1
|
Vorimore F, Hölzer M, Liebler-Tenorio EM, Barf LM, Delannoy S, Vittecoq M, Wedlarski R, Lécu A, Scharf S, Blanchard Y, Fach P, Hsia RC, Bavoil PM, Rosselló-Móra R, Laroucau K, Sachse K. Evidence for the existence of a new genus Chlamydiifrater gen. nov. inside the family Chlamydiaceae with two new species isolated from flamingo (Phoenicopterus roseus): Chlamydiifrater phoenicopteri sp. nov. and Chlamydiifrater volucris sp. nov. Syst Appl Microbiol 2021; 44:126200. [PMID: 34298369 DOI: 10.1016/j.syapm.2021.126200] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022]
Abstract
The family Chlamydiaceae currently comprises a single genus Chlamydia, with 11 validly published species and seven more taxa. It includes the human pathogens Chlamydia (C.) trachomatis, C. pneumoniae and C. psittaci, a zoonotic agent causing avian chlamydiosis and human psittacosis, as well as other proven or potential pathogens in ruminants, birds, snakes, reptiles and turtles. During routine testing of 15 apparently healthy captive flamingos in a zoo in 2011, an atypical strain of Chlamydiaceae was detected by real-time PCR of cloacal swab samples. Sequence analysis of the 16S rRNA gene revealed high similarity to the uncultured Chlamydiales bacterium clone 122, which previously had been found in gulls. As more samples were collected during annual campaigns of the flamingo ringing program in southern France from 2012 to 2015, Chlamydiaceae-specific DNA was detected by PCR in 30.9% of wild birds. From these samples, three strains were successfully grown in cell culture. Ultrastructural analysis, comparison of 16S and 23S rRNA gene sequences, whole-genome analysis based on de novo hybrid-assembled sequences of the new strains as well as subsequent calculation of taxonomic parameters revealed that the relatedness of the flamingo isolates to established members of the family Chlamydiaceae was sufficiently distant to indicate that the three strains belong to two distinct species within a new genus. Based on these data, we propose the introduction of Chlamydiifrater gen. nov., as a new genus, and Chlamydiifrater phoenicopteri sp. nov. and Chlamydiifrater volucris sp. nov., as two new species of the genus.
Collapse
Affiliation(s)
- F Vorimore
- University Paris-Est, Anses, Animal Health Laboratory, Bacterial Zoonoses Unit, Maisons-Alfort, France.
| | - M Hölzer
- Robert Koch Institute, MF1 Bioinformatics, Berlin, Germany
| | - E M Liebler-Tenorio
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Molecular Pathogenesis, Germany
| | - L-M Barf
- Friedrich-Schiller-Universität Jena, RNA Bioinformatics and High-Throughput Analysis, Jena, Germany
| | - S Delannoy
- University Paris-Est, Anses, Food Research Laboratory, IdentyPath Platform, Maisons-Alfort, France
| | - M Vittecoq
- Tour du Valat, Centre de recherche pour la conservation des zones humides méditerranéennes, Le Sambuc, Arles, France
| | - R Wedlarski
- Bioparc - Zoo de Doué la fontaine, 103 rue de Cholet, 49700 Doué la Fontaine, France
| | - A Lécu
- Parc Zoologique de Paris, avenue de Daumesnil, 75012 Paris, France
| | - S Scharf
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Molecular Pathogenesis, Germany
| | - Y Blanchard
- Unit of Viral Genetics and Biosafety, ANSES, Laboratory of Ploufragan, Ploufragan, France
| | - P Fach
- University Paris-Est, Anses, Food Research Laboratory, IdentyPath Platform, Maisons-Alfort, France
| | - R C Hsia
- University of Maryland, Electron Microscopy Core Imaging Facility, Baltimore, MD 21201, USA
| | - P M Bavoil
- University of Maryland, Department of Microbial Pathogenesis, Baltimore, MD 21201, USA
| | - R Rosselló-Móra
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies, 07190 Esporles, Spain
| | - K Laroucau
- University Paris-Est, Anses, Animal Health Laboratory, Bacterial Zoonoses Unit, Maisons-Alfort, France
| | - K Sachse
- Friedrich-Schiller-Universität Jena, RNA Bioinformatics and High-Throughput Analysis, Jena, Germany
| |
Collapse
|
2
|
Tremblay O, Thow Z, Merrill AR. Several New Putative Bacterial ADP-Ribosyltransferase Toxins Are Revealed from In Silico Data Mining, Including the Novel Toxin Vorin, Encoded by the Fire Blight Pathogen Erwinia amylovora. Toxins (Basel) 2020; 12:E792. [PMID: 33322547 PMCID: PMC7764402 DOI: 10.3390/toxins12120792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/28/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
Mono-ADP-ribosyltransferase (mART) toxins are secreted by several pathogenic bacteria that disrupt vital host cell processes in deadly diseases like cholera and whooping cough. In the last two decades, the discovery of mART toxins has helped uncover the mechanisms of disease employed by pathogens impacting agriculture, aquaculture, and human health. Due to the current abundance of mARTs in bacterial genomes, and an unprecedented availability of genomic sequence data, mART toxins are amenable to discovery using an in silico strategy involving a series of sequence pattern filters and structural predictions. In this work, a bioinformatics approach was used to discover six bacterial mART sequences, one of which was a functional mART toxin encoded by the plant pathogen, Erwinia amylovora, called Vorin. Using a yeast growth-deficiency assay, we show that wild-type Vorin inhibited yeast cell growth, while catalytic variants reversed the growth-defective phenotype. Quantitative mass spectrometry analysis revealed that Vorin may cause eukaryotic host cell death by suppressing the initiation of autophagic processes. The genomic neighbourhood of Vorin indicated that it is a Type-VI-secreted effector, and co-expression experiments showed that Vorin is neutralized by binding of a cognate immunity protein, VorinI. We demonstrate that Vorin may also act as an antibacterial effector, since bacterial expression of Vorin was not achieved in the absence of VorinI. Vorin is the newest member of the mART family; further characterization of the Vorin/VorinI complex may help refine inhibitor design for mART toxins from other deadly pathogens.
Collapse
Affiliation(s)
| | | | - A. Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (O.T.); (Z.T.)
| |
Collapse
|
3
|
Bayramova F, Jacquier N, Greub G. Insight in the biology of Chlamydia-related bacteria. Microbes Infect 2017; 20:432-440. [PMID: 29269129 DOI: 10.1016/j.micinf.2017.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 01/21/2023]
Abstract
The Chlamydiales order is composed of obligate intracellular bacteria and includes the Chlamydiaceae family and several family-level lineages called Chlamydia-related bacteria. In this review we will highlight the conserved and distinct biological features between these two groups. We will show how a better characterization of Chlamydia-related bacteria may increase our understanding on the Chlamydiales order evolution, and may help identifying new therapeutic targets to treat chlamydial infections.
