1
|
Tuffet R, Carvalho G, Godeux AS, Mazzamurro F, Rocha EPC, Laaberki MH, Venner S, Charpentier X. Manipulation of natural transformation by AbaR-type islands promotes fixation of antibiotic resistance in Acinetobacter baumannii. Proc Natl Acad Sci U S A 2024; 121:e2409843121. [PMID: 39288183 PMCID: PMC11441513 DOI: 10.1073/pnas.2409843121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
The opportunistic pathogen Acinetobacter baumannii, carries variants of A. baumannii resistance islands (AbaR)-type genomic islands conferring multidrug resistance. Their pervasiveness in the species has remained enigmatic. The dissemination of AbaRs is intricately linked to their horizontal transfer via natural transformation, a process through which bacteria can import and recombine exogenous DNA, effecting allelic recombination, genetic acquisition, and deletion. In experimental populations of the closely related pathogenic Acinetobacter nosocomialis, we quantified the rates at which these natural transformation events occur between individuals. When integrated into a model of population dynamics, they lead to the swift removal of AbaRs from the population, contrasting with the high prevalence of AbaRs in genomes. Yet, genomic analyses show that nearly all AbaRs specifically disrupt comM, a gene encoding a helicase critical for natural transformation. We found that such disruption impedes gene acquisition, and deletion, while moderately impacting acquisition of single nucleotide polymorphism. A mathematical evolutionary model demonstrates that AbaRs inserted into comM gain a selective advantage over AbaRs inserted in sites that do not inhibit or completely inhibit transformation, in line with the genomic observations. The persistence of AbaRs can be ascribed to their integration into a specific gene, diminishing the likelihood of their removal from the bacterial genome. This integration preserves the acquisition and elimination of alleles, enabling the host bacterium-and thus its AbaR-to adapt to unpredictable environments and persist over the long term. This work underscores how manipulation of natural transformation by mobile genetic elements can drive the prevalence of multidrug resistance.
Collapse
Affiliation(s)
- Rémi Tuffet
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon 69007, France
- UMR CNRS 5558, Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - Gabriel Carvalho
- UMR CNRS 5558, Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - Anne-Sophie Godeux
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon 69007, France
- Université de Lyon, VetAgro Sup, Marcy l'Etoile 69280, France
| | - Fanny Mazzamurro
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
- Collège Doctoral, Sorbonne Université, Paris F-75005, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Maria-Halima Laaberki
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon 69007, France
- Université de Lyon, VetAgro Sup, Marcy l'Etoile 69280, France
| | - Samuel Venner
- UMR CNRS 5558, Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - Xavier Charpentier
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon 69007, France
| |
Collapse
|
2
|
Erkelens AM, Qin L, van Erp B, Miguel-Arribas A, Abia D, Keek HGJ, Markus D, Cajili MKM, Schwab S, Meijer WJJ, Dame R. The B. subtilis Rok protein is an atypical H-NS-like protein irresponsive to physico-chemical cues. Nucleic Acids Res 2022; 50:12166-12185. [PMID: 36408910 PMCID: PMC9757077 DOI: 10.1093/nar/gkac1064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Nucleoid-associated proteins (NAPs) play a central role in chromosome organization and environment-responsive transcription regulation. The Bacillus subtilis-encoded NAP Rok binds preferentially AT-rich regions of the genome, which often contain genes of foreign origin that are silenced by Rok binding. Additionally, Rok plays a role in chromosome architecture by binding in genomic clusters and promoting chromosomal loop formation. Based on this, Rok was proposed to be a functional homolog of E. coli H-NS. However, it is largely unclear how Rok binds DNA, how it represses transcription and whether Rok mediates environment-responsive gene regulation. Here, we investigated Rok's DNA binding properties and the effects of physico-chemical conditions thereon. We demonstrate that Rok is a DNA bridging protein similar to prototypical H-NS-like proteins. However, unlike these proteins, the DNA bridging ability of Rok is not affected by changes in physico-chemical conditions. The DNA binding properties of the Rok interaction partner sRok are affected by salt concentration. This suggests that in a minority of Bacillus strains Rok activity can be modulated by sRok, and thus respond indirectly to environmental stimuli. Despite several functional similarities, the absence of a direct response to physico-chemical changes establishes Rok as disparate member of the H-NS family.
Collapse
Affiliation(s)
| | | | - Bert van Erp
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands,Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Andrés Miguel-Arribas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - David Abia
- Bioinformatics Facility, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - Helena G J Keek
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Dorijn Markus
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Marc K M Cajili
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands,Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Samuel Schwab
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands,Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Wilfried J J Meijer
- Correspondence may also be addressed to Wilfried J.J. Meijer. Tel: +34 91 196 4539;
| | - Remus T Dame
- To whom correspondence should be addressed. Tel: +31 71 527 5605;
| |
Collapse
|
3
|
Miguel-Arribas A, Wu LJ, Michaelis C, Yoshida KI, Grohmann E, Meijer WJJ. Conjugation Operons in Gram-Positive Bacteria with and without Antitermination Systems. Microorganisms 2022; 10:microorganisms10030587. [PMID: 35336162 PMCID: PMC8955417 DOI: 10.3390/microorganisms10030587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
Genes involved in the same cellular process are often clustered together in an operon whose expression is controlled by an upstream promoter. Generally, the activity of the promoter is strictly controlled. However, spurious transcription undermines this strict regulation, particularly affecting large operons. The negative effects of spurious transcription can be mitigated by the presence of multiple terminators inside the operon, in combination with an antitermination system. Antitermination systems modify the transcription elongation complexes and enable them to bypass terminators. Bacterial conjugation is the process by which a conjugative DNA element is transferred from a donor to a recipient cell. Conjugation involves many genes that are mostly organized in one or a few large operons. It has recently been shown that many conjugation operons present on plasmids replicating in Gram-positive bacteria possess a bipartite antitermination system that allows not only many terminators inside the conjugation operon to be bypassed, but also the differential expression of a subset of genes. Here, we show that some conjugation operons on plasmids belonging to the Inc18 family of Gram-positive broad host-range plasmids do not possess an antitermination system, suggesting that the absence of an antitermination system may have advantages. The possible (dis)advantages of conjugation operons possessing (or not) an antitermination system are discussed.
Collapse
Affiliation(s)
- Andrés Miguel-Arribas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Instituto de Biología Molecular Eladio Viñuela (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain;
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Medical Faculty, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK;
| | - Claudia Michaelis
- School of Life Sciences and Technology, Berlin University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany;
| | - Ken-ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan;
| | - Elisabeth Grohmann
- School of Life Sciences and Technology, Berlin University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany;
- Correspondence: (E.G.); (W.J.J.M.); Tel.: +49-30-4504-3942 (E.G.); +34-91-196-4539 (W.J.J.M.)
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Instituto de Biología Molecular Eladio Viñuela (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain;
- Correspondence: (E.G.); (W.J.J.M.); Tel.: +49-30-4504-3942 (E.G.); +34-91-196-4539 (W.J.J.M.)
| |
Collapse
|
4
|
Val-Calvo J, Miguel-Arribas A, Abia D, Wu LJ, Meijer WJJ. pLS20 is the archetype of a new family of conjugative plasmids harboured by Bacillus species. NAR Genom Bioinform 2021; 3:lqab096. [PMID: 34729475 PMCID: PMC8557374 DOI: 10.1093/nargab/lqab096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Conjugation plays important roles in genome plasticity, adaptation and evolution but is also the major horizontal gene-transfer route responsible for spreading toxin, virulence and antibiotic resistance genes. A better understanding of the conjugation process is required for developing drugs and strategies to impede the conjugation-mediated spread of these genes. So far, only a limited number of conjugative elements have been studied. For most of them, it is not known whether they represent a group of conjugative elements, nor about their distribution patterns. Here we show that pLS20 from the Gram-positive bacterium Bacillus subtilis is the prototype conjugative plasmid of a family of at least 35 members that can be divided into four clades, and which are harboured by different Bacillus species found in different global locations and environmental niches. Analyses of their phylogenetic relationship and their conjugation operons have expanded our understanding of a family of conjugative plasmids of Gram-positive origin.
