1
|
Kopprio GA, Hupfer M, Graeve M, Mbedi S, Sparmann S, Goldhammer T. Microbial communities and fatty acid markers across acidification and eutrophication extremes in a river influenced by mining activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 979:179473. [PMID: 40286613 DOI: 10.1016/j.scitotenv.2025.179473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Microbial communities in combination with fatty acid and isotopic markers were studied seasonally to assess the effects of acid mine drainage (AMD) and nutrient loads in the Spree river. Negative values of δ15N, the bacterial and detrital markers 18: 1(n-7) and 18:1(n-9), pH values ∼3 and bacteria of the genera Ferrovum, Thiomonas, Acidocella, Acidiphilum, Syderoxydans and Galionella were characteristic of the AMD extreme. Potential iron-oxidizers may produce ferric ions and their precipitates may influence biogeochemical processes, while potential sulfur-oxidizers may contribute to elevated sulphate concentrations and challenge drinking water production in the Spree catchment. In this river, eutrophication was linked with polyunsaturated fatty acids (PUFA) enrichment and not with PUFA depletion as occurs in other freshwater systems. Elevated concentrations and proportions of PUFA as well as higher relative sequence abundance of cyanobacteria were characteristic of the highly eutrophic station, particularly during the phytoplankton bloom. The 18:5(n-3) from flagellates or dinoflagellates may indicate lipid anabolism and trophic upgrading processes. The dominance of the classes Bacteroidia, Gammaproteobacteria and Actinobacteria suggested eutrophic and changing hydrological conditions in the river. The microbial communities were better markers of seasonality than the biogeochemical markers and their combination offers an excellent resolution for the study of the ecology and biogeochemistry of water courses. The expected decreased runoff under climate-driven scenarios may worsen the AMD pollution and eutrophication problems and signify a considerable challenge for water management.
Collapse
Affiliation(s)
- Germán A Kopprio
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| | - Michael Hupfer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Brandenburg Technical University, Cottbus, Germany
| | - Martin Graeve
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Susan Mbedi
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany; Museum für Naturkunde, Berlin, Germany
| | - Sarah Sparmann
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
| | - Tobias Goldhammer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
2
|
Trujillo HA, Komeili A. Revealing the diversity of bacterial and archaeal organelles via comparative genomics. Mol Biol Cell 2025; 36:pe4. [PMID: 40333210 DOI: 10.1091/mbc.e20-08-0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Like eukaryotes, bacteria and archaea rely on intracellular organelles to manage biological activities. Despite their prevalence, the understanding of the diversity of these organelles and the molecular mechanisms governing their function remain limited. In this review, we examine the potential of genomics and metagenomics to augment classical approaches for the study and discovery of microbial organelles. First, we highlight how the intimate interplay between model system studies and metagenomics have been critical in illuminating the function, diversity, and ancient evolutionary origins of the lipid-bounded magnetosome organelles of magnetotactic bacteria. We next discuss the central role of open genome databases and mechanistic studies in identification and characterization of protein-bounded encapsulin organelles with novel roles in sulfur metabolism and other cellular processes. Finally, we focus on the mostly uncultured Asgard archaea superphylum, whose metagenomes are challenging our views on organelle evolution and eukaryogenesis.
Collapse
Affiliation(s)
- Hector A Trujillo
- Plant and Microbiology, University of California Berkeley, Berkeley, CA
| | - Arash Komeili
- Plant and Microbiology, University of California Berkeley, Berkeley, CA
| |
Collapse
|
3
|
Russell VV, Iavarone AT, Ozyamak E, Grant C, Komeili A. A network of coiled-coil and actin-like proteins controls the cellular organization of magnetosome organelles in deep-branching magnetotactic bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639979. [PMID: 40060654 PMCID: PMC11888303 DOI: 10.1101/2025.02.24.639979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Magnetotactic Bacteria (MTB) are a diverse group of microorganisms that use magnetosomes, organelles composed of magnetite or greigite, to navigate along geomagnetic fields. While MTB span several phyla and exhibit diverse phenotypes, magnetosome formation has been mechanistically studied in only two species of Alphaproteobacteria. Here, we use Desulfovibrio magneticus RS-1 to uncover the mechanisms behind tooth-shaped magnetosome assembly in deep-branching MTB. Our findings reveal that RS-1 magnetic particles initially form randomly within the cell before localizing to the positive cell curvature. Genetic and proteomic analyses indicate that early biomineralization involves membrane-associated proteins found in all MTB, while later stages depend on coiled-coil (Mad20, 23, 25, and 26) and actin-like (MamK and Mad28) proteins, most of which are unique to deep-branching MTB. These findings suggest that while biomineralization originates from a common ancestor, magnetosome chain formation has diverged evolutionarily among different MTB lineages.
Collapse
Affiliation(s)
- Virginia V Russell
- Plant and Microbiology, University of California Berkeley, Berkeley, California, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California Berkeley, Berkeley, California, USA
| | - Ertan Ozyamak
- Plant and Microbiology, University of California Berkeley, Berkeley, California, USA
- Current affiliation: Bio-Rad Laboratories, Hercules, California, USA
| | - Carly Grant
- Plant and Microbiology, University of California Berkeley, Berkeley, California, USA
- Current affiliation: Entrepreneurship Program, UCSF Rosenman Institute, San Francisco, California, USA
| | - Arash Komeili
- Plant and Microbiology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
4
|
Chen X, Toth CRA, Guo S, Luo F, Howe J, Nesbo CL, Edwards EA. Visualization of Syntrophic Benzene-Fermenting Desulfobacterota ORM2 in a Methanogenic Enrichment Culture Using Fluorescence In Situ Hybridization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:591-602. [PMID: 39752256 DOI: 10.1021/acs.est.4c08254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Benzene degradation under anoxic conditions was first reported more than 25 years ago; however, the activation mechanism in the absence of oxygen remains elusive. Progress has been hindered by the difficulty in cultivating anaerobic benzene-degrading enrichment cultures. Our laboratory has sustained a methanogenic enrichment culture harboring Desulfobacterota ORM2, a benzene fermenter distinct from any known genus but related to other known or predicted benzene degraders. ORM2's slow doubling time (∼30 days) and extended lag phase after inoculation complicate its study. We developed a fluorescent in situ hybridization (FISH) probe for ORM2, revealing rod-shaped cells of variable length that tend to cluster with other organisms, particularly methanogens. Microscopy and genomic evidence suggest that ORM2 may produce extracellular polymeric substances, facilitating cell aggregation and possibly consuming energy that contributes to the lag phase. Interestingly, higher benzene concentrations (90-120 mg/L) appeared to reduce cell aggregation. This study visualized the cells of Desulfobacterota ORM2 within a methanogenic community, offering insights into spatial organization and potential strategies to enhance its growth rate.
Collapse
Affiliation(s)
- Xu Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Courtney R A Toth
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Shen Guo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Fei Luo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Jane Howe
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada
| | - Camilla L Nesbo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
5
|
Wan J, Ji R, Liu J, Ma K, Pan Y, Lin W. Biomineralization in magnetotactic bacteria: From diversity to molecular discovery-based applications. Cell Rep 2024; 43:114995. [PMID: 39602309 DOI: 10.1016/j.celrep.2024.114995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
The synthesis of magnetic nanoparticles (Fe3O4 or Fe3S4) within the membrane-bound organelles known as magnetosomes in magnetotactic bacteria (MTB) is a remarkable example of microbial-controlled biomineralization. Studying MTB biomineralization is crucial not only for understanding the origin and evolution of magnetoreception and bacterial organelles but also for advancing biotechnological and biomedical applications of MTB cells and magnetosomes. After decades of research, MTB have revealed unexpected diversity and complexity. The mechanisms underlying magnetosome biomineralization in MTB have been continuously documented using a few model MTB strains. In this review, we provide an overview of recent findings related to MTB diversity and focus primarily on the current understanding of magnetosome biosynthesis. Additionally, we summarize the growing biotechnological and biomedical applications derived from molecular studies of MTB and their magnetosomes.
Collapse
Affiliation(s)
- Juan Wan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runjia Ji
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Liu
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kun Ma
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Zhang R, Liu P, Wang Y, Roberts AP, Bai J, Liu Y, Zhu K, Du Z, Chen G, Pan Y, Li J. Phylogenetics and biomineralization of a novel magnetotactic Gammaproteobacterium from a freshwater lake in Beijing, China. FEMS Microbiol Ecol 2023; 99:fiad150. [PMID: 37974050 DOI: 10.1093/femsec/fiad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023] Open
Abstract
Magnetotactic bacteria (MTB) have the remarkable capability of producing intracellularly membrane-enveloped magnetic nanocrystals (i.e. magnetosomes) and swimming along geomagnetic field lines. Despite more than 50 years of research, bacterial diversity and magnetosome biomineralization within MTB are relatively less known in the Gammaproteobacteria class than other groups. This is incompatible with the status of Gammaproteobacteria as the most diverse class of gram-negative bacteria with a number of ecologically important bacteria. Here, we identify a novel MTB strain YYHR-1 affiliated with the Gammaproteobacteria class of the Pseudomonadota phylum from a freshwater lake. In YYHR-1, most magnetosome crystals are organized into a long chain aligned along the cell long axis; unusually, a few small superparamagnetic crystals are located at the side of the chain, off the main chain axis. Micromagnetic simulations indicate that magnetostatic interactions among adjacent crystals within a chain reduce the Gibbs energy to enhance chain stability. Genomic analysis suggests that duplication of magnetosome gene clusters may result in off-chain magnetosomes formation. By integrating available genomic data from Gammaproteobacteria, the phylogenetic position of MTB in this class is reassigned here. Our new findings expand knowledge about MTB diversity and magnetosome biomineralization, and deepen understanding of the phylogenetics of the Gammaproteobacteria.