Collapse
Affiliation(s)
- Firuza Bayramova
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Bugnon 48, 1011 Lausanne, Switzerland
| | - Nicolas Jacquier
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Bugnon 48, 1011 Lausanne, Switzerland
| | - Gilbert Greub
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Bugnon 48, 1011 Lausanne, Switzerland.
| |
Collapse
|
4
|
Vouga M, Baud D, Greub G. Simkania negevensis, an insight into the biology and clinical importance of a novel member of the Chlamydiales order. Crit Rev Microbiol 2016; 43:62-80. [PMID: 27786615 DOI: 10.3109/1040841x.2016.1165650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Simkania negevensis is a Chlamydia-related bacterium discovered in 1993 and represents the founding member of the Simkaniaceae family within the Chlamydiales order. As other Chlamydiales, it is an obligate intracellular bacterium characterized by a biphasic developmental cycle. Its similarities with the pathogenic Chlamydia trachomatis and Chlamydia pneumoniae make it an interesting bacterium. So far, little is known about its biology, but S. negevensis harbors various microbiological characteristics of interest, including a strong association of the Simkania-containing vacuole with the ER and the presence of an intron in the 23S rRNA encoding gene. Evidence of human exposition has been reported worldwide. However, there is a lack of robust clinical studies evaluating its implication in human diseases; current data suggest an association with pneumonia and bronchiolitis making S. negevensis a potential emerging pathogen. Owing to its fastidious growth requirements, the clinical relevance of S. negevensis is probably underestimated. In this review, we summarize the current knowledge on S. negevensis and explore future research challenges.
Collapse
Affiliation(s)
- Manon Vouga
- a Institute of Microbiology , Center for Research on Intracellular Bacteria, Faculty of Biology and Medicine, University and University Hospital of Lausanne , Lausanne , Switzerland.,b Department "Femme-Mère-Enfant" , Materno-Fetal and Obstetrics Research Unit, University Hospital , Lausanne , Switzerland
| | - David Baud
- a Institute of Microbiology , Center for Research on Intracellular Bacteria, Faculty of Biology and Medicine, University and University Hospital of Lausanne , Lausanne , Switzerland.,b Department "Femme-Mère-Enfant" , Materno-Fetal and Obstetrics Research Unit, University Hospital , Lausanne , Switzerland
| | - Gilbert Greub
- a Institute of Microbiology , Center for Research on Intracellular Bacteria, Faculty of Biology and Medicine, University and University Hospital of Lausanne , Lausanne , Switzerland.,c Infectious Diseases Unit , University hospital , Lausanne , Switzerland
| |
Collapse
|
5
|
Lohr M, Prohl A, Ostermann C, Diller R, Greub G, Reinhold P. Effect of Parachlamydia acanthamoebae on pulmonary function parameters in a bovine respiratory model. Vet J 2016; 213:9-15. [PMID: 27240907 DOI: 10.1016/j.tvjl.2016.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022]
Abstract
The aim of this study was to evaluate pulmonary dysfunction induced by experimental infection with Parachlamydia acanthamoebae in calves. Intrabronchial inoculation with P. acanthamoebae was performed in 31 calves aged 2-3 months old at two different challenge doses of 10(8) and 10(10) inclusion-forming units (IFU) per animal. Control animals received heat inactivated bacteria. The effects on pulmonary gas exchange were determined by arterial blood gas analysis and haemoximetry during the 7 days post inoculation (DPI). For pulmonary function testing (PFT), impulse oscillometry, capnography, and measurement of O2 uptake were undertaken in spontaneously breathing animals 7 and 3 days before inoculation and were repeated until 10 DPI. In the early phase after challenge (1-3 DPI), mild hypoxaemia occurred, which was accompanied by a significant reduction in both tidal and alveolar volumes (each related to bodyweight, BW). In parallel, expiratory flow rate and specific ventilation (i.e. minute ventilation related to O2 uptake) were significantly increased. Minute and alveolar ventilations (each related to metabolic BW) increased significantly due to higher respiratory rates, lasting until 4 and 5 DPI, respectively. Oxygen uptake was slightly reduced during the first 2 days after challenge, but increased significantly during the recovery phase, from 4 to 8 DPI. No deterioration in respiratory mechanics or acid-base balance was observed. Respiratory infection with 10(10) IFU P. acanthamoebae per calf induced mild respiratory dysfunction, mainly characterised by hypoxaemia. The study's findings do not indicate severe pathophysiological consequences of P. acanthamoebae infection on pulmonary function in the bovine host.
Collapse
Affiliation(s)
- M Lohr
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - A Prohl
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - C Ostermann
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - R Diller
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - G Greub
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
| | - P Reinhold
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany.
| |
Collapse
|
6
|
Rusconi B, Kebbi-Beghdadi C, Greub G. Trafficking of Estrella lausannensis in human macrophages. Pathog Dis 2015; 73:ftv027. [PMID: 25857735 DOI: 10.1093/femspd/ftv027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2015] [Indexed: 11/14/2022] Open
Abstract
Estrella lausannensis is a new member of the Chlamydiales order. Like other Chlamydia-related bacteria, it is able to replicate in amoebae and in fish cell lines. A preliminary study investigating the pathogenic potential of Chlamydia-related bacteria found a correlation between antibody response to E. lausannensis and pneumonia in children. To further investigate the pathogenic potential of E. lausannensis, we determined its ability to grow in human macrophages and its intracellular trafficking. The replication in macrophages resulted in viable E. lausannensis; however, it caused a significant cytopathic effect. The intracellular trafficking of E. lausannensis was analyzed by determining the interaction of the Estrella-containing inclusions with various endocytic markers as well as host organelles. The E. lausannensis inclusion escaped the endocytic pathway rapidly avoiding maturation into phagolysosomes by preventing both EEA-1 and LAMP-1 accumulation. Compared to Waddlia chondrophila, another Chlamydia-related bacteria, the recruitment of mitochondria and endoplasmic reticulum was minimal for E. lausannensis inclusions. Estrella lausannensis appears to use a distinct source of nutrients and energy compared to other members of the Chlamydiales order. In conclusion, we hypothesize that E. lausannensis has a restricted growth in human macrophages, due to its reduced capacity to control programmed cell death.
Collapse
Affiliation(s)
- Brigida Rusconi
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, 1011, Switzerland
| | - Carole Kebbi-Beghdadi
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, 1011, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, 1011, Switzerland
| |
Collapse
|
7
|
Lohr M, Prohl A, Ostermann C, Liebler-Tenorio E, Schroedl W, Aeby S, Greub G, Reinhold P. A bovine model of a respiratory Parachlamydia acanthamoebae infection. Pathog Dis 2015; 73:1-14. [PMID: 24989139 DOI: 10.1111/2049-632x.12201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2014] [Indexed: 12/01/2022] Open
Abstract
The aim of this study was to evaluate the pathogenicity of Parachlamydia (P.) acanthamoebae as a potential agent of lower respiratory tract disease in a bovine model of induced lung infection. Intrabronchial inoculation with P. acanthamoebae was performed in healthy calves aged 2-3 months using two challenge doses: 10(8) and 10(10) bacteria per animal. Controls received 10(8) heat-inactivated bacteria. Challenge with 10(8) viable Parachlamydia resulted in a mild degree of general indisposition, whereas 10(10) bacteria induced a more severe respiratory illness becoming apparent 1-2 days post inoculation (dpi), affecting 9/9 (100%) animals and lasting for 6 days. The extent of macroscopic pulmonary lesions was as high as 6.6 (6.0)% [median (range)] of lung tissue at 2-4 dpi and correlated with parachlamydial genomic copy numbers detected by PCR, and with bacterial load estimated by immunohistochemistry in lung tissue. Clinical outcome, acute phase reactants, pathological findings and bacterial load exhibited an initial dose-dependent effect on severity. Animals fully recovered from clinical signs of respiratory disease within 5 days. The bovine lung was shown to be moderately susceptible to P. acanthamoebae, exhibiting a transient pneumonic inflammation after intrabronchial challenge. Further studies are warranted to determine the precise pathophysiologic pathways of host-pathogen interaction.