Collapse
Affiliation(s)
- Jorge Val-Calvo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049, Madrid, Spain
| | - Andrés Miguel-Arribas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049, Madrid, Spain
| | - David Abia
- Bioinformatics Facility, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049, Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Wilfried J J Meijer
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049, Madrid, Spain
| |
Collapse
|
5
|
Miguel-Arribas A, Val-Calvo J, Gago-Córdoba C, Izquierdo JM, Abia D, Wu LJ, Errington J, Meijer WJJ. A novel bipartite antitermination system widespread in conjugative elements of Gram-positive bacteria. Nucleic Acids Res 2021; 49:5553-5567. [PMID: 33999173 PMCID: PMC8191782 DOI: 10.1093/nar/gkab360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022] Open
Abstract
Transcriptional regulation allows adaptive and coordinated gene expression, and is essential for life. Processive antitermination systems alter the transcription elongation complex to allow the RNA polymerase to read through multiple terminators in an operon. Here, we describe the discovery of a novel bipartite antitermination system that is widespread among conjugative elements from Gram-positive bacteria, which we named conAn. This system is composed of a large RNA element that exerts antitermination, and a protein that functions as a processivity factor. Besides allowing coordinated expression of very long operons, we show that these systems allow differential expression of genes within an operon, and probably contribute to strict regulation of the conjugation genes by minimizing the effects of spurious transcription. Mechanistic features of the conAn system are likely to decisively influence its host range, with important implications for the spread of antibiotic resistance and virulence genes.
Collapse
Affiliation(s)
- Andrés Miguel-Arribas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - Jorge Val-Calvo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - César Gago-Córdoba
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - José M Izquierdo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - David Abia
- Bioinformatics Facility, Centro de Biología Molecular "Severo Ochoa", (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle Upon Tyne, NE2 4AX, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle Upon Tyne, NE2 4AX, UK
| | - Wilfried J J Meijer
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| |
Collapse
|
6
|
Meijer WJJ, Boer DR, Ares S, Alfonso C, Rojo F, Luque-Ortega JR, Wu LJ. Multiple Layered Control of the Conjugation Process of the Bacillus subtilis Plasmid pLS20. Front Mol Biosci 2021; 8:648468. [PMID: 33816561 PMCID: PMC8014075 DOI: 10.3389/fmolb.2021.648468] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Bacterial conjugation is the main horizontal gene transfer route responsible for the spread of antibiotic resistance, virulence and toxin genes. During conjugation, DNA is transferred from a donor to a recipient cell via a sophisticated channel connecting the two cells. Conjugation not only affects many different aspects of the plasmid and the host, ranging from the properties of the membrane and the cell surface of the donor, to other developmental processes such as competence, it probably also poses a burden on the donor cell due to the expression of the large number of genes involved in the conjugation process. Therefore, expression of the conjugation genes must be strictly controlled. Over the past decade, the regulation of the conjugation genes present on the conjugative Bacillus subtilis plasmid pLS20 has been studied using a variety of methods including genetic, biochemical, biophysical and structural approaches. This review focuses on the interplay between RcopLS20, RappLS20 and Phr*pLS20, the proteins that control the activity of the main conjugation promoter Pc located upstream of the conjugation operon. Proper expression of the conjugation genes requires the following two fundamental elements. First, conjugation is repressed by default and an intercellular quorum-signaling system is used to sense conditions favorable for conjugation. Second, different layers of regulation act together to repress the Pc promoter in a strict manner but allowing rapid activation. During conjugation, ssDNA is exported from the cell by a membrane-embedded DNA translocation machine. Another membrane-embedded DNA translocation machine imports ssDNA in competent cells. Evidences are reviewed indicating that conjugation and competence are probably mutually exclusive processes. Some of the questions that remain unanswered are discussed.
Collapse
Affiliation(s)
- Wilfried J J Meijer
- Laboratory 402, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | - Saúl Ares
- Laboratory 35, C. Grupo Interdisciplinar de Sistemas Complejos and Departamento de Biología de Sistemas, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Carlos Alfonso
- Laboratory B08, Systems Biochemistry of Bacterial Division Lab, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Fernando Rojo
- Laboratory 216, Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Juan R Luque-Ortega
- Laboratory S07, Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
7
|
Gago-Córdoba C, Val-Calvo J, Abia D, Díaz-Talavera A, Miguel-Arribas A, Aguilar Suárez R, van Dijl JM, Wu LJ, Meijer WJJ. A Conserved Class II Type Thioester Domain-Containing Adhesin Is Required for Efficient Conjugation in Bacillus subtilis. mBio 2021; 12:e00104-21. [PMID: 33727345 PMCID: PMC8092201 DOI: 10.1128/mbio.00104-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
Conjugation, the process by which a DNA element is transferred from a donor to a recipient cell, is the main horizontal gene transfer route responsible for the spread of antibiotic resistance and virulence genes. Contact between a donor and a recipient cell is a prerequisite for conjugation, because conjugative DNA is transferred into the recipient via a channel connecting the two cells. Conjugative elements encode proteins dedicated to facilitating the recognition and attachment to recipient cells, also known as mating pair formation. A subgroup of the conjugative elements is able to mediate efficient conjugation during planktonic growth, and mechanisms facilitating mating pair formation will be particularly important in these cases. Conjugative elements of Gram-negative bacteria encode conjugative pili, also known as sex pili, some of which are retractile. Far less is known about mechanisms that promote mating pair formation in Gram-positive bacteria. The conjugative plasmid pLS20 of the Gram-positive bacterium Bacillus subtilis allows efficient conjugation in liquid medium. Here, we report the identification of an adhesin gene in the pLS20 conjugation operon. The N-terminal region of the adhesin contains a class II type thioester domain (TED) that is essential for efficient conjugation, particularly in liquid medium. We show that TED-containing adhesins are widely conserved in Gram-positive bacteria, including pathogens where they often play crucial roles in pathogenesis. Our study is the first to demonstrate the involvement of a class II type TED-containing adhesin in conjugation.IMPORTANCE Bacterial resistance to antibiotics has become a serious health care problem. The spread of antibiotic resistance genes between bacteria of the same or different species is often mediated by a process named conjugation, where a donor cell transfers DNA to a recipient cell through a connecting channel. The first step in conjugation is recognition and attachment of the donor to a recipient cell. Little is known about this first step, particularly in Gram-positive bacteria. Here, we show that the conjugative plasmid pLS20 of Bacillus subtilis encodes an adhesin protein that is essential for effective conjugation. This adhesin protein has a structural organization similar to adhesins produced by other Gram-positive bacteria, including major pathogens, where the adhesins serve in attachment to host tissues during colonization and infection. Our findings may thus also open novel avenues to design drugs that inhibit the spread of antibiotic resistance by blocking the first recipient-attachment step in conjugation.