Collapse
Affiliation(s)
- Rongrong Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Marine College, Shandong University, Weihai 264209, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqin Wang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Jinling Bai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Marine College, Shandong University, Weihai 264209, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongjun Du
- Marine College, Shandong University, Weihai 264209, China
| | - Guanjun Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Awal RP, Lefevre CT, Schüler D. Functional expression of foreign magnetosome genes in the alphaproteobacterium Magnetospirillum gryphiswaldense. mBio 2023; 14:e0328222. [PMID: 37318230 PMCID: PMC10470508 DOI: 10.1128/mbio.03282-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/03/2023] [Indexed: 06/16/2023] Open
Abstract
Magnetosomes of magnetotactic bacteria (MTB) consist of structurally perfect, nano-sized magnetic crystals enclosed within vesicles of a proteo-lipid membrane. In species of Magnetospirillum, biosynthesis of their cubo-octahedral-shaped magnetosomes was recently demonstrated to be a complex process, governed by about 30 specific genes that are comprised within compact magnetosome gene clusters (MGCs). Similar, yet distinct gene clusters were also identified in diverse MTB that biomineralize magnetosome crystals with different, genetically encoded morphologies. However, since most representatives of these groups are inaccessible by genetic and biochemical approaches, their analysis will require the functional expression of magnetosome genes in foreign hosts. Here, we studied whether conserved essential magnetosome genes from closely and remotely related MTB can be functionally expressed by rescue of their respective mutants in the tractable model Magnetospirillum gryphiswaldense of the Alphaproteobacteria. Upon chromosomal integration, single orthologues from other magnetotactic Alphaproteobacteria restored magnetosome biosynthesis to different degrees, while orthologues from distantly related Magnetococcia and Deltaproteobacteria were found to be expressed but failed to re-induce magnetosome biosynthesis, possibly due to poor interaction with their cognate partners within multiprotein magnetosome organelle of the host. Indeed, co-expression of the known interactors MamB and MamM from the alphaproteobacterium Magnetovibrio blakemorei increased functional complementation. Furthermore, a compact and portable version of the entire MGCs of M. magneticum was assembled by transformation-associated recombination cloning, and it restored the ability to biomineralize magnetite both in deletion mutants of the native donor and M. gryphiswaldense, while co-expression of gene clusters from both M. gryphiswaldense and M. magneticum resulted in overproduction of magnetosomes. IMPORTANCE We provide proof of principle that Magnetospirillum gryphiswaldense is a suitable surrogate host for the functional expression of foreign magnetosome genes and extended the transformation-associated recombination cloning platform for the assembly of entire large magnetosome gene cluster, which could then be transplanted to different magnetotactic bacteria. The reconstruction, transfer, and analysis of gene sets or entire magnetosome clusters will be also promising for engineering the biomineralization of magnetite crystals with different morphologies that would be valuable for biotechnical applications.
Collapse
Affiliation(s)
- Ram Prasad Awal
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Christopher T. Lefevre
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
8
|
Nakano S, Furutani H, Kato S, Kouduka M, Yamazaki T, Suzuki Y. Bullet-shaped magnetosomes and metagenomic-based magnetosome gene profiles in a deep-sea hydrothermal vent chimney. Front Microbiol 2023; 14:1174899. [PMID: 37440886 PMCID: PMC10335762 DOI: 10.3389/fmicb.2023.1174899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
Magnetosome-producing microorganisms can sense and move toward the redox gradient and have been extensively studied in terrestrial and shallow marine sediment environments. However, given the difficulty of sampling, magnetotactic bacteria (MTB) are poorly explored in deep-sea hydrothermal fields. In this study, a deep-sea hydrothermal vent chimney from the Southern Mariana Trough was collected using a remotely operated submersible. The mineralogical and geochemical characterization of the vent chimney sample showed an internal iron redox gradient. Additionally, the electron microscopy of particles collected by magnetic separation from the chimney sample revealed MTB cells with bullet-shaped magnetosomes, and there were minor occurrences of cuboctahedral and hexagonal prismatic magnetosomes. Genome-resolved metagenomic analysis was performed to identify microorganisms that formed magnetosomes. A metagenome-assembled genome (MAG) affiliated with Nitrospinae had magnetosome genes such as mamA, mamI, mamM, mamP, and mamQ. Furthermore, a diagnostic feature of MTB genomes, such as magnetosome gene clusters (MGCs), including mamA, mamP, and mamQ, was also confirmed in the Nitrospinae-affiliated MAG. Two lines of evidence support the occurrence of MTB in a deep-sea, inactive hydrothermal vent environment.
Collapse
Affiliation(s)
- Shinsaku Nakano
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Furutani
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Mariko Kouduka
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Toshitsugu Yamazaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Yohey Suzuki
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Salam MA, Korkmaz N, Cycil LM, Hasan F. Isolation, microscopic and magnetotactic characterization of Magnetospirillum moscoviense MS-24 from Banjosa Lake, Pakistan. Biotechnol Lett 2023:10.1007/s10529-023-03390-y. [PMID: 37227600 DOI: 10.1007/s10529-023-03390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/26/2023]
Abstract
At currently, approximately 70 species of magnetotactic bacteria have been identified; thus, there is an urgent need to identify more magnetotactic bacteria from diverse environmental sources with potential applications in industry and biotechnology. To the best of our knowledge, this is the first magnetotactic bacterial strain discovered in Pakistan. The first magnetotactic bacteria, Magnetospirillum moscoviense MS-24, was isolated from Banjosa Lake (Rawalakot), Pakistan, in the current investigation. Magnetospirillum moscoviense MS-24 was screened using the Racetrack method. The Magnetospirillum moscoviense MS-24 were physically characterised using Atomic Force Microscopy, High-Resolution Scanning Electron Microscopy, and Transmission Electron Microscopy. The current study used microscopy to illustrate the shape of bacteria and to find a very obvious chain of magnetosomes within the bacterial cell. The Magnetospirillum moscoviense MS-24 measured about 4 ± 0.04 µm in length and 600 ± 0.02 nm in diameter. The microfluidic chip experiments were also used to detect magnetotaxis behaviour in bacteria.
Collapse
Affiliation(s)
- Maria Abdul Salam
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Zoology, Rawalpindi Women University, Rawalpindi, Pakistan
- Department of Robotics and Mechatronics, University of Twente, Enschede, Netherlands
| | - Nuriye Korkmaz
- Biosensor Group, Europe Forschungsgesellschaft mbH, Korea Institute of Science and Technology, Campus E 71, 66123, Saarbrucken, Germany
| | | | - Fariha Hasan
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
10
|
de Souza Cabral A, Verdan M, Presciliano R, Silveira F, Correa T, Abreu F. Large-Scale Cultivation of Magnetotactic Bacteria and the Optimism for Sustainable and Cheap Approaches in Nanotechnology. Mar Drugs 2023; 21:60. [PMID: 36827100 PMCID: PMC9961000 DOI: 10.3390/md21020060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Magnetotactic bacteria (MTB), a diverse group of marine and freshwater microorganisms, have attracted the scientific community's attention since their discovery. These bacteria biomineralize ferrimagnetic nanocrystals, the magnetosomes, or biological magnetic nanoparticles (BMNs), in a single or multiple chain(s) within the cell. As a result, cells experience an optimized magnetic dipolar moment responsible for a passive alignment along the lines of the geomagnetic field. Advances in MTB cultivation and BMN isolation have contributed to the expansion of the biotechnological potential of MTB in recent decades. Several studies with mass-cultured MTB expanded the possibilities of using purified nanocrystals and whole cells in nano- and biotechnology. Freshwater MTB were primarily investigated in scaling up processes for the production of BMNs. However, marine MTB have the potential to overcome freshwater species applications due to the putative high efficiency of their BMNs in capturing molecules. Regarding the use of MTB or BMNs in different approaches, the application of BMNs in biomedicine remains the focus of most studies, but their application is not restricted to this field. In recent years, environment monitoring and recovery, engineering applications, wastewater treatment, and industrial processes have benefited from MTB-based biotechnologies. This review explores the advances in MTB large-scale cultivation and the consequent development of innovative tools or processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
11
|
Bärenstrauch M, Vanhove AS, Allégra S, Peuble S, Gallice F, Paran F, Lavastre V, Girardot F. Microbial diversity and geochemistry of groundwater impacted by steel slag leachates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156987. [PMID: 35772557 DOI: 10.1016/j.scitotenv.2022.156987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
To understand long-term impacts of steel slag material on aquifer geochemistry and microbial communities, we conducted four sampling campaigns in the Gier alluvial groundwater (Loire, France). In its northern part, the aquifer flows under a 200,000 m3 steel slag exhibiting high levels of chromium and molybdenum. Geochemical analyses of the water table revealed the existence of water masses with different chemical signatures. They allowed us to identify an area particularly contaminated by leachates from the slag heap, whatever the sampling period. Water samples from this area were compared to non-contaminated samples, with geochemical characteristics similar to the river samples. To follow changes in microbial communities, the V3-V4 region of 16 s rRNA gene was sequenced. Overall, we observed lower diversity indices in contaminated areas, with higher relative abundances of Verrucomicrobiota and Myxococcota phyla, while several Proteobacteria orders exhibited lower relative abundances. In particular, one single genus among the Verrucomicrobiota, Candidatus Omnitrophus, represented up to 36 % of total taxon abundance in areas affected by steel slag leachates. A large proportion of taxa identified in groundwater were also detected in the upstream river, indicating strong river-groundwater interactions. Our findings pave the way for future research work on C. Omnitrophus remediation capacities.
Collapse
Affiliation(s)
- Margot Bärenstrauch
- Université de Lyon, Université Jean Monnet Saint-Etienne, CNRS, EVS-ISTHME UMR 5600, F-42023 Saint-Etienne, France
| | - Audrey S Vanhove
- Université de Lyon, Université Jean Monnet Saint-Etienne, CNRS, EVS-ISTHME UMR 5600, F-42023 Saint-Etienne, France
| | - Séverine Allégra
- Université de Lyon, Université Jean Monnet Saint-Etienne, CNRS, EVS-ISTHME UMR 5600, F-42023 Saint-Etienne, France
| | - Steve Peuble
- Mines Saint-Étienne, Centre "Sciences des Processus Industriels et Naturels" (SPIN), Département "Procédés pour l'Environnement et les Géo-ressources" (PEG), UMR 5600 EVS, UMR 5307 LGF, F-42023 Saint-Etienne, France
| | - Frédéric Gallice
- Mines Saint-Étienne, Centre "Sciences des Processus Industriels et Naturels" (SPIN), Département "Procédés pour l'Environnement et les Géo-ressources" (PEG), UMR 5600 EVS, UMR 5307 LGF, F-42023 Saint-Etienne, France
| | - Frédéric Paran
- Mines Saint-Étienne, Centre "Sciences des Processus Industriels et Naturels" (SPIN), Département "Procédés pour l'Environnement et les Géo-ressources" (PEG), UMR 5600 EVS, UMR 5307 LGF, F-42023 Saint-Etienne, France
| | - Véronique Lavastre
- Université de Lyon, Université Jean Monnet Saint-Etienne, Laboratoire de Géologie de Lyon - Terre Planètes Environnement LGL-TPE, CNRS -UMR 5276, F-42023 Saint-Etienne, France
| | - Françoise Girardot
- Université de Lyon, Université Jean Monnet Saint-Etienne, CNRS, EVS-ISTHME UMR 5600, F-42023 Saint-Etienne, France.
| |
Collapse
|
12
|
Shimoshige H, Kobayashi H, Shimamura S, Miyazaki M, Maekawa T. Fundidesulfovibrio magnetotacticus sp. nov., a sulphate-reducing magnetotactic bacterium, isolated from sediments and freshwater of a pond. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A sulphate-reducing magnetotactic bacterium, designated strain FSS-1T, was isolated from sediments and freshwater of Suwa Pond located in Hidaka, Saitama, Japan. Strain FSS-1T was a motile, Gram-negative and curved rod-shaped bacterium that synthesizes bullet-shaped magnetite (Fe3O4) nanoparticles in each cell. Strain FSS-1T was able to grow in the range of pH 6.5–8.0 (optimum, pH 7.0), 22–34 °C (optimum, 28 °C) and with 0–8.0 g l−1 NaCl (optimum, 0–2.0 g l−1 NaCl). Strain FSS-1T grew well in the presence of 50 µM ferric quinate as an iron source. The major fatty acids were anteiso-C15 : 0, iso-C15 : 0 and anteiso-C17 : 0. The major menaquinone was MK-7 (H2). Strain FSS-1T contained desulfoviridin, cytochrome c
3 and catalase, but did not contain oxidase. Strain FSS-1T used fumarate, lactate, pyruvate, malate, formate/acetate, succinate, tartrate, ethanol, 1-propanol, peptone, soytone and yeast extract as electron donors, while the strain used sulphate, thiosulphate and fumarate as electron acceptors. Fumarate was fermented in the absence of electron acceptors. Analysis of the 16S rRNA gene sequence showed that strain FSS-1T is a member of the genus
Fundidesulfovibrio
. The gene sequence showed 96.7, 95.0, 92.0, 91.2 and 91.4% similarities to the most closely related members of the genera
Fundidesulfovibrio putealis
B7-43T,
Fundidesulfovibrio butyratiphilus
BSYT,
Desulfolutivibrio sulfoxidireducens
DSM 107105T,
Desulfolutivibrio sulfodismutans
ThAc01T and
Solidesulfovibrio magneticus
RS-1T, respectively. The DNA G+C content of strain FSS-1T was 67.5 mol%. The average nucleotide identity value between strain FSS-1T and
F. putealis
B7-43T was 80.7 %. Therefore, strain FSS-1T represents a novel species within the genus
Fundidesulfovibrio
, for which the name Fundidesulfovibrio magnetotacticus sp. nov. is proposed (=JCM 32405T=DSM 110007T).