Collapse
Affiliation(s)
- Markus Lohr
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Annette Prohl
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Carola Ostermann
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Elisabeth Liebler-Tenorio
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Wieland Schroedl
- Institute of Bacteriology and Mycology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Sébastien Aeby
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| |
Collapse
|
8
|
Cell wall precursors are required to organize the chlamydial division septum. Nat Commun 2014; 5:3578. [PMID: 24709914 PMCID: PMC3988822 DOI: 10.1038/ncomms4578] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 03/05/2014] [Indexed: 11/09/2022] Open
Abstract
Members of the Chlamydiales order are major bacterial pathogens that divide at mid-cell, without a sequence homologue of the FtsZ cytokinetic tubulin and without a classical peptidoglycan cell wall. Moreover, the spatiotemporal mechanisms directing constriction in Chlamydia are not known. Here we show that the MreB actin homologue and its conserved regulator RodZ localize to the division furrow in Waddlia chondrophila, a member of the Chlamydiales order implicated in human miscarriage. RodZ is recruited to the septal site earlier than MreB and in a manner that depends on biosynthesis of the peptidoglycan precursor lipid II by the MurA enzyme. By contrast, crosslinking of lipid II peptides by the Pbp3 transpeptidase disperses RodZ from the septum. Altogether, these findings provide a cytological framework for understanding chlamydial cytokinesis driven by septal cell wall synthesis.
Collapse
|
9
|
Omsland A, Sixt BS, Horn M, Hackstadt T. Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities. FEMS Microbiol Rev 2014; 38:779-801. [PMID: 24484402 DOI: 10.1111/1574-6976.12059] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 01/07/2023] Open
Abstract
Chlamydiae are a group of obligate intracellular bacteria comprising important human and animal pathogens as well as symbionts of ubiquitous protists. They are characterized by a developmental cycle including two main morphologically and physiologically distinct stages, the replicating reticulate body and the infectious nondividing elementary body. In this review, we reconstruct the history of studies that have led to our current perception of chlamydial physiology, focusing on their energy and central carbon metabolism. We then compare the metabolic capabilities of pathogenic and environmental chlamydiae highlighting interspecies variability among the metabolically more flexible environmental strains. We discuss recent findings suggesting that chlamydiae may not live as energy parasites throughout the developmental cycle and that elementary bodies are not metabolically inert but exhibit metabolic activity under appropriate axenic conditions. The observed host-free metabolic activity of elementary bodies may reflect adequate recapitulation of the intracellular environment, but there is evidence that this activity is biologically relevant and required for extracellular survival and maintenance of infectivity. The recent discoveries call for a reconsideration of chlamydial metabolism and future in-depth analyses to better understand how species- and stage-specific differences in chlamydial physiology may affect virulence, tissue tropism, and host adaptation.
Collapse
Affiliation(s)
- Anders Omsland
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, NIAID, NIH, Hamilton, MT, USA
| | | | | | | |
Collapse
|
10
|
Lamoth F, Greub G. Fastidious intracellular bacteria as causal agents of community-acquired pneumonia. Expert Rev Anti Infect Ther 2014; 8:775-90. [DOI: 10.1586/eri.10.52] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Subtil A, Collingro A, Horn M. Tracing the primordial Chlamydiae: extinct parasites of plants? TRENDS IN PLANT SCIENCE 2014; 19:36-43. [PMID: 24210739 DOI: 10.1016/j.tplants.2013.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 06/02/2023]
Abstract
Chlamydiae are obligate intracellular bacteria found as symbionts and pathogens in a wide range of eukaryotes, including protists, invertebrates, and vertebrates. It was recently proposed that an ancient chlamydial symbiont facilitated the establishment of primary plastids in a tripartite symbiosis with cyanobacteria and early eukaryotes. In this review, we summarize recent advances in understanding of the lifestyle and the evolutionary history of extant Chlamydiae. We reconstruct and describe key features of the ancient chlamydial symbiont. We propose that it was already adapted to an intracellular lifestyle before the emergence of Archaeplastida, and that several observations are compatible with an essential contribution of Chlamydiae to the evolution of algae and plants.
Collapse
Affiliation(s)
- Agathe Subtil
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France; CNRS URA2582, Paris, France.
| | - Astrid Collingro
- University of Vienna, Division of Microbial Ecology, Vienna, Austria
| | - Matthias Horn
- University of Vienna, Division of Microbial Ecology, Vienna, Austria
| |
Collapse
|
12
|
Croxatto A, Murset V, Chassot B, Greub G. Early expression of the type III secretion system of Parachlamydia acanthamoebae during a replicative cycle within its natural host cell Acanthamoeba castellanii. Pathog Dis 2013; 69:159-75. [PMID: 23861207 DOI: 10.1111/2049-632x.12065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 12/26/2022] Open
Abstract
The type three secretion system (T3SS) operons of Chlamydiales bacteria are distributed in different clusters along their chromosomes and are conserved at both the level of sequence and genetic organization. A complete characterization of the temporal expression of multiple T3SS components at the transcriptional and protein levels has been performed in Parachlamydia acanthamoebae, replicating in its natural host cell Acanthamoeba castellanii. The T3SS components were classified in four different temporal clusters depending on their pattern of expression during the early, mid- and late phases of the infectious cycle. The putative T3SS transcription units predicted in Parachlamydia are similar to those described in Chlamydia trachomatis, suggesting that T3SS units of transcriptional expression are highly conserved among Chlamydiales bacteria. The maximal expression and activation of the T3SS of Parachlamydia occurred during the early to mid-phase of the infectious cycle corresponding to a critical phase during which the intracellular bacterium has (1) to evade and/or block the lytic pathway of the amoeba, (2) to differentiate from elementary bodies (EBs) to reticulate bodies (RBs), and (3) to modulate the maturation of its vacuole to create a replicative niche able to sustain efficient bacterial growth.
Collapse
Affiliation(s)
- Antony Croxatto
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
13
|
Crescent and star shapes of members of the Chlamydiales order: impact of fixative methods. Antonie van Leeuwenhoek 2013; 104:521-32. [DOI: 10.1007/s10482-013-9999-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/07/2013] [Indexed: 11/26/2022]
|
14
|
Abstract
Catalase is an important virulence factor for survival in macrophages and other phagocytic cells. In Chlamydiaceae, no catalase had been described so far. With the sequencing and annotation of the full genomes of Chlamydia-related bacteria, the presence of different catalase-encoding genes has been documented. However, their distribution in the Chlamydiales order and the functionality of these catalases remain unknown. Phylogeny of chlamydial catalases was inferred using MrBayes, maximum likelihood, and maximum parsimony algorithms, allowing the description of three clade 3 and two clade 2 catalases. Only monofunctional catalases were found (no catalase-peroxidase or Mn-catalase). All presented a conserved catalytic domain and tertiary structure. Enzymatic activity of cloned chlamydial catalases was assessed by measuring hydrogen peroxide degradation. The catalases are enzymatically active with different efficiencies. The catalase of Parachlamydia acanthamoebae is the least efficient of all (its catalytic activity was 2 logs lower than that of Pseudomonas aeruginosa). Based on the phylogenetic analysis, we hypothesize that an ancestral class 2 catalase probably was present in the common ancestor of all current Chlamydiales but was retained only in Criblamydia sequanensis and Neochlamydia hartmannellae. The catalases of class 3, present in Estrella lausannensis and Parachlamydia acanthamoebae, probably were acquired by lateral gene transfer from Rhizobiales, whereas for Waddlia chondrophila they likely originated from Legionellales or Actinomycetales. The acquisition of catalases on several occasions in the Chlamydiales suggests the importance of this enzyme for the bacteria in their host environment.
