1
|
Mattos MS, Vandendriessche S, Waisman A, Marques PE. The immunology of B-1 cells: from development to aging. Immun Ageing 2024; 21:54. [PMID: 39095816 PMCID: PMC11295433 DOI: 10.1186/s12979-024-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
B-1 cells have intricate biology, with distinct function, phenotype and developmental origin from conventional B cells. They generate a B cell receptor with conserved germline characteristics and biased V(D)J recombination, allowing this innate-like lymphocyte to spontaneously produce self-reactive natural antibodies (NAbs) and become activated by immune stimuli in a T cell-independent manner. NAbs were suggested as "rheostats" for the chronic diseases in advanced age. In fact, age-dependent loss of function of NAbs has been associated with clinically-relevant diseases in the elderly, such as atherosclerosis and neurodegenerative disorders. Here, we analyzed comprehensively the ontogeny, phenotypic characteristics, functional properties and emerging roles of B-1 cells and NAbs in health and disease. Additionally, after navigating through the complexities of B-1 cell biology from development to aging, therapeutic opportunities in the field are discussed.
Collapse
Affiliation(s)
- Matheus Silvério Mattos
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Centre of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium.
| |
Collapse
|
2
|
Rabaan AA, Alfaraj AH, Alshengeti A, Alawfi A, Alwarthan S, Alhajri M, Al-Najjar AH, Al Fares MA, Najim MA, Almuthree SA, AlShurbaji ST, Alofi FS, AlShehail BM, AlYuosof B, Alynbiawi A, Alzayer SA, Al Kaabi N, Abduljabbar WA, Bukhary ZA, Bueid AS. Antibodies to Combat Fungal Infections: Development Strategies and Progress. Microorganisms 2023; 11:microorganisms11030671. [PMID: 36985244 PMCID: PMC10051215 DOI: 10.3390/microorganisms11030671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
The finding that some mAbs are antifungal suggests that antibody immunity may play a key role in the defense of the host against mycotic infections. The discovery of antibodies that guard against fungi is a significant advancement because it gives rise to the possibility of developing vaccinations that trigger protective antibody immunity. These vaccines might work by inducing antibody opsonins that improve the function of non-specific (such as neutrophils, macrophages, and NK cells) and specific (such as lymphocyte) cell-mediated immunity and stop or aid in eradicating fungus infections. The ability of antibodies to defend against fungi has been demonstrated by using monoclonal antibody technology to reconsider the function of antibody immunity. The next step is to develop vaccines that induce protective antibody immunity and to comprehend the mechanisms through which antibodies mediate protective effects against fungus.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
- Correspondence:
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Amal H. Al-Najjar
- Drug & Poison Information Center, Pharmacy Department, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Mustafa A. Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Sultan T. AlShurbaji
- Outpatient Pharmacy, Dr. Sulaiman Alhabib Medical Group, Diplomatic Quarter, Riyadh 91877, Saudi Arabia
| | - Fadwa S. Alofi
- Department of Infectious Diseases, King Fahad Hospital, Madinah 42351, Saudi Arabia
| | - Bashayer M. AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Buthina AlYuosof
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Ahlam Alynbiawi
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Suha A. Alzayer
- Parasitology Laboratory Department, Qatif Comprehensive Inspection Center, Qatif 31911, Saudi Arabia
| | - Nawal Al Kaabi
- Department of Pediatric Infectious Disease, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Zakiyah A. Bukhary
- Department of Internal Medicine, King Fahad General Hospital, Jeddah 23325, Saudi Arabia
| | - Ahmed S. Bueid
- Microbiology Laboratory, King Faisal General Hospital, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
3
|
The Role of B-Cells and Antibodies against Candida Vaccine Antigens in Invasive Candidiasis. Vaccines (Basel) 2021; 9:vaccines9101159. [PMID: 34696267 PMCID: PMC8540628 DOI: 10.3390/vaccines9101159] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Systemic candidiasis is an invasive fungal infection caused by members of the genus Candida. The recent emergence of antifungal drug resistance and increased incidences of infections caused by non-albicans Candida species merit the need for developing immune therapies against Candida infections. Although the role of cellular immune responses in anti-Candida immunity is well established, less is known about the role of humoral immunity against systemic candidiasis. This review summarizes currently available information on humoral immune responses induced by several promising Candida vaccine candidates, which have been identified in the past few decades. The protective antibody and B-cell responses generated by polysaccharide antigens such as mannan, β-glucan, and laminarin, as well as protein antigens like agglutinin-like sequence gene (Als3), secreted aspartyl proteinase (Sap2), heat shock protein (Hsp90), hyphally-regulated protein (Hyr1), hyphal wall protein (Hwp1), enolase (Eno), phospholipase (PLB), pyruvate kinase (Pk), fructose bisphosphate aldolase (Fba1), superoxide dismutase gene (Sod5) and malate dehydrogenase (Mdh1), are outlined. As per studies reviewed, antibodies induced in response to leading Candida vaccine candidates contribute to protection against systemic candidiasis by utilizing a variety of mechanisms such as opsonization, complement fixation, neutralization, biofilm inhibition, direct candidacidal activity, etc. The contributions of B-cells in controlling fungal infections are also discussed. Promising results using anti-Candida monoclonal antibodies for passive antibody therapy reinforces the need for developing antibody-based therapeutics including anti-idiotypic antibodies, single-chain variable fragments, peptide mimotopes, and antibody-derived peptides. Future research involving combinatorial immunotherapies using humanized monoclonal antibodies along with antifungal drugs/cytokines may prove beneficial for treating invasive fungal infections.