Collapse
Affiliation(s)
- Hirokazu Shimoshige
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Kanagawa 237-0061, Japan
| | - Hideki Kobayashi
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Shigeru Shimamura
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Kanagawa 237-0061, Japan
| | - Masayuki Miyazaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Kanagawa 237-0061, Japan
| | - Toru Maekawa
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350- 15 8585, Japan
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| |
Collapse
|
13
|
Zimina TM, Sitkov NO, Gareev KG, Fedorov V, Grouzdev D, Koziaeva V, Gao H, Combs SE, Shevtsov M. Biosensors and Drug Delivery in Oncotheranostics Using Inorganic Synthetic and Biogenic Magnetic Nanoparticles. BIOSENSORS 2022; 12:789. [PMID: 36290927 PMCID: PMC9599632 DOI: 10.3390/bios12100789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022]
Abstract
Magnetic nanocarriers have attracted attention in translational oncology due to their ability to be employed both for tumor diagnostics and therapy. This review summarizes data on applications of synthetic and biogenic magnetic nanoparticles (MNPs) in oncological theranostics and related areas. The basics of both types of MNPs including synthesis approaches, structure, and physicochemical properties are discussed. The properties of synthetic MNPs and biogenic MNPs are compared with regard to their antitumor therapeutic efficiency, diagnostic potential, biocompatibility, and cellular toxicity. The comparative analysis demonstrates that both synthetic and biogenic MNPs could be efficiently used for cancer theranostics, including biosensorics and drug delivery. At the same time, reduced toxicity of biogenic particles was noted, which makes them advantageous for in vivo applications, such as drug delivery, or MRI imaging of tumors. Adaptability to surface modification based on natural biochemical processes is also noted, as well as good compatibility with tumor cells and proliferation in them. Advances in the bionanotechnology field should lead to the implementation of MNPs in clinical trials.
Collapse
Affiliation(s)
- Tatiana M. Zimina
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Nikita O. Sitkov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Kamil G. Gareev
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Denis Grouzdev
- SciBear OU, Tartu mnt 67/1-13b, Kesklinna Linnaosa, 10115 Tallinn, Estonia
| | - Veronika Koziaeva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, 119071 Moscow, Russia
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- National Center for Neurosurgery, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
14
|
Perez‐Molphe‐Montoya E, Küsel K, Overholt WA. Redefining the phylogenetic and metabolic diversity of phylum Omnitrophota. Environ Microbiol 2022; 24:5437-5449. [DOI: 10.1111/1462-2920.16170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Affiliation(s)
| | - Kirsten Küsel
- Institute of Biodiversity Friedrich Schiller University Jena Germany
- The German Center for Integrative Biodiversity Research (iDiv) Halle‐Jena‐ Leipzig Germany
| | - Will A. Overholt
- Institute of Biodiversity Friedrich Schiller University Jena Germany
| |
Collapse
|
15
|
Chen S, Yu M, Zhang W, He K, Pan H, Cui K, Zhao Y, Zhang XH, Xiao T, Zhang W, Wu LF. Metagenomic and Microscopic Analysis of Magnetotactic Bacteria in Tangyin Hydrothermal Field of Okinawa Trough. Front Microbiol 2022; 13:887136. [PMID: 35756025 PMCID: PMC9226615 DOI: 10.3389/fmicb.2022.887136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria (MTB) have been found in a wide variety of marine habitats, ranging from intertidal sediments to deep-sea seamounts. Deep-sea hydrothermal fields are rich in metal sulfides, which are suitable areas for the growth of MTB. However, MTB in hydrothermal fields have never been reported. Here, the presence of MTB in sediments from the Tangyin hydrothermal field was analyzed by 16S rRNA gene amplicon analysis, metagenomics, and transmission electron microscopy. Sequencing 16S rRNA gene yielded a total of 709 MTB sequences belonging to 20 OTUs, affiliated with Desulfobacterota, Alphaproteobacteria, and Nitrospirae. Three shapes of magnetofossil were identified by transmission electron microscopy: elongated-prismatic, bullet-shaped, and cuboctahedron. All of these structures were composed of Fe3O4. A total of 121 sequences were found to be homologous to the published MTB magnetosome-function-related genes, and relevant domains were identified. Further analysis revealed that diverse MTB are present in the Tangyin hydrothermal field, and that multicellular magnetotactic prokaryote (MMPs) might be the dominant MTB.
Collapse
Affiliation(s)
- Si Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Min Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Kuang He
- Key Lab of Submarine Geosciences and Prospecting Techniques, Frontiers Science Center for Deep Ocean Multispheres and Earth System, MOE and College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Kaixuan Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yicong Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiao-Hua Zhang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Wuchang Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China.,Aix Marseille University, CNRS, LCB, Marseille, France
| |
Collapse
|
16
|
Li J, Liu P, Menguy N, Benzerara K, Bai J, Zhao X, Leroy E, Zhang C, Zhang H, Liu J, Zhang R, Zhu K, Roberts AP, Pan Y. Identification of sulfate-reducing magnetotactic bacteria via a group-specific 16S rDNA primer and correlative fluorescence and electron microscopy: strategy for culture-independent study. Environ Microbiol 2022; 24:5019-5038. [PMID: 35726890 DOI: 10.1111/1462-2920.16109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/02/2022] [Accepted: 06/18/2022] [Indexed: 11/28/2022]
Abstract
Magnetotactic bacteria (MTB) biomineralize intracellular magnetic nanocrystals and swim along geomagnetic field lines. While few axenic MTB cultures exist, living cells can be separated magnetically from natural environments for analysis. The bacterial universal 27F/1492R primer pair has been used widely to amplify nearly full-length 16S rRNA genes and to provide phylogenetic portraits of MTB communities. However, incomplete coverage and amplification biases inevitably prevent detection of some phylogenetically specific or non-abundant MTB. Here, we propose a new formulation of the upstream 390F primer that we combined with the downstream 1492R primer to specifically amplify 1,100-bp 16S rRNA gene sequences of sulfate-reducing MTB in freshwater sediments from Lake Weiyanghu, Xi'an, northwestern China. With correlative fluorescence in situ hybridization and scanning/transmission electron microscopy, three novel MTB strains (WYHR-2, WYHR-3, and WYHR-4) from the Desulfobacterota phylum were identified phylogenetically and structurally at the single cell level. Strain WYHR-2 produces bullet-shaped magnetosome magnetite, while the other two strains produce both cubic/prismatic greigite and bullet-shaped magnetite. Our results expand knowledge of bacterial diversity and magnetosome biomineralization of sulfate-reducing MTB. We also propose a general strategy for identifying and characterizing uncultured MTB from natural environments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nicolas Menguy
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Karim Benzerara
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Jinling Bai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Eric Leroy
- ICMPE, University Paris East, UMR 7182, CNRS, 2-8 rue Henri Dunant, Thiais Cedex, France
| | - Chaoqun Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Heng Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Jiawei Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongrong Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Keilei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Goswami P, He K, Li J, Pan Y, Roberts AP, Lin W. Magnetotactic bacteria and magnetofossils: ecology, evolution and environmental implications. NPJ Biofilms Microbiomes 2022; 8:43. [PMID: 35650214 PMCID: PMC9160268 DOI: 10.1038/s41522-022-00304-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 05/04/2022] [Indexed: 11/08/2022] Open
Abstract
Magnetotactic bacteria (MTB) are a group of phylogenetically diverse and morphologically varied microorganisms with a magnetoresponsive capability called magnetotaxis or microbial magnetoreception. MTB are a distinctive constituent of the microbiome of aquatic ecosystems because they use Earth's magnetic field to align themselves in a north or south facing direction and efficiently navigate to their favored microenvironments. They have been identified worldwide from diverse aquatic and waterlogged microbiomes, including freshwater, saline, brackish and marine ecosystems, and some extreme environments. MTB play important roles in the biogeochemical cycling of iron, sulphur, phosphorus, carbon and nitrogen in nature and have been recognized from in vitro cultures to sequester heavy metals like selenium, cadmium, and tellurium, which makes them prospective candidate organisms for aquatic pollution bioremediation. The role of MTB in environmental systems is not limited to their lifespan; after death, fossil magnetosomal magnetic nanoparticles (known as magnetofossils) are a promising proxy for recording paleoenvironmental change and geomagnetic field history. Here, we summarize the ecology, evolution, and environmental function of MTB and the paleoenvironmental implications of magnetofossils in light of recent discoveries.
Collapse
Affiliation(s)
- Pranami Goswami
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- Research School of Earth Sciences, Australian National University, ACT, Canberra, ACT, 2601, Australia
| | - Kuang He
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Submarine Geosciences and Prospecting Techniques, MoE and College of Marine Geosciences, Ocean University of China, 266100, Qingdao, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, ACT, Canberra, ACT, 2601, Australia.
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China.
