1
|
Koshibu Y, Ubagai T, Yoshino Y, Ono Y. Immunobiological effects of lipopolysaccharide derived from Helicobacter pylori and influence of a proton pump inhibitor lansoprazole on human polymorphonuclear leukocytes. Folia Microbiol (Praha) 2024; 69:1369-1378. [PMID: 39153156 PMCID: PMC11485072 DOI: 10.1007/s12223-024-01188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Helicobacter pylori colonizes the human gastric mucosa of more than half of the human population and has a unique lipopolysaccharide (LPS) structure. LPS is the most dominant and suitable pathogen-associated molecular pattern that is detected via pattern recognition receptors. Although the priming effect of H. pylori LPS on reactive oxygen species (ROS) production of PMNs is lower than that of Escherichia coli O111:B4 LPS, LPS released from H. pylori associated with antibiotics eradication therapy may activate PMNs and increase ROS production. In addition, we describe the effects of H. pylori and E. coli O111:B4 LPSs on gene expression and the anti-inflammatory effect of lansoprazole (LPZ) in human polymorphonuclear leukocytes. LPS isolated from H. pylori and E. coli O111:B4 alters toll-like receptor 2 (TLR) and TLR4 expressions similarly. However, LPS from E. coli O111:B4 and H. pylori caused a 1.8-fold and 1.5-fold increase, respectively, in CD14 expression. All LPS subtypes upregulated TNFα and IL6 expression in a concentration-dependent manner. Although E. coli O111:B4 LPS upregulated IL8R mRNA levels, H. pylori LPS did not (≦ 100 ng/mL). Gene expression levels of ITGAM demonstrated no significant change on using both LPSs. These different effects on the gene expression in PMNs may depend on variations in LPS structural modifications related to the acquired immunomodulatory properties of H. pylori LPS. Proton pump inhibitors, i.e., LPZ, are used in combination with antibiotics for the eradication therapy of H. pylori. LPZ and its acid-activated sulphenamide form AG-2000 suppress ROS production of PMNs in a dose-dependent manner. These results suggest that LPZ combination with antibiotics for H. pylori eradication reduces gastric inflammation by suppressing ROS release from PMNs.
Collapse
Affiliation(s)
- Yoji Koshibu
- Department of Microbiology & Immunology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Tsuneyuki Ubagai
- Department of Microbiology & Immunology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-Ku, Tokyo, 173-8605, Japan.
| | - Yusuke Yoshino
- Department of Microbiology & Immunology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Yasuo Ono
- Department of Microbiology & Immunology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-Ku, Tokyo, 173-8605, Japan
- Faculty of Health and Medical Science, Teikyo Heisei University, Tokyo, 170-8445, Japan
| |
Collapse
|
2
|
Gonciarz W, Płoszaj P, Chmiela M. Mycobacterium bovis BCG reverses deleterious effects of H. pylori components towards gastric barrier cells in vitro. Biomed Pharmacother 2024; 178:117193. [PMID: 39067167 DOI: 10.1016/j.biopha.2024.117193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Mycobacterium bovis (M. bovis) Bacillus Calmette-Guerin (BCG) strain used in immunotherapy of bladder cancer (onco-BCG) due to its acid tolerance can be a candidate for prevention or reversion of deleterious effects towards gastric cell barrier initiated by gastric pathogen Helicobacter pylori (Hp) with high resistance to commonly used antibiotics. Colonization of gastric mucosa by Hp promotes oxidative stress, apoptosis resulting in the gastric barrier damage. The aim of this study was to examine the ability of onco-BCG bacilli to control the Hp driven gastric damage using the model of Cavia porcellus primary gastric epithelial cells or fibroblasts in vitro. These cells were treated with Hp surface antigens (glycine acid extract-GE or lipopolysaccharide-LPS) alone or with onco-BCG bacilli and evaluated for cell apoptosis and proliferation in conjunction with the level of soluble lipid peroxidation marker (s4HNE). The cell migration was determined by "wound healing assay", while cytokine response of cells, including interleukin (IL)-33, IL-1β, IL-8 and tumor necrosis factor alpha (TNF-α), by the ELISA. The apoptosis of cells pulsed in vitro with Hp surface components present in GE or with LPS was reduced after exposure of cells to mycobacteria. Similarly, the cell regeneration which was diminished by Hp LPS has been improved in response to mycobacteria. This study reveals that vaccine mycobacteria may reduce gastric barrier damage induced by Hp infection.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | - Patrycja Płoszaj
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Fei X, Li N, Xu X, Zhu Y. Macrophage biology in the pathogenesis of Helicobacter pylori infection. Crit Rev Microbiol 2024:1-18. [PMID: 39086061 DOI: 10.1080/1040841x.2024.2366944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024]
Abstract
Infection with H. pylori induces chronic gastric inflammation, progressing to peptic ulcer and stomach adenocarcinoma. Macrophages function as innate immune cells and play a vital role in host immune defense against bacterial infection. However, the distinctive mechanism by which H. pylori evades phagocytosis allows it to colonize the stomach and further aggravate gastric preneoplastic pathology. H. pylori exacerbates gastric inflammation by promoting oxidative stress, resisting macrophage phagocytosis, and inducing M1 macrophage polarization. M2 macrophages facilitate the proliferation, invasion, and migration of gastric cancer cells. Various molecular mechanisms governing macrophage function in the pathogenesis of H. pylori infection have been identified. In this review, we summarize recent findings of macrophage interactions with H. pylori infection, with an emphasis on the regulatory mechanisms that determine the clinical outcome of bacterial infection.
Collapse
Affiliation(s)
- Xiao Fei
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nianshuang Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Dore MP, Pes GM. Trained Immunity and Trained Tolerance: The Case of Helicobacter pylori Infection. Int J Mol Sci 2024; 25:5856. [PMID: 38892046 PMCID: PMC11172748 DOI: 10.3390/ijms25115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Trained immunity is a concept in immunology in which innate immune cells, such as monocytes and macrophages, exhibit enhanced responsiveness and memory-like characteristics following initial contact with a pathogenic stimulus that may promote a more effective immune defense following subsequent contact with the same pathogen. Helicobacter pylori, a bacterium that colonizes the stomach lining, is etiologically associated with various gastrointestinal diseases, including gastritis, peptic ulcer, gastric adenocarcinoma, MALT lymphoma, and extra gastric disorders. It has been demonstrated that repeated exposure to H. pylori can induce trained immunity in the innate immune cells of the gastric mucosa, which become more responsive and better able to respond to subsequent H. pylori infections. However, interactions between H. pylori and trained immunity are intricate and produce both beneficial and detrimental effects. H. pylori infection is characterized histologically as the presence of both an acute and chronic inflammatory response called acute-on-chronic inflammation, or gastritis. The clinical outcomes of ongoing inflammation include intestinal metaplasia, gastric atrophy, and dysplasia. These same mechanisms may also reduce immunotolerance and trigger autoimmune pathologies in the host. This review focuses on the relationship between trained immunity and H. pylori and underscores the dynamic interplay between the immune system and the pathogen in the context of gastric colonization and inflammation.
Collapse
Affiliation(s)
- Maria Pina Dore
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Clinica Medica, Viale San Pietro 8, 07100 Sassari, Italy;
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza Blvd, Houston, TX 77030, USA
| | - Giovanni Mario Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Clinica Medica, Viale San Pietro 8, 07100 Sassari, Italy;
| |
Collapse
|
5
|
Apoorva E, Jacob R, Rao DN, Kumar S. Helicobacter pylori enhances HLA-C expression in the human gastric adenocarcinoma cells AGS and can protect them from the cytotoxicity of natural killer cells. Helicobacter 2024; 29:e13069. [PMID: 38516860 DOI: 10.1111/hel.13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Helicobacter pylori (H. pylori) seems to play causative roles in gastric cancers. H. pylori has also been detected in established gastric cancers. How the presence of H. pylori modulates immune response to the cancer is unclear. The cytotoxicity of natural killer (NK) cells, toward infected or malignant cells, is controlled by the repertoire of activating and inhibitory receptors expressed on their surface. Here, we studied H. pylori-induced changes in the expression of ligands, of activating and inhibitory receptors of NK cells, in the gastric adenocarcinoma AGS cells, and their impacts on NK cell responses. AGS cells lacked or had low surface expression of the class I major histocompatibility complex (MHC-I) molecules HLA-E and HLA-C-ligands of the major NK cell inhibitory receptors NKG2A and killer-cell Ig-like receptor (KIR), respectively. However, AGS cells had high surface expression of ligands of activating receptors DNAM-1 and CD2, and of the adhesion molecules LFA-1. Consistently, AGS cells were sensitive to killing by NK cells despite the expression of inhibitory KIR on NK cells. Furthermore, H. pylori enhanced HLA-C surface expression on AGS cells. H. pylori infection enhanced HLA-C protein synthesis, which could explain H. pylori-induced HLA-C surface expression. H. pylori infection enhanced HLA-C surface expression also in the hepatoma Huh7 and HepG2 cells. Furthermore, H. pylori-induced HLA-C surface expression on AGS cells promoted inhibition of NK cells by KIR, and thereby protected AGS cells from NK cell cytotoxicity. These results suggest that H. pylori enhances HLA-C expression in host cells and protects them from the cytotoxic attack of NK cells expressing HLA-C-specific inhibitory receptors.