Collapse
|
4
|
Vaccination with Secreted Aspartyl Proteinase 2 Protein from Candida parapsilosis Can Enhance Survival of Mice during C. tropicalis-Mediated Systemic Candidiasis. Infect Immun 2020; 88:IAI.00312-20. [PMID: 32661125 DOI: 10.1128/iai.00312-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
The rising incidence of non-albicans Candida species globally, along with the emergence of drug resistance, is a cause for concern. This study investigated the protective efficacy of secreted aspartyl proteinase 2 (Sap2) in systemic C. tropicalis infection. Vaccination with recombinant Sap2 (rSap2) protein from C. parapsilosis enhanced survival of mice compared to rSap2 vaccinations from C. albicans (P = 0.02), C. tropicalis (P = 0.06), and sham immunization (P = 0.04). Compared to sham-immunized mice, the fungal CFU number was significantly reduced in organs of Sap2-parapsilosis-immunized mice. Histopathologically, increased neutrophilic recruitment was observed in Sap2-parapsilosis- and Sap2-tropicalis-immunized mice. Among different rSap2 proteins, Sap2-parapsilosis vaccination induced increased titers of Sap2-specific Ig, IgG, and IgM antibodies, which could bind whole fungus. Between different groups, sera from Sap2-parapsilosis-vaccinated mice exhibited increased C. tropicalis biofilm inhibition ability in vitro and enhanced neutrophil-mediated fungal killing. Passive transfer of anti-Sap2-parapsilosis immune serum in naive mice significantly reduced fungal burdens compared to those in mice receiving anti-sham immune serum. Higher numbers of plasma cells and Candida-binding B cells in Sap2-vaccinated mice suggest a role of B cells during early stages of Sap2-mediated immune response. Additionally, increased levels of Th1/Th2/Th17 cytokines observed in Sap2-parapsilosis-vaccinated mice indicate immunomodulatory properties of Sap2. Epitope analysis performed using identified B-cell epitopes provides a basis to understand differences in immunogenicity observed among Sap2-antigens and can aid the development of a multivalent or multiepitope anti-Candida vaccine(s). In summary, our results suggest that Sap2-parapsilosis vaccination can improve mouse survival during C. tropicalis infection by inducing both humoral and cellular immunity, and higher titers of Sap2-induced antibodies are beneficial during systemic candidiasis.