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China.
| |
Collapse
|
18
|
A Novel Isolate of Spherical Multicellular Magnetotactic Prokaryotes Has Two Magnetosome Gene Clusters and Synthesizes Both Magnetite and Greigite Crystals. Microorganisms 2022; 10:microorganisms10050925. [PMID: 35630369 PMCID: PMC9145555 DOI: 10.3390/microorganisms10050925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Multicellular magnetotactic prokaryotes (MMPs) are a unique group of magnetotactic bacteria that are composed of 10–100 individual cells and show coordinated swimming along magnetic field lines. MMPs produce nanometer-sized magnetite (Fe3O4) and/or greigite (Fe3S4) crystals—termed magnetosomes. Two types of magnetosome gene cluster (MGC) that regulate biomineralization of magnetite and greigite have been found. Here, we describe a dominant spherical MMP (sMMP) species collected from the intertidal sediments of Jinsha Bay, in the South China Sea. The sMMPs were 4.78 ± 0.67 μm in diameter, comprised 14–40 cells helical symmetrically, and contained bullet-shaped magnetite and irregularly shaped greigite magnetosomes. Two sets of MGCs, one putatively related to magnetite biomineralization and the other to greigite biomineralization, were identified in the genome of the sMMP, and two sets of paralogous proteins (Mam and Mad) that may function separately and independently in magnetosome biomineralization were found. Phylogenetic analysis indicated that the sMMPs were affiliated with Deltaproteobacteria. This is the first direct report of two types of magnetosomes and two sets of MGCs being detected in the same sMMP. The study provides new insights into the mechanism of biomineralization of magnetosomes in MMPs, and the evolutionary origin of MGCs.
Collapse
|
19
|
Barr CR, Bedrossian M, Lohmann KJ, Nealson KH. Magnetotactic bacteria: concepts, conundrums, and insights from a novel in situ approach using digital holographic microscopy (DHM). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:107-124. [DOI: 10.1007/s00359-022-01543-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 11/25/2022]
|
20
|
Williams TJ, Allen MA, Berengut JF, Cavicchioli R. Shedding Light on Microbial "Dark Matter": Insights Into Novel Cloacimonadota and Omnitrophota From an Antarctic Lake. Front Microbiol 2021; 12:741077. [PMID: 34707591 PMCID: PMC8542988 DOI: 10.3389/fmicb.2021.741077] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
The potential metabolism and ecological roles of many microbial taxa remain unknown because insufficient genomic data are available to assess their functional potential. Two such microbial "dark matter" taxa are the Candidatus bacterial phyla Cloacimonadota and Omnitrophota, both of which have been identified in global anoxic environments, including (but not limited to) organic-carbon-rich lakes. Using 24 metagenome-assembled genomes (MAGs) obtained from an Antarctic lake (Ace Lake, Vestfold Hills), novel lineages and novel metabolic traits were identified for both phyla. The Cloacimonadota MAGs exhibited a capacity for carbon fixation using the reverse tricarboxylic acid cycle driven by oxidation of hydrogen and sulfur. Certain Cloacimonadota MAGs encoded proteins that possess dockerin and cohesin domains, which is consistent with the assembly of extracellular cellulosome-like structures that are used for degradation of polypeptides and polysaccharides. The Omnitrophota MAGs represented phylogenetically diverse taxa that were predicted to possess a strong biosynthetic capacity for amino acids, nucleosides, fatty acids, and essential cofactors. All of the Omnitrophota were inferred to be obligate fermentative heterotrophs that utilize a relatively narrow range of organic compounds, have an incomplete tricarboxylic acid cycle, and possess a single hydrogenase gene important for achieving redox balance in the cell. We reason that both Cloacimonadota and Omnitrophota form metabolic interactions with hydrogen-consuming partners (methanogens and Desulfobacterota, respectively) and, therefore, occupy specific niches in Ace Lake.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Jonathan F Berengut
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
21
|
Mandal FB. A review of the ecology, genetics, evolution, and magnetosome –induced behaviours of the magnetotactic bacteria. Isr J Ecol Evol 2021. [DOI: 10.1163/22244662-bja10028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The discovery of magnetosome and magnetotaxis in its most simple form in the magnetotactic bacteria (MTB) had created the tremendous impetus. MTB, spanning multiple phyla, are distributed worldwide, and they form the organelles called magnetosomes for biomineralization. Eight phylotypes of MTB belong to Alphaproteobacteria and Nitrospirae. MTB show preference for specific redox and oxygen concentration. Magnetosome chains function as the internal compass needle and align the bacterial cells passively along the local geomagnetic field (GMF). The nature of magnetosomes produced by MTB and their phylogeny suggest that bullet-shaped magnetites appeared about 3.2 billion years ago with the first magnetosomes. All MTB contains ten genes in conserved mamAB operon for magnetosome chain synthesis of which nine genes are conserved in greigite-producing MTB. Many candidate genes identify the aero-, redox-, and perhaps phototaxis. Among the prokaryotes, the MTB possess the highest number of O2-binding proteins. Magnetofossils serve as an indicator of oxygen and redox levels of the ancient environments. Most descendants of ancestral MTB lost the magnetosome genes in the course of evolution. Environmental conditions initially favored the evolution of MTB and expansion of magnetosome-formation genes. Subsequent changes in atmospheric oxygen concentration have led to changes in the ecology of MTB, loss of magnetosome genes, and evolution of nonMTB.
Collapse
Affiliation(s)
- Fatik Baran Mandal
- Department of Zoology, Bankura Christian College, College Road, Bankura, West Bengal, 722101, India
| |
Collapse
|
22
|
Zhang W, Wang Y, Liu L, Pan Y, Lin W. Identification and Genomic Characterization of Two Previously Unknown Magnetotactic Nitrospirae. Front Microbiol 2021; 12:690052. [PMID: 34385986 PMCID: PMC8353452 DOI: 10.3389/fmicb.2021.690052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
Magnetotactic bacteria (MTB) are a group of microbes that biomineralize membrane-bound, nanosized magnetite (Fe3O4), and/or greigite (Fe3S4) crystals in intracellular magnetic organelle magnetosomes. MTB belonging to the Nitrospirae phylum can form up to several hundreds of Fe3O4 magnetosome crystals and dozens of sulfur globules in a single cell. These MTB are widespread in aquatic environments and sometimes account for a significant proportion of microbial biomass near the oxycline, linking these lineages to the key steps of global iron and sulfur cycling. Despite their ecological and biogeochemical importance, our understanding of the diversity and ecophysiology of magnetotactic Nitrospirae is still very limited because this group of MTB remains unculturable. Here, we identify and characterize two previously unknown MTB populations within the Nitrospirae phylum through a combination of 16S rRNA gene-based and genome-resolved metagenomic analyses. These two MTB populations represent distinct morphotypes (rod-shaped and coccoid, designated as XYR, and XYC, respectively), and both form more than 100 bullet-shaped magnetosomal crystals per cell. High-quality draft genomes of XYR and XYC have been reconstructed, and they represent a novel species and a novel genus, respectively, according to their average amino-acid identity values with respect to available genomes. Accordingly, the names Candidatus Magnetobacterium cryptolimnobacter and Candidatus Magnetomicrobium cryptolimnococcus for XYR and XYC, respectively, were proposed. Further comparative genomic analyses of XYR, XYC, and previously reported magnetotactic Nitrospirae reveal the general metabolic potential of this MTB group in distinct microenvironments, including CO2 fixation, dissimilatory sulfate reduction, sulfide oxidation, nitrogen fixation, or denitrification processes. A remarkably conserved magnetosome gene cluster has been identified across Nitrospirae MTB genomes, indicating its putative important adaptive roles in these bacteria. Taken together, the present study provides novel insights into the phylogenomic diversity and ecophysiology of this intriguing, yet poorly understood MTB group.
Collapse
Affiliation(s)
- Wensi Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Abstract
Magnetotactic bacteria (MTB) belong to several phyla. This class of microorganisms exhibits the ability of magneto-aerotaxis. MTB synthesize biominerals in organelle-like structures called magnetosomes, which contain single-domain crystals of magnetite (Fe3O4) or greigite (Fe3S4) characterized by a high degree of structural and compositional perfection. Magnetosomes from dead MTB could be preserved in sediments (called fossil magnetosomes or magnetofossils). Under certain conditions, magnetofossils are capable of retaining their remanence for millions of years. This accounts for the growing interest in MTB and magnetofossils in paleo- and rock magnetism and in a wider field of biogeoscience. At the same time, high biocompatibility of magnetosomes makes possible their potential use in biomedical applications, including magnetic resonance imaging, hyperthermia, magnetically guided drug delivery, and immunomagnetic analysis. In this review, we attempt to summarize the current state of the art in the field of MTB research and applications.
Collapse
|
24
|
Sesbanimide R, a Novel Cytotoxic Polyketide Produced by Magnetotactic Bacteria. mBio 2021; 12:mBio.00591-21. [PMID: 34006654 PMCID: PMC8262917 DOI: 10.1128/mbio.00591-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic information from various magnetotactic bacteria suggested that besides their common ability to form magnetosomes, they potentially also represent a source of bioactive natural products. By using targeted deletion and transcriptional activation, we connected a large biosynthetic gene cluster (BGC) of the trans-acyltransferase polyketide synthase (trans-AT PKS) type to the biosynthesis of a novel polyketide in the alphaproteobacterium Magnetospirillum gryphiswaldense Structure elucidation by mass spectrometry and nuclear magnetic resonance spectroscopy (NMR) revealed that this secondary metabolite resembles sesbanimides, which were very recently reported from other taxa. However, sesbanimide R exhibits an additional arginine moiety the presence of which reconciles inconsistencies in the previously proposed sesbanimide biosynthesis pathway observed when comparing the chemical structure and the potential biochemistry encoded in the BGC. In contrast to the case with sesbanimides D, E, and F, we were able to assign the stereocenter of the arginine moiety experimentally and two of the remaining three stereocenters by predictive biosynthetic tools. Sesbanimide R displayed strong cytotoxic activity against several carcinoma cell lines.IMPORTANCE The findings of this study contribute a new secondary metabolite member to the glutarimide-containing polyketides. The determined structure of sesbanimide R correlates with its cytotoxic bioactivity, characteristic for members of this family. Sesbanimide R represents the first natural product isolated from magnetotactic bacteria and identifies this highly diverse group as a so-far-untapped source for the future discovery of novel secondary metabolites.
Collapse
|
25
|
Liu P, Tamaxia A, Liu Y, Qiu H, Pan J, Jin Z, Zhao X, Roberts AP, Pan Y, Li J. Identification and characterization of magnetotactic Gammaproteobacteria from a salt evaporation pool, Bohai Bay, China. Environ Microbiol 2021; 24:938-950. [PMID: 33876543 DOI: 10.1111/1462-2920.15516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 11/27/2022]
Abstract
Magnetotactic bacteria (MTB) are phylogenetically diverse prokaryotes that can produce intracellular chain-assembled nanocrystals of magnetite (Fe3 O4 ) or greigite (Fe3 S4 ). Compared with their wide distribution in the Alpha-, Eta- and Delta-proteobacteria classes, few MTB strains have been identified in the Gammaproteobacteria class, resulting in limited knowledge of bacterial diversity and magnetosome biomineralization within this phylogenetic branch. Here, we identify two magnetotactic Gammaproteobacteria strains (tentatively named FZSR-1 and FZSR-2 respectively) from a salt evaporation pool in Bohai Bay, at the Fuzhou saltern, Dalian City, eastern China. Phylogenetic analysis indicates that strain FZSR-2 is the same species as strains SHHR-1 and SS-5, which were discovered previously from brackish and hypersaline environments respectively. Strain FZSR-1 represents a novel species. Compared with strains FZSR-2, SHHR-1 and SS-5 in which magnetite particles are assembled into a single chain, FZSR-1 cells form relatively narrower magnetite nanoparticles that are often organized into double chains. We find a good relationship between magnetite morphology within strains FZSR-2, SHHR-1 and SS-5 and the salinity of the environment in which they live. This study expands the bacterial diversity of magnetotactic Gammaproteobacteria and provides new insights into magnetosome biomineralization within magnetotactic Gammaproteobacteria.