Collapse
Affiliation(s)
- Etikala Apoorva
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rini Jacob
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Santosh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Gonciarz W, Brzeziński M, Orłowska W, Wawrzyniak P, Lewandowski A, Narayanan VHB, Chmiela M. Spray-dried pH-sensitive chitosan microparticles loaded with Mycobacterium bovis BCG intended for supporting treatment of Helicobacter pylori infection. Sci Rep 2024; 14:4747. [PMID: 38413775 PMCID: PMC10899647 DOI: 10.1038/s41598-024-55353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
Gram-negative spiral-shaped Helicobacter pylori (Hp) bacteria induce the development of different gastric disorders. The growing resistance of Hp to antibiotics prompts to search for new therapeutic formulations. A promising candidate is Mycobacterium bovis BCG (BCG) with immunomodulatory properties. Biodegradable mucoadhesive chitosan is a good carrier for delivering BCG mycobacteria to the gastric mucosal environment. This study aimed to show whether BCG bacilli are able to increase the phagocytic activity of Cavia porcellus-guinea pig macrophages derived from the bone marrow towards fluorescently labeled Escherichia coli. Furthermore, to encapsulate live BCG bacilli, in spray-dried chitosan microparticles (CHI-MPs), and assess the pH-dependent release of mycobacteria in pH conditions mimicking gastric (acidic) or gut (alkaline) milieu. Microparticles (MPs) were made of chitosan and coated with Pluronic F-127-(Plur) or N-Acetyl-D-Glucosamine-(GlcNAc) to increase the MPs resistance to low pH or to increase anti-Hp effect, respectively. Spray-drying method was used for microencapsulation of live BCG. The biosafety of tested CHI-MPs has been confirmed using cell models in vitro and the model of guinea pig in vivo. The CHI-MPs loaded with BCG released live mycobacteria at pH 3.0 (CHI-GlcNAc-MPs) or pH 8.0. (CHI-Plur-MPs). The CHI-MPs loaded with live BCG can be used for per os inoculation of Cavia porcellus to check the effectiveness of delivered mycobacteria in increasing anti-H. pylori host response.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636, Lodz, Poland.
| | - Weronika Orłowska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Paweł Wawrzyniak
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Stefana Zeromskiego 116, 90-924, Lodz, Poland
| | - Artur Lewandowski
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Stefana Zeromskiego 116, 90-924, Lodz, Poland
| | - Vedha Hari B Narayanan
- Pharmaceutical Technology Laboratory, #214, ASK-II, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| |
Collapse
|
7
|
Gonciarz W, Chyb M, Chmiela M. Diminishing of Helicobacter pylori adhesion to Cavia porcellus gastric epithelial cells by BCG vaccine mycobacteria. Sci Rep 2023; 13:16305. [PMID: 37770504 PMCID: PMC10539345 DOI: 10.1038/s41598-023-43571-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023] Open
Abstract
Mycobacterium bovis onco-BCG bacilli used in immunotherapy of bladder cancer are candidates for training of immune cells towards microbial pathogens. Increasing antibiotic resistance of gastric pathogen Helicobacter pylori (Hp) prompts the search for new anti-Hp and immunomodulatory formulations. Colonization of gastric mucosa by Hp through mucin 5 AC (MUC5AC) ligands could potentially be a therapeutic target. The aim of this study was to examine the ability of onco-BCG mycobacteria to reduce Hp adhesion to gastric epithelial cells using Cavia porcellus model. Animals were inoculated per os with 0.85% NaCl, Hp alone, onco-BCG alone or with onco-BCG and Hp. After 7/28 days Mucin5AC and Hp binding to gastric epithelium were assessed in gastric tissue specimens by staining with anti-Mucin5AC and anti-Hp antibodies, respectively, both fluorescently labeled. Primary gastric epithelial cells were treated ex vivo with live Hp or Hp surface antigens (glycine extract or lipopolysaccharide) alone or with onco-BCG. In such cells MUC5AC and Hp binding were determined as above. Mycobacteria reduced the amount of MUC5AC animals infected with Hp and in gastric epithelial cells pulsed in vitro with Hp components. Decrease of MUC5AC driven in cell cultures in vitro and in gastric tissue exposed ex vivo to mycobacteria was related to diminished adhesion of H. pylori bacilli. Vaccine mycobacteria by diminishing the amount of MUC5AC in gastric epithelial cells may reduce Hp adhesion.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12-16, 90-237, Lodz, Poland.
| | - Maciej Chyb
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12-16, 90-237, Lodz, Poland.
| |
Collapse
|
8
|
Urbaniak MM, Rudnicka K, Gościniak G, Chmiela M. Can Pyomelanin Produced by Pseudomonas aeruginosa Promote the Regeneration of Gastric Epithelial Cells and Enhance Helicobacter pylori Phagocytosis? Int J Mol Sci 2023; 24:13911. [PMID: 37762213 PMCID: PMC10530801 DOI: 10.3390/ijms241813911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is the most common cause of chronic gastritis, peptic ulcers and gastric cancer. Successful colonization of the stomach by H. pylori is related to the complex interactions of these bacteria and its components with host cells. The growing antibiotic resistance of H. pylori and various mechanisms of evading the immune response have forced the search for new biologically active substances that exhibit antibacterial properties and limit the harmful effects of these bacteria on gastric epithelial cells and immune cells. In this study, the usefulness of pyomelanin (PyoM) produced by Pseudomonas aeruginosa for inhibiting the metabolic activity of H. pylori was evaluated using the resazurin reduction assay, as well as in vitro cell studies used to verify the cytoprotective, anti-apoptotic and pro-regenerative effects of PyoM in the H. pylori LPS environment. We have shown that both water-soluble (PyoMsol) and water-insoluble (PyoMinsol) PyoM exhibit similar antibacterial properties against selected reference and clinical strains of H. pylori. This study showed that PyoM at a 1 μg/mL concentration reduced H. pylori-driven apoptosis and reactive oxygen species (ROS) production in fibroblasts, monocytes or gastric epithelial cells. In addition, PyoM enhanced the phagocytosis of H. pylori. PyoMsol showed better pro-regenerative and immunomodulatory activities than PyoMinsol.
Collapse
Affiliation(s)
- Mateusz M. Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland;
- Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Łódź, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland;
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, 50-368 Wrocław, Poland;
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland;
| |
Collapse
|
9
|
Sah DK, Arjunan A, Lee B, Jung YD. Reactive Oxygen Species and H. pylori Infection: A Comprehensive Review of Their Roles in Gastric Cancer Development. Antioxidants (Basel) 2023; 12:1712. [PMID: 37760015 PMCID: PMC10525271 DOI: 10.3390/antiox12091712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide and makes up a significant component of the global cancer burden. Helicobacter pylori (H. pylori) is the most influential risk factor for GC, with the International Agency for Research on Cancer classifying it as a Class I carcinogen for GC. H. pylori has been shown to persist in stomach acid for decades, causing damage to the stomach's mucosal lining, altering gastric hormone release patterns, and potentially altering gastric function. Epidemiological studies have shown that eliminating H. pylori reduces metachronous cancer. Evidence shows that various molecular alterations are present in gastric cancer and precancerous lesions associated with an H. pylori infection. However, although H. pylori can cause oxidative stress-induced gastric cancer, with antioxidants potentially being a treatment for GC, the exact mechanism underlying GC etiology is not fully understood. This review provides an overview of recent research exploring the pathophysiology of H. pylori-induced oxidative stress that can cause cancer and the antioxidant supplements that can reduce or even eliminate GC occurrence.
Collapse
Affiliation(s)
| | | | - Bora Lee
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Jeonnam, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Jeonnam, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| |
Collapse
|
10
|
Gonciarz W, Piątczak E, Chmiela M. The influence of Salvia cadmica Boiss. extracts on the M1/M2 polarization of macrophages primed with Helicobacter pylori lipopolysaccharide in conjunction with NF-kappa B activation, production of cytokines, phagocytic activity and total DNA methylation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116386. [PMID: 36921911 DOI: 10.1016/j.jep.2023.116386] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The large number of secondary derivatives have been isolated from the genus Salvia with about 700 species, and used in the pharmacopoeia throughout the world. Various biological properties of Salvia formulations have been reported including as antioxidant, antimicrobial, hypotensive, anti-hyperglycemia, anti-hyperlipidemia, anti-cancer, and skin curative. Salvia cadmica Boiss. root and aerial part extracts enriched with polyphenols are bactericidal towards gastric pathogen Helicobacter pylori (Hp) and diminish deleterious effects induced by Hp lipopolysaccharide (LPS) towards gastric epithelial cells. AIM OF THIS STUDY To examine the influence of S. cadmica extracts on the M1/M2 polarization of macrophages primed with Hp LPS vs standard LPS Escherichia coli (Ec), and the macrophage cytokine as well as phagocytic activity, which are affected during Hp infection. MATERIAL AND METHODS Macrophages derived from THP-1 human monocytes primed with LPS Hp/Ec and/or S. cadmica extracts, were examined for the biomarkers of activation (surface, cytoplasmic or soluble), and phagocytic capacity. The bone marrow macrophages of Caviaporcellus were used to determine the engulfment of Hp. RESULTS Priming of THP-1 cells (24h) with LPS Hp/Ec resulted in polarization of M1 macrophages, activation of nuclear factor kappa B, secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1 beta, macrophage chemotactic protein (MCP)-1, immunoregulatory IL-10, and production of reactive oxygen species. These effects were diminished after restimulation of cells with S. cadmica extracts. THP-1 macrophages exposed to studied extracts showed an increased phagocytic capacity, in conjunction with elevated CD11b/CD11d expression and enhanced production of inducible nitric oxide synthase. They also increased Hp engulfment by bone marrow macrophages. These effects were not related to a global DNA methylation. CONCLUSIONS S. cadmica extracts possess an immunomodulating activity, which might be useful in control of H. pylori LPS driven activity of macrophages.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland.
| | - Ewelina Piątczak
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszyńskiego 1 St., 90-151, Lodz, Poland.