Collapse
Affiliation(s)
- César Gago-Córdoba
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | - Jorge Val-Calvo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | - David Abia
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | - Alberto Díaz-Talavera
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | - Andrés Miguel-Arribas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | - Rocío Aguilar Suárez
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Wilfried J J Meijer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| |
Collapse
|
8
|
Jiao J, Tian CF. Ancestral zinc-finger bearing protein MucR in alpha-proteobacteria: A novel xenogeneic silencer? Comput Struct Biotechnol J 2020; 18:3623-3631. [PMID: 33304460 PMCID: PMC7710501 DOI: 10.1016/j.csbj.2020.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
The MucR/Ros family protein is conserved in alpha-proteobacteria and characterized by its zinc-finger motif that has been proposed as the ancestral domain from which the eukaryotic C2H2 zinc-finger structure evolved. In the past decades, accumulated evidences have revealed MucR as a pleiotropic transcriptional regulator that integrating multiple functions such as virulence, symbiosis, cell cycle and various physiological processes. Scattered reports indicate that MucR mainly acts as a repressor, through oligomerization and binding to multiple sites of AT-rich target promoters. The N-terminal region and zinc-finger bearing C-terminal region of MucR mediate oligomerization and DNA-binding, respectively. These features are convergent to those of xenogeneic silencers such as H-NS, MvaT, Lsr2 and Rok, which are mainly found in other lineages. Phylogenetic analysis of MucR homologs suggests an ancestral origin of MucR in alpha- and delta-proteobacteria. Multiple independent duplication and lateral gene transfer events contribute to the diversity and phyletic distribution of MucR. Finally, we posed questions which remain unexplored regarding the putative roles of MucR as a xenogeneic silencer and a general manager in balancing adaptation and regulatory integration in the pangenome context.
Collapse
Affiliation(s)
- Jian Jiao
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China.,MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Chang-Fu Tian
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China.,MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Singh PK, Serrano E, Ramachandran G, Miguel-Arribas A, Gago-Cordoba C, Val-Calvo J, López-Pérez A, Alfonso C, Wu LJ, Luque-Ortega JR, Meijer WJJ. Reversible regulation of conjugation of Bacillus subtilis plasmid pLS20 by the quorum sensing peptide responsive anti-repressor RappLS20. Nucleic Acids Res 2020; 48:10785-10801. [PMID: 33045732 PMCID: PMC7641744 DOI: 10.1093/nar/gkaa797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing plays crucial roles in bacterial communication including in the process of conjugation, which has large economical and health-related impacts by spreading antibiotic resistance. The conjugative Bacillus subtilis plasmid pLS20 uses quorum sensing to determine when to activate the conjugation genes. The main conjugation promoter, Pc, is by default repressed by a regulator RcopLS20 involving DNA looping. A plasmid-encoded signalling peptide, Phr*pLS20, inactivates the anti-repressor of RcopLS20, named RappLS20, which belongs to the large group of RRNPP family of regulatory proteins. Here we show that DNA looping occurs through interactions between two RcopLS20 tetramers, each bound to an operator site. We determined the relative promoter strengths for all the promoters involved in synthesizing the regulatory proteins of the conjugation genes, and constructed an in vivo system uncoupling these regulatory genes to show that RappLS20 is sufficient for activating conjugation in vivo. We also show that RappLS20 actively detaches RcopLS20 from DNA by preferentially acting on the RcopLS20 molecules involved in DNA looping, resulting in sequestration but not inactivation of RcopLS20. Finally, results presented here in combination with our previous results show that activation of conjugation inhibits competence and competence development inhibits conjugation, indicating that both processes are mutually exclusive.
Collapse
Affiliation(s)
- Praveen K Singh
- Centro de Biología Molecular “Severo Ochoa’’ (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Ester Serrano
- Centro de Biología Molecular “Severo Ochoa’’ (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Gayetri Ramachandran
- Centro de Biología Molecular “Severo Ochoa’’ (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Andrés Miguel-Arribas
- Centro de Biología Molecular “Severo Ochoa’’ (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - César Gago-Cordoba
- Centro de Biología Molecular “Severo Ochoa’’ (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Jorge Val-Calvo
- Centro de Biología Molecular “Severo Ochoa’’ (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Arancha López-Pérez
- Centro de Biología Molecular “Severo Ochoa’’ (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), C. Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Juan R Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), C. Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Wilfried J J Meijer
- Centro de Biología Molecular “Severo Ochoa’’ (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| |
Collapse
|
10
|
Abstract
The ancestral strain of Bacillus subtilis NCIB3610 (3610) bears a large, low-copy-number plasmid, called pBS32, that was lost during the domestication of laboratory strain derivatives. Selection against pBS32 may have been because it encodes a potent inhibitor of natural genetic competence (ComI), as laboratory strains were selected for high-frequency transformation. Previous studies have shown that pBS32 and its sibling, pLS32 in Bacillus subtilis subsp. natto, encode a replication initiation protein (RepN), a plasmid partitioning system (AlfAB), a biofilm inhibitor (RapP), and an alternative sigma factor (SigN) that can induce plasmid-mediated cell death in response to DNA damage. Here, we review the literature on pBS32/pLS32, the genes found on it, and their associated phenotypes.
Collapse
|
11
|
Horizontally Acquired Homologs of Xenogeneic Silencers: Modulators of Gene Expression Encoded by Plasmids, Phages and Genomic Islands. Genes (Basel) 2020; 11:genes11020142. [PMID: 32013150 PMCID: PMC7074111 DOI: 10.3390/genes11020142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023] Open
Abstract
Acquisition of mobile elements by horizontal gene transfer can play a major role in bacterial adaptation and genome evolution by providing traits that contribute to bacterial fitness. However, gaining foreign DNA can also impose significant fitness costs to the host bacteria and can even produce detrimental effects. The efficiency of horizontal acquisition of DNA is thought to be improved by the activity of xenogeneic silencers. These molecules are a functionally related group of proteins that possess affinity for the acquired DNA. Binding of xenogeneic silencers suppresses the otherwise uncontrolled expression of genes from the newly acquired nucleic acid, facilitating their integration to the bacterial regulatory networks. Even when the genes encoding for xenogeneic silencers are part of the core genome, homologs encoded by horizontally acquired elements have also been identified and studied. In this article, we discuss the current knowledge about horizontally acquired xenogeneic silencer homologs, focusing on those encoded by genomic islands, highlighting their distribution and the major traits that allow these proteins to become part of the host regulatory networks.
Collapse
|
12
|
Qin L, Erkelens AM, Ben Bdira F, Dame RT. The architects of bacterial DNA bridges: a structurally and functionally conserved family of proteins. Open Biol 2019; 9:190223. [PMID: 31795918 PMCID: PMC6936261 DOI: 10.1098/rsob.190223] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Every organism across the tree of life compacts and organizes its genome with architectural chromatin proteins. While eukaryotes and archaea express histone proteins, the organization of bacterial chromosomes is dependent on nucleoid-associated proteins. In Escherichia coli and other proteobacteria, the histone-like nucleoid structuring protein (H-NS) acts as a global genome organizer and gene regulator. Functional analogues of H-NS have been found in other bacterial species: MvaT in Pseudomonas species, Lsr2 in actinomycetes and Rok in Bacillus species. These proteins complement hns- phenotypes and have similar DNA-binding properties, despite their lack of sequence homology. In this review, we focus on the structural and functional characteristics of these four architectural proteins. They are able to bridge DNA duplexes, which is key to genome compaction, gene regulation and their response to changing conditions in the environment. Structurally the domain organization and charge distribution of these proteins are conserved, which we suggest is at the basis of their conserved environment responsive behaviour. These observations could be used to find and validate new members of this protein family and to predict their response to environmental changes.