Collapse
Affiliation(s)
- Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Alima Tamaxia
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Qiu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juntong Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongke Jin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
26
|
Shimoshige H, Kobayashi H, Shimamura S, Mizuki T, Inoue A, Maekawa T. Isolation and cultivation of a novel sulfate-reducing magnetotactic bacterium belonging to the genus Desulfovibrio. PLoS One 2021; 16:e0248313. [PMID: 33705469 PMCID: PMC7951924 DOI: 10.1371/journal.pone.0248313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Magnetotactic bacteria (MTB) synthesize magnetosomes composed of membrane-enveloped magnetite (Fe3O4) and/or greigite (Fe3S4) nanoparticles in the cells. It is known that the magnetotactic Deltaproteobacteria are ubiquitous and inhabit worldwide in the sediments of freshwater and marine environments. Mostly known MTB belonging to the Deltaproteobacteria are dissimilatory sulfate-reducing bacteria that biomineralize bullet-shaped magnetite nanoparticles, but only a few axenic cultures have been obtained so far. Here, we report the isolation, cultivation and characterization of a dissimilatory sulfate-reducing magnetotactic bacterium, which we designate “strain FSS-1”. We found that the strain FSS-1 is a strict anaerobe and uses casamino acids as electron donors and sulfate as an electron acceptor to reduce sulfate to hydrogen sulfide. The strain FSS-1 produced bullet-shaped magnetite nanoparticles in the cells and responded to external magnetic fields. On the basis of 16S rRNA gene sequence analysis, the strain FSS-1 is a member of the genus Desulfovibrio, showing a 96.7% sequence similarity to Desulfovibrio putealis strain B7-43T. Futhermore, the magnetosome gene cluster of strain FSS-1 was different from that of Desulfovibrio magneticus strain RS-1. Thus, the strain FSS-1 is considered to be a novel sulfate-reducing magnetotactic bacterium belonging to the genus Desulfovibrio.
Collapse
Affiliation(s)
- Hirokazu Shimoshige
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
- * E-mail: (TM); (HS)
| | - Hideki Kobayashi
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
| | - Shigeru Shimamura
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Toru Mizuki
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
| | - Akira Inoue
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
| | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan
- * E-mail: (TM); (HS)
| |
Collapse
|
27
|
Tan SM, Ismail MH, Cao B. Biodiversity of magnetotactic bacteria in the tropical marine environment of Singapore revealed by metagenomic analysis. ENVIRONMENTAL RESEARCH 2021; 194:110714. [PMID: 33422504 DOI: 10.1016/j.envres.2021.110714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/22/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
Most studies on the diversity of magnetotactic bacteria (MTB) have been conducted on samples obtained from the Northern or the Southern hemispheres. The diversity of MTB in tropical Asia near the geo-equator, with a close-to-zero geomagnetic inclination, weak magnetic field and constantly high seawater temperature has never been explored. This study aims to decipher the diversity of MTB in the marine environment of Singapore through shotgun metagenomics. Although MTB has been acknowledged to be ubiquitous in aquatic environments, we did not observe magnetotactic behaviour in the samples. However, we detected the presence and determined the diversity of MTB through bioinformatic analyses. Metagenomic analysis suggested majority of the MTB in the seafloor sediments represents novel MTB taxa that cannot be classified at the species level. The relative abundance of MTB (~0.2-1.69%) in the samples collected from the marine environment of Singapore was found to be substantially lower than studies for other regions. In contrast to other studies, the genera Magnetovibrio and Desulfamplus, but not Magnetococcus, were the dominant MTB. Additionally, we recovered 3 MTB genomic bins that are unclassified at the species level, with Magnetovibrio blakemorei being the closest-associated genome. All the recovered genomic bins contain homologs of at least 5 of the 7 mam genes but lack homologs for mamI, a membrane protein suggested to take part in the magenetosome invagination. This study fills in the knowledge gap of MTB biodiversity in the tropical marine environment near the geo-equator. Our findings will facilitate future research efforts aiming to unravel the ecological roles of MTB in the tropical marine environments as well as to bioprospecting novel MTB that have been adapted to tropical marine environments for biotechnological applications.
Collapse
Affiliation(s)
- Shi Ming Tan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, 637551, Singapore
| | - Muhammad Hafiz Ismail
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, 637551, Singapore
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, N1-01C-69, 639798, Singapore.
| |
Collapse
|
28
|
Vavourakis CD, Heijnen L, Peters MCFM, Marang L, Ketelaars HAM, Hijnen WAM. Spatial and Temporal Dynamics in Attached and Suspended Bacterial Communities in Three Drinking Water Distribution Systems with Variable Biological Stability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14535-14546. [PMID: 33135888 DOI: 10.1021/acs.est.0c04532] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial presence and regrowth in drinking water distribution systems (DWDSs) is routinely monitored to assess the biological stability of drinking water without a residual disinfectant, but the conventional microbiological culture methods currently used target only a very small fraction of the complete DWDS microbiome. Here, we sequenced 16S rRNA gene amplicons to elucidate the attached and suspended prokaryotic community dynamics within three nonchlorinated DWDSs with variable regrowth conditions distributing similarly treated surface water from the same source. One rural location, with less regrowth related issues, differed most strikingly from the other two urban locations by the exclusive presence of Pseudonocardia (Actinobacteria) in the biofilm and the absence of Limnobacter (Betaproteobacteriales) in the water and loose deposits during summer. There was a dominant seasonal effect on the drinking water microbiomes at all three locations. For one urban location, it was established that the most significant changes in the microbial community composition on a spatial scale occurred shortly after freshly treated water entered the DWDS. However, summerly regrowth of Limnobacter, one of the dominant genera in the distributed drinking water, already occurred in the clean water reservoir at the treatment plant before further distribution. The highlighted bacterial lineages within these highly diverse DWDS communities might be important new indicators for undesirable regrowth conditions affecting the final drinking water quality.
Collapse
Affiliation(s)
| | - Leo Heijnen
- KWR Watercycle Research Institute, Groningenhaven 7, 3433PE Nieuwegein, The Netherlands
| | | | - Leonie Marang
- Evides Water Company, P.O. Box 4472, 3006 AL, Rotterdam, The Netherlands
| | - Henk A M Ketelaars
- Evides Water Company, P.O. Box 4472, 3006 AL, Rotterdam, The Netherlands
| | - Wim A M Hijnen
- Evides Water Company, P.O. Box 4472, 3006 AL, Rotterdam, The Netherlands
| |
Collapse
|
29
|
Lin W, Zhang W, Paterson GA, Zhu Q, Zhao X, Knight R, Bazylinski DA, Roberts AP, Pan Y. Expanding magnetic organelle biogenesis in the domain Bacteria. MICROBIOME 2020; 8:152. [PMID: 33126926 PMCID: PMC7602337 DOI: 10.1186/s40168-020-00931-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The discovery of membrane-enclosed, metabolically functional organelles in Bacteria has transformed our understanding of the subcellular complexity of prokaryotic cells. Biomineralization of magnetic nanoparticles within magnetosomes by magnetotactic bacteria (MTB) is a fascinating example of prokaryotic organelles. Magnetosomes, as nano-sized magnetic sensors in MTB, facilitate cell navigation along the local geomagnetic field, a behaviour referred to as magnetotaxis or microbial magnetoreception. Recent discovery of novel MTB outside the traditionally recognized taxonomic lineages suggests that MTB diversity across the domain Bacteria are considerably underestimated, which limits understanding of the taxonomic distribution and evolutionary origin of magnetosome organelle biogenesis. RESULTS Here, we perform the most comprehensive metagenomic analysis available of MTB communities and reconstruct metagenome-assembled MTB genomes from diverse ecosystems. Discovery of MTB in acidic peatland soils suggests widespread MTB occurrence in waterlogged soils in addition to subaqueous sediments and water bodies. A total of 168 MTB draft genomes have been reconstructed, which represent nearly a 3-fold increase over the number currently available and more than double the known MTB species at the genome level. Phylogenomic analysis reveals that these genomes belong to 13 Bacterial phyla, six of which were previously not known to include MTB. These findings indicate a much wider taxonomic distribution of magnetosome organelle biogenesis across the domain Bacteria than previously thought. Comparative genome analysis reveals a vast diversity of magnetosome gene clusters involved in magnetosomal biogenesis in terms of gene content and synteny residing in distinct taxonomic lineages. Phylogenetic analyses of core magnetosome proteins in this largest available and taxonomically diverse dataset support an unexpectedly early evolutionary origin of magnetosome biomineralization, likely ancestral to the origin of the domain Bacteria. CONCLUSIONS These findings expand the taxonomic and phylogenetic diversity of MTB across the domain Bacteria and shed new light on the origin and evolution of microbial magnetoreception. Potential biogenesis of the magnetosome organelle in the close descendants of the last bacterial common ancestor has important implications for our understanding of the evolutionary history of bacterial cellular complexity and emphasizes the biological significance of the magnetosome organelle. Video Abstract.
Collapse
Affiliation(s)
- Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Wensi Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Greig A Paterson
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, L69 7ZE, Liverpool, UK
| | - Qiyun Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, ACT, Canberra, 2601, Australia
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, ACT, Canberra, 2601, Australia
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China.
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Liu P, Liu Y, Zhao X, Roberts AP, Zhang H, Zheng Y, Wang F, Wang L, Menguy N, Pan Y, Li J. Diverse phylogeny and morphology of magnetite biomineralized by magnetotactic cocci. Environ Microbiol 2020; 23:1115-1129. [PMID: 32985765 DOI: 10.1111/1462-2920.15254] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 01/29/2023]
Abstract
Magnetotactic bacteria (MTB) are diverse prokaryotes that produce magnetic nanocrystals within intracellular membranes (magnetosomes). Here, we present a large-scale analysis of diversity and magnetosome biomineralization in modern magnetotactic cocci, which are the most abundant MTB morphotypes in nature. Nineteen novel magnetotactic cocci species are identified phylogenetically and structurally at the single-cell level. Phylogenetic analysis demonstrates that the cocci cluster into an independent branch from other Alphaproteobacteria MTB, that is, within the Etaproteobacteria class in the Proteobacteria phylum. Statistical analysis reveals species-specific biomineralization of magnetosomal magnetite morphologies. This further confirms that magnetosome biomineralization is controlled strictly by the MTB cell and differs among species or strains. The post-mortem remains of MTB are often preserved as magnetofossils within sediments or sedimentary rocks, yet paleobiological and geological interpretation of their fossil record remains challenging. Our results indicate that magnetofossil morphology could be a promising proxy for retrieving paleobiological information about ancient MTB.