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland.
| |
Collapse
|
11
|
Gonciarz W, Chmiela M, Kost B, Piątczak E, Brzeziński M. Stereocomplexed microparticles loaded with Salvia cadmica Boiss. extracts for enhancement of immune response towards Helicobacter pylori. Sci Rep 2023; 13:7039. [PMID: 37120681 PMCID: PMC10148839 DOI: 10.1038/s41598-023-34321-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023] Open
Abstract
Controlled delivery of therapeutic substance gives numerous advantages (prevents degradation, improves uptake, sustains concentration, lowers side effects). To encapsulate Salvia cadmica extracts (root or aerial part), enriched with polyphenols with immunomodulatory activity, in stereocomplexed microparticles (sc-PLA), for using them to enhance the immune response towards gastric pathogen Helicobacter pylori. Microparticles were made of biodegradable poly(lactic acid) (PLA) and poly(D-lactic acid) (PDLA). Their stereocomplexation was used to form microspheres and enhance the stability of the obtained particles in acidic/basic pH. The release of Salvia cadmica extracts was done in different pH (5.5, 7.4 and 8.0). The obtained polymers are safe in vitro and in vivo (guinea pig model). The sc-PLA microparticles release of S. cadmica extracts in pH 5.5, 7.4, and 8.0. S. cadmica extracts enhanced the phagocytic activity of guinea pig bone marrow-derived macrophages, which was diminished by H. pylori, and neutralized H. pylori driven enhanced production of tumor necrosis factor (TNF)-α and interleukin (IL)-10. The sc-PLA encapsulated S. cadmica extracts can be recommended for further in vivo study in guinea pigs infected with H. pylori to confirm their ability to improve an immune response towards this pathogen.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636, Lodz, Poland
| | - Ewelina Piątczak
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszyńskiego 1, 90-151, Lodz, Poland
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636, Lodz, Poland.
| |
Collapse
|
12
|
Mycobacterium bovis BCG increase the selected determinants of monocyte/macrophage activity, which were diminished in response to gastric pathogen Helicobacter pylori. Sci Rep 2023; 13:3107. [PMID: 36813949 PMCID: PMC9944772 DOI: 10.1038/s41598-023-30250-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
High antibiotic resistance of gastric pathogen Helicobacter pylori (Hp) and the ability to escape the host immune response prompt searching for therapeutic immunomodulators. Bacillus Calmette-Guerin (BCG) vaccine with Mycobacterium bovis (Mb) is a candidate for modulation the activity of immunocompetent cells, and onco-BCG formulation was successfully used in immunotherapy of bladder cancer. We determined the influence of onco-BCG on the phagocytic capacity of human THP-1 monocyte/macrophage cells, using the model of Escherichia coli bioparticles and Hp fluorescently labeled. Deposition of cell integrins CD11b, CD11d, CD18, membrane/soluble lipopolysaccharide (LPS) receptors, CD14 and sCD14, respectively, and the production of macrophage chemotactic protein (MCP)-1 were determined. Furthermore, a global DNA methylation, was also assessed. Human THP-1 monocytes/macrophages (TIB 202) primed or primed and restimulated with onco-BCG or Hp, were used for assessment of phagocytosis towards E. coli or Hp, surface (immunostaining) or soluble activity determinants, and global DNA methylation (ELISA). THP-1 monocytes/macrophages primed/restimulated with BCG showed increased phagocytosis capacity towards E. coli fluorescent particles, elevated expression of CD11b, CD11d, CD18, CD14, sCD14, increased MCP-1 secretion and DNA methylation. Preliminary results indicate that BCG mycobacteria may also induce the phagocytosis of H. pylori by THP-1 monocytes. Priming or priming and restimulation of monocytes/macrophages with BCG resulted in an increased activity of these cells, which was negatively modulated by Hp.
Collapse
|
13
|
Wang YK, Li C, Zhou YM, Zeng L, Li YY, Huang SL, Zhu CY, Wang Y, Wang SN, Chen XD. Histopathological Features of Helicobacter pylori Infection in Gastric Mucosa. J Inflamm Res 2022; 15:6231-6243. [PMID: 36386590 PMCID: PMC9661999 DOI: 10.2147/jir.s383075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022] Open
Abstract
Objective To investigate the histopathological characteristics of Helicobacter pylori (Hp) infection in the gastric mucosa in the process from occurrence to intraepithelial neoplasia. Methods Specimens obtained from the endoscopic biopsy and endoscopic submucosal dissection of 2457 cases of gastric Hp infection were observed and assessed in detail using histology and immunohistochemistry techniques. The condition was divided according to the histopathological characteristics of gastric mucosal damage caused by Hp infection. The histopathological characteristics and immunophenotype of each stage were subsequently elucidated. Results Helicobacter pylori is initially implanted in the mucus layer covered by the epithelium on the surface of the gastric mucosa. It then selectively adheres to the cytoplasm of the surface mucus cells, which makes the oval and spherical particles containing mucus that is wrapped by the bounded membrane in the cytoplasm on the nucleus of the surface mucus cells disappear, while the cytoplasm undergoes spiderweb-like vacuolar degeneration. This leads to the proliferation and transformation of the surface mucous cells before developing into intraepithelial neoplasia. In the process of histomorphology, mucosal ulcers, mucosal lymphoid tissue proliferation, gland atrophy, intestinal epithelial metaplasia, mucosa-associated lymphoid tissue lymphoma, and adenocarcinoma may occur. In this study, the condition was divided into five stages according to the histopathological characteristics of gastric mucosal damage caused by Hp infection, as well as the degree of gastric mucosal damage and involvement depth as follows: the mucus infection stage, the surface epithelial cell infection stage, the lamina propria lesion stage, the mucosal atrophy stage, and the intraepithelial neoplasia stage. Conclusion Understanding the histopathological characteristics of gastric Hp infection in terms of its occurrence and development into intraepithelial neoplasia is conducive to the precise treatment and tracking of malignant cell transformation, and is of great significance in controlling the occurrence and development of gastric cancer.
Collapse
Affiliation(s)
- Yang-Kun Wang
- Department of Pathology, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, 511300, People’s Republic of China
| | - Chun Li
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471000, People’s Republic of China
| | - Yong-Mei Zhou
- Department of Pathology, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, 511300, People’s Republic of China
| | - Lei Zeng
- Department of Pathology, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, 511300, People’s Republic of China
| | - Ying-Ying Li
- Shenzhen Polytechnic, Shenzhen, 518055, People’s Republic of China
| | - Si-Lin Huang
- Department of Gastroenterology, South China Hospital Affiliated to Shenzhen University, Shenzhen, 518111, People’s Republic of China
| | - Chao-Ya Zhu
- Department of Pathology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Yue Wang
- Shenzhen Hezheng Hospital, Shenzhen, 518053, People’s Republic of China
| | - Su-Nan Wang
- Shenzhen Polytechnic, Shenzhen, 518055, People’s Republic of China
- Correspondence: Su-Nan Wang; Xiao-Dong Chen, Email ;
| | - Xiao-Dong Chen
- Department of Pathology, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, 511300, People’s Republic of China
| |
Collapse
|
14
|
Prichard A, Khuu L, Whitmore LC, Irimia D, Allen LAH. Helicobacter pylori-infected human neutrophils exhibit impaired chemotaxis and a uropod retraction defect. Front Immunol 2022; 13:1038349. [PMID: 36341418 PMCID: PMC9630475 DOI: 10.3389/fimmu.2022.1038349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Helicobacter pylori is a major human pathogen that colonizes the gastric mucosa and plays a causative role in development of peptic ulcers and gastric cancer. Neutrophils are heavily infected with this organism in vivo and play a prominent role in tissue destruction and disease. Recently, we demonstrated that H. pylori exploits neutrophil plasticity as part of its virulence strategy eliciting N1-like subtype differentiation that is notable for profound nuclear hypersegmentation. We undertook this study to test the hypothesis that hypersegmentation may enhance neutrophil migratory capacity. However, EZ-TAXIScan™ video imaging revealed a previously unappreciated and progressive chemotaxis defect that was apparent prior to hypersegmentation onset. Cell speed and directionality were significantly impaired to fMLF as well as C5a and IL-8. Infected cells oriented normally in chemotactic gradients, but speed and direction were impaired because of a uropod retraction defect that led to cell elongation, nuclear lobe trapping in the contracted rear and progressive narrowing of the leading edge. In contrast, chemotactic receptor abundance, adhesion, phagocytosis and other aspects of cell function were unchanged. At the molecular level, H. pylori phenocopied the effects of Blebbistatin as indicated by aberrant accumulation of F-actin and actin spikes at the uropod together with enhanced ROCKII-mediated phosphorylation of myosin IIA regulatory light chains at S19. At the same time, RhoA and ROCKII disappeared from the cell rear and accumulated at the leading edge whereas myosin IIA was enriched at both cell poles. These data suggest that H. pylori inhibits the dynamic changes in myosin IIA contractility and front-to-back polarity that are essential for chemotaxis. Taken together, our data advance understanding of PMN plasticity and H. pylori pathogenesis.
