue of their bacterial host cells. The influence of environmental factors on viral abundance differed in the three sampling areas, suggesting different drivers of viral abundance in different stretches of the river associated with their utilization and surroundings.
Collapse
|
38
|
Zemb O, Manefield M, Thomas F, Jacquet S. Phage adsorption to bacteria in the light of the electrostatics: a case study using E. coli, T2 and flow cytometry. J Virol Methods 2013; 189:283-9. [PMID: 23499611 DOI: 10.1016/j.jviromet.2013.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 02/01/2013] [Accepted: 02/06/2013] [Indexed: 11/28/2022]
Abstract
The addition of sodium chloride to freshwater or diluted minimal salt medium increases the adsorption of T2 phages on Escherichia coli. For the first time the adsorption in diluted minimal salt medium was measured by counting unadsorbed phages (i.e. free particles) using flow cytometry, allowing a gentle separation between adsorbed and unadsorbed phages. Flow cytometry was able to detect weakly adsorbed phage that remained undetected using classical centrifugation-based methods and this allowed us to show that increasing ionic strength enhances the phage adsorption to its bacterial host with an extremely low detection limit. A key result was that the adsorption in high ionic strength (i.e. 100 mM) reached 4.5±0.1×10⁻⁵ mL/min which is 1400 fold higher than previously reported values. In order to understand the mechanism underpinning such a weak phage adsorption, the zeta potentials and the diffusion coefficient of the particles were measured by dynamic light scattering. The bacterial cells and the phages had zeta potentials between -60 mV and -10 mV and -30 mV and -10 mV, respectively. The diffusion coefficient of the phage was 2.8±0.4×10⁻¹² m² s⁻¹ corresponding to a hydrodynamic radius of 104±15 nm. However significant adsorption occurs in conditions where the DLVO theory predicts that minimal encounter, suggesting that forces other that electrostatic repulsion and Van der Waals interaction (e.g. potential impurities, particle shape and other biological characteristics) are likely to interplay.
Collapse
Affiliation(s)
- O Zemb
- INRA, UMR1289 Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, F-31326 Castanet-Tolosan, France.
| | | | | | | |
Collapse
|
39
|
Forterre P, Soler N, Krupovic M, Marguet E, Ackermann HW. Fake virus particles generated by fluorescence microscopy. Trends Microbiol 2012; 21:1-5. [PMID: 23140888 DOI: 10.1016/j.tim.2012.10.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/10/2012] [Accepted: 10/10/2012] [Indexed: 01/07/2023]
Abstract
Many laboratories are actively studying the abundance and roles of viruses in natural ecosystems. In these studies, the presence and number of viral particles is usually determined using fluorescent dyes. However, DNA associated with membrane-derived vesicles (MVs), gene transfer agents (GTAs), or cell debris can produce fluorescent dots that can be confused with viral particles. We suspect that fluorescence counting can lead to overestimation of virus numbers and even suggest the presence of viruses when there are none. Future studies in environmental virology should acknowledge this point and consider how to bypass this problem. Besides trying to improve discrimination between virions and MVs, we suggest adopting less holistic approaches, focusing on the detection of known virus groups and the isolation of new viruses from a broader range of hosts.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut de Génétique et Microbiologie, Université Paris-Sud, CNRS UMR 8621, 91405 Orsay Cedex, France.