Collapse
Affiliation(s)
- L. Qin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - A. M. Erkelens
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - F. Ben Bdira
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - R. T. Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
13
|
Abstract
Natural transformation is a major mechanism of horizontal gene transfer. Although the genes required for natural transformation are nearly ubiquitous in bacteria, it is commonly reported that some isolates of transformable species fail to transform. In Legionella pneumophila, we show that the inability of multiple clinical isolates to transform is caused by a conjugative element that shuts down expression of genes required for transformation. Diverse conjugative elements in the Legionella genus have adopted the same inhibition strategy. We propose that inhibition of natural transformation by episomal and integrated conjugative elements can explain the lack of transformability of isolates and also the apparent lack of natural transformation in some species. Natural transformation (i.e., the uptake of DNA and its stable integration in the chromosome) is a major mechanism of horizontal gene transfer in bacteria. Although the vast majority of bacterial genomes carry the genes involved in natural transformation, close relatives of naturally transformable species often appear not competent for natural transformation. In addition, unexplained extensive variations in the natural transformation phenotype have been reported in several species. Here, we addressed this phenomenon by conducting a genome-wide association study (GWAS) on a panel of isolates of the opportunistic pathogen Legionella pneumophila. GWAS revealed that the absence of the transformation phenotype is associated with the conjugative plasmid pLPL. The plasmid inhibits transformation by simultaneously silencing the genes required for DNA uptake and recombination. We identified a small RNA (sRNA), RocRp, as the sole plasmid-encoded factor responsible for the silencing of natural transformation. RocRp is homologous to the highly conserved and chromosome-encoded sRNA RocR which controls the transient expression of the DNA uptake system. Assisted by the ProQ/FinO-domain RNA chaperone RocC, RocRp acts as a substitute of RocR, ensuring that the bacterial host of the conjugative plasmid does not become naturally transformable. Distinct homologs of this plasmid-encoded sRNA are found in diverse conjugative elements in other Legionella species. Their low to high prevalence may result in the lack of transformability of some isolates up to the apparent absence of natural transformation in the species. Generally, our work suggests that conjugative elements obscure the widespread occurrence of natural transformability in bacteria.
Collapse
|
14
|
Val-Calvo J, Luque-Ortega JR, Crespo I, Miguel-Arribas A, Abia D, Sánchez-Hevia DL, Serrano E, Gago-Córdoba C, Ares S, Alfonso C, Rojo F, Wu LJ, Boer DR, Meijer WJJ. Novel regulatory mechanism of establishment genes of conjugative plasmids. Nucleic Acids Res 2019; 46:11910-11926. [PMID: 30380104 PMCID: PMC6294495 DOI: 10.1093/nar/gky996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/10/2018] [Indexed: 11/12/2022] Open
Abstract
The principal route for dissemination of antibiotic resistance genes is conjugation by which a conjugative DNA element is transferred from a donor to a recipient cell. Conjugative elements contain genes that are important for their establishment in the new host, for instance by counteracting the host defense mechanisms acting against incoming foreign DNA. Little is known about these establishment genes and how they are regulated. Here, we deciphered the regulation mechanism of possible establishment genes of plasmid p576 from the Gram-positive bacterium Bacillus pumilus. Unlike the ssDNA promoters described for some conjugative plasmids, the four promoters of these p576 genes are repressed by a repressor protein, which we named Reg576. Reg576 also regulates its own expression. After transfer of the DNA, these genes are de-repressed for a period of time until sufficient Reg576 is synthesized to repress the promoters again. Complementary in vivo and in vitro analyses showed that different operator configurations in the promoter regions of these genes lead to different responses to Reg576. Each operator is bound with extreme cooperativity by two Reg576-dimers. The X-ray structure revealed that Reg576 has a Ribbon-Helix-Helix core and provided important insights into the high cooperativity of DNA recognition.
Collapse
Affiliation(s)
- Jorge Val-Calvo
- Department of Virology and Microbiology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Juan R Luque-Ortega
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Isidro Crespo
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Andrés Miguel-Arribas
- Department of Virology and Microbiology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - David Abia
- Bioinformatics Facility, Centro de Biología Molecular "Severo Ochoa"
| | | | - Ester Serrano
- Department of Virology and Microbiology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - César Gago-Córdoba
- Department of Virology and Microbiology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Saúl Ares
- Centro Nacional de Biotecnología (CSIC), Darwin 3, 28049 Madrid, Spain.,Grupo Interdisciplinar de Sistemas Complejos (GISC) and Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganes, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Fernando Rojo
- Centro Nacional de Biotecnología (CSIC), Darwin 3, 28049 Madrid, Spain
| | - Ling J Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle Upon Tyne, NE4AX, UK
| | - D Roeland Boer
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Wilfried J J Meijer
- Department of Virology and Microbiology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| |
Collapse
|
15
|
Kohler V, Keller W, Grohmann E. Regulation of Gram-Positive Conjugation. Front Microbiol 2019; 10:1134. [PMID: 31191478 PMCID: PMC6540685 DOI: 10.3389/fmicb.2019.01134] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022] Open
Abstract
Type IV Secretion Systems (T4SSs) are membrane-spanning multiprotein complexes dedicated to protein secretion or conjugative DNA transport (conjugation systems) in bacteria. The prototype and best-characterized T4SS is that of the Gram-negative soil bacterium Agrobacterium tumefaciens. For Gram-positive bacteria, only conjugative T4SSs have been characterized in some biochemical, structural, and mechanistic details. These conjugation systems are predominantly encoded by self-transmissible plasmids but are also increasingly detected on integrative and conjugative elements (ICEs) and transposons. Here, we report regulatory details of conjugation systems from Enterococcus model plasmids pIP501 and pCF10, Bacillus plasmid pLS1, Clostridium plasmid pCW3, and staphylococcal plasmid pSK41. In addition, regulation of conjugative processes of ICEs (ICEBs1, ICESt1, ICESt3) by master regulators belonging to diverse repressor families will be discussed. A special focus of this review lies on the comparison of regulatory mechanisms executed by proteins belonging to the RRNPP family. These regulators share a common fold and govern several essential bacterial processes, including conjugative transfer.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - Elisabeth Grohmann
- Life Sciences and Technology, Beuth University of Applied Sciences Berlin, Berlin, Germany
| |
Collapse
|
16
|
Duan B, Ding P, Hughes TR, Navarre WW, Liu J, Xia B. How bacterial xenogeneic silencer rok distinguishes foreign from self DNA in its resident genome. Nucleic Acids Res 2018; 46:10514-10529. [PMID: 30252102 PMCID: PMC6212790 DOI: 10.1093/nar/gky836] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/28/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022] Open
Abstract
Bacterial xenogeneic silencers play important roles in bacterial evolution by recognizing and inhibiting expression from foreign genes acquired through horizontal gene transfer, thereby buffering against potential fitness consequences of their misregulated expression. Here, the detailed DNA binding properties of Rok, a xenogeneic silencer in Bacillus subtilis, was studied using protein binding microarray, and the solution structure of its C-terminal DNA binding domain was determined in complex with DNA. The C-terminal domain of Rok adopts a typical winged helix fold, with a novel DNA recognition mechanism different from other winged helix proteins or xenogeneic silencers. Rok binds the DNA minor groove by forming hydrogen bonds to bases through N154, T156 at the N-terminal of α3 helix and R174 of wing W1, assisted by four lysine residues interacting electrostatically with DNA backbone phosphate groups. These structural features endow Rok with preference towards DNA sequences harboring AACTA, TACTA, and flexible multiple TpA steps, while rigid A-tracts are disfavored. Correspondingly, the Bacillus genomes containing Rok are rich in A-tracts and show a dramatic underrepresentation of AACTA and TACTA, which are significantly enriched in Rok binding regions. These observations suggest that the xenogeneic silencing protein and its resident genome may have evolved cooperatively.