Collapse
|
5
|
Kobayashi T, Oishi K, Okamura A, Maeda S, Komuro A, Hamaguchi Y, Fujimoto M, Takehara K, Matsushita T. Regulatory B1a Cells Suppress Melanoma Tumor Immunity via IL-10 Production and Inhibiting T Helper Type 1 Cytokine Production in Tumor-Infiltrating CD8+ T Cells. J Invest Dermatol 2019; 139:1535-1544.e1. [DOI: 10.1016/j.jid.2019.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 11/16/2022]
|
6
|
Buldain I, Ramirez-Garcia A, Pellon A, Antoran A, Sevilla MJ, Rementeria A, Hernando FL. Cyclophilin and enolase are the most prevalent conidial antigens of Lomentospora prolificans recognized by healthy human salivary IgA and cross-react with Aspergillus fumigatus. Proteomics Clin Appl 2016; 10:1058-1067. [PMID: 27485921 DOI: 10.1002/prca.201600080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/13/2016] [Accepted: 08/01/2016] [Indexed: 11/09/2022]
Abstract
PURPOSE The study of the immunocompetent airways immune response may provide important information to improve the therapeutic efficacy against Lomentospora (Scedosporium) prolificans. So, this study aimed to identify the most prevalent conidial antigens of this multiresistant fungus recognized by healthy human salivary immunoglobulin A, and to study their expression and cross-reactivity with other fungal species. EXPERIMENTAL DESIGN Twenty saliva from immunocompetent donors were used to detect and identify the immunoreactive proteins by 2D immunoblotting and LC-MS/MS. Moreover, anti-Aspergillus antibodies were purified to study their cross-reactivity. RESULTS Ten proteins of L. prolificans conidia showed reactivity with more than 50% of the saliva samples. Among them, cyclophilin and enolase were the most prevalent antigens recognized by 85 and 80% of the samples, respectively. These enzymes were also identified on the cell wall surface of L. prolificans and on the immunomes of Scedosporium apiospermum and Scedosporium aurantiacum. Additionally, they showed cross-reactivity with the most common pathogenic filamentous fungus Aspergillus fumigatus. CONCLUSION AND CLINICAL RELEVANCE These results show that the immunocompetent immune response might offer a pan-fungal recognition of conserved antigens such as enolase and cyclophilins, making them potential candidates for study as therapeutic targets.
Collapse
Affiliation(s)
- Idoia Buldain
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Andoni Ramirez-Garcia
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Aize Pellon
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitziber Antoran
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maria Jesus Sevilla
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Rementeria
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Fernando L Hernando
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, Fungal and Bacterial Biomics Research Group, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
7
|
Abstract
Fungal organisms are ubiquitous in the environment. Pathogenic fungi, although relatively few in the whole gamut of microbial pathogens, are able to cause disease with varying degrees of severity in individuals with normal or impaired immunity. The disease state is an outcome of the fungal pathogen's interactions with the host immunity, and therefore, it stands to reason that deep/invasive fungal diseases be amenable to immunotherapy. Therefore, antifungal immunotherapy continues to be attractive as an adjunct to the currently available antifungal chemotherapy options for a number of reasons, including the fact that existing antifungal drugs, albeit largely effective, are not without limitations, and that morbidity and mortality associated with invasive mycoses are still unacceptably high. For several decades, intense basic research efforts have been directed at development of fungal immunotherapies. Nevertheless, this approach suffers from a severe bench-bedside disconnect owing to several reasons: the chemical and biological peculiarities of the fungal antigens, the complexities of host-pathogen interactions, an under-appreciation of the fungal disease landscape, the requirement of considerable financial investment to bring these therapies to clinical use, as well as practical problems associated with immunizations. In this general, non-exhaustive review, we summarize the features of ongoing research efforts directed towards devising safe and effective immunotherapeutic options for mycotic diseases, encompassing work on antifungal vaccines, adoptive cell transfers, cytokines, antimicrobial peptides (AMPs), monoclonal antibodies (mAbs), and other agents.
Collapse
Affiliation(s)
- Kausik Datta
- a Division of Infectious Diseases , Johns Hopkins University School of Medicine , Baltimore , MD , USA , and
| | - Mawieh Hamad
- b Department of Medical Laboratory Sciences and the Sharjah Institute for Medical Research , University of Sharjah , Sharjah , UAE
| |
Collapse
|
8
|
Zhang J, Wan M, Ren J, Gao J, Fu M, Wang G, Liu Y, Li W. Positive selection of B10 cells is determined by BCR specificity and signaling strength. Cell Immunol 2016; 304-305:27-34. [PMID: 27132875 DOI: 10.1016/j.cellimm.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/15/2016] [Accepted: 04/22/2016] [Indexed: 02/08/2023]
Abstract
B10 cells, a regulatory B cell subset, negatively regulate immune responses in an IL-10-dependent manner. However, the mechanism of B10 cell development is unclear. We found that B10 cells mainly identified self-antigens. TgVH3B4 transgenic mice, whose VH was derived from an actin-reactive natural antibody, exhibit elevated numbers of actin-binding B10 cells. Immunization of TgVH3B4 mice with actin induced elevated B10 cell numbers in an antigen-specific manner, indicating positive selection of B10 cells by self-antigens. Furthermore, higher BCR signaling strength facilitated B10 cell development. We also observed that actin-reactive IgG levels were unchanged in TgVH3B4 mice after immunization with actin in contrast to the elevated OVA-reactive IgG level after immunization with OVA, indicating that B10 cells acted in an antigen-specific manner to inhibit the immune response. Our data demonstrate for the first time that B10 cells are positively selected by self-reactivity and that higher BCR signaling strength promotes B10 cell development.