Collapse
Affiliation(s)
- Allan Prichard
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Lisa Khuu
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Laura C. Whitmore
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lee-Ann H. Allen
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- Department of Medicine, Division of Infectious Diseases, University of Iowa, Iowa City, IA, United States
- Iowa City VA Healthcare System, Iowa City, IA, United States
- Harry S. Truman Memorial VA Hospital, Columbia, MO, United States
- *Correspondence: Lee-Ann H. Allen,
| |
Collapse
|
15
|
Wang YK, Zhou JL, Meng NL, Zhu CY, Wang SN, Chen XD. How Does Helicobacter pylori Infection Cause Gastric Mucosal Atrophy. Infect Drug Resist 2022; 15:3619-3629. [PMID: 35837536 PMCID: PMC9273833 DOI: 10.2147/idr.s355981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/05/2022] [Indexed: 12/19/2022] Open
Abstract
Objective To investigate the occurrence and development of gastric mucosal atrophy due to Helicobacter pylori (Hp) infection and the accompanying histomorphological features. Methods Detailed histological observations and immunohistochemical examinations were conducted via 197 endoscopic biopsies and endoscopic submucosal dissection specimens of gastric mucosal atrophic lesions with gastric Hp infection. Detailed observation was made of columnar cells in the proliferative region of the deep gastric pit and the isthmus of the gastric gland, as well as the upper part of the glandular cervix. Results The infection of the gastric mucosa by Hp firstly led to the proliferative disorder of stem cells in the normal proliferative region of the gastric mucosa. This caused substantial propagation of cells in the proliferative region of the deep gastric pit and the isthmus of the gastric gland, as well as the upper part of the glandular cervix, as a means to replenish the damaged surface mucus cells. However, the propagation of stem cells in the proliferative region was insufficient for downward migration, and the normal physiological process of differentiation into fundic/pyloric gland cells was disrupted, resulting in glandular atrophy of the intrinsic layer of the gastric mucosa. Persistent Hp infection and disruption of stem cell proliferation in the proliferative region subsequently resulted in extensive segmental hyperplasia of the gastric mucosa and glandular atrophy of the lamina propria. Conclusion The occurrence, development, and histomorphological features of gastric mucosal atrophy due to gastric Hp infection provide a reliable pathological basis for precise treatment by clinicians and are of great significance for controlling the development of gastric cancer.
Collapse
Affiliation(s)
- Yang-Kun Wang
- Department of Pathology, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, 511300, People's Republic of China
| | - Jun-Ling Zhou
- Shenzhen Nanshan District People's Hospital, Shenzhen, 518067, People's Republic of China
| | - Nian-Long Meng
- Department of Pathology, The 989th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Luoyang, Henan, 471031, People's Republic of China
| | - Chao-Ya Zhu
- Department of Pathology, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Su-Nan Wang
- Shenzhen Polytechnic, Shenzhen, 518055, People's Republic of China
| | - Xiao-Dong Chen
- Department of Pathology, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, 511300, People's Republic of China
| |
Collapse
|
16
|
Yang Y, Shu X, Xie C. An Overview of Autophagy in Helicobacter pylori Infection and Related Gastric Cancer. Front Cell Infect Microbiol 2022; 12:847716. [PMID: 35463631 PMCID: PMC9033262 DOI: 10.3389/fcimb.2022.847716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is considered a class I carcinogen in the pathogenesis of gastric cancer. In recent years, the interaction relationship between H. pylori infection and autophagy has attracted increasing attention. Most investigators believe that the pathogenesis of gastric cancer is closely related to the formation of an autophagosome-mediated downstream signaling pathway by H. pylori infection-induced cells. Autophagy is involved in H. pylori infection and affects the occurrence and development of gastric cancer. In this paper, the possible mechanism by which H. pylori infection affects autophagy and the progression of related gastric cancer signaling pathways are reviewed.
Collapse
Affiliation(s)
| | - Xu Shu
- *Correspondence: Xu Shu, ; Chuan Xie,
| | - Chuan Xie
- *Correspondence: Xu Shu, ; Chuan Xie,
| |
Collapse
|
17
|
miR-30c Increases the Intracellular Survival of Helicobacter pylori by Inhibiting Autophagy. Cell Microbiol 2022. [DOI: 10.1155/2022/4536450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Persistent Helicobacter pylori infection causes a variety of gastrointestinal diseases and even gastric cancer. H. pylori invades gastric epithelial cells to survive and proliferate, which is one of the key factors in persistent colonization. A Published study has confirmed that cells can eliminate intracellular H. pylori through xenophagy to maintain intracellular balance. However, a growing body of evidences indicate that H. pylori can inhibit xenophagy by miRNA through regulating the expression of key autophagy-related genes. Through western blot analysis, mRFP-GFP-LC3 transfection assay, and transmission electron microscopy, we found that H. pylori infection obstructed autophagy flux degradation stage in GES-1 cell lines. Gentamicin protection assay confirmed that inhibit xenophagy is benefit for intracellular H. pylori survive. miR-30c-1-3p and miR-30c-5p were upregulated in GES-1 cell lines after infecting with H. pylori, resulting in the negative regulation on xenophagy. Further studies through bioinformatics analysis and dual-luciferase reporter assays confirmed that ATG14 and ULK1 were the target genes of miR-30c-1-3p and that ATG12 was the target gene of miR-30c-5p. The overexpression of miR-30c-1-3p and miR-30c-5p reduces the expression of ATG14, ULK1, and ATG12 at mRNA level and also decreased intracellular H. pylori elimination in GES-1 cells. The above results suggested that the inhibition on xenophagy by miR-30c-1-3p and miR-30c-5p through ATG14, ULK1, and ATG12 targeting benefitted intracellular H. pylori in the evasion of xenophagy clearance.
Collapse
|
18
|
Wang C, Yin Y, Wang L, Guo X, Liu L, Qi X. Association between Helicobacter pylori infection and irritable bowel syndrome: a systematic review and meta-analysis. Postgrad Med J 2021; 99:166-175. [PMID: 34930813 DOI: 10.1136/postgradmedj-2021-141127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Helicobacter pylori infection and irritable bowel syndrome (IBS) negatively affect the quality of life. Some previous studies found that H. pylori infection should be positively associated with the risk of IBS, but others did not. The present study aims to clarify this association, and to further analyse whether H. pylori treatment can improve IBS symptoms. MATERIALS AND METHODS The PubMed, EMBASE, Cochrane library, Chinese National Knowledge Infrastructure, China Science and Technology Journal and Wanfang databases were searched. Meta-analysis was performed using a random-effect model. The pooled odds ratios (ORs)/risk ratios (RRs) and their 95% CIs were calculated. Heterogeneity was evaluated using the Cochran's Q test and I2 statistics. Meta-regression analysis was used to explore the sources of heterogeneity. RESULTS Thirty-one studies with 21 867 individuals were included. Meta-analysis of 27 studies found that patients with IBS had a significantly higher risk of H. pylori infection than those without (OR=1.68, 95% CI 1.29 to 2.18; p<0.001). The heterogeneity was statistically significant (I²=85%; p<0.001). Meta-regression analyses indicated that study design and diagnostic criteria of IBS might be the potential sources of heterogeneity. Meta-analysis of eight studies demonstrated that H. pylori eradication treatment had a higher improvement rate of IBS symptoms (RR=1.24, 95% CI 1.10 to 1.39; p<0.001). The heterogeneity was not significant (I²=32%; p=0.170). Meta-analysis of four studies also demonstrated that successful H. pylori eradication had a higher improvement rate of IBS symptoms (RR=1.25, 95% CI 1.01 to 1.53; p=0.040). The heterogeneity was not significant (I²=1%; p=0.390). CONCLUSION H. pylori infection is associated with an increased risk of IBS. H. pylori eradication treatment can improve IBS symptoms.
Collapse
Affiliation(s)
- Chunmei Wang
- Meta-Analysis Interest Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- Graduate School, Jinzhou Medical University, Jinzhou, China
| | - Yue Yin
- Meta-Analysis Interest Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- Graduate School, Jinzhou Medical University, Jinzhou, China
| | - Le Wang
- Meta-Analysis Interest Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- Graduate School, China Medical University, Shenyang, China
| | - Xiaozhong Guo
- Meta-Analysis Interest Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| | - Lu Liu
- Meta-Analysis Interest Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- Section of Medical Service, General Hospital of Northern Theater Command, Shenyang, China
| | - Xingshun Qi
- Meta-Analysis Interest Group, Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
19
|
Ginger Extract Modulates the Production of Chemokines CCL17, CCL20, CCL22, and CXCL10 and the Gene Expression of Their Receptors in Peripheral Blood Mononuclear Cells from Peptic Ulcer Patients Infected with Helicobacter pylori. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The imbalanced expression of chemokines plays critical role in the development of Helicobacter pylori-mediated complications. Objectives: Our aim was to determine ginger extract (GE) effects on the expression of chemokines CCL17, CCL20, CCL22, and CXCL10, as well as CCR4, CCR6, and CXCR3 receptors by peripheral blood mononuclear cells (PBMCs) from H. pylori -infected patients with peptic ulcer (PU). Methods: Peripheral blood mononuclear cells were obtained from 20 patients with H. pylori-associated PU, 20 H. pylori-infected asymptomatic subjects (HAS), and 20 non-infected healthy subjects (NHS). The PBMCs were stimulated by 10 µg/mL of H. pylori-derived crude extract (HPCE) in the presence of 0, 10, 20, and 30 µg/mL of GE. After 36 hours, the supernatant and the RNA extracted from the cells were tested for chemokine concentration and chemokine receptor expression using ELISA and real-time PCR techniques, respectively. Results: In PU patients, treating HPCE-stimulated PBMCs with 10, 20, or 30 µg/mL GE reduced the production of CXCL10 (1.47, 1.5, and 1.53 folds, respectively, P < 0.001 for all), CCL20 (1.44, 1.62, and 1.65 folds, respectively, P < 0.003), and treatment with 30 µg/mL GE increased CCL17 (1.28-fold, P < 0.001) and CCL22 (1.59-fold, P < 0.001) production compared with untreated HPCE-stimulated PBMCs. In PU patients, the HPCE-stimulated PBMCs treated with 10, 20, or 30 µg/mL GE expressed lower levels of CXCR3 (1.9, 3, and 3.5 folds, respectively, P < 0.001) and CCR6 (2.3, 2.7, and 2.8 folds, respectively, P < 0.002) while treating with 10 µg/mL GE upregulated CCR4 (1.7 fold, P = 0.003) compared with untreated HPCE-stimulated PBMCs. Conclusions: Ginger extract modulated the expression of chemokines and their receptors in the PBMCs derived from H. pylori-infected PU patients. The therapeutic potentials of ginger for treating HP-related complications need to be further explored.