Collapse
|
15
|
Pizzetti I, Fazi S, Fuchs BM, Amann R. High abundance of novel environmental chlamydiae in a Tyrrhenian coastal lake (Lago di Paola, Italy). ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:446-452. [PMID: 23760831 DOI: 10.1111/j.1758-2229.2012.00361.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
For a long time the bacterial phylum of Chlamydiae exclusively consisted of one family of obligate intracellular bacteria, the Chlamydiaceae, which encompassed causative agents of severe diseases. In the 1990s, environmental chlamydiae were discovered as symbionts of free-living amoebae and other eukaryotic hosts. During a sampling campaign in September 2008, while monitoring Planctomycetes, we retrieved 20 almost full-length 16S rRNA gene sequences affiliated with Chlamydiales from a lake at the Tyrrhenian coast of central Italy (Lago di Paola, Latium). Two main clusters were identified. The nine sequences within the tight cluster I shared ∼98% identity, just like the six sequences of cluster II. The 16S rRNA sequence identity between the two novel groups was with 88% higher than with all known families of the order Chlamydiales. Four types of less frequent chlamydial 16S rRNA sequences were also detected. Two oligonucleotide probes were designed, and optimized. Chl282 targets the cluster I and almost all other Chlamydiales, while Chl282bis targets the cluster II and few other sequences. By catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH), we identified in the Lago di Paola picoplankton abundant tiny cells with dot-shaped morphology and, interestingly, rarely also protists with intracellular pleomorphic chlamydiae. Abundances of the novel chlamydial clusters were up to 5 × 10(4) cells per millilitre. The two clusters were also detected in similar numbers during a second sampling in October 2010. This confirmed the relevance of the two newly described clusters of chlamydiae in Lago di Paola, not only enlarging the knowledge on the biodiversity of environmental chlamydiae in aquatic habitats, but also raising sanitary issues that should be addressed in the future.
Collapse
Affiliation(s)
- Ilaria Pizzetti
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany Water Research Institute (IRSA-CNR), via Salaria km 29.300, 00015 Monterotondo, Roma, Italy
| | | | | | | |
Collapse
|
16
|
Sun HS, Eng EWY, Jeganathan S, Sin ATW, Patel PC, Gracey E, Inman RD, Terebiznik MR, Harrison RE. Chlamydia trachomatis vacuole maturation in infected macrophages. J Leukoc Biol 2012; 92:815-27. [PMID: 22807527 DOI: 10.1189/jlb.0711336] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium responsible for one of the most common sexually transmitted diseases. In epithelial cells, C. trachomatis resides in a modified membrane-bound vacuole known as an inclusion, which is isolated from the endocytic pathway. However, the maturation process of C. trachomatis within immune cells, such as macrophages, has not been studied extensively. Here, we demonstrated that RAW macrophages effectively suppressed C. trachomatis growth and prevented Golgi stack disruption, a hallmark defect in epithelial cells after C. trachomatis infection. Next, we systematically examined association between C. trachomatis and various endocytic pathway markers. Spinning disk confocal time-lapse studies revealed significant and rapid association between C. trachomatis with Rab7 and LAMP1, markers of late endosomes and lysosomes. Moreover, pretreatment with an inhibitor of lysosome acidification led to significant increases in C. trachomatis growth in macrophages. At later stages of infection, C. trachomatis associated with the autophagy marker LC3. TEM analysis confirmed that a significant portion of C. trachomatis resided within double-membrane-bound compartments, characteristic of autophagosomes. Together, these results suggest that macrophages can suppress C. trachomatis growth by targeting it rapidly to lysosomes; moreover, autophagy is activated at later stages of infection and targets significant numbers of the invading bacteria, which may enhance subsequent chlamydial antigen presentation.
Collapse
Affiliation(s)
- He Song Sun
- Departments of Cell and Systems Biology and Biological Sciences, University of Toronto Scarborough, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sixt BS, Hiess B, König L, Horn M. Lack of effective anti-apoptotic activities restricts growth of Parachlamydiaceae in insect cells. PLoS One 2012; 7:e29565. [PMID: 22253735 PMCID: PMC3253803 DOI: 10.1371/journal.pone.0029565] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/30/2011] [Indexed: 12/02/2022] Open
Abstract
The fundamental role of programmed cell death in host defense is highlighted by the multitude of anti-apoptotic strategies evolved by various microbes, including the well-known obligate intracellular bacterial pathogens Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae. As inhibition of apoptosis is assumed to be essential for a successful infection of humans by these chlamydiae, we analyzed the anti-apoptotic capacity of close relatives that occur as symbionts of amoebae and might represent emerging pathogens. While Simkania negevensis was able to efficiently replicate within insect cells, which served as model for metazoan-derived host cells, the Parachlamydiaceae (Parachlamydia acanthamoebae and Protochlamydia amoebophila) displayed limited intracellular growth, yet these bacteria induced typical features of apoptotic cell death, including formation of apoptotic bodies, nuclear condensation, internucleosomal DNA fragmentation, and effector caspase activity. Induction of apoptosis was dependent on bacterial activity, but not bacterial de novo protein synthesis, and was detectable already at very early stages of infection. Experimental inhibition of host cell death greatly enhanced parachlamydial replication, suggesting that lack of potent anti-apoptotic activities in Parachlamydiaceae may represent an important factor compromising their ability to successfully infect non-protozoan hosts. These findings highlight the importance of the evolution of anti-apoptotic traits for the success of chlamydiae as pathogens of humans and animals.
Collapse
Affiliation(s)
- Barbara S. Sixt
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Birgit Hiess
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Lena König
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Matthias Horn
- Department of Microbial Ecology, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
18
|
Kebbi-Beghdadi C, Batista C, Greub G. Permissivity of fish cell lines to three Chlamydia-related bacteria: Waddlia chondrophila, Estrella lausannensis and Parachlamydia acanthamoebae. ACTA ACUST UNITED AC 2011; 63:339-45. [PMID: 22092560 DOI: 10.1111/j.1574-695x.2011.00856.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 11/27/2022]
Abstract
Epitheliocystis is an infectious disease affecting gills and skin of various freshwater and marine fishes, associated with high mortality and reduced growth of survivors. Candidatus Piscichlamydia salmonis and Clavochlamydia salmonicola have recently been identified as aetiological agents of epitheliocystis in Atlantic Salmon. In addition, several other members of the Chlamydiales order have been identified in other fish species. To clarify the pathogenicity of Chlamydia-like organisms towards fishes, we investigated the permissivity of two fish cell lines, EPC-175 (Fathead Minnow) and RTG-2 (rainbow trout) to three Chlamydia-related bacteria: Waddlia chondrophila, Parachlamydia acanthamoebae and Estrella lausannensis. Quantitative PCR and immunofluorescence demonstrated that W. chondrophila and, to a lesser extent, E. lausannensis were able to replicate in the two cell lines tested. Waddlia chondrophila multiplied rapidly in its host cell and a strong cytopathic effect was observed. During E. lausannensis infection, we observed a limited replication of the bacteria not followed by host cell lysis. Very limited replication of P. acanthamoebae was observed in both cell lines tested. Given its high infectivity and cytopathic effect towards fish cell lines, W. chondrophila represents the most interesting Chlamydia-related bacteria to be used to develop an in vivo model of epitheliocystis disease in fishes.