| | | | | | | | | |
Collapse
|
40
|
Temporal dynamics and decay of putatively allochthonous and autochthonous viral genotypes in contrasting freshwater lakes. Appl Environ Microbiol 2012; 78:6583-91. [PMID: 22773646 DOI: 10.1128/aem.01705-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aquatic viruses play important roles in the biogeochemistry and ecology of lacustrine ecosystems; however, their composition, dynamics, and interactions with viruses of terrestrial origin are less extensively studied. We used a viral shotgun metagenomic approach to elucidate candidate autochthonous (i.e., produced within the lake) and allochthonous (i.e., washed in from other habitats) viral genotypes for a comparative study of their dynamics in lake waters. Based on shotgun metagenomes prepared from catchment soil and freshwater samples from two contrasting lakes (Cayuga Lake and Fayetteville Green Lake), we selected two putatively autochthonous viral genotypes (phycodnaviruses likely infecting algae and cyanomyoviruses likely infecting picocyanobacteria) and two putatively allochthonous viral genotypes (geminiviruses likely infecting terrestrial plants and circoviruses infecting unknown hosts but common in soil libraries) for analysis by genotype-specific quantitative PCR (TaqMan) applied to DNAs from viruses in the viral size fraction of lake plankton, i.e., 0.2 μm > virus > 0.02 μm. The abundance of autochthonous genotypes largely reflected expected host abundance, while the abundance of allochthonous genotypes corresponded with rainfall and storm events in the respective catchments, suggesting that viruses with these genotypes may have been transported to the lake in runoff. The decay rates of allochthonous and autochthonous genotypes, assessed in incubations where all potential hosts were killed, were generally lower (0.13 to 1.50% h(-1)) than those reported for marine virioplankton but similar to those for freshwater virioplankton. Both allochthonous and autochthonous viral genotypes were detected at higher concentrations in subsurface sediments than at the water-sediment interface. Our data indicate that putatively allochthonous viruses are present in lake plankton and sediments, where their temporal dynamics reflect active transport to the lake during hydrological events and then decay once there.
Collapse
|
41
|
Berdjeb L, Pollet T, Domaizon I, Jacquet S. Effect of grazers and viruses on bacterial community structure and production in two contrasting trophic lakes. BMC Microbiol 2011; 11:88. [PMID: 21527043 PMCID: PMC3114703 DOI: 10.1186/1471-2180-11-88] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 04/29/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the last 30 years, extensive studies have revealed the crucial roles played by microbes in aquatic ecosystems. It has been shown that bacteria, viruses and protozoan grazers are dominant in terms of abundance and biomass. The frequent interactions between these microbiological compartments are responsible for strong trophic links from dissolved organic matter to higher trophic levels, via heterotrophic bacteria, which form the basis for the important biogeochemical roles of microbial food webs in aquatic ecosystems. To gain a better understanding of the interactions between bacteria, viruses and flagellates in lacustrine ecosystems, we investigated the effect of protistan bacterivory on bacterial abundance, production and structure [determined by 16S rRNA PCR-DGGE], and viral abundance and activity of two lakes of contrasting trophic status. Four experiments were conducted in the oligotrophic Lake Annecy and the mesotrophic Lake Bourget over two seasons (early spring vs. summer) using a fractionation approach. In situ dark vs. light incubations were performed to consider the effects of the different treatments in the presence and absence of phototrophic activity. RESULTS The presence of grazers (i.e. <5-μm small eukaryotes) affected viral production positively in all experiments, and the stimulation of viral production (compared to the treatment with no eukaryotic predators) was more variable between lakes than between seasons, with the highest value having been recorded in the mesotrophic lake (+30%). Viral lysis and grazing activities acted additively to sustain high bacterial production in all experiments. Nevertheless, the stimulation of bacterial production was more variable between seasons than between lakes, with the highest values obtained in summer (+33.5% and +37.5% in Lakes Bourget and Annecy, respectively). The presence of both predators (nanoflagellates and viruses) did not seem to have a clear influence upon bacterial community structure according to the four experiments. CONCLUSIONS Our results highlight the importance of a synergistic effect, i.e. the positive influence of grazers on viral activities in sustaining (directly and indirectly) bacterial production and affecting composition, in both oligotrophic and mesotrophic lakes.
Collapse
Affiliation(s)
- Lyria Berdjeb
- INRA, UMR CARRTEL, Station d'Hydrobiologie Lacustre, BioFEEL Group, 74203 Thonon-les-Bains cedex, France
| | | | | | | |
Collapse
|