Collapse
Affiliation(s)
- Bo Duan
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, School of Life Sciences, Peking University, Beijing 100871, China
| | - Pengfei Ding
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, School of Life Sciences, Peking University, Beijing 100871, China
| | - Timothy R Hughes
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - William Wiley Navarre
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jun Liu
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Miyano M, Tanaka K, Ishikawa S, Mori K, Miguel-Arribas A, Meijer WJJ, Yoshida KI. A novel method for transforming the thermophilic bacterium Geobacillus kaustophilus. Microb Cell Fact 2018; 17:127. [PMID: 30119674 PMCID: PMC6098629 DOI: 10.1186/s12934-018-0969-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial strains of the genus Geobacillus grow at high temperatures of 50-75 °C and could thus be useful for biotechnological applications. However, genetic manipulation of these species is difficult because the current techniques for transforming Geobacillus species are not efficient. In this study, we developed an easy and efficient method for transforming Geobacillus kaustophilus using the conjugative plasmid pLS20cat. RESULTS We constructed a transformation system comprising (i) a mobilizable Bacillus subtilis-G. kaustophilus shuttle plasmid named pGK1 that carries the elements for selection and replication in Geobacillus, and (ii) a pLS20cat-harboring B. subtilis donor strain expressing the dam methylase gene of Escherichia coli and the conjugation-stimulating rapLS20 gene of pLS20cat. This system can be used to efficiently introduce pGK1 into G. kaustophilus by mobilization in a pLS20cat-dependent way. Whereas the thermostable kanamycin marker and Geobacillus replication origin of pGK1 as well as expression of dam methylase in the donor were indispensable for mobilization, ectopic expression of rapLS20 increased its efficiency. In addition, the conditions of the recipient influenced mobilization efficiency: the highest mobilization efficiencies were obtained using recipient cells that were in the exponential growth phase. Furthermore, elimination of the origin of transfer from pLS20cat enhanced the mobilization. CONCLUSIONS We describe a novel method of plasmid mobilization into G. kaustophilus recipient from B. subtilis donor depending on the helper function of pLS20cat, which enables simple, rapid, and easy transformation of the thermophilic Gram-positive bacterium.
Collapse
Grants
- 17K19237 Ministry of Education, Culture, Sports, Science and Technology
- 18H02128 Ministry of Education, Culture, Sports, Science and Technology
- Bio2013-41489-P Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BIO2016-77883-C2-1-P Ministerio de Economía, Industria y Competitividad, Gobierno de España
Collapse
Affiliation(s)
- Megumi Miyano
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| | - Kosei Tanaka
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| | - Shu Ishikawa
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| | - Kotaro Mori
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| | - Andrés Miguel-Arribas
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Instituto de Biología Molecular ‘Eladio Viñuela’ (CSIC), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Instituto de Biología Molecular ‘Eladio Viñuela’ (CSIC), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Ken-ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| |
Collapse
|
18
|
Rapid conjugative mobilization of a 100 kb segment of Bacillus subtilis chromosomal DNA is mediated by a helper plasmid with no ability for self-transfer. Microb Cell Fact 2018; 17:13. [PMID: 29374463 PMCID: PMC5787278 DOI: 10.1186/s12934-017-0855-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/20/2017] [Indexed: 11/14/2022] Open
Abstract
Background The conjugative plasmid, pLS20, isolated from Bacillus subtilis natto, has an outstanding capacity for rapid self-transfer. In addition, it can function as a helper plasmid, mediating the mobilization of an independently replicating co-resident plasmid. Results In this study, the oriT sequence of pLS20cat (oriTLS20) was eliminated to obtain the plasmid, pLS20catΔoriT. This resulted in the complete loss of the conjugative transfer of the plasmid but still allowed it to mobilize a co-resident mobilizable plasmid. Moreover, pLS20catΔoriT was able to mobilize longer DNA segments, up to 113 kb of chromosomal DNA containing oriTLS20, after mixing the liquid cultures of the donor and recipient for only 15 min. Conclusions The chromosomal DNA mobilization mediated by pLS20catΔoriT will allow us to develop a novel genetic tool for the rapid, easy, and repetitive mobilization of longer DNA segments into a recipient chromosome.
Collapse
|
19
|
Miguel-Arribas A, Hao JA, Luque-Ortega JR, Ramachandran G, Val-Calvo J, Gago-Córdoba C, González-Álvarez D, Abia D, Alfonso C, Wu LJ, Meijer WJJ. The Bacillus subtilis Conjugative Plasmid pLS20 Encodes Two Ribbon-Helix-Helix Type Auxiliary Relaxosome Proteins That Are Essential for Conjugation. Front Microbiol 2017; 8:2138. [PMID: 29163424 PMCID: PMC5675868 DOI: 10.3389/fmicb.2017.02138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/19/2017] [Indexed: 12/15/2022] Open
Abstract
Bacterial conjugation is the process by which a conjugative element (CE) is transferred horizontally from a donor to a recipient cell via a connecting pore. One of the first steps in the conjugation process is the formation of a nucleoprotein complex at the origin of transfer (oriT), where one of the components of the nucleoprotein complex, the relaxase, introduces a site- and strand specific nick to initiate the transfer of a single DNA strand into the recipient cell. In most cases, the nucleoprotein complex involves, besides the relaxase, one or more additional proteins, named auxiliary proteins, which are encoded by the CE and/or the host. The conjugative plasmid pLS20 replicates in the Gram-positive Firmicute bacterium Bacillus subtilis. We have recently identified the relaxase gene and the oriT of pLS20, which are separated by a region of almost 1 kb. Here we show that this region contains two auxiliary genes that we name aux1LS20 and aux2LS20 , and which we show are essential for conjugation. Both Aux1LS20 and Aux2LS20 are predicted to contain a Ribbon-Helix-Helix DNA binding motif near their N-terminus. Analyses of the purified proteins show that Aux1LS20 and Aux2LS20 form tetramers and hexamers in solution, respectively, and that they both bind preferentially to oriTLS20 , although with different characteristics and specificities. In silico analyses revealed that genes encoding homologs of Aux1LS20 and/or Aux2LS20 are located upstream of almost 400 relaxase genes of the RelLS20 family (MOBL) of relaxases. Thus, Aux1LS20 and Aux2LS20 of pLS20 constitute the founding member of the first two families of auxiliary proteins described for CEs of Gram-positive origin.
Collapse
Affiliation(s)
- Andrés Miguel-Arribas
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - Jian-An Hao
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
- The Institute of Seawater Desalination and Multipurpose Utilization (SOA), Tianjin, China
| | | | - Gayetri Ramachandran
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - Jorge Val-Calvo
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - César Gago-Córdoba
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - Daniel González-Álvarez
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - David Abia
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Ling J. Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Wilfried J. J. Meijer
- Department of Virology and Microbiology, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
20
|
Singh PK, Bartalomej S, Hartmann R, Jeckel H, Vidakovic L, Nadell CD, Drescher K. Vibrio cholerae Combines Individual and Collective Sensing to Trigger Biofilm Dispersal. Curr Biol 2017; 27:3359-3366.e7. [PMID: 29056457 PMCID: PMC5678073 DOI: 10.1016/j.cub.2017.09.041] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/19/2017] [Accepted: 09/19/2017] [Indexed: 01/07/2023]
Abstract
Bacteria can generate benefits for themselves and their kin by living in multicellular, matrix-enclosed communities, termed biofilms, which are fundamental to microbial ecology and the impact bacteria have on the environment, infections, and industry [1, 2, 3, 4, 5, 6]. The advantages of the biofilm mode of life include increased stress resistance and access to concentrated nutrient sources [3, 7, 8]. However, there are also costs associated with biofilm growth, including the metabolic burden of biofilm matrix production, increased resource competition, and limited mobility inside the community [9, 10, 11]. The decision-making strategies used by bacteria to weigh the costs between remaining in a biofilm or actively dispersing are largely unclear, even though the dispersal transition is a central aspect of the biofilm life cycle and critical for infection transmission [12, 13, 14]. Using a combination of genetic and novel single-cell imaging approaches, we show that Vibrio cholerae integrates dual sensory inputs to control the dispersal response: cells use the general stress response, which can be induced via starvation, and they also integrate information about the local cell density and molecular transport conditions in the environment via the quorum sensing apparatus. By combining information from individual (stress response) and collective (quorum sensing) avenues of sensory input, biofilm-dwelling bacteria can make robust decisions to disperse from large biofilms under distress, while preventing premature dispersal when biofilm populations are small. These insights into triggers and regulators of biofilm dispersal are a key step toward actively inducing biofilm dispersal for technological and medical applications, and for environmental control of biofilms. Cells in V. cholerae biofilms decide to disperse by combining two sensory mechanisms Quorum sensing and RpoS provide information on different environmental parameters Integration of both sensory inputs yields robust and optimal dispersal decisions
Collapse
Affiliation(s)
- Praveen K Singh
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg 35043, Germany
| | - Sabina Bartalomej
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg 35043, Germany
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg 35043, Germany
| | - Hannah Jeckel
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg 35043, Germany; Department of Physics, Philipps-Universität Marburg, Renthof 6, Marburg 35032, Germany
| | - Lucia Vidakovic
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg 35043, Germany
| | - Carey D Nadell
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg 35043, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg 35043, Germany; Department of Physics, Philipps-Universität Marburg, Renthof 6, Marburg 35032, Germany.