Collapse
Affiliation(s)
- Jigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Ming Wan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Jing Ren
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Jixin Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Yufeng Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Wei Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
9
|
Xing Y, Ji Q, Lin Y, Fu M, Gao J, Zhang P, Hu X, Feng L, Liu Y, Han H, Li W. Positive selection of natural poly-reactive B cells in the periphery occurs independent of heavy chain allelic inclusion. PLoS One 2015; 10:e0125747. [PMID: 25993514 PMCID: PMC4437983 DOI: 10.1371/journal.pone.0125747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/25/2015] [Indexed: 11/28/2022] Open
Abstract
Natural autoreactive B cells are important mediators of autoimmune diseases. Receptor editing is known to play an important role in both central and peripheral B cell tolerance. However, the role of allelic inclusion in the development of natural autoreactive B cells is not clear. Previously, we generated μ chain (TgVH3B4I) and μ/κ chains (TgVH/L3B4) transgenic mice using transgene derived from the 3B4 hybridoma, which produce poly-reactive natural autoantibodies. In this study, we demonstrate that a considerable population of B cells edited their B cells receptors (BCRs) via light chain or heavy chain allelic inclusion during their development in TgVH3B4I mice. Additionally, allelic inclusion occurred more frequently in the periphery and promoted the differentiation of B cells into marginal zone or B-1a cells in TgVH3B4I mice. B cells from TgVH/L3B4 mice expressing the intact transgenic 3B4 BCR without receptor editing secreted poly-reactive 3B4 antibody. Interestingly, however, B cell that underwent allelic inclusion in TgVH3B4I mice also produced poly-reactive autoantibodies in vivo and in vitro. Our findings suggest that receptor editing plays a minor role in the positive selection of B cells expressing natural poly-reactive BCRs, which can be positively selected through heavy chain allelic inclusion to retain their poly-reactivity in the periphery.
Collapse
Affiliation(s)
- Ying Xing
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Endocrinology and Metabolism Disease, Xijing Hospital, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Qiuhe Ji
- Department of Endocrinology and Metabolism Disease, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Lin
- Department of Otolaryngology Head and Neck surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jixin Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ping Zhang
- Department of Otolaryngology Head and Neck surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xingbin Hu
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Lei Feng
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Yufeng Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Wei Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
10
|
Complement activation contributes to the anti-methicillin-resistant Staphylococcus aureus effect of natural anti-keratin antibody. Biochem Biophys Res Commun 2015; 461:142-7. [PMID: 25862372 DOI: 10.1016/j.bbrc.2015.03.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 01/14/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) remains a major public health problem worldwide because of its strong resistance to a variety of antibiotics. Natural immunoglobulin (Ig) M antibodies have been reported to protect against microbial infections. In the present study, the function of a monoclonal natural anti-keratin antibody IgM (named 3B4) in MRSA infection was evaluated. The binding of 3B4 to MRSA was studied using immunofluorescence assay and flow cytometry (FCM). The binding of 3B4 to mannose-binding lectin (MBL) and complement activation were detected by ELISA. For the in vivo study, transgenic mice for the VH gene from 3B4 (TgVH 3B4) were used. After infection, the bacterial burden was examined in the kidney, spleen and enterocelia. Inflammatory cytokine levels and the neutrophil ratio in peritoneal lavage fluid (PLF) were assessed by ELISA and FCM, respectively. Additionally, the total serum hemolytic activity (CH50) in the early stage of infection was detected by ELISA. The results showed that 3B4 bound directly to MRSA and MBL, and the interaction between 3B4 and MRSA/MBL led to the activation of the classic and the MBL pathway in vitro. After 48 h of MRSA infection, the bacterial load in the kidney, spleen and enterocelia was significantly decreased in TgVH 3B4 mice (P < 0.05) compared with wild-type mice. Levels of IL-6, TNF-α, and IFN-γ were increased after MRSA infection. The levels of IL-6 and TNF-α in TgVH 3B4 mice were decreased by 49.1% and 59.4% compared to wild-type mice. Additionally, the neutrophil ratio in the PLF of TgVH 3B4 mice was decreased by 65.9%. The CH50 value was significantly higher in TgVH 3B4 mice than in wild-type mice, indicating that 3B4 promoted the activation of the complement system in MRSA infected mice. The results reveal an important role of 3B4 in the anti-MRSA immune response, and the complement activation contributes to this effect.