Collapse
Affiliation(s)
- Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, Australia
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, Australia
| | - Heng Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yue Zheng
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Fuxian Wang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, China
| | - Nicolas Menguy
- France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China.,IMPMC, CNRS UMR 7590, Sorbonne Universités, MNHN, UPMC, IRD UMR 206, Paris, France
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Uzun M, Alekseeva L, Krutkina M, Koziaeva V, Grouzdev D. Unravelling the diversity of magnetotactic bacteria through analysis of open genomic databases. Sci Data 2020; 7:252. [PMID: 32737307 PMCID: PMC7449369 DOI: 10.1038/s41597-020-00593-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/03/2020] [Indexed: 11/17/2022] Open
Abstract
Magnetotactic bacteria (MTB) are prokaryotes that possess genes for the synthesis of membrane-bounded crystals of magnetite or greigite, called magnetosomes. Despite over half a century of studying MTB, only about 60 genomes have been sequenced. Most belong to Proteobacteria, with a minority affiliated with the Nitrospirae, Omnitrophica, Planctomycetes, and Latescibacteria. Due to the scanty information available regarding MTB phylogenetic diversity, little is known about their ecology, evolution and about the magnetosome biomineralization process. This study presents a large-scale search of magnetosome biomineralization genes and reveals 38 new MTB genomes. Several of these genomes were detected in the phyla Elusimicrobia, Candidatus Hydrogenedentes, and Nitrospinae, where magnetotactic representatives have not previously been reported. Analysis of the obtained putative magnetosome biomineralization genes revealed a monophyletic origin capable of putative greigite magnetosome synthesis. The ecological distributions of the reconstructed MTB genomes were also analyzed and several patterns were identified. These data suggest that open databases are an excellent source for obtaining new information of interest.
Collapse
Affiliation(s)
- Maria Uzun
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia. .,Lomonosov Moscow State University, Moscow, Russia.
| | - Lolita Alekseeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Maria Krutkina
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
| | - Veronika Koziaeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
| | - Denis Grouzdev
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
| |
Collapse
|
32
|
Amor M, Mathon FP, Monteil CL, Busigny V, Lefevre CT. Iron-biomineralizing organelle in magnetotactic bacteria: function, synthesis and preservation in ancient rock samples. Environ Microbiol 2020; 22:3611-3632. [PMID: 32452098 DOI: 10.1111/1462-2920.15098] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/22/2022]
Abstract
Magnetotactic bacteria (MTB) are ubiquitous aquatic microorganisms that incorporate iron from their environment to synthesize intracellular nanoparticles of magnetite (Fe3 O4 ) or greigite (Fe3 S4 ) in a genetically controlled manner. Magnetite and greigite magnetic phases allow MTB to swim towards redox transition zones where they thrive. MTB may represent some of the oldest microorganisms capable of synthesizing minerals on Earth and have been proposed to significantly impact the iron biogeochemical cycle by immobilizing soluble iron into crystals that subsequently fossilize in sedimentary rocks. In the present article, we describe the distribution of MTB in the environment and discuss the possible function of the magnetite and greigite nanoparticles. We then provide an overview of the chemical mechanisms leading to iron mineralization in MTB. Finally, we update the methods used for the detection of MTB crystals in sedimentary rocks and present their occurrences in the geological record.
Collapse
Affiliation(s)
- Matthieu Amor
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - François P Mathon
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France.,Institut de Physique du Globe de Paris, Université de Paris, CNRS, Paris, F-75005, France
| | - Caroline L Monteil
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Vincent Busigny
- Institut de Physique du Globe de Paris, Université de Paris, CNRS, Paris, F-75005, France.,Institut Universitaire de France, Paris, 75005, France
| | - Christopher T Lefevre
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| |
Collapse
|
33
|
Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ. Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol 2020; 18:241-256. [PMID: 32055027 DOI: 10.1038/s41579-020-0323-1] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
Abstract
The function of cells in their native habitat often cannot be reliably predicted from genomic data or from physiology studies of isolates. Traditional experimental approaches to study the function of taxonomically and metabolically diverse microbiomes are limited by their destructive nature, low spatial resolution or low throughput. Recently developed technologies can offer new insights into cellular function in natural and human-made systems and how microorganisms interact with and shape the environments that they inhabit. In this Review, we provide an overview of these next-generation physiology approaches and discuss how the non-destructive analysis of cellular phenotypes, in combination with the separation of the target cells for downstream analyses, provide powerful new, complementary ways to study microbiome function. We anticipate that the widespread application of next-generation physiology approaches will transform the field of microbial ecology and dramatically improve our understanding of how microorganisms function in their native environment.
Collapse
Affiliation(s)
- Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
| | - Viola Krukenberg
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Rachel L Spietz
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Zackary J Jay
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| |
Collapse
|
34
|
Microbial communities involved in the methane cycle in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe. Antonie van Leeuwenhoek 2019; 112:1801-1814. [PMID: 31372944 DOI: 10.1007/s10482-019-01308-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Although arctic and subarctic lakes are important sources of methane, the emission of which will increase due to the melting of permafrost, the processes related to the methane cycle in such environments are far from being comprehensively understood. Here we studied the microbial communities in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe using high-throughput sequencing of the 16S rRNA and methyl coenzyme M reductase subunit A genes. Hydrogenotrophic methanogens of the order Methanomicrobiales were abundant, both in the water column and in sediments, while the share of acetoclastic Methanosaetaceae decreased with the depth of sediments. Members of the Methanomassiliicoccales order were absent in the water but abundant in the deep sediments. Archaea known to perform anaerobic oxidation of methane were not found. The bacterial component of the microbial community in the bottom water layer included oxygenic (Cyanobacteria) and anoxygenic (Chlorobi) phototrophs, aerobic Type I methanotrophs, methylotrophs, syntrophs, and various organotrophs. In deeper sediments the diversity of the microbial community decreased, and it became dominated by methanogenic archaea and the members of the Bathyarchaeota, Chloroflexi and Deltaproteobacteria. This study shows that the sediments of a subarctic meromictic lake contain a taxonomically and metabolically diverse community potentially capable of complete mineralization of organic matter.
Collapse
|
35
|
Leão P, Le Nagard L, Yuan H, Cypriano J, Da Silva-Neto I, Bazylinski DA, Acosta-Avalos D, de Barros HL, Hitchcock AP, Lins U, Abreu F. Magnetosome magnetite biomineralization in a flagellated protist: evidence for an early evolutionary origin for magnetoreception in eukaryotes. Environ Microbiol 2019; 22:1495-1506. [PMID: 31188524 DOI: 10.1111/1462-2920.14711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 11/30/2022]
Abstract
The most well-recognized magnetoreception behaviour is that of the magnetotactic bacteria (MTB), which synthesize membrane-bounded magnetic nanocrystals called magnetosomes via a biologically controlled process. The magnetic minerals identified in prokaryotic magnetosomes are magnetite (Fe3 O4 ) and greigite (Fe3 S4 ). Magnetosome crystals, regardless of composition, have consistent, species-specific morphologies and single-domain size range. Because of these features, magnetosome magnetite crystals possess specific properties in comparison to abiotic, chemically synthesized magnetite. Despite numerous discoveries regarding MTB phylogeny over the last decades, this diversity is still considered underestimated. Characterization of magnetotactic microorganisms is important as it might provide insights into the origin and establishment of magnetoreception in general, including eukaryotes. Here, we describe the magnetotactic behaviour and characterize the magnetosomes from a flagellated protist using culture-independent methods. Results strongly suggest that, unlike previously described magnetotactic protists, this flagellate is capable of biomineralizing its own anisotropic magnetite magnetosomes, which are aligned in complex aggregations of multiple chains within the cell. This organism has a similar response to magnetic field inversions as MTB. Therefore, this eukaryotic species might represent an early origin of magnetoreception based on magnetite biomineralization. It should add to the definition of parameters and criteria to classify biogenic magnetite in the fossil record.
Collapse
Affiliation(s)
- Pedro Leão
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas Le Nagard
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Hao Yuan
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Jefferson Cypriano
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Inácio Da Silva-Neto
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, USA
| | | | | | - Adam P Hitchcock
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Ulysses Lins
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Phylogenetic and Structural Identification of a Novel Magnetotactic Deltaproteobacteria Strain, WYHR-1, from a Freshwater Lake. Appl Environ Microbiol 2019; 85:AEM.00731-19. [PMID: 31053584 DOI: 10.1128/aem.00731-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/29/2019] [Indexed: 11/20/2022] Open
Abstract
Magnetotactic bacteria (MTB) are phylogenetically diverse prokaryotes that are able to biomineralize intracellular, magnetic chains of magnetite or greigite nanocrystals called magnetosomes. Simultaneous characterization of MTB phylogeny and biomineralization is crucial but challenging because most MTB are extremely difficult to culture. We identify a large rod, bean-like MTB (tentatively named WYHR-1) from freshwater sediments of Weiyang Lake, Xi'an, China, using a coupled fluorescence and scanning electron microscopy approach at the single-cell scale. Phylogenetic analysis of 16S rRNA gene sequences indicates that WYHR-1 is a novel genus from the Deltaproteobacteria class. Transmission electron microscope observations reveal that WYHR-1 cells contain tens of magnetite magnetosomes that are organized into a single chain bundle along the cell long axis. Mature WYHR-1 magnetosomes are bullet-shaped, straight, and elongated along the [001] direction, with a large flat end terminated by a {100} face at the base and a conical top. This crystal morphology is distinctively different from bullet-shaped magnetosomes produced by other MTB in the Deltaproteobacteria class and the Nitrospirae phylum. This indicates that WYHR-1 may have a different crystal growth process and mechanism from other species, which results from species-specific magnetosome biomineralization in MTB.IMPORTANCE Magnetotactic bacteria (MTB) represent a model system for understanding biomineralization and are also studied intensively in biogeomagnetic and paleomagnetic research. However, many uncultured MTB strains have not been identified phylogenetically or investigated structurally at the single-cell level, which limits comprehensive understanding of MTB diversity and their role in biomineralization. We have identified a novel MTB strain, WYHR-1, from a freshwater lake using a coupled fluorescence and scanning electron microscopy approach at the single-cell scale. Our analyses further indicate that strain WYHR-1 represents a novel genus from the Deltaproteobacteria class. In contrast to bullet-shaped magnetosomes produced by other MTB in the Deltaproteobacteria class and the Nitrospirae phylum, WYHR-1 magnetosomes are bullet-shaped, straight, and highly elongated along the [001] direction, are terminated by a large {100} face at their base, and have a conical top. Our findings imply that, consistent with phylogenetic diversity of MTB, bullet-shaped magnetosomes have diverse crystal habits and growth patterns.