Collapse
Affiliation(s)
- Carole Kebbi-Beghdadi
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| | | | | |
Collapse
|
19
|
Abstract
Pathogenicity of Chlamydia and Chlamydia-related bacteria could be partially mediated by an enhanced activation of the innate immune response. The study of this host pathogen interaction has proved challenging due to the restricted in vitro growth of these strict intracellular bacteria and the lack of genetic tools to manipulate their genomes. Despite these difficulties, the interactions of Chlamydiales with the innate immune cells and their effectors have been studied thoroughly. This review aims to point out the role of pattern recognition receptors and signal molecules (cytokines, reactive oxygen species) of the innate immune response in the pathogenesis of chlamydial infection. Besides inducing clearance of the bacteria, some of these effectors may be used by the Chlamydia to establish chronic infections or to spread. Thus, the induced innate immune response seems to be variable depending on the species and/or the serovar, making the pattern more complex. It remains crucial to determine the common players of the innate immune response in order to help define new treatment strategies and to develop effective vaccines. The excellent growth in phagocytic cells of some Chlamydia-related organisms such as Waddlia chondrophila supports their use as model organisms to study conserved features important for interactions between the innate immunity and Chlamydia.
Collapse
Affiliation(s)
- Brigida Rusconi
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | | |
Collapse
|
20
|
|
21
|
Roger T, Casson N, Croxatto A, Entenza JM, Pusztaszeri M, Akira S, Reymond MK, Le Roy D, Calandra T, Greub G. Role of MyD88 and Toll-like receptors 2 and 4 in the sensing of Parachlamydia acanthamoebae. Infect Immun 2010; 78:5195-201. [PMID: 20837714 PMCID: PMC2981336 DOI: 10.1128/iai.00786-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/27/2010] [Accepted: 09/02/2010] [Indexed: 02/02/2023] Open
Abstract
Parachlamydia acanthamoebae is a Chlamydia-related organism whose pathogenic role in pneumonia is supported by serological and molecular clinical studies and an experimental mouse model of lung infection. Toll-like receptors (TLRs) play a seminal role in sensing microbial products and initiating innate immune responses. The aim of this study was to investigate the roles of MyD88, TLR2, and TLR4 in the interaction of Parachlamydia with macrophages. Here, we showed that Parachlamydia entered bone-marrow derived macrophages (BMDMs) in a TLR-independent manner but did not multiply intracellularly. Interestingly, compared to live bacteria, heat-inactivated Parachlamydia induced the production of substantial amounts of tumor necrosis factor alpha (TNF), interleukin-6 (IL-6), and IL-12p40 by BMDMs and of TNF and IL-6 by peritoneal macrophages as well as RAW 264.7 and J774 macrophage cell lines. Cytokine production by BMDMs, which was partially inhibited upon trypsin treatment of Parachlamydia, was dependent on MyD88, TLR4, and, to a lesser extent, TLR2. Finally, MyD88(-/-), TLR4(-/-), and TLR2(-/-) mice were as resistant as wild-type mice to lung infection following the intratracheal instillation of Parachlamydia. Thus, in contrast to Chlamydia pneumoniae, Parachlamydia acanthamoebae weakly stimulates macrophages, potentially compensating for its low replication capacity in macrophages by escaping the innate immune surveillance.
Collapse
Affiliation(s)
- Thierry Roger
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland, Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Nicola Casson
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland, Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Antony Croxatto
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland, Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - José Manuel Entenza
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland, Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Marc Pusztaszeri
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland, Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shizuo Akira
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland, Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Marlies Knaup Reymond
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland, Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland, Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland, Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Gilbert Greub
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland, Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
22
|
Nakamura S, Matsuo J, Hayashi Y, Kawaguchi K, Yoshida M, Takahashi K, Mizutani Y, Yao T, Yamaguchi H. Endosymbiotic bacterium Protochlamydia can survive in acanthamoebae following encystation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:611-618. [PMID: 23766232 DOI: 10.1111/j.1758-2229.2010.00182.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Obligate intracellular bacteria are commonly seen as endosymbionts of acanthamoebae. However, whether endosymbionts can survive amoebal encystations remains a significant challenge in cellular biology. The survival of the endosymbiotic bacteria Protochlamydia belonging to environmental chlamydiae found in an amoebal isolate that we have previously reported (Environmental Microbiology Reports, DOI: 10.1111/j.1758-2229.2009.00094.x, 2009) following encystation was therefore assessed. The bacteria were observed in cysts and trophozoites reverted from cysts by analysis with transmission electron microscope, and the bacterial 16S rRNA transcripts were detected in amoeba cultures following encystations by reverse transcription polymerase chain reaction method. Furthermore, the bacterial growth was also confirmed, by fluorescent in situ hybridization analysis and the AIU assay that we have previously established (Applied Environmental Microbiology, 74: 6397-6404, 2008), in trophozoites reverted from cysts stored at 4°C for up to a month after encystation. Thus, these results demonstrated that Protochlamydia could survive in acanthamoebae following encystation. Our findings suggest that amoeba cysts might be further studied in order to understand their role in the environmental survival of endosymbionts.
Collapse
Affiliation(s)
- Shinji Nakamura
- Division of Biomedical Imaging Research, Division of Ultrastructural Research, and Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan. Department of Medical Laboratory Sciences, Hokkaido University Graduate School of Health Sciences, Sapporo, Hokkaido 060-0812, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Richter M, Matheis F, Gönczi E, Aeby S, Spiess B, Greub G. Parachlamydia acanthamoebae in domestic cats with and without corneal disease. Vet Ophthalmol 2010; 13:235-7. [DOI: 10.1111/j.1463-5224.2010.00789.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Greub G, Kebbi-Beghdadi C, Bertelli C, Collyn F, Riederer BM, Yersin C, Croxatto A, Raoult D. High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach. PLoS One 2009; 4:e8423. [PMID: 20037647 PMCID: PMC2793016 DOI: 10.1371/journal.pone.0008423] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/25/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. METHODS/PRINCIPAL FINDINGS We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. CONCLUSIONS/SIGNIFICANCE This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.
Collapse
Affiliation(s)
- Gilbert Greub
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Despite using modern microbiological diagnostic approaches, the aetiological agents of pneumonia remain unidentified in about 50% of cases. Some bacteria that grow poorly or not at all in axenic media used in routine clinical bacteriology laboratory but which can develop inside amoebae may be the agents of these lower respiratory tract infections (RTIs) of unexplained aetiology. Such amoebae-resisting bacteria, which coevolved with amoebae to resist their microbicidal machinery, may have developed virulence traits that help them survive within human macrophages, i.e. the first line of innate immune defence in the lung. We review here the current evidence for the emerging pathogenic role of various amoebae-resisting microorganisms as agents of RTIs in humans. Specifically, we discuss the emerging pathogenic roles of Legionella-like amoebal pathogens, novel Chlamydiae (Parachlamydia acanthamoebae, Simkania negevensis), waterborne mycobacteria and Bradyrhizobiaceae (Bosea and Afipia spp.).