Collapse
|
11
|
Elluru SR, Kaveri SV, Bayry J. The protective role of immunoglobulins in fungal infections and inflammation. Semin Immunopathol 2014; 37:187-97. [PMID: 25404121 DOI: 10.1007/s00281-014-0466-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/06/2014] [Indexed: 02/07/2023]
Abstract
Increased incidence of fungal infections in the immunocompromised individuals and fungi-mediated allergy and inflammatory conditions in immunocompetent individuals is a cause of concern. Consequently, there is a need for efficient therapeutic alternatives to treat fungal infections and inflammation. Several studies have demonstrated that antibodies or immunoglobulins have a role in restricting the fungal burden and their clearance. However, based on the data from monoclonal antibodies, it is now evident that the efficacy of antibodies in fungal infections is dependent on epitope specificity, abundance of protective antibodies, and their isotype. Antibodies confer protection against fungal infections by multiple mechanisms that include direct neutralization of fungi and their antigens, inhibition of growth of fungi, modification of gene expression, signaling and lipid metabolism, causing iron starvation, inhibition of polysaccharide release, and biofilm formation. Antibodies promote opsonization of fungi and their phagocytosis, complement activation, and antibody-dependent cell toxicity. Passive administration of specific protective monoclonal antibodies could also prove to be beneficial in drug resistance cases, to reduce the dosage and associated toxic symptoms of anti-fungal drugs. The longer half-life of the antibodies and flexibilities to modify their structure/forms are additional advantages. The clinical data obtained with two monoclonal antibodies should incite interests in translating pre-clinical success into the clinics. The anti-inflammatory and immunoregulatory role of antibodies in fungal inflammation could be exploited by intravenous immunoglobulin or IVIg.
Collapse
Affiliation(s)
- Sri Ramulu Elluru
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | |
Collapse
|
12
|
Tian R, Fu M, Zhang Z, Ren J, An J, Liu Y, Li W. In situ IgM production and clonal expansion of B-1 cells in peritoneal cavity promote elimination of C. albicans infection in IgH transgenic mice with VH derived from a natural antibody. PLoS One 2013; 8:e60779. [PMID: 23565274 PMCID: PMC3614557 DOI: 10.1371/journal.pone.0060779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 03/02/2013] [Indexed: 01/15/2023] Open
Abstract
B-1 cells are innate-like cells that play important roles in host defense against infection. However, the function of B-1 cells in fungi infection remains unclear. Previously we produced IgH transgenic mice TgVH3B4 with VH derived from a natural antibody 3B4 that can identify C. albicans, and found that TgVH3B4 mice were resistant to intraperitoneal (i. p.) and intravenous C. albicans infection. Most of the peritoneal cavity (PEC) B-1 cells in TgVH3B4 mice express transgenic BCR that binds C. albicans. In the present study, we explored the response of B-1 cells to C. albicans infection by applying i. p. inoculation of fungi in TgVH3B4 mice. We found that C. albicans was cleared more efficiently in TgVH3B4 mice after i. p. inoculation than that of littermate control. The level of C. albicans-reactive IgM in PEC of TgVH3B4 mice was much higher than that of control, and the number of B-1a B cells was also elevated in TgVH3B4 mice, which was mainly due to enhanced proliferation of B-1 cells. Additionally, numbers of C. albicans-specific B cells increased greatly in TgVH3B4 mice after C. albicans inoculation. Our data suggested that in situ IgM production and clonal expansion of B-1 cells in PEC participate in host defense against C. albicans infection.