Collapse
|
37
|
Lin W, Kirschvink JL, Paterson GA, Bazylinski DA, Pan Y. On the origin of microbial magnetoreception. Natl Sci Rev 2019; 7:472-479. [PMID: 34692062 PMCID: PMC8288953 DOI: 10.1093/nsr/nwz065] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 11/15/2022] Open
Abstract
A broad range of organisms, from prokaryotes to higher animals, have the ability to sense and utilize Earth's geomagnetic field—a behavior known as magnetoreception. Although our knowledge of the physiological mechanisms of magnetoreception has increased substantially over recent decades, the origin of this behavior remains a fundamental question in evolutionary biology. Despite this, there is growing evidence that magnetic iron mineral biosynthesis by prokaryotes may represent the earliest form of biogenic magnetic sensors on Earth. Here, we integrate new data from microbiology, geology and nanotechnology, and propose that initial biomineralization of intracellular iron nanoparticles in early life evolved as a mechanism for mitigating the toxicity of reactive oxygen species (ROS), as ultraviolet radiation and free-iron-generated ROS would have been a major environmental challenge for life on early Earth. This iron-based system could have later been co-opted as a magnetic sensor for magnetoreception in microorganisms, suggesting an origin of microbial magnetoreception as the result of the evolutionary process of exaptation.
Collapse
Affiliation(s)
- Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China
| | - Joseph L Kirschvink
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152–8551, Japan
| | - Greig A Paterson
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZE, UK
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Kadnikov VV, Mardanov AV, Beletsky AV, Antsiferov DV, Kovalyova AA, Karnachuk OV, Ravin NV. Sulfur-Oxidizing Bacteria Dominate in the Water from a Flooded Coal Mine Shaft in Kuzbass. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719010107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Dieudonné A, Pignol D, Prévéral S. Magnetosomes: biogenic iron nanoparticles produced by environmental bacteria. Appl Microbiol Biotechnol 2019; 103:3637-3649. [PMID: 30903215 DOI: 10.1007/s00253-019-09728-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/10/2023]
Abstract
The scientific community's interest in magnetotactic bacteria has increased substantially in recent decades. These prokaryotes have the particularity of synthesizing nanomagnets, called magnetosomes. The majority of research is based on several scientific questions. Where do magnetotactic bacteria live, what are their characteristics, and why are they magnetic? What are the molecular phenomena of magnetosome biomineralization and what are the physical characteristics of magnetosomes? In addition to scientific curiosity to better understand these stunning organisms, there are biotechnological opportunities to consider. Magnetotactic bacteria, as well as magnetosomes, are used in medical applications, for example cancer treatment, or in environmental ones, for example bioremediation. In this mini-review, we investigated all the aspects mentioned above and summarized the currently available knowledge.
Collapse
Affiliation(s)
- Anissa Dieudonné
- UMR 7265, Aix Marseille Univ, CEA, CNRS, BIAM, LBC, Saint Paul-Lez-Durance, France
| | - David Pignol
- UMR 7265, Aix Marseille Univ, CEA, CNRS, BIAM, LBC, Saint Paul-Lez-Durance, France
| | - Sandra Prévéral
- UMR 7265, Aix Marseille Univ, CEA, CNRS, BIAM, LBC, Saint Paul-Lez-Durance, France.
| |
Collapse
|
40
|
Hershey OS, Kallmeyer J, Wallace A, Barton MD, Barton HA. High Microbial Diversity Despite Extremely Low Biomass in a Deep Karst Aquifer. Front Microbiol 2018; 9:2823. [PMID: 30534116 PMCID: PMC6275181 DOI: 10.3389/fmicb.2018.02823] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
Despite the importance of karst aquifers as a source of drinking water, little is known about the role of microorganisms in maintaining the quality of this water. One of the limitations in exploring the microbiology of these environments is access, which is usually limited to wells and surface springs. In this study, we compared the microbiology of the Madison karst aquifer sampled via the potentiometric lakes of Wind Cave with surface sampling wells and a spring. Our data indicated that only the Streeter Well (STR), which is drilled into the same hydrogeologic domain as the Wind Cave Lakes (WCL), allowed access to water with the same low biomass (1.56-9.25 × 103 cells mL-1). Filtration of ∼300 L of water from both of these sites through a 0.2 μm filter allowed the collection of sufficient cells for DNA extraction, PCR amplification of 16S rRNA gene sequences, and identification through pyrosequencing. The results indicated that bacteria (with limited archaea and no detectable eukaryotic organisms) dominated both water samples; however, there were significant taxonomic differences in the bacterial populations of the samples. The STR sample was dominated by a single phylotype within the Gammaproteobacteria (Order Acidithiobacillales), which dramatically reduced the overall diversity and species richness of the population. In WCL, despite less organic carbon, the bacterial population was significantly more diverse, including significant contributions from the Gammaproteobacteria, Firmicutes, Chloroflexi, Actinobacteria, Planctomycetes, Fusobacter, and Omnitrophica phyla. Comparisons with similar oligotrophic environments suggest that karst aquifers have a greater species richness than comparable surface environs. These data also demonstrate that Wind Cave provides a unique opportunity to sample a deep, subterranean aquifer directly, and that the microbiology of such aquifers may be more complex than previously anticipated.
Collapse
Affiliation(s)
- Olivia S Hershey
- Department of Biology, University of Akron, Akron, OH, United States
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Andrew Wallace
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, United States
| | | | - Hazel A Barton
- Department of Biology, University of Akron, Akron, OH, United States.,Department of Geosciences, University of Akron, Akron, OH, United States
| |
Collapse
|
41
|
Teng Z, Zhang Y, Zhang W, Pan H, Xu J, Huang H, Xiao T, Wu LF. Diversity and Characterization of Multicellular Magnetotactic Prokaryotes From Coral Reef Habitats of the Paracel Islands, South China Sea. Front Microbiol 2018; 9:2135. [PMID: 30271390 PMCID: PMC6142882 DOI: 10.3389/fmicb.2018.02135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 02/01/2023] Open
Abstract
While multicellular magnetotactic prokaryotes (MMPs) are ubiquitous in marine environments, the diversity of MMPs in sediments of coral reef ecosystems has rarely been reported. In this study, we made an investigation on the diversity and characteristics of MMPs in sediments at 11 stations in coral reef habitats of the Paracel Islands. The results showed that MMPs were present at nine stations, with spherical mulberry-like MMPs (s-MMPs) found at all stations and ellipsoidal pineapple-like MMPs (e-MMPs) found at seven stations. The maximum abundance of MMPs was 6 ind./cm3. Phylogenetic analysis revealed the presence of one e-MMP species and five s-MMP species including two species of a new genus. The results indicate that coral reef habitats of the Paracel Islands have a high diversity of MMPs that bio-mineralize multiple intracellular chains of iron crystals and play important role in iron cycling in such oligotrophic environment. These observations provide new perspective of the diversity of MMPs in general and expand knowledge of the occurrence of MMPs in coral reef habitats.
Collapse
Affiliation(s)
- Zhaojie Teng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuyang Zhang
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Jianhong Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Hui Huang
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Long-Fei Wu
- Aix Marseille University, CNRS, LCB, Marseille, France.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| |
Collapse
|
42
|
ColorEM: analytical electron microscopy for element-guided identification and imaging of the building blocks of life. Histochem Cell Biol 2018; 150:509-520. [PMID: 30120552 PMCID: PMC6182685 DOI: 10.1007/s00418-018-1707-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2018] [Indexed: 12/22/2022]
Abstract
Nanometer-scale identification of multiple targets is crucial to understand how biomolecules regulate life. Markers, or probes, of specific biomolecules help to visualize and to identify. Electron microscopy (EM), the highest resolution imaging modality, provides ultrastructural information where several subcellular structures can be readily identified. For precise tagging of (macro)molecules, electron-dense probes, distinguishable in gray-scale EM, are being used. However, practically these genetically-encoded or immune-targeted probes are limited to three targets. In correlated microscopy, fluorescent signals are overlaid on the EM image, but typically without the nanometer-scale resolution and limited to visualization of few targets. Recently, analytical methods have become more sensitive, which has led to a renewed interest to explore these for imaging of elements and molecules in cells and tissues in EM. Here, we present the current state of nanoscale imaging of cells and tissues using energy dispersive X-ray analysis (EDX), electron energy loss spectroscopy (EELS), cathodoluminescence (CL), and touch upon secondary ion mass spectroscopy at the nanoscale (NanoSIMS). ColorEM is the term encompassing these analytical techniques the results of which are then displayed as false-color at the EM scale. We highlight how ColorEM will become a strong analytical nano-imaging tool in life science microscopy.
Collapse
|
43
|
Liu J, Zhang W, Du H, Leng X, Li JH, Pan H, Xu J, Wu LF, Xiao T. Seasonal changes in the vertical distribution of two types of multicellular magnetotactic prokaryotes in the sediment of Lake Yuehu, China. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:475-484. [PMID: 29687636 DOI: 10.1111/1758-2229.12652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There are two genetically distinct morphological types of multicellular magnetotactic prokaryotes (MMPs) in the intertidal zone of Lake Yuehu (China): ellipsoidal MMPs (eMMPs) and spherical MMPs (sMMPs). We studied the vertical distribution of both types of MMPs in the sediment at Lake Yuehu during 1 year. Both types of MMPs were observed at sediment depths ranging from 1 to 34 cm, depending on the seasons. The eMMPs distributed at depths of 2-34 cm during spring, 1-11 cm during summer, 2-21 cm during autumn and 9-32 cm during winter. The eMMP species Candidatus Magnetananas rongchenensis, with magnetite magnetosomes, dominated at all distribution depths. These results suggested that Ca. M. rongchenensis migrated vertically during four seasons. The vertical profiles of oxidation-reduction potential (ORP) in Lake Yuehu changed seasonally, and these changes coincided with the seasonal distribution of MMPs, suggesting that the ORP affected the vertical distribution of MMPs. In addition, high concentrations of ammonium and silicate were associated with low abundances of MMPs.
Collapse
Affiliation(s)
- Jia Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100864, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Marseille, Beijing-Qingdao-Sanya
| | - Haijian Du
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoyun Leng
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jin-Hua Li
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Marseille, Beijing-Qingdao-Sanya
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Marseille, Beijing-Qingdao-Sanya
| | - Jianhong Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology Chinese Academy of Sciences, Qingdao 266071, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Marseille, Beijing-Qingdao-Sanya
- Aix-Marseille Univ, CNRS, LCB, Marseille, 31 chemin Joseph Aiguier, F-13402, France
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Marseille, Beijing-Qingdao-Sanya
| |
Collapse
|
44
|
Lin W, Zhang W, Zhao X, Roberts AP, Paterson GA, Bazylinski DA, Pan Y. Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. ISME JOURNAL 2018; 12:1508-1519. [PMID: 29581530 PMCID: PMC5955933 DOI: 10.1038/s41396-018-0098-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 11/09/2022]
Abstract
The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth's magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and "Candidatus Lambdaproteobacteria" classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB.