Collapse
Affiliation(s)
- Frédéric Lamoth
- Infectious Diseases Service, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
26
|
Croxatto A, Greub G. Early intracellular trafficking of Waddlia chondrophila in human macrophages. MICROBIOLOGY-SGM 2009; 156:340-355. [PMID: 19926655 DOI: 10.1099/mic.0.034546-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Waddlia chondrophila is an obligate intracellular bacterium considered as a potential agent of abortion in both humans and bovines. This member of the order Chlamydiales multiplies rapidly within human macrophages and induces lysis of the infected cells. To understand how this Chlamydia-like micro-organism invades and proliferates within host cells, we investigated its trafficking within monocyte-derived human macrophages. Vacuoles containing W. chondrophila acquired the early endosomal marker EEA1 during the first 30 min following uptake. However, the live W. chondrophila-containing vacuoles never co-localized with late endosome and lysosome markers. Instead of interacting with the endosomal pathway, W. chondrophila immediately co-localized with mitochondria and, shortly after, with endoplasmic reticulum- (ER-) resident proteins such as calnexin and protein disulfide isomerase. The acquisition of mitochondria and ER markers corresponds to the beginning of bacterial replication. It is noteworthy that mitochondrion recruitment to W. chondrophila inclusions is prevented only by simultaneous treatment with the microtubule and actin cytoskeleton-disrupting agents nocodazole and cytochalasin D. In addition, brefeldin A inhibits the replication of W. chondrophila, supporting a role for COPI-dependent trafficking in the biogenesis of the bacterial replicating vacuole. W. chondrophila probably survives within human macrophages by evading the endocytic pathway and by associating with mitochondria and the ER. The intracellular trafficking of W. chondrophila in human macrophages represents a novel route that differs strongly from that used by other members of the order Chlamydiales.
Collapse
Affiliation(s)
- Antony Croxatto
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
27
|
Abstract
Parachlamydia acanthamoebae is a Chlamydia-like organism that easily grows within Acanthamoeba spp. Thus, it probably uses these widespread free-living amoebae as a replicative niche, a cosmopolite aquatic reservoir and a vector. A potential role of P. acanthamoebae as an agent of lower respiratory tract infection was initially suggested by its isolation within an Acanthamoeba sp. recovered from the water of a humidifier during the investigation of an outbreak of fever. Additional serological and molecular-based investigations further supported its pathogenic role, mainly in bronchiolitis, bronchitis, aspiration pneumonia and community-acquired pneumonia. P. acanthamoebae was shown to survive and replicate within human macrophages, lung fibroblasts and pneumocytes. Moreover, this strict intracellular bacterium also causes severe pneumonia in experimentally infected mice, thus fulfilling the third and fourth Koch criteria for a pathogenic role. Consequently, new tools have been developed for the diagnosis of parachlamydial infections. It will be important to routinely search for this emerging agent of pneumonia, as P. acanthamoebae is apparently resistant to quinolones, which are antibiotics often used for the empirical treatment of atypical pneumonia. Other Chlamydia-related bacteria, including Protochlamydia naegleriophila, Simkania negevensis and Waddlia chondrophila, might also cause lung infections. Moreover, several additional novel chlamydiae, e.g. Criblamydia sequanensis and Rhabdochlamydia crassificans, have been discovered and are now being investigated for their human pathogenicity.
Collapse
Affiliation(s)
- G Greub
- Centre for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
28
|
Abstract
The endocytosis pathway controls multiple cellular and physiological events. The lysosome is the destination of newly synthesized lysosomal hydrolytic enzymes. Internalized molecules or particles are delivered to the lysosome for degradation through sequential transport along the endocytic pathway. The endocytic pathway is also emerging as a signalling platform, in addition to the well-known role of the plasma membrane for signalling. Rab7 is a late endosome-/lysosome-associated small GTPase, perhaps the only lysosomal Rab protein identified to date. Rab7 plays critical roles in the endocytic processes. Through interaction with its partners (including upstream regulators and downstream effectors), Rab7 participates in multiple regulation mechanisms in endosomal sorting, biogenesis of lysosome [or LRO (lysosome-related organelle)] and phagocytosis. These processes are closely related to substrates degradation, antigen presentation, cell signalling, cell survival and microbial pathogen infection. Consistently, mutations or dysfunctions of Rab7 result in traffic disorders, which cause various diseases, such as neuropathy, cancer and lipid metabolism disease. Rab7 also plays important roles in microbial pathogen infection and survival, as well as in participating in the life cycle of viruses. Here, we give a brief review on the central role of Rab7 in endosomal traffic and summarize the studies focusing on the participation of Rab7 in disease pathogenesis. The underlying mechanism governed by Rab7 and its partners will also be discussed.
Collapse
|
29
|
Abstract
Members of the phylum Chlamydiae are obligate intracellular bacteria that were discovered about a century ago. Although Chlamydiae are major pathogens of humans and animals, they were long recognized only as a phylogenetically well-separated, small group of closely related microorganisms. The diversity of chlamydiae, their host range, and their occurrence in the environment had been largely underestimated. Today, several chlamydia-like bacteria have been described as symbionts of free-living amoebae and other eukaryotic hosts. Some of these environmental chlamydiae might also be of medical relevance for humans. Their analysis has contributed to a broader understanding of chlamydial biology and to novel insights into the evolution of these unique microorganisms.
Collapse
Affiliation(s)
- Matthias Horn
- Department of Microbial Ecology, University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
30
|
Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 2008; 77:642-56. [PMID: 19047403 DOI: 10.1128/iai.01141-08] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetically distinct isolates of Coxiella burnetii, the cause of human Q fever, display different phenotypes with respect to in vitro infectivity/cytopathology and pathogenicity for laboratory animals. Moreover, correlations between C. burnetii genomic groups and human disease presentation (acute versus chronic) have been described, suggesting that isolates have distinct virulence characteristics. To provide a more-complete understanding of C. burnetii's genetic diversity, evolution, and pathogenic potential, we deciphered the whole-genome sequences of the K (Q154) and G (Q212) human chronic endocarditis isolates and the naturally attenuated Dugway (5J108-111) rodent isolate. Cross-genome comparisons that included the previously sequenced Nine Mile (NM) reference isolate (RSA493) revealed both novel gene content and disparate collections of pseudogenes that may contribute to isolate virulence and other phenotypes. While C. burnetii genomes are highly syntenous, recombination between abundant insertion sequence (IS) elements has resulted in genome plasticity manifested as chromosomal rearrangement of syntenic blocks and DNA insertions/deletions. The numerous IS elements, genomic rearrangements, and pseudogenes of C. burnetii isolates are consistent with genome structures of other bacterial pathogens that have recently emerged from nonpathogens with expanded niches. The observation that the attenuated Dugway isolate has the largest genome with the fewest pseudogenes and IS elements suggests that this isolate's lineage is at an earlier stage of pathoadaptation than the NM, K, and G lineages.