| |
Collapse
|
21
|
Ramachandran G, Miguel-Arribas A, Abia D, Singh PK, Crespo I, Gago-Córdoba C, Hao JA, Luque-Ortega JR, Alfonso C, Wu LJ, Boer DR, Meijer WJJ. Discovery of a new family of relaxases in Firmicutes bacteria. PLoS Genet 2017; 13:e1006586. [PMID: 28207825 PMCID: PMC5313138 DOI: 10.1371/journal.pgen.1006586] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/16/2017] [Indexed: 11/19/2022] Open
Abstract
Antibiotic resistance is a serious global problem. Antibiotic resistance genes (ARG), which are widespread in environmental bacteria, can be transferred to pathogenic bacteria via horizontal gene transfer (HGT). Gut microbiomes are especially apt for the emergence and dissemination of ARG. Conjugation is the HGT route that is predominantly responsible for the spread of ARG. Little is known about conjugative elements of Gram-positive bacteria, including those of the phylum Firmicutes, which are abundantly present in gut microbiomes. A critical step in the conjugation process is the relaxase-mediated site- and strand-specific nick in the oriT region of the conjugative element. This generates a single-stranded DNA molecule that is transferred from the donor to the recipient cell via a connecting channel. Here we identified and characterized the relaxosome components oriT and the relaxase of the conjugative plasmid pLS20 of the Firmicute Bacillus subtilis. We show that the relaxase gene, named relLS20, is essential for conjugation, that it can function in trans and provide evidence that Tyr26 constitutes the active site residue. In vivo and in vitro analyses revealed that the oriT is located far upstream of the relaxase gene and that the nick site within oriT is located on the template strand of the conjugation genes. Surprisingly, the RelLS20 shows very limited similarity to known relaxases. However, more than 800 genes to which no function had been attributed so far are predicted to encode proteins showing significant similarity to RelLS20. Interestingly, these putative relaxases are encoded almost exclusively in Firmicutes bacteria. Thus, RelLS20 constitutes the prototype of a new family of relaxases. The identification of this novel relaxase family will have an important impact in different aspects of future research in the field of HGT in Gram-positive bacteria in general, and specifically in the phylum of Firmicutes, and in gut microbiome research.
Collapse
Affiliation(s)
- Gayetri Ramachandran
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Andrés Miguel-Arribas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - David Abia
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Praveen K. Singh
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Isidro Crespo
- XALOC beamline, ALBA synchrotron Light Source, Cerdanyola del Vallès, Barcelona, Spain
| | - César Gago-Córdoba
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Jian An Hao
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | - Carlos Alfonso
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Ling J. Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - D. Roeland Boer
- XALOC beamline, ALBA synchrotron Light Source, Cerdanyola del Vallès, Barcelona, Spain
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| |
Collapse
|
22
|
Seid CA, Smith JL, Grossman AD. Genetic and biochemical interactions between the bacterial replication initiator DnaA and the nucleoid-associated protein Rok in Bacillus subtilis. Mol Microbiol 2017; 103:798-817. [PMID: 27902860 DOI: 10.1111/mmi.13590] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 12/16/2022]
Abstract
We identified interactions between the conserved bacterial replication initiator and transcription factor DnaA and the nucleoid-associated protein Rok of Bacillus subtilis. DnaA binds directly to clusters of DnaA boxes at the origin of replication and elsewhere, including the promoters of several DnaA-regulated genes. Rok, an analog of H-NS from gamma-proteobacteria that affects chromosome architecture and of Lsr2 from Mycobacteria, binds A+T-rich sequences throughout the genome and represses expression of many genes. Using crosslinking and immunoprecipitation followed by deep sequencing (ChIP-seq), we found that DnaA was associated with eight previously identified regions containing clusters of DnaA boxes, plus 36 additional regions that were also bound by Rok. Association of DnaA with these additional regions appeared to be indirect as it was dependent on Rok and independent of the DNA-binding domain of DnaA. Gene expression and mutant analyses support a model in which DnaA and Rok cooperate to repress transcription of yxaJ, the yybNM operon and the sunA-bdbB operon. Our results indicate that DnaA modulates the activity of Rok. We postulate that this interaction might affect nucleoid architecture. Furthermore, DnaA might interact similarly with Rok analogues in other organisms.
Collapse
Affiliation(s)
- Charlotte A Seid
- Department of Biology, Massachusetts Institute of Technology, Building 68-530, Cambridge, MA, 02139, USA
| | - Janet L Smith
- Department of Biology, Massachusetts Institute of Technology, Building 68-530, Cambridge, MA, 02139, USA
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Building 68-530, Cambridge, MA, 02139, USA
| |
Collapse
|
23
|
ZpdN, a Plasmid-Encoded Sigma Factor Homolog, Induces pBS32-Dependent Cell Death in Bacillus subtilis. J Bacteriol 2016; 198:2975-2984. [PMID: 27551016 DOI: 10.1128/jb.00213-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/07/2016] [Indexed: 12/17/2022] Open
Abstract
The ancestral Bacillus subtilis strain 3610 contains an 84-kb plasmid called pBS32 that was lost during domestication of commonly used laboratory derivatives. Here we demonstrate that pBS32, normally present at 1 or 2 copies per cell, increases in copy number nearly 100-fold when cells are treated with the DNA-damaging agent mitomycin C. Mitomycin C treatment also caused cell lysis dependent on pBS32-borne prophage genes. ZpdN, a sigma factor homolog encoded by pBS32, was required for the plasmid response to DNA damage, and artificial expression of ZpdN was sufficient to induce pBS32 hyperreplication and cell death. Plasmid DNA released by cell death was protected by the capsid protein ZpbH, suggesting that the plasmid was packaged into a phagelike particle. The putative particles were further indicated by CsCl sedimentation but were not observed by electron microscopy and were incapable of killing B. subtilis cells extracellularly. We hypothesize that pBS32-mediated cell death releases a phagelike particle that is defective and unstable. IMPORTANCE Prophages are phage genomes stably integrated into the host bacterium's chromosome and less frequently are maintained as extrachromosomal plasmids. Here we report that the extrachromosomal plasmid pBS32 of Bacillus subtilis encodes a prophage that, when activated, kills the host. pBS32 also encodes both the sigma factor homolog ZpdN that is necessary and sufficient for prophage induction and the protein ComI, which is a potent inhibitor of DNA uptake by natural transformation. We provide evidence that the entire pBS32 sequence may be part of the prophage and thus that competence inhibition may be linked to lysogeny.