Collapse
Affiliation(s)
- Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China. .,Institutions of Earth Science, Chinese Academy of Sciences, Beijing, 100029, China. .,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Wensi Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.,Institutions of Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China.,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia
| | - Greig A Paterson
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.,Institutions of Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZE, UK
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China. .,Institutions of Earth Science, Chinese Academy of Sciences, Beijing, 100029, China. .,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China. .,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
45
|
Islam T, Peng C, Ali I. Morphological and cellular diversity of magnetotactic bacteria: A review. J Basic Microbiol 2017; 58:378-389. [PMID: 29112284 DOI: 10.1002/jobm.201700383] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 11/12/2022]
Abstract
Magnetotactic bacteria (MTB) are getting much attention in the recent years due to the biomineralization in their magnetosomes (MS). MS are unique organelles that are bio-mineralized due to MTB. MS contains nanosized crystal minerals of magnetite or greigite covered by bilayer lipid membrane, which are originated from cytoplasmic membrane (CM). MS are organized as an ordered chain into the cell which acts as a miniature compass needle. Furthermore, the biodiversity of MTB and their distribution is principally linked with the characteristics and growths of the MS. MTB are often considered as a part of the bacterial biomass from all of the aquatic environments. There have been a lot of genes that control the functions of MTB by accumulating as clusters of genomes such as magnetosomes genomic island (MAI). Therefore, in the present review, the function of the genes and proteins has been highlighted, which are mainly associated with the construction and formation of MS. In addition, the biodiversity, morphology and cell biology of MTB is discussed in greater detail to understand the formation of MS crystals by MTB.
Collapse
Affiliation(s)
- Tariqul Islam
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Changsheng Peng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Imran Ali
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
46
|
Rivas-Marín E, Devos DP. The Paradigms They Are a-Changin': past, present and future of PVC bacteria research. Antonie van Leeuwenhoek 2017; 111:785-799. [PMID: 29058138 PMCID: PMC5945725 DOI: 10.1007/s10482-017-0962-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/10/2017] [Indexed: 11/22/2022]
Abstract
These are exciting times for PVC researchers! The PVC superphylum is composed of the bacterial phyla Planctomycetes, Verrucomicrobia, Chlamydiae (those three founders giving it its name), Lentisphaerae and Kirimatiellaeota as well as some uncultured candidate phyla, such as the Candidatus Omnitrophica (previously known as OP3). Despite early debates, most of the disagreements that surround this group of bacteria have been recently resolved. In this article, we review the history of the study of PVC bacteria, with a particular focus on the misinterpretations that emerged early in the field and their resolution. We begin with a historical perspective that describes the relevant facts of PVC research from the early times when they were not yet termed PVC. Those were controversial times and we refer to them as the “discovery age” of the field. We continue by describing new discoveries due to novel techniques and data that combined with the reinterpretations of old ones have contributed to solve most of the discordances and we refer to these times as the “illumination age” of PVC research. We follow by arguing that we are just entering the “golden age” of PVC research and that the future of this growing community is looking bright. We finish by suggesting a few of the directions that PVC researches might take in the future.
Collapse
Affiliation(s)
- Elena Rivas-Marín
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, University Pablo de Olavide, Carretera Utrera, km 1, 41013, Seville, Spain
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, University Pablo de Olavide, Carretera Utrera, km 1, 41013, Seville, Spain.
| |
Collapse
|
47
|
Lin W, Pan Y, Bazylinski DA. Diversity and ecology of and biomineralization by magnetotactic bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:345-356. [PMID: 28557300 DOI: 10.1111/1758-2229.12550] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/20/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Magnetotactic bacteria (MTB) biomineralize intracellular, membrane-bounded crystals of magnetite (Fe3 O4 ) and/or greigite (Fe3 S4 ) called magnetosomes. MTB play important roles in the geochemical cycling of iron, sulfur, nitrogen and carbon. Significantly, they also represent an intriguing model system not just for the study of microbial biomineralization but also for magnetoreception, prokaryotic organelle formation and microbial biogeography. Here we review current knowledge on the ecology of and biomineralization by MTB, with an emphasis on more recent reports of unexpected ecological and phylogenetic findings regarding MTB. In this study, we conducted a search of public metagenomic databases and identified six novel magnetosome gene cluster-containing genomic fragments affiliated with the Deltaproteobacteria and Gammaproteobacteria classes of the Proteobacteria phylum, the Nitrospirae phylum and the Planctomycetes phylum from the deep subseafloor, marine oxygen minimum zone, groundwater biofilm and estuary sediment, thereby extending our knowledge on the diversity and distribution of MTB as well deriving important information as to their ecophysiology. We point out that the increasing availability of sequence data will facilitate researchers to systematically explore the ecology and biomineralization of MTB even further.
Collapse
Affiliation(s)
- Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, 100029, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| |
Collapse
|
48
|
Andrei AŞ, Baricz A, Robeson MS, Păuşan MR, Tămaş T, Chiriac C, Szekeres E, Barbu-Tudoran L, Levei EA, Coman C, Podar M, Banciu HL. Hypersaline sapropels act as hotspots for microbial dark matter. Sci Rep 2017; 7:6150. [PMID: 28733590 PMCID: PMC5522462 DOI: 10.1038/s41598-017-06232-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 06/12/2017] [Indexed: 12/04/2022] Open
Abstract
Present-day terrestrial analogue sites are crucial ground truth proxies for studying life in geochemical conditions close to those assumed to be present on early Earth or inferred to exist on other celestial bodies (e.g. Mars, Europa). Although hypersaline sapropels are border-of-life habitats with moderate occurrence, their microbiological and physicochemical characterization lags behind. Here, we study the diversity of life under low water activity by describing the prokaryotic communities from two disparate hypersaline sapropels (Transylvanian Basin, Romania) in relation to geochemical milieu and pore water chemistry, while inferring their role in carbon cycling by matching taxa to known taxon-specific biogeochemical functions. The polyphasic approach combined deep coverage SSU rRNA gene amplicon sequencing and bioinformatics with RT-qPCR and physicochemical investigations. We found that sapropels developed an analogous elemental milieu and harbored prokaryotes affiliated with fifty-nine phyla, among which the most abundant were Proteobacteria, Bacteroidetes and Chloroflexi. Containing thirty-two candidate divisions and possibly undocumented prokaryotic lineages, the hypersaline sapropels were found to accommodate one of the most diverse and novel ecosystems reported to date and may contribute to completing the phylogenetic branching of the tree of life.
Collapse
Affiliation(s)
- Adrian-Ştefan Andrei
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania. .,Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Center of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.
| | - Andreea Baricz
- National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, Cluj-Napoca, Romania
| | - Michael Scott Robeson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.,Interstitial Genomics, LLC, Longmont, 80501, Colorado, USA
| | | | - Tudor Tămaş
- Department of Geology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Cecilia Chiriac
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania.,National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, Cluj-Napoca, Romania
| | - Edina Szekeres
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania.,National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Erika Andrea Levei
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Cristian Coman
- National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, Cluj-Napoca, Romania
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Horia Leonard Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania.
| |
Collapse
|
49
|
Doud DFR, Woyke T. Novel approaches in function-driven single-cell genomics. FEMS Microbiol Rev 2017; 41:538-548. [PMID: 28591840 PMCID: PMC5812545 DOI: 10.1093/femsre/fux009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/21/2017] [Indexed: 12/27/2022] Open
Abstract
Deeper sequencing and improved bioinformatics in conjunction with single-cell and metagenomic approaches continue to illuminate undercharacterized environmental microbial communities. This has propelled the 'who is there, and what might they be doing' paradigm to the uncultivated and has already radically changed the topology of the tree of life and provided key insights into the microbial contribution to biogeochemistry. While characterization of 'who' based on marker genes can describe a large fraction of the community, answering 'what are they doing' remains the elusive pinnacle for microbiology. Function-driven single-cell genomics provides a solution by using a function-based screen to subsample complex microbial communities in a targeted manner for the isolation and genome sequencing of single cells. This enables single-cell sequencing to be focused on cells with specific phenotypic or metabolic characteristics of interest. Recovered genomes are conclusively implicated for both encoding and exhibiting the feature of interest, improving downstream annotation and revealing activity levels within that environment. This emerging approach has already improved our understanding of microbial community functioning and facilitated the experimental analysis of uncharacterized gene product space. Here we provide a comprehensive review of strategies that have been applied for function-driven single-cell genomics and the future directions we envision.
Collapse
Affiliation(s)
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| |
Collapse
|
50
|
Single-Cell Resolution of Uncultured Magnetotactic Bacteria via Fluorescence-Coupled Electron Microscopy. Appl Environ Microbiol 2017; 83:AEM.00409-17. [PMID: 28389550 PMCID: PMC5452806 DOI: 10.1128/aem.00409-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/05/2017] [Indexed: 12/02/2022] Open
Abstract
Magnetotactic bacteria (MTB) form intracellular chain-assembled nanocrystals of magnetite or greigite termed magnetosomes. The characterization of magnetosome crystals requires electron microscopy due to their nanoscopic sizes. However, electron microscopy does not provide phylogenetic information for MTB. We have developed a strategy for the simultaneous and rapid phylogenetic and biomineralogical characterization of uncultured MTB at the single-cell level. It consists of four steps: (i) enrichment of MTB cells from an environmental sample, (ii) 16S rRNA gene sequencing of MTB, and (iii) fluorescence in situ hybridization analyses coordinated with (iv) transmission or scanning electron microscopy of the probe-hybridized cells. The application of this strategy identified a magnetotactic Gammaproteobacteria strain, SHHR-1, from brackish sediments collected from the Shihe River estuary in Qinhuangdao City, China. SHHR-1 magnetosomes are elongated prismatic magnetites which can be idealized as hexagonal prisms. Taxonomic groups of uncultured MTB were also identified in freshwater sediments from Lake Miyun in northern Beijing via this novel coordinated fluorescence and scanning electron microscopy method based on four group-specific rRNA-targeted probes. Our analyses revealed that major magnetotactic taxonomic groups can be accurately determined only with coordinated scanning electron microscopy observations on fluorescently labeled single cells due to limited group coverage and specificity for existing group-specific MTB fluorescence in situ hybridization (FISH) probes. Our reported strategy is simple and efficient, offers great promise toward investigating the diversity and biomineralization of MTB, and may also be applied to other functional groups of microorganisms. IMPORTANCE Magnetotactic bacteria (MTB) are phylogenetically diverse and biomineralize morphologically diverse magnetic nanocrystals of magnetite or greigite in intracellular structures termed magnetosomes. However, many uncultured MTB strains have not been phylogenetically identified or structurally investigated at the single-cell level, which limits our comprehensive understanding of the diversity of MTB and their role in biomineralization. We developed a fluorescence-coupled electron microscopy method for the rapid phylogenetic and biomineralogical characterization of uncultured MTB at the single-cell level. Using this novel method, we successfully identified taxonomic groups of several uncultured MTB and one novel magnetotactic Gammaproteobacteria strain, SHHR-1, from natural environments. Our analyses further indicate that strain SHHR-1 forms elongated prismatic magnetites. Our findings provide a promising strategy for the rapid characterization of phylogenetic and biomineralogical properties of uncultured MTB at the single-cell level. Furthermore, due to its simplicity and generalized methodology, this strategy can also be useful in the study of the diversity and biomineralization properties of microbial taxa involved in other mineralization processes.
Collapse
|