Collapse
|
20
|
Qaria MA, Qumar S, Sepe LP, Ahmed N. Cholesterol glucosylation-based survival strategy in Helicobacter pylori. Helicobacter 2021; 26:e12777. [PMID: 33368895 DOI: 10.1111/hel.12777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori is a major chronic health problem, infecting more than half of the population worldwide. H. pylori infection is linked with various clinical complications ranging from gastritis to gastric cancer. The resolution of gastritis and peptic ulcer appears to be linked with the eradication of H. pylori. However, resistance to antibiotics and eradication failure rates are reaching alarmingly high levels. This calls for urgent action in finding alternate methods for H. pylori eradication. Here, we discuss the recently identified mechanism of H. pylori known as cholesterol glucosylation, mediated by the enzyme cholesterol-α-glucosyltransferase, encoded by the gene cgt. Cholesterol glucosylation serves several functions that include promoting immune evasion, enhancing antibiotic resistance, maintaining the native helical morphology, and supporting functions of prominent virulence factors such as CagA and VacA. Consequently, strategies aiming at inhibition of the cholesterol glucosylation process have the potential to attenuate the potency of H. pylori infection and abrogate H. pylori immune evasion capabilities. Knockout of H. pylori cgt results in unsuccessful colonization and elimination by the host immune responses. Moreover, blocking cholesterol glucosylation can reverse antibiotic susceptibility in H. pylori. In this work, we review the main roles of cholesterol glucosylation in H. pylori and evaluate whether this mechanism can be targeted for the development of alternate methods for eradication of H. pylori infection.
Collapse
Affiliation(s)
- Majjid A Qaria
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Shamsul Qumar
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Ludovico P Sepe
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| |
Collapse
|
21
|
Dey R, Rieger A, Banting G, Ashbolt NJ. Role of amoebae for survival and recovery of 'non-culturable' Helicobacter pylori cells in aquatic environments. FEMS Microbiol Ecol 2021; 96:5902844. [PMID: 32897313 PMCID: PMC7494403 DOI: 10.1093/femsec/fiaa182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori is a fastidious Gram-negative bacterium that infects over half of the world's population, causing chronic gastritis and is a risk factor for stomach cancer. In developing and rural regions where prevalence rate exceeds 60%, persistence and waterborne transmission are often linked to poor sanitation conditions. Here we demonstrate that H. pylori not only survives but also replicates within acidified free-living amoebal phagosomes. Bacterial counts of the clinical isolate H. pylori G27 increased over 50-fold after three days in co-culture with amoebae. In contrast, a H. pylori mutant deficient in a cagPAI gene (cagE) showed little growth within amoebae, demonstrating the likely importance of a type IV secretion system in H. pylori for amoebal infection. We also demonstrate that H. pylori can be packaged by amoebae and released in extracellular vesicles. Furthermore, and for the first time, we successfully demonstrate the ability of two free-living amoebae to revert and recover viable but non-cultivable coccoid (VBNC)-H. pylori to a culturable state. Our studies provide evidence to support the hypothesis that amoebae and perhaps other free-living protozoa contribute to the replication and persistence of human-pathogenic H. pylori by providing a protected intracellular microenvironment for this pathogen to persist in natural aquatic environments and engineered water systems, thereby H. pylori potentially uses amoeba as a carrier and a vector of transmission.
Collapse
Affiliation(s)
- Rafik Dey
- School of Public Health, University of Alberta,11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada.,Deparment of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Aja Rieger
- Deparment of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Graham Banting
- School of Public Health, University of Alberta,11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Nicholas J Ashbolt
- School of Public Health, University of Alberta,11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada.,Deparment of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Provincial Laboratory for Public Health (ProvLab), Alberta Health Services, Edmonton, Canada.,School of Environmental, Sciense and Engineering, Southern Cross University, Lismore NSW, Australia
| |
Collapse
|
22
|
Morales-Espinosa R, Delgado G, Serrano LR, Castillo E, Santiago CA, Hernández-Castro R, Gonzalez-Pedraza A, Mendez JL, Mundo-Gallardo LF, Manzo-Merino J, Ayala S, Cravioto A. High expression of Helicobacter pylori VapD in both the intracellular environment and biopsies from gastric patients with severity. PLoS One 2020; 15:e0230220. [PMID: 32163505 PMCID: PMC7067408 DOI: 10.1371/journal.pone.0230220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that causes chronic atrophic gastritis and peptic ulcers and it has been associated with the development of gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT). One of the more remarkable characteristics of H. pylori is its ability to survive in the hostile environment of the stomach. H. pylori regulates the expression of specific sets of genes allowing it to survive high acidity levels and nutrient scarcity. In the present study, we determined the expression of virulence associated protein D (VapD) of H. pylori inside adenocarcinoma gastric (AGS) cells and in gastric biopsies. Using qRT-PCR, VapD expression was quantified in intracellular H. pylori-AGS cell cultures at different time points and in gastric mucosa biopsies from patients suffering from chronic atrophic gastritis, follicular gastritis, peptic ulcers, gastritis precancerous intestinal metaplasia and adenocarcinoma. Our results show that vapD of H. pylori presented high transcription levels inside AGS cells, which increased up to two-fold above basal values across all assays over time. Inside AGS cells, H. pylori acquired a coccoid form that is metabolically active in expressing VapD as a protection mechanism, thereby maintaining its permanence in a viable non-cultivable state. VapD of H. pylori was expressed in all gastric biopsies, however, higher expression levels (p = 0.029) were observed in gastric antrum biopsies from patients with follicular gastritis. The highest VapD expression levels were found in both antrum and corpus gastric biopsies from older patients (>57 years old). We observed that VapD in H. pylori is a protein that is only produced in response to interactions with eukaryotic cells. Our results suggest that VapD contributes to the persistence of H. pylori inside the gastric epithelial cells, protecting the microorganism from the intracellular environment, reducing its growth rate, enabling long-term infection and treatment resistance.
Collapse
Affiliation(s)
- Rosario Morales-Espinosa
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Delgado
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis-Roberto Serrano
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elizabeth Castillo
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos A. Santiago
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Alberto Gonzalez-Pedraza
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jose L. Mendez
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Sergio Ayala
- Cátedras CONACyT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Alejandro Cravioto
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
23
|
Lian DW, Xu YF, Deng QH, Lin XM, Huang B, Xian SX, Huang P. Effect of patchouli alcohol on macrophage mediated Helicobacter pylori digestion based on intracellular urease inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 65:153097. [PMID: 31568921 DOI: 10.1016/j.phymed.2019.153097] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Helicobacter pylori infects almost half of the world population and is listed as a type I carcinoma factor since 1994. Pogostemon cablin (Blanco) Benth. (Labiatae) has been used to treat gastro-intestinal diseases for thousands of years in many east Asian countries, and the key ingredient, patchouli alcohol (PA), has been observed to exert anti-H. pylori and anti-urease activities. PURPOSE We investigated the effect of PA on H. pylori urease and its subsequent influence on macrophage phagosome maturation and function. METHODS In H. pylori experiment, the berthelot method and pH shock assay were adopted to evaluate the effect of PA on extracellular and intracellular H. pylori urease. And then, Q-PCR and Western blot were carried out to analyze the alterations in the expression of urease-related genes and proteins after PA treatment. In the H. pylori and macrophage cell (RAW264.7) co-culture experiment, the effects of PA on H. pylori-induced phagocytosis and intracellular killing of RAW264.7 were investigated using gentamycin protection assay, and the underlying mechanism was explored by immunofluorescence. RESULTS PA at 25 and 50 μM inhibited intracellular H. pylori urease activity but not isolated urease by down-regulating the gene expression levels of ureB, ureE, ureI and nixA and reducing the protein expression level of UreB, thereby inhibiting the acid resistance of H. pylori. PA also recovered the function of macrophage bacterial digestion, and prior treatment with ammonium chloride inhibited the efficacy of PA. CONCLUSION PA suppressed intracellular H. pylori urease function and maturation, which increased macrophage digestion ability.