Collapse
|
24
|
Yakimov MM, Crisafi F, Messina E, Smedile F, Lopatina A, Denaro R, Pieper DH, Golyshin PN, Giuliano L. Analysis of defence systems and a conjugative IncP-1 plasmid in the marine polyaromatic hydrocarbons-degrading bacterium Cycloclasticus sp. 78-ME. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:508-519. [PMID: 27345842 DOI: 10.1111/1758-2229.12424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/24/2016] [Indexed: 06/06/2023]
Abstract
Marine prokaryotes have evolved a broad repertoire of defence systems to protect their genomes from lateral gene transfer including innate or acquired immune systems and infection-induced programmed cell suicide and dormancy. Here we report on the analysis of multiple defence systems present in the genome of the strain Cycloclasticus sp. 78-ME isolated from petroleum deposits of the tanker 'Amoco Milford Haven'. Cycloclasticus are ubiquitous bacteria globally important in polyaromatic hydrocarbons degradation in marine environments. Two 'defence islands' were identified in 78-ME genome: the first harbouring CRISPR-Cas with toxin-antitoxin system, while the second was composed by an array of genes for toxin-antitoxin and restriction-modification proteins. Among all identified spacers of CRISPR-Cas system only seven spacers match sequences of phages and plasmids. Furthermore, a conjugative plasmid p7ME01, which belongs to a new IncP-1θ ancestral archetype without any accessory mobile elements was found in 78-ME. Our results provide the context to the co-occurrence of diverse defence mechanisms in the genome of Cycloclasticus sp. 78-ME, which protect the genome of this highly specialized PAH-degrader. This study contributes to the further understanding of complex networks established in petroleum-based microbial communities.
Collapse
Affiliation(s)
- Michail M Yakimov
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, Messina, 98122, Italy
| | - Francesca Crisafi
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, Messina, 98122, Italy
| | - Enzo Messina
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, Messina, 98122, Italy
| | - Francesco Smedile
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, Messina, 98122, Italy
| | - Anna Lopatina
- Institute of Molecular Genetics and Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Renata Denaro
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, Messina, 98122, Italy
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstraße 7, Braunschweig, D-38124, Germany
| | - Peter N Golyshin
- School of Biological Sciences, Bangor University, ECW Bldg Deiniol Rd, Bangor, Gwynedd, LL57 2UW, United Kingdom
| | - Laura Giuliano
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, Messina, 98122, Italy
| |
Collapse
|
25
|
Yüksel M, Power JJ, Ribbe J, Volkmann T, Maier B. Fitness Trade-Offs in Competence Differentiation of Bacillus subtilis. Front Microbiol 2016; 7:888. [PMID: 27375604 PMCID: PMC4896167 DOI: 10.3389/fmicb.2016.00888] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/25/2016] [Indexed: 11/15/2022] Open
Abstract
In the stationary phase, Bacillus subtilis differentiates stochastically and transiently into the state of competence for transformation (K-state). The latter is associated with growth arrest, and it is unclear how the ability to develop competence is stably maintained, despite its cost. To quantify the effect differentiation has on the competitive fitness of B. subtilis, we characterized the competition dynamics between strains with different probabilities of entering the K-state. The relative fitness decreased with increasing differentiation probability both during the stationary phase and during outgrowth. When exposed to antibiotics inhibiting cell wall synthesis, transcription, and translation, cells that differentiated into the K-state showed a selective advantage compared to differentiation-deficient bacteria; this benefit did not require transformation. Although beneficial, the K-state was not induced by sub-MIC concentrations of antibiotics. Increasing the differentiation probability beyond the wt level did not significantly affect the competition dynamics with transient antibiotic exposure. We conclude that the competition dynamics are very sensitive to the fraction of competent cells under benign conditions but less sensitive during antibiotic exposure, supporting the picture of stochastic differentiation as a fitness trade-off.
Collapse
Affiliation(s)
- Melih Yüksel
- Department of Physics, University of Cologne Köln, Germany
| | | | - Jan Ribbe
- Department of Physics, University of Cologne Köln, Germany
| | | | - Berenike Maier
- Department of Physics, University of Cologne Köln, Germany
| |
Collapse
|
26
|
Rösch TC, Graumann PL. Induction of Plasmid Conjugation in Bacillus subtilis Is Bistable and Driven by a Direct Interaction of a Rap/Phr Quorum-sensing System with a Master Repressor. J Biol Chem 2015; 290:20221-32. [PMID: 26112413 DOI: 10.1074/jbc.m115.664110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 12/23/2022] Open
Abstract
Conjugation of plasmid pLS20 from Bacillus subtilis is limited to a time window between early and late exponential growth. Genetic evidence has suggested that pLS20-encoded protein RcoLS20 represses expression of a large conjugation operon, whereas Rap protein RapLS20 relieves repression. We show that RapLS20 is a true antirepressor protein that forms dimers in vivo and in vitro and that it directly binds to the repressor protein RcoLS20 in a 1:1 stoichiometry. We provide evidence that RapLS20 binds to the helix-turn-helix-containing domain of RcoLS20 in vivo, probably obstructing DNA binding of RcoLS20, as seen in competitive DNA binding experiments. The activity of RapLS20 in turn is counteracted by the addition of the cognate PhrLS20 peptide, which directly binds to the Rap protein and presumably induces a conformational change of the antirepressor. Thus, a Rap protein acts directly as an antirepressor protein during regulation of plasmid conjugation, turning on conjugation, and is counteracted by the PhrLS20 peptide, which, by analogy to known Rap/Phr systems, is secreted and taken back up into the cells, mediating cell density-driven regulation. Finally, we show that this switchlike process establishes a population heterogeneity, where up to 30% of the cells induce transcription of the conjugation operon.
Collapse
Affiliation(s)
- Thomas C Rösch
- From the LOEWE Zentrum für synthetische Mikrobiologie (SYNMIKRO), 35043 Marburg, Germany, the Spemann Graduate School of Biology and Medicine (SGBM), 79104 Freiburg, Germany, and the Fachbereich für Chemie, Hans-Meerwein Strasse, Universität Marburg, 35043 Marburg, Germany
| | - Peter L Graumann
- From the LOEWE Zentrum für synthetische Mikrobiologie (SYNMIKRO), 35043 Marburg, Germany, the Fachbereich für Chemie, Hans-Meerwein Strasse, Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
27
|
Jakobs M, Meinhardt F. What renders Bacilli genetically competent? A gaze beyond the model organism. Appl Microbiol Biotechnol 2014; 99:1557-70. [DOI: 10.1007/s00253-014-6316-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022]
|
28
|
Ramachandran G, Singh PK, Luque-Ortega JR, Yuste L, Alfonso C, Rojo F, Wu LJ, Meijer WJJ. A complex genetic switch involving overlapping divergent promoters and DNA looping regulates expression of conjugation genes of a gram-positive plasmid. PLoS Genet 2014; 10:e1004733. [PMID: 25340403 PMCID: PMC4207663 DOI: 10.1371/journal.pgen.1004733] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/03/2014] [Indexed: 11/22/2022] Open
Abstract
Plasmid conjugation plays a significant role in the dissemination of antibiotic resistance and pathogenicity determinants. Understanding how conjugation is regulated is important to gain insights into these features. Little is known about regulation of conjugation systems present on plasmids from Gram-positive bacteria. pLS20 is a native conjugative plasmid from the Gram-positive bacterium Bacillus subtilis. Recently the key players that repress and activate pLS20 conjugation have been identified. Here we studied in detail the molecular mechanism regulating the pLS20 conjugation genes using both in vivo and in vitro approaches. Our results show that conjugation is subject to the control of a complex genetic switch where at least three levels of regulation are integrated. The first of the three layers involves overlapping divergent promoters of different strengths regulating expression of the conjugation genes and the key transcriptional regulator RcoLS20. The second layer involves a triple function of RcoLS20 being a repressor of the main conjugation promoter and an activator and repressor of its own promoter at low and high concentrations, respectively. The third level of regulation concerns formation of a DNA loop mediated by simultaneous binding of tetrameric RcoLS20 to two operators, one of which overlaps with the divergent promoters. The combination of these three layers of regulation in the same switch allows the main conjugation promoter to be tightly repressed during conditions unfavorable to conjugation while maintaining the sensitivity to accurately switch on the conjugation genes when appropriate conditions occur. The implications of the regulatory switch and comparison with other genetic switches involving DNA looping are discussed. Plasmids are extrachromosomal, autonomously replicating units that are harbored by many bacteria. Many plasmids encode transfer function allowing them to be transferred into plasmid-free bacteria by a process named conjugation. Since many of them also carry antibiotic resistance genes, plasmid-mediated conjugation is a major mechanism in the dissemination of antibiotic resistance. In depth knowledge on the regulation of conjugation genes is a prerequisite to design measures interfering with the spread of antibiotic resistance. pLS20 is a conjugative plasmid of the soil bacterium Bacillus subtilis, which is also a gut commensal in animals and humans. Here we describe in detail the molecular mechanism by which the key transcriptional regulator tightly represses the conjugation genes during conditions unfavorable to conjugation without compromising the ability to switch on accurately the conjugation genes when appropriate. We found that conjugation is subject to the control of a unique genetic switch where at least three levels of regulation are integrated. The first level involves overlapping divergent promoters of different strengths. The second layer involves a triple function of the transcriptional regulator. And the third level of regulation concerns formation of a DNA loop mediated by the transcriptional regulator.