Collapse
|
31
|
Abstract
Chlamydiae are obligate intracellular bacteria, parasites of a variety of eukaryotes ranging from amoebae to humans. Among them, the family Parachlamydiaceae comprises endosymbionts of amoebae, mainly Acanthamoeba, currently investigated as emerging pathogens of humans and other vertebrates. 16S rDNA-based PCR culture-independent studies in environmental samples have demonstrated the presence of Chlamydiales in various types of nonmedical habitats. Here we reviewed the biology of the Parachlamydiaceae, and more particularly those studies reporting molecular evidences for their presence in the environment, with a re-analysis of the 16S rDNA phylotypes.
Collapse
Affiliation(s)
- Daniele Corsaro
- CHLAREAS Chlamydia Research Association, Vandoeuvre-lès-Nancy, France.
| | | |
Collapse
|
32
|
Schmitz-Esser S, Toenshoff ER, Haider S, Heinz E, Hoenninger VM, Wagner M, Horn M. Diversity of bacterial endosymbionts of environmental acanthamoeba isolates. Appl Environ Microbiol 2008; 74:5822-31. [PMID: 18641160 PMCID: PMC2547052 DOI: 10.1128/aem.01093-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 07/11/2008] [Indexed: 11/20/2022] Open
Abstract
Free-living amoebae are frequent hosts for bacterial endosymbionts. In this study, the symbionts of eight novel environmental Acanthamoeba strains isolated from different locations worldwide were characterized. Phylogenetic analysis revealed that they were related to one of four evolutionary lineages of amoeba symbionts recognized previously. This study provides evidence for the existence of only a small number of phylogenetically well-separated groups of obligate intracellular endosymbionts of acanthamoebae with global distribution.
Collapse
MESH Headings
- Acanthamoeba/genetics
- Acanthamoeba/microbiology
- Animals
- Bacteria/classification
- Bacteria/genetics
- Biodiversity
- DNA, Bacterial/genetics
- DNA, Protozoan/genetics
- Genes, Bacterial
- Genes, Protozoan
- Genes, rRNA
- Geologic Sediments/microbiology
- Molecular Sequence Data
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 18S/genetics
- Sequence Analysis, DNA
- Soil Microbiology
- Symbiosis
- Water Microbiology
Collapse
Affiliation(s)
- Stephan Schmitz-Esser
- Department of Microbial Ecology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
33
|
Novel Parachlamydia acanthamoebae quantification method based on coculture with amoebae. Appl Environ Microbiol 2008; 74:6397-404. [PMID: 18757579 DOI: 10.1128/aem.00841-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parachlamydia acanthamoebae, belonging to the order Chlamydiales, is an obligately intracellular bacterium that infects free-living amoebae and is a potential human pathogen. However, no method exists to accurately quantify viable bacterial numbers. We present a novel quantification method for P. acanthamoebae based on coculture with amoebae. P. acanthamoebae was cultured either with Acanthamoeba spp. or with mammalian epithelial HEp-2 or Vero cells. The infection rate of P. acanthamoebae (amoeba-infectious dose [AID]) was determined by DAPI (4',6-diamidino-2-phenylindole) staining and was confirmed by fluorescent in situ hybridization. AIDs were plotted as logistic sigmoid dilution curves, and P. acanthamoebae numbers, defined as amoeba-infectious units (AIU), were calculated. During culture, amoeba numbers and viabilities did not change, and amoebae did not change from trophozoites to cysts. Eight amoeba strains showed similar levels of P. acanthamoebae growth, and bacterial numbers reached ca. 1,000-fold (10(9) AIU preculture) after 4 days. In contrast, no increase was observed for P. acanthamoebae in either mammalian cell line. However, aberrant structures in epithelial cells, implying possible persistent infection, were seen by transmission electron microscopy. Thus, our method could monitor numbers of P. acanthamoebae bacteria in host cells and may be useful for understanding chlamydiae present in the natural environment as human pathogens.
Collapse
|
34
|
Casson N, Entenza JM, Borel N, Pospischil A, Greub G. Murine model of pneumonia caused by Parachlamydia acanthamoebae. Microb Pathog 2008; 45:92-7. [DOI: 10.1016/j.micpath.2008.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/27/2008] [Accepted: 04/03/2008] [Indexed: 11/30/2022]
|
35
|
Goy G, Croxatto A, Greub G. Waddlia chondrophila enters and multiplies within human macrophages. Microbes Infect 2008; 10:556-62. [PMID: 18424154 DOI: 10.1016/j.micinf.2008.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/07/2008] [Accepted: 02/10/2008] [Indexed: 10/22/2022]
Abstract
Waddlia chondrophila is an obligate intracellular bacterium of the Chlamydiales order. W. chondrophila has been isolated twice from aborted bovine foetuses and a serological study supported the abortigenic role of W. chondrophila in bovine species. Recently, we observed a strong association between the presence of anti-Waddlia antibodies and human miscarriage. To further investigate the pathogenic potential of W. chondrophila in humans, we studied the entry and the multiplication of this Chlamydia-like organism in human macrophages. Confocal and electron microscopy confirmed that W. chondrophila is able to enter human monocyte-derived macrophages. Moreover, W. chondrophila multiplied readily within macrophages. The proportion of infected macrophages increased from 13% at day 0 to 96% at day 4, and the mean number of bacteria per macrophage increased by 3logs in 24h. Intracellular growth of W. chondrophila was associated with a significant cytopathic effect. Thus, W. chondrophila may enter and grow rapidly within human macrophages, inducing lysis of infected cells. Since macrophages are one of the major components of the innate immune response, these findings indirectly suggest the possible human pathogenicity of W. chondrophila.
Collapse
Affiliation(s)
- Geneviève Goy
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne 1011, Switzerland
| | | | | |
Collapse
|
36
|
New diagnostic real-time PCR for specific detection of Parachlamydia acanthamoebae DNA in clinical samples. J Clin Microbiol 2008; 46:1491-3. [PMID: 18234873 DOI: 10.1128/jcm.02302-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Given the low sensitivity of amoebal coculture, we developed a specific real-time PCR for the detection of Parachlamydia. The analytical sensitivity was high, and the inter- and intrarun variabilities were low. When the PCR was applied to nasopharyngeal aspirates, it was positive for six patients with bronchiolitis. Future studies should assess the role of Parachlamydia in bronchiolitis.
Collapse
|
37
|
Predator or prey? Chlamydophila abortus infections of a free-living amoebae, Acanthamoeba castellani 9GU. Microbes Infect 2008; 10:591-7. [PMID: 18467146 DOI: 10.1016/j.micinf.2008.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 01/14/2008] [Indexed: 11/21/2022]
Abstract
Limited evidence exists to suggest that the ability to invade and escape protozoan host cell bactericidal activity extends to members of the Chlamydiaceae, intracellular pathogens of humans and animals and evolutionary descendants of amoeba-resisting Chlamydia-like organisms. PCR and microscopic analyses of Chlamydophila abortus infections of Acanthamoeba castellani revealed uptake of this chlamydial pathogen but, unlike the well-described inhabitant of A. castellani, Parachlamydia acanthamoebae, Cp. abortus did not appear to propagate and is likely digested by its amoebal host. These data raise doubts about the ability of free-living amoebae to serve as hosts and vectors of pathogenic members of the Chlamydiaceae but reveal opportunities, via comparative genomics, to understand virulence mechanisms used by Chlamydia-like organisms to avoid amoebal digestion.