Collapse
Affiliation(s)
- D W Lian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, PR China; Lingnan Medical Research Center, Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, PR China; Postdoctoral Research Station of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Y F Xu
- Shenzhen Traditional Chinese Medicine Hospital, The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China; Postdoctoral Research Station of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Q H Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - X M Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - B Huang
- Shenzhen Traditional Chinese Medicine Hospital, The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China
| | - S X Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, PR China; Lingnan Medical Research Center, Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, PR China.
| | - P Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| |
Collapse
|
24
|
Blaser N, Backert S, Pachathundikandi SK. Immune Cell Signaling by Helicobacter pylori: Impact on Gastric Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:77-106. [PMID: 31049845 DOI: 10.1007/5584_2019_360] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori represents a highly successful colonizer of the human stomach. Infections with this Gram-negative bacterium can persist lifelong, and although in the majority of cases colonization is asymptomatic, it can trigger pathologies ranging from chronic gastritis and peptic ulceration to gastric cancer. The interaction of the bacteria with the human host modulates immune responses in different ways to enable bacterial survival and persistence. H. pylori uses various pathogenicity-associated factors such as VacA, NapA, CGT, GGT, lipopolysaccharide, peptidoglycan, heptose 1,7-bisphosphate, ADP-heptose, cholesterol glucosides, urease and a type IV secretion system for controlling immune signaling and cellular functions. It appears that H. pylori manipulates multiple extracellular immune receptors such as integrin-β2 (CD18), EGFR, CD74, CD300E, DC-SIGN, MINCLE, TRPM2, T-cell and Toll-like receptors as well as a number of intracellular receptors including NLRP3, NOD1, NOD2, TIFA and ALPK1. Consequently, downstream signaling pathways are hijacked, inducing tolerogenic dendritic cells, inhibiting effector T cell responses and changing the gastrointestinal microbiota. Here, we discuss in detail the interplay of bacterial factors with multiple immuno-regulatory cells and summarize the main immune evasion and persistence strategies employed by H. pylori.
Collapse
Affiliation(s)
- Nicole Blaser
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Suneesh Kumar Pachathundikandi
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
25
|
Gonciarz W, Krupa A, Hinc K, Obuchowski M, Moran AP, Gajewski A, Chmiela M. The effect of Helicobacter pylori infection and different H. pylori components on the proliferation and apoptosis of gastric epithelial cells and fibroblasts. PLoS One 2019; 14:e0220636. [PMID: 31390383 PMCID: PMC6685636 DOI: 10.1371/journal.pone.0220636] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Background Helicobacter pylori colonizes the human gastric mucosa, causing chronic inflammation, peptic ulcers and gastric cancer. A cascade of harmful processes results from the interaction of these bacteria with the gastric epithelium. Aim To investigate these processes in terms of upregulation of oxidative stress and cell apoptosis and downregulation of the pro-regenerative activity of cells. Methods We employed an in vivo guinea pig model at 7 or 28 days postinoculation with H. pylori, corresponding to an acute or chronic stage of infection, respectively, and an in vitro model of guinea pig primary gastric epithelial cells and fibroblasts treated with bacterial components: glycine acid extract (GE), urease subunit A (UreA), cytotoxin-associated gene A protein (CagA) and lipopolysaccharide (LPS). Cells were evaluated for metabolic activity (MTT reduction), myeloperoxidase (MPO) and metalloproteinase (MMP-9) secretion, lipid peroxidation (4-hydroxynonenal (4HNE)), migration (wound healing), proliferation (Ki-67 antigen) and cell apoptosis (TUNEL assay; Bcl-xL, Bax, Bcl-2 expression; caspase 3 cleavage). Results Significant infiltration of the gastric mucosa by inflammatory cells in vivo in response to H. pylori was accompanied by oxidative stress and cell apoptosis, which were more intense 7 than 28 days after inoculation. The increase in cell proliferation was more intense in chronic than acute infection. H. pylori components GE, CagA, UreA, and LPS upregulated oxidative stress and apoptosis. Only H. pylori LPS inhibited cell migration and proliferation, which was accompanied by the upregulation of MMP-9. Conclusions H. pylori infection induces cell apoptosis in conjunction with increased oxidative stress. Elevated apoptosis protects against deleterious inflammation and neoplasia; however, it reduces cell integrity. Upregulation of cell migration and proliferation in response to injury in the milieu of GE, CagA or UreA facilitates tissue regeneration but increases the risk of neoplasia. By comparison, downregulation of cell regeneration by H. pylori LPS may promote chronic inflammation.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
| | - Agnieszka Krupa
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
| | - Krzysztof Hinc
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdansk, Poland
| | - Michał Obuchowski
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdansk, Poland
| | - Anthony P Moran
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Adrian Gajewski
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
- * E-mail:
| |
Collapse
|
26
|
Jafarzadeh A, Nemati M, Jafarzadeh S. The important role played by chemokines influence the clinical outcome of Helicobacter pylori infection. Life Sci 2019; 231:116688. [PMID: 31348950 DOI: 10.1016/j.lfs.2019.116688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/30/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
The extended infection with Helicobacter pylori (H. pylori), one of the most frequent infectious agents in humans, may cause gastritis, peptic ulcers, gastric mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. During H. pylori infection, different kinds of inflammatory cells such as dendritic cells, macrophages, neutrophils, mast cells, eosinophils, T cells and B cells are accumulated into the stomach. The interactions between chemokines and their respective receptors recruit particular types of the leukocytes that ultimately determine the nature of immune response and therefore, have a main influence on the consequence of infection. The suitable production of chemokines especially in the early stages of H. pylori infection shapes appropriate immune responses that contribute to the H. pylori elimination. The unbalanced expression of the chemokines can contribute in the induction of inappropriate responses that result in the tissue damage or malignancy. Thus, chemokines and their receptors may be promising potential targets for designing the therapeutic strategies against various types H. pylori-related gastrointestinal disorders. In this review, a comprehensive explanation regarding the roles played by chemokines in H. pylori-mediated peptic ulcer, gastritis and gastric malignancies was provided while presenting the potential utilization of these chemoattractants as therapeutic elements.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
27
|
Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chem Rev 2017; 117:11476-11521. [DOI: 10.1021/acs.chemrev.7b00194] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Calum Kinnear
- Bio21 Institute & School of Chemistry, University of Melbourne, Parkville 3010, Australia
| | | | | | | | | |
Collapse
|
28
|
Abadi ATB. Strategies used by helicobacter pylori to establish persistent infection. World J Gastroenterol 2017; 23:2870-2882. [PMID: 28522905 PMCID: PMC5413782 DOI: 10.3748/wjg.v23.i16.2870] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/01/2017] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative and motile bacterium that colonizes the hostile microniche of the human stomach, then persists for the host’s entire life, if not effectively treated. Clinically, H. pylori plays a causative role in the development of a wide spectrum of diseases including chronic active gastritis, peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Due to the global distribution of H. pylori, it is no exaggeration to conclude that smart strategies are contributing to adaptation of the bacterium to its permanent host. Thirty-four years after the discovery of this bacterium, there are still many unanswered questions. For example, which strategies help the bacterium to survive in this inhospitable microniche? This question is slightly easier to answer if we presume the same clinical concept for both persistent infection and disease. Understanding the mechanisms governing H. pylori persistence will improve identification of the increased risk of diseases such as gastric cancer in patients infected with this bacterium. A well-defined and long-term equilibrium between the human host and H. pylori allows bacterial persistence in the gastric microniche; although this coexistence leads to a high risk of severe diseases such as gastric cancer. To escape the bactericidal activity of stomach acid, H. pylori secretes large amounts of surface-associated and cytosolic urease. The potential to avoid acidic conditions and immune evasion are discussed in order to explain the persistence of H. pylori colonization in the gastric mucosa, and data on bacterial genetic diversity are included. Information on the mechanisms related to H. pylori persistence can also provide the direction for future research concerning effective therapy and management of gastroduodenal disorders. The topics presented in the current review are important for elucidating the strategies used by H. pylori to help the bacterium persist in relation to the immune system and the many unfavorable features of living in the gastric microniche.
Collapse
|
29
|
Whitmore LC, Weems MN, Allen LAH. Cutting Edge: Helicobacter pylori Induces Nuclear Hypersegmentation and Subtype Differentiation of Human Neutrophils In Vitro. THE JOURNAL OF IMMUNOLOGY 2017; 198:1793-1797. [PMID: 28148734 DOI: 10.4049/jimmunol.1601292] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/07/2017] [Indexed: 12/20/2022]
Abstract
Helicobacter pylori infects the human stomach and causes a spectrum of disease that includes gastritis, peptic ulcers, and gastric adenocarcinoma. A chronic, neutrophil-rich inflammatory response characterizes this infection. It is established that H. pylori stimulates neutrophil chemotaxis and a robust respiratory burst, but other aspects of this interaction are incompletely defined. We demonstrate here that H. pylori induces N1-like subtype differentiation of human neutrophils as indicated by profound nuclear hypersegmentation, a CD62Ldim, CD16bright, CD11bbright, CD66bbright, CD63bright surface phenotype, proinflammatory cytokine secretion, and cytotoxicity. Hypersegmentation requires direct neutrophil-H. pylori contact as well as transcription and both host and bacterial protein synthesis, but not urease, NapA, VacA, CagA, or CagT. The concept of neutrophil plasticity is new and, to our knowledge, these data are the first evidence that neutrophils can undergo subtype differentiation in vitro in response to bacterial pathogen infection. We hypothesize that these changes favor H. pylori persistence and disease.