Collapse
Affiliation(s)
- Gayetri Ramachandran
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Praveen K. Singh
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | - Luis Yuste
- Centro Nacional de Biotecnología (CSIC), Canto Blanco, Madrid, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Fernando Rojo
- Centro Nacional de Biotecnología (CSIC), Canto Blanco, Madrid, Spain
| | - Ling J. Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
29
|
Unravelling the genetic basis for competence development of auxotrophic Bacillus licheniformis 9945A strains. Microbiology (Reading) 2014; 160:2136-2147. [DOI: 10.1099/mic.0.079236-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial natural genetic competence – well studied in Bacillus subtilis – enables cells to take up and integrate extracellularly supplied DNA into their own genome. However, little is known about competence development and its regulation in other members of the genus, although DNA uptake machineries are routinely encoded. Auxotrophic Bacillus licheniformis 9945A derivatives, obtained from repeated rounds of random mutagenesis, were long known to develop natural competence. Inspection of the colony morphology and extracellular enzyme secretion of two of these derivatives, M28 and M18, suggested that regulator genes are collaterally hit. M28 emerged as a 14 bp deletion mutant concomitantly displaying a shift in the reading frame of degS that encodes the sensor histidine kinase, which is part of the molecular switch that directs cells to genetic competence, the synthesis of extracellular enzymes or biofilm formation, while for M18, sequencing of the suspected gene revealed a 375 bp deletion in abrB, encoding the major transition state regulator. With respect to colony morphology, enzyme secretion and competence development, both of the mutations, when newly generated on the wild-type B. licheniformis 9945A genetic background, resulted in phenotypes resembling M28 and M18, respectively. All of the known naturally competent B. licheniformis representatives, hitherto thoroughly investigated in this regard, carry mutations in regulator genes, and hence genetic competence observed in domesticated strains supposedly results from deregulation.
Collapse
|
30
|
The presence of conjugative plasmid pLS20 affects global transcription of Its Bacillus subtilis host and confers beneficial stress resistance to cells. Appl Environ Microbiol 2013; 80:1349-58. [PMID: 24334659 DOI: 10.1128/aem.03154-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Conjugation activity of plasmid pLS20 from Bacillus subtilis subsp. natto is induced when cells are diluted into fresh medium and diminishes as cells enter into stationary-phase growth. Transcriptional profiling shows that during mid-exponential growth, more than 5% of the host genes are affected in the presence of the plasmid, in contrast to the minor changes seen in freshly diluted and stationary-phase cells. Changes occurred in many metabolic pathways, although pLS20 does not confer any detectable burden on its host cell, as well as in membrane and cell wall-associated processes, in the large motility operon, and in several other cellular processes. In agreement with these changes, we found considerable alterations in motility and enzyme activity and increased resistance against several different forms of stress in cells containing the plasmid, revealing that the presence of pLS20 has a broad impact on the physiology of its host cell and increases its stress resistance in multiple aspects. Additionally, we found that the lack of chromosomal gene yueB, known to encode a phage receptor protein, which is upregulated in cells containing pLS20, strongly reduced conjugation efficiency, revealing that pLS20 not only increases fitness of its host but also employs host proteins for efficient transfer into a new cell.
Collapse
|
31
|
Singh PK, Ramachandran G, Ramos-Ruiz R, Peiró-Pastor R, Abia D, Wu LJ, Meijer WJJ. Mobility of the native Bacillus subtilis conjugative plasmid pLS20 is regulated by intercellular signaling. PLoS Genet 2013; 9:e1003892. [PMID: 24204305 PMCID: PMC3814332 DOI: 10.1371/journal.pgen.1003892] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/05/2013] [Indexed: 01/06/2023] Open
Abstract
Horizontal gene transfer mediated by plasmid conjugation plays a significant role in the evolution of bacterial species, as well as in the dissemination of antibiotic resistance and pathogenicity determinants. Characterization of their regulation is important for gaining insights into these features. Relatively little is known about how conjugation of Gram-positive plasmids is regulated. We have characterized conjugation of the native Bacillus subtilis plasmid pLS20. Contrary to the enterococcal plasmids, conjugation of pLS20 is not activated by recipient-produced pheromones but by pLS20-encoded proteins that regulate expression of the conjugation genes. We show that conjugation is kept in the default “OFF” state and identified the master repressor responsible for this. Activation of the conjugation genes requires relief of repression, which is mediated by an anti-repressor that belongs to the Rap family of proteins. Using both RNA sequencing methodology and genetic approaches, we have determined the regulatory effects of the repressor and anti-repressor on expression of the pLS20 genes. We also show that the activity of the anti-repressor is in turn regulated by an intercellular signaling peptide. Ultimately, this peptide dictates the timing of conjugation. The implications of this regulatory mechanism and comparison with other mobile systems are discussed. Bacteria evolve rapidly due to their short generation time and their ability to exchange genetic material, which can occur via different processes, collectively named Horizontal Gene Transfer (HGT). Most bacteria contain, besides a single chromosome, autonomously replicating units called plasmids. Many plasmids carry genes enabling them to be transferred into plasmid-free bacteria. This process, called conjugation, contributes significantly to HGT. Many plasmids also contain antibiotic resistance genes. Therefore, plasmid conjugation plays a major role in the spread of antibiotic resistance. Understanding the regulation of conjugation genes is essential for designing strategies to combat the spread of antibiotic resistance. We have studied the regulation of the native plasmid pLS20 from Bacillus subtilis. Besides being a soil bacterium, B. subtilis is a gut commensal in animals and humans. Here we unraveled the mechanisms controlling conjugation and found that pLS20 conjugation genes become activated when plasmid-free recipient cells are present. We have identified the repressor protein that keeps conjugation in an ‘OFF’ state, and an anti-repressor that activates conjugation. The activity of the anti-repressor is inhibited by a pLS20-encoded peptide that is secreted from the cell and can be absorbed by cells, after a secondary processing step. Ultimately, it is the signaling-peptide that dictates when conjugation genes become activated.
Collapse
Affiliation(s)
- Praveen K. Singh
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Gayetri Ramachandran
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | - Ramón Peiró-Pastor
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - David Abia
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Ling J. Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
32
|
Plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J Bacteriol 2013; 195:4085-93. [PMID: 23836866 DOI: 10.1128/jb.00696-13] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Natural competence is a process by which bacteria construct a membrane-associated machine for the uptake and integration of exogenous DNA. Many bacteria harbor genes for the DNA uptake machinery and yet are recalcitrant to DNA uptake for unknown reasons. For example, domesticated laboratory strains of Bacillus subtilis are renowned for high-frequency natural transformation, but the ancestral B. subtilis strain NCIB3610 is poorly competent. Here we find that endogenous plasmid pBS32 encodes a small protein, ComI, that inhibits transformation in the 3610 strain. ComI is a single-pass trans-membrane protein that appears to functionally inhibit the competence DNA uptake machinery. Functional inhibition of transformation may be common, and abolishing such inhibitors could be the key to permitting convenient genetic manipulation of a variety of industrially and medically relevant bacteria.
Collapse
|