Collapse
Affiliation(s)
- Rong Tian
- Department of Dermatology, General Hospital of the Air Force, Beijing, P. R. China
- Department of Dermatology, Xijing Hospital, Xi’an, P. R. China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Xi’an, P. R. China
| | - Zhuo Zhang
- Department of Neurology, Tangdu Hospital, Xi’an, P. R. China
| | - Jing Ren
- Department of Dermatology, Xijing Hospital, Xi’an, P. R. China
| | - Jingang An
- Department of Dermatology, Xijing Hospital, Xi’an, P. R. China
| | - Yufeng Liu
- Department of Dermatology, Xijing Hospital, Xi’an, P. R. China
| | - Wei Li
- Department of Dermatology, General Hospital of the Air Force, Beijing, P. R. China
- Department of Dermatology, Xijing Hospital, Xi’an, P. R. China
- * E-mail:
| |
Collapse
|
13
|
Innate autoreactive B cells as antigen-presenting cells in the induction of tolerance to conserved keratin polypeptide. Cell Immunol 2013; 281:76-84. [DOI: 10.1016/j.cellimm.2013.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/01/2013] [Accepted: 01/24/2013] [Indexed: 11/24/2022]
|
14
|
Rohatgi S, Pirofski LA. Molecular characterization of the early B cell response to pulmonary Cryptococcus neoformans infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:5820-30. [PMID: 23175699 DOI: 10.4049/jimmunol.1201514] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The role of B cells in host defense against fungi has been difficult to establish. We quantified and determined the molecular derivation of B-1a, B-1b, and B-2 B cell populations in C57BL/6 mice after pulmonary infection with Cryptococcus neoformans. Total B-1 and B-2 cell numbers increased in lungs and peritoneal cavity as early as day 1 postinfection, but lacked signs of clonal expansion. Labeled capsular (24067) and acapsular (Cap67) C. neoformans strains were used to identify C. neoformans-binding B cell subsets by flow cytometry. Peritoneal cavity B-1a B cells exhibited the most acapsular and capsular C. neoformans binding in C. neoformans-infected mice, and C. neoformans-selected B-1 B cells secreted laminarin- and C. neoformans-binding IgM. Single-cell PCR-based sequence analysis of B-1a, B-1b, and B-2 cell IgH V region H chain (V(H)) genes revealed increased usage of V(H)11 and V(H)12, respectively, in acapsular and capsular C. neoformans-selected B-1a cells. Germline V(H) segments were used, with capsular C. neoformans-selected cells having less junctional diversity than acapsular C. neoformans-selected cells. Further studies in B-1 B cell-depleted mice showed that these mice had higher brain and lung fungal burdens and less alveolar macrophage phagocytosis of C. neoformans than did control and B-1a B cell-reconstituted mice. Taken together, these results establish a mechanistic role for B-1 B cells in the innate B cell response to pulmonary infection with C. neoformans and reveal that IgM-producing B-1a cells, which express germline V(H) genes, bind C. neoformans and contribute to early fungal clearance. Thus, B-1a B cells provide a first line of defense during pulmonary C. neoformans infection in mice.
Collapse
Affiliation(s)
- Soma Rohatgi
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | | |
Collapse
|
15
|
Gao J, Ma X, Gu W, Fu M, An J, Xing Y, Gao T, Li W, Liu Y. Novel functions of murine B1 cells: active phagocytic and microbicidal abilities. Eur J Immunol 2012; 42:982-92. [PMID: 22531922 DOI: 10.1002/eji.201141519] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
B1 cells are evolutionarily conserved innate-like cells that share many features with macrophages. It has also been established that B1 cells have a close developmental relationship with macrophages. However, whether B1 cells are able to act as professional phagocytic cells is not clear. In this study, we report that mouse peritoneal cavity (PerC) B cells demonstrate in vivo and in vitro phagocytic activities for Staphylococcus aureus, Escherichia coli, and polystyrene fluorescent microspheres. Approximately 5% of PerC B cells, mainly B1b cells, showed phagocytic activity. Ingested microbes were killed efficiently in the phagolysosome. The antigen-specific B-cell antigen receptor promoted B-cell phagocytosis, resulting in antigen presentation to T cells after uptake of bacteria. Our results reveal for the first time that mouse B1 cells have active phagocytic capabilities and thereby act as a bridge linking innate and adaptive immunity.