Collapse
|
38
|
Eugster M, Roten CAH, Greub G. Analyses of six homologous proteins of Protochlamydia amoebophila UWE25 encoded by large GC-rich genes (lgr): a model of evolution and concatenation of leucine-rich repeats. BMC Evol Biol 2007; 7:231. [PMID: 18021397 PMCID: PMC2216083 DOI: 10.1186/1471-2148-7-231] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 11/16/2007] [Indexed: 01/20/2023] Open
Abstract
Background Along the chromosome of the obligate intracellular bacteria Protochlamydia amoebophila UWE25, we recently described a genomic island Pam100G. It contains a tra unit likely involved in conjugative DNA transfer and lgrE, a 5.6-kb gene similar to five others of P. amoebophila: lgrA to lgrD, lgrF. We describe here the structure, regulation and evolution of these proteins termed LGRs since encoded by "Large G+C-Rich" genes. Results No homologs to the whole protein sequence of LGRs were found in other organisms. Phylogenetic analyses suggest that serial duplications producing the six LGRs occurred relatively recently and nucleotide usage analyses show that lgrB, lgrE and lgrF were relocated on the chromosome. The C-terminal part of LGRs is homologous to Leucine-Rich Repeats domains (LRRs). Defined by a cumulative alignment score, the 5 to 18 concatenated octacosapeptidic (28-meric) LRRs of LGRs present all a predicted α-helix conformation. Their closest homologs are the 28-residue RI-like LRRs of mammalian NODs and the 24-meres of some Ralstonia and Legionella proteins. Interestingly, lgrE, which is present on Pam100G like the tra operon, exhibits Pfam domains related to DNA metabolism. Conclusion Comparison of the LRRs, enable us to propose a parsimonious evolutionary scenario of these domains driven by adjacent concatenations of LRRs. Our model established on bacterial LRRs can be challenged in eucaryotic proteins carrying less conserved LRRs, such as NOD proteins and Toll-like receptors.
Collapse
Affiliation(s)
- Myriam Eugster
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland.
| | | | | |
Collapse
|
39
|
Thomas V, Casson N, Greub G. Criblamydia sequanensis, a new intracellular Chlamydiales isolated from Seine river water using amoebal co-culture. Environ Microbiol 2006; 8:2125-35. [PMID: 17107554 DOI: 10.1111/j.1462-2920.2006.01094.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Accumulating evidence supports a role for Chlamydia-related organisms as emerging pathogens for human and animals. Assessment of their pathogenicity requires strain availability, at least for animal models and serological studies. As these obligate intracellular species are able to grow inside amoebae, we used co-culture with Acanthamoeba castellanii in an attempt to recover new Chlamydia-related species from river water. We isolated two strains from eight water samples. The first strain is a new Parachlamydia acanthamoebae strain that differs from previously described isolates by only two bases in the complete 16S rRNA gene sequence. The second isolate is the first representative of a new Chlamydiales family, as demonstrated by genetic and phylogenetic analyses of the 16S rRNA, 23S rRNA, ADP/ATP translocase and RnpB encoding genes. Using fluorescent in situ hybridization and electron microscopy, we demonstrated that it grows in high numbers in amoebae, where it exhibits a Chlamydia-like developmental cycle with reticulate bodies and star-like elementary bodies. Based on these results, we propose to name this new species 'Criblamydia sequanensis'. This work confirmed that amoebal co-culture is a relevant method to isolate new chlamydiae, and that it can be successfully applied to ecosystems colonized with a complex microbial community.
Collapse
Affiliation(s)
- Vincent Thomas
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
40
|
Casson N, Medico N, Bille J, Greub G. Parachlamydia acanthamoebae enters and multiplies within pneumocytes and lung fibroblasts. Microbes Infect 2006; 8:1294-300. [PMID: 16697235 DOI: 10.1016/j.micinf.2005.12.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 10/25/2005] [Accepted: 12/16/2005] [Indexed: 10/24/2022]
Abstract
Parachlamydia acanthamoebae is a Chlamydia-like organism that naturally infects free-living amoebae. P. acanthamoebae is a putative emerging agent of community-acquired and inhalation pneumonia that may enter and multiply within human macrophages. However, since Parachlamydia induces their apoptosis, macrophages may not represent a perennial niche for this obligate intracellular bacterium. Therefore, we investigated whether pneumocytes and lung fibroblasts are permissive to Parachlamydia infection and might act as a replicative niche. Entry of Parachlamydia into pneumocytes (A549) and lung fibroblasts (HEL) was confirmed by confocal and electron microscopy. In A549 cells, the mean number of Parachlamydia per cell increased 7-fold from day 0 to day 7, independently of the technique used to label the bacteria. The proportion of infected A549 cells also increased over time, whereas cell viability remained unaffected by Parachlamydia infection. The sustained (3 weeks) viability of Parachlamydia when incubated in the presence of A549 cells contrasted with that observed in the absence of cells. HEL cells were also permissive to Parachlamydia infection, as we observed a 3- to 4-fold increase in the mean number of bacteria per cell. In HEL cells, Parachlamydia retained some viability for 2 weeks. These findings demonstrate that Parachlamydia is able to enter and multiply within pneumocytes and fibroblasts. The viability of both cell types was not compromised after Parachlamydia infection. We therefore conclude that these cells may remain infected for a prolonged time and may represent an intrapulmonary niche for the strictly intracellular Parachlamydia. This indirectly supports the role of Parachlamydia as an agent of pneumonia.
Collapse
Affiliation(s)
- Nicola Casson
- Center for Research on Intracellular Bacteria, Microbiology Institute, Faculty of Biology and Medicine, University of Lausanne, Bugnon 48, 1011 Lausanne, Switzerland
| | | | | | | |
Collapse
|
41
|
Corsaro D, Greub G. Pathogenic potential of novel Chlamydiae and diagnostic approaches to infections due to these obligate intracellular bacteria. Clin Microbiol Rev 2006; 19:283-97. [PMID: 16614250 PMCID: PMC1471994 DOI: 10.1128/cmr.19.2.283-297.2006] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel chlamydiae are newly recognized members of the phylum Chlamydiales that are only distantly related to the classic Chlamydiaceae, i.e., Chlamydia and Chlamydophila species. They also exhibit an obligate biphasic intracellular life cycle within eukaryote host cells. Some of these new chlamydiae are currently considered potential emerging human and/or animal pathogens. Parachlamydia acanthamoebae and Simkania negevensis are both emerging respiratory human pathogens, Waddlia chondrophila could be a novel abortigenic bovine agent, and Piscichlamydia salmonis has recently been identified as an agent of the gill epitheliocystis in the Atlantic salmon. Fritschea spp. and Rhabdochlamydia spp. seem to be confined to arthropods, but some evidence for human exposure exists. In this review, we first summarize the data supporting a pathogenic potential of the novel chlamydiae for humans and other vertebrates and the interactions that most of these chlamydiae have with free-living amoebae. We then review the diagnostic approaches to infections potentially due to the novel chlamydiae, especially focusing on the currently available PCR-based protocols, mammalian cell culture, the amoebal coculture system, and serology.
Collapse
Affiliation(s)
- Daniele Corsaro
- Chlamydia Research Association, 12, rue du Maconnais, 54500 Vandoeuvres-les-Nancy, France
| | | |
Collapse
|