Collapse
Affiliation(s)
- Laura C Whitmore
- Inflammation Program, University of Iowa, Iowa City, IA 52242.,Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | - Megan N Weems
- Inflammation Program, University of Iowa, Iowa City, IA 52242.,Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | - Lee-Ann H Allen
- Inflammation Program, University of Iowa, Iowa City, IA 52242; .,Department of Internal Medicine, University of Iowa, Iowa City, IA 52242.,Department of Microbiology, University of Iowa, Iowa City, IA 52242; and.,Iowa City VA Health Care System, Iowa City, IA 52246
| |
Collapse
|
30
|
Singh A, Blaskovic D, Joo J, Yang Z, Jackson SH, Coleman WG, Yan M. Investigating the Role of Helicobacter pylori PriA Protein. Helicobacter 2016; 21:295-304. [PMID: 26817518 PMCID: PMC8483055 DOI: 10.1111/hel.12283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND In bacteria, PriA protein, a conserved DEXH-type DNA helicase, plays a central role in replication restart at stalled replication forks. Its unique DNA binding property allows it to recognize and stabilize stalled forks and the structures derived from them. PriA plays a very critical role in replication fork stabilization and DNA repair in E. coli and N. gonorrhoeae. In our in vivo expression technology screen, priA gene was induced in vivo when Helicobacter pylori infects mouse stomach. MATERIALS AND METHODS We decided to elucidate the role of H. pylori PriA protein in survival in mouse stomach, survival in gastric epithelial cells and macrophage cells, DNA repair, acid stress, and oxidative stress. RESULTS The priA null mutant strain was unable to colonize mice stomach mucosa after long-term infections. Mouse colonization was observed after 1 week of infection, but the levels were much lower than the wild-type HpSS1 strain. PriA protein was found to be important for intracellular survival of epithelial cell-/macrophage cell-ingested H. pylori. Also, a priA null mutant was more sensitive to DNA-damaging agents and was much more sensitive to acid and oxidative stress as compared to the wild-type strain. CONCLUSIONS These data suggest that the PriA protein is needed for survival and persistence of H. pylori in mice stomach mucosa.
Collapse
Affiliation(s)
- Aparna Singh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Dusan Blaskovic
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Jungsoo Joo
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Zhen Yang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Sharon H. Jackson
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD
| | - William G. Coleman
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD,National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD
| | - Ming Yan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
31
|
Yang XJ, Si RH, Liang YH, Ma BQ, Jiang ZB, Wang B, Gao P. Mir-30d increases intracellular survival of Helicobacter pylori through inhibition of autophagy pathway. World J Gastroenterol 2016; 22:3978-3991. [PMID: 27099441 PMCID: PMC4823248 DOI: 10.3748/wjg.v22.i15.3978] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine if mir-30d inhibits the autophagy response to Helicobacter pylori (H. pylori) invasion and increases H. pylori intracellular survival.
METHODS: The expression of mir-30d was detected by quantitative polymerase chain reaction (PCR), and autophagy level was examined by transmission electron microscopy, western blot, and GFP-LC3 puncta assay in human AGS cells and GES-1 cells. Luciferase reporter assay was applied to confirm the specificity of mir-30d regulation on the expression of several core molecules involved in autophagy pathway. The expression of multiple core proteins were analyzed at both the mRNA and protein level, and the intracellular survival of H. pylori after different treatments was detected by gentamicin protection assay.
RESULTS: Autophagy level was increased in AGS and GES-1 cells in response to H. pylori infection, which was accompanied by upregulation of mir-30d expression (P < 0.05, vs no H. pylori infection). In the two gastric epithelial cell lines, mimic mir-30d was found to repress the autophagy process, whereas mir-30d inhibitor increased autophagy response to H. pylori invasion. mir-30d mimic decreased the luciferase activity of wild type reporter plasmids carrying the 3′ untranslated region (UTR) of all five tested genes (ATG2B, ATG5, ATG12, BECN1, and BNIP3L), whereas it had no effect on the mutant reporter plasmids. These five genes are core genes of autophagy pathway, and their expression was reduced significantly after mir-30d mimic transfection (P < 0.05, vs control cells without mir-30d mimic treatment). Mir-30d mimic transfection and direct inhibition of autophagy increased the intracellular survival of H. pylori in AGS cells.
CONCLUSION: Mir-30d increases intracellular survival of H. pylori in gastric epithelial cells through inhibition of multiple core proteins in the autophagy pathway.
Collapse
|
32
|
Deen NS, Gong L, Naderer T, Devenish RJ, Kwok T. Analysis of the Relative Contribution of Phagocytosis, LC3-Associated Phagocytosis, and Canonical Autophagy During Helicobacter pylori Infection of Macrophages. Helicobacter 2015; 20:449-59. [PMID: 25864465 DOI: 10.1111/hel.12223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Previous findings have suggested that Helicobacter pylori induces autophagic processes and subsequently takes refuge in autophagosomes, thereby contributing to persistent infection. Recently, a noncanonical form of autophagy, LC3 (microtubule-associated protein 1 light chain 3)-associated phagocytosis (LAP), has been shown to be required for efficient clearance of some intracellular bacteria. Whether H. pylori infection induces LAP had not been examined previously. In this study, we determined the extent to which H. pylori infection induces canonical autophagy or LAP in macrophages, and the involvement of the H. pylori cag pathogenicity island (cagPAI) with these processes. METHODS Immunofluorescence confocal microscopy was used to analyze the formation of GFP-LC3 puncta and their colocalization with H. pylori. Transmission electron microscopy was used to detect the ultrastructure of H. pylori-containing compartments. RESULTS The majority of intracellular bacteria (85-95%) were found in phagosomes that were LC3-negative, with a small proportion (4-14%) appearing "free" in the cytosol. Only a very small percentage (0.5-6%) of intracellular H. pylori was sequestered in autophagosomes. Furthermore, no statistically significant difference in the relative distribution of H. pylori in the various compartments was observed between wild-type and cagPAI-mutant bacteria. CONCLUSIONS In macrophages, H. pylori infection does not induce LAP, but can induce canonical autophagy, which entraps a very small fraction of intracellular bacteria. We propose that this subpopulation of intracellular H. pylori might have escaped from phagosomes into the cytosol before being sequestered by autophagosomes. The cagPAI of H. pylori has only minor influence, if any, on the extent of these processes.
Collapse
Affiliation(s)
- Nadia S Deen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Lan Gong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Rodney J Devenish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Terry Kwok
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic., Australia.,Department of Microbiology, Monash University, Clayton, Vic., Australia
| |
Collapse
|
33
|
Chmiela M, Gajewski A, Rudnicka K. Helicobacter pylori vs coronary heart disease - searching for connections. World J Cardiol 2015; 7:187-203. [PMID: 25914788 PMCID: PMC4404374 DOI: 10.4330/wjc.v7.i4.187] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/16/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023] Open
Abstract
In this review, we discussed the findings and concepts underlying the potential role of Helicobacter pylori (H. pylori) infections in the initiation, development or persistence of atherosclerosis and coronary heart disease (CHD). This Gram-negative bacterium was described by Marshall and Warren in 1984. The majority of infected subjects carries and transmits H. pylori with no symptoms; however, in some individuals these bacteria may cause peptic ulcers, and even gastric cancers. The widespread prevalence of H. pylori infections and the fact that frequently they remain asymptomatic may suggest that, similarly to intestinal microflora, H. pylori may deliver antigens that stimulate not only local, but also systemic inflammatory response. Recently, possible association between H. pylori infection and extragastric disorders has been suggested. Knowledge on the etiology of atherosclerosis together with current findings in the area of H. pylori infections constitute the background for the newly proposed hypothesis that those two processes may be related. Many research studies confirm the indirect association between the prevalence of H. pylori and the occurrence of CHD. According to majority of findings the involvement of H. pylori in this process is based on the chronic inflammation which might facilitate the CHD-related pathologies. It needs to be elucidated, if the infection initiates or just accelerates the formation of atheromatous plaque.
Collapse
|
34
|
Nordihydroguaiaretic Acid Disrupts the Antioxidant Ability of Helicobacter pylori through the Repression of SodB Activity In Vitro. BIOMED RESEARCH INTERNATIONAL 2015; 2015:734548. [PMID: 25945343 PMCID: PMC4402480 DOI: 10.1155/2015/734548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/05/2015] [Indexed: 01/26/2023]
Abstract
Iron-cofactored superoxide dismutase (SodB) of Helicobacter pylori plays an indispensable role in the bacterium's colonization of the stomach. Previously, we demonstrated that FecA1, a Fe3+-dicitrate transporter homolog, contributes to SodB activation by supplying ferrous iron (Fe2+) to SodB, and fecA1-deletion mutant strains have reduced gastric mucosal-colonization ability in Mongolian gerbils, suggesting that FecA1 is a possible target for the development of a novel eradication therapy. This study aimed to identify novel FecA1-binding compounds in silico and then examined the effect of a predicted FecA1-binding compound on H. pylori SodB activity in vitro. Specifically, we demonstrated that nordihydroguaiaretic acid (NDGA) is a predicted FecA1-binding compound. NDGA reduced intracellular Fe2+ levels in H. pylori and reduced SodB activity. Additionally, NDGA increased H2O2 sensitivity of H. pylori and increased the metronidazole (Mtz) sensitivity. The present study demonstrated that NDGA repressed SodB activity associated with the gastric mucosal-colonization via inhibition of intracellular Fe2+ uptake by FecA1, suggesting that NDGA might be effective for the development of a novel eradication therapy.
Collapse
|
35
|
Matak P, Heinis M, Mathieu JRR, Corriden R, Cuvellier S, Delga S, Mounier R, Rouquette A, Raymond J, Lamarque D, Emile JF, Nizet V, Touati E, Peyssonnaux C. Myeloid HIF-1 is protective in Helicobacter pylori-mediated gastritis. THE JOURNAL OF IMMUNOLOGY 2015; 194:3259-66. [PMID: 25710915 DOI: 10.4049/jimmunol.1401260] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Helicobacter pylori infection triggers chronic inflammation of the gastric mucosa that may progress to gastric cancer. The hypoxia-inducible factors (HIFs) are the central mediators of cellular adaptation to low oxygen levels (hypoxia), but they have emerged recently as major transcriptional regulators of immunity and inflammation. No studies have investigated whether H. pylori affects HIF signaling in immune cells and a potential role for HIF in H. pylori-mediated gastritis. HIF-1 and HIF-2 expression was examined in human H. pylori-positive gastritis biopsies. Subsequent experiments were performed in naive and polarized bone marrow-derived macrophages from wild-type (WT) and myeloid HIF-1α-null mice (HIF-1(Δmyel)). WT and HIF-1(Δmyel) mice were inoculated with H. pylori by oral gavage and sacrificed 6 mo postinfection. HIF-1 was specifically expressed in macrophages of human H. pylori-positive gastritis biopsies. Macrophage HIF-1 strongly contributed to the induction of proinflammatory genes (IL-6, IL-1β) and inducible NO synthase in response to H. pylori. HIF-2 expression and markers of M2 macrophage differentiation were decreased in response to H. pylori. HIF-1(Δmyel) mice inoculated with H. pylori for 6 mo presented with a similar bacterial colonization than WT mice but, surprisingly, a global increase of inflammation, leading to a worsening of the gastritis, measured by an increased epithelial cell proliferation. In conclusion, myeloid HIF-1 is protective in H. pylori-mediated gastritis, pointing to the complex counterbalancing roles of innate immune and inflammatory phenotypes in driving this pathology.
Collapse
Affiliation(s)
- Pavle Matak
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Mylène Heinis
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Jacques R R Mathieu
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Ross Corriden
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Sylvain Cuvellier
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Stéphanie Delga
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Rémi Mounier
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Unité Mixte de Recherche Centre National de la Recherche Scientifique 5534, Université Claude Bernard Lyon 1, Lyon, 69622 Villeurbanne Cedex, France
| | | | | | - Dominique Lamarque
- Equipe d'Accueil 4340, Université de Versailles, and Hôpital Ambroise Paré, Assistance Publique des Hôpitaux de Paris, 92104 Boulogne, France; and
| | - Jean-François Emile
- Equipe d'Accueil 4340, Université de Versailles, and Hôpital Ambroise Paré, Assistance Publique des Hôpitaux de Paris, 92104 Boulogne, France; and
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | | | - Carole Peyssonnaux
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France;
| |
Collapse
|
36
|
Milani M, Sharifi Y, Rahmati-Yamchi M, Somi MH, Akbarzadeh A. Immunology and vaccines and nanovaccines for Helicobacter pylori infection. Expert Rev Vaccines 2015; 14:833-40. [PMID: 25645086 DOI: 10.1586/14760584.2015.1008460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori infection is very common worldwide and is an important cause of gastritis, peptic ulcer disease, gastric mucosa-associated lymphoid tissue lymphoma, and gastric adenocarcinoma. Since the eradication requires treatment with multidrug regimens, prevention of primary infection by a suitable vaccine is attractive. Developing vaccines on the spot when and where an infection is breaking out might be possible, thanks to engineered nanoparticles. In this review, the nature of the host immune response to H. pylori infection is considered. We explain recent candidate vaccines and prophylactic or therapeutic immunization strategies for use against H. pylori. We also describe identification of different types of immune responses that may be related to protection against H. pylori infection. Thus, it seems that there is still a strong need to clarify the main protective immune response against H. pylori.
Collapse
Affiliation(s)
- Morteza Milani
- Liver and Gastrointestinal disease research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | |
Collapse
|
37
|
Lina TT, Alzahrani S, Gonzalez J, Pinchuk IV, Beswick EJ, Reyes VE. Immune evasion strategies used by Helicobacter pylori. World J Gastroenterol 2014; 20:12753-12766. [PMID: 25278676 PMCID: PMC4177461 DOI: 10.3748/wjg.v20.i36.12753] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/07/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is perhaps the most ubiquitous and successful human pathogen, since it colonizes the stomach of more than half of humankind. Infection with this bacterium is commonly acquired during childhood. Once infected, people carry the bacteria for decades or even for life, if not treated. Persistent infection with this pathogen causes gastritis, peptic ulcer disease and is also strongly associated with the development of gastric cancer. Despite induction of innate and adaptive immune responses in the infected individual, the host is unable to clear the bacteria. One widely accepted hallmark of H. pylori is that it successfully and stealthily evades host defense mechanisms. Though the gastric mucosa is well protected against infection, H. pylori is able to reside under the mucus, attach to gastric epithelial cells and cause persistent infection by evading immune responses mediated by host. In this review, we discuss how H. pylori avoids innate and acquired immune response elements, uses gastric epithelial cells as mediators to manipulate host T cell responses and uses virulence factors to avoid adaptive immune responses by T cells to establish a persistent infection. We also discuss in this review how the genetic diversity of this pathogen helps for its survival.
Collapse
|
38
|
Chmiela M, Miszczyk E, Rudnicka K. Structural modifications of Helicobacter pylori lipopolysaccharide: An idea for how to live in peace. World J Gastroenterol 2014; 20:9882-9897. [PMID: 25110419 PMCID: PMC4123370 DOI: 10.3748/wjg.v20.i29.9882] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/26/2013] [Accepted: 04/23/2014] [Indexed: 02/06/2023] Open
Abstract
In this review, we discuss the findings and concepts underlying the “persistence mechanisms” of Helicobacter pylori (H. pylori), a spiral-shaped, Gram-negative rod bacterium that was discovered as a gastric pathogen by Marshall and Warren in 1984. H. pylori colonizes the gastric mucosa of nearly half of the human population. Infections appear in early childhood and, if not treated, persist for life. The presence or absence of symptoms and their severity depend on multiple bacterial components, host susceptibility and environmental factors, which allow H. pylori to switch between pathogenicity and commensalism. Many studies have shown that H. pylori components may facilitate the colonization process and the immune response of the host during the course of H. pylori infection. These H. pylori-driven interactions might result from positive or negative modulation. Among the negative immunomodulators, a prominent position is occupied by a vacuolating toxin A (VacA) and cytotoxin-associated gene A (CagA) protein. However, in light of the recent studies that are presented in this review, it is necessary to enrich this panel with H. pylori lipopolysaccharide (LPS). Together with CagA and VacA, LPS suppresses the elimination of H. pylori bacteria from the gastric mucosa by interfering with the activity of innate and adaptive immune cells, diminishing the inflammatory response, and affecting the adaptive T lymphocyte response, thus facilitating the development of chronic infections. The complex strategy of H. pylori bacteria for survival in the gastric mucosa of the host involves both structural modifications of LPS lipid A to diminish its endotoxic properties and the expression and variation of Lewis determinants, arranged in O-specific chains of H. pylori LPS. By mimicking host components, this phenomenon leaves these bacteria “invisible” to immune cells. Together, these mechanisms allow H. pylori to survive and live for many years within their hosts.
Collapse
|
39
|
Du SY, Wang HJ, Cheng HH, Chen SD, Wang LHC, Wang WC. Cholesterol glucosylation by Helicobacter pylori delays internalization and arrests phagosome maturation in macrophages. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 49:636-645. [PMID: 25070282 DOI: 10.1016/j.jmii.2014.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/16/2014] [Accepted: 05/29/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND/PURPOSE Helicobacter pylori colonizes the human stomach and contributes to chronic inflammation of the gastric mucosa. H. pylori persistence occurs because of insufficient eradication by phagocytic cells. A key factor of H. pylori, cholesterol-α-glucosyltransferase encoded by capJ that extracts host cholesterol and converts it to cholesteryl glucosides, is important to evade host immunity. Here, we examined whether phagocytic trafficking in macrophages was perturbed by capJ-carrying H. pylori. METHODS J774A.1 cells were infected with H. pylori at a multiplicity of infection of 50. Live-cell imaging and confocal microscopic analysis were applied to monitor the phagocytic trafficking events. The viability of H. pylori inside macrophages was determined by using gentamicin colony-forming unit assay. The phagocytic routes were characterized by using trafficking-intervention compounds. RESULTS Wild type (WT) H. pylori exhibited more delayed entry into macrophages and also arrested phagosome maturation more than did capJ knockout mutant. Pretreatment of genistein and LY294002 prior to H. pylori infection reduced the internalization of WT but not capJ-knockout H. pylori in macrophages. CONCLUSION Cholesterol glucosylation by H. pylori interferes with phagosome trafficking via a lipid-raft and PI3K-dependent manner, which retards engulfment of bacteria for prolonged intracellular survival of H. pylori.
Collapse
Affiliation(s)
- Shin-Yi Du
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Hung-Jung Wang
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Hung Cheng
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan; Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Sheng-De Chen
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan; Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
40
|
Talebi Bezmin Abadi A. Therapy of Helicobacter pylori: present medley and future prospective. BIOMED RESEARCH INTERNATIONAL 2014; 2014:124607. [PMID: 24800203 PMCID: PMC3988734 DOI: 10.1155/2014/124607] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/16/2014] [Indexed: 12/19/2022]
Abstract
The increasing prevalence of antimicrobial resistance has warned clinicians to adopt new strategies for dealing with the H. pylori infection. The success of various therapeutic regimens has recently declined to unacceptable levels. To date, first line therapies (including concomitant therapy and hybrid therapy), second line therapies (including bismuth-containing quadruple therapy and levofloxacin-containing therapy), and third line therapy (culture-guided therapy) had been introduced. In the near future, treatment of H. pylori is entering into a completely new resistance era. In this setting, despite the recent progress, we may only be targeting the patients with problematic H. pylori. Local preference for antibiotic selection should be an inevitable article in each therapeutic regimen worldwide. Meanwhile, improving the patients' compliance protocols and observed side effects in suggested therapeutic regimens should be considered cautiously. The new strategies in treatment should be adopted based upon local resistance patterns, which requires physician's resistance about the recommended guidelines. Designing new therapeutic regimen, which contains most effective available antibiotics with less possible side effects and high patient compliance, represents a challenging task in treatment of H. pylori infections.
Collapse
Affiliation(