Collapse
Affiliation(s)
- Jixin Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang Z, Zhou L, Yang X, Wang Y, Zhang P, Hou L, Hu X, Xing Y, Liu Y, Li W, Han H. Notch-RBP-J-independent marginal zone B cell development in IgH transgenic mice with VH derived from a natural polyreactive antibody. PLoS One 2012; 7:e38894. [PMID: 22719978 PMCID: PMC3374804 DOI: 10.1371/journal.pone.0038894] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/14/2012] [Indexed: 11/18/2022] Open
Abstract
Both the B cell antigen receptor (BCR) signaling and Notch signaling pathway play important roles in marginal zone (MZ) B cell development; however, if and how these two signaling pathways engage in crosstalk with each other remain unclear. In the present study, IgH transgenic mice (TgV(H)3B4) were crossed with mice with Notch downstream transcription factor RBP-J floxed alleles (RBP-J(f/f)) and Mx-Cre transgene. Subsequently, MZ B cell development was analyzed in 3B4/Cre/RBP-J(f/f) mice that expressed the transgenic 3B4 IgH and exhibited a deficiency in Notch signaling in B cells upon poly (I:C) injection. We observed that MZ B cell numbers were severely reduced, but still detectable in 3B4/Cre/RBP-J(f/f) mice, in contrast to increased numbers of MZ B cells in TgV(H)3B4 mice and almost no MZ B cells in Cre/RBP-J(f/f) mice. The majority of the MZ B cells in the 3B4/Cre/RBP-J(f/f) mice had the same antigen specificity with that of 3B4 antibody, indicating that a particular BCR specificity might direct MZ B cell development in the absence of Notch signaling. The number of MZ B precursor (MZP) cells was reduced sharply in 3B4/Cre/RBP-J(f/f) mice, and the number of transitional stage 1 and transitional stage 2 cells did not change that much, indicating that the interaction between BCR and Notch signaling likely occurred during the T2-MZP stage. Based on the transgenic mouse model, our data indicate that MZ B cells with certain BCR specificity can develop in a Notch-RBP-J independent manner.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lanhua Zhou
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Dermatology, Affiliated Hospital of Institute of Aviation Medicine, Air Force, Beijing, China
| | - Xinwei Yang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Yaochun Wang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Ping Zhang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Lihong Hou
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Xinbin Hu
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Ying Xing
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Yufeng Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
- * E-mail: (WL); (HH)
| | - Hua Han
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
- * E-mail: (WL); (HH)
| |
Collapse
|
17
|
Cabezas J, Albaina O, Montañez D, Sevilla MJ, Moragues MD, Pontón J. Potential of anti-Candida antibodies in immunoprophylaxis. Immunotherapy 2010; 2:171-83. [PMID: 20635926 DOI: 10.2217/imt.09.76] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The need for new options for the treatment of invasive candidiasis has fuelled the use of antibodies in combination with conventional antifungal therapy. After a long period of time in which antibodies were considered irrelevant in the resistance against invasive candidiasis, it was demonstrated that a number of antibodies or their engineered derivatives directed against Candida albicans cell-wall polysaccharides and glycopeptides, as well as against some protein epitopes, confer protection against invasive candidiasis. This has confirmed this approach as a new strategy for the prophylaxis of invasive candidiasis. Of particular interest is Mycograb, a human recombinant monoclonal antibody that inhibits heat shock protein 90, and has been administrated in combination with lipid-associated amphotericin B to patients with invasive candidiasis, and the fungicidal anti-beta-glucan antibodies induced by the glycoconjugate vaccine composed of a beta-glucan polysaccharide conjugated with the diphtheria toxoid CRM 197. However, despite the promising data obtained in vitro and in animal models, at present there is very little clinical experience on the use of antibodies in Candida immunoprophylaxis.
Collapse
Affiliation(s)
- Jonathan Cabezas
- Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Odontología, Universidad del País Vasco, Bilbao, Vizcaya, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Xing Y, Li W, Lin Y, Fu M, Li CX, Zhang P, Liang L, Wang G, Gao TW, Han H, Liu YF. The influence of BCR density on the differentiation of natural poly-reactive B cells begins at an early stage of B cell development. Mol Immunol 2009; 46:1120-8. [DOI: 10.1016/j.molimm.2008.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 12/16/2022]
|
19
|
Secretory expression of human ScFv against keratin in Pichia pastoris and its effects on cultured keratinocytes. Arch Dermatol Res 2008; 301:367-72. [DOI: 10.1007/s00403-008-0908-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/23/2008] [Accepted: 09/29/2008] [Indexed: 12/12/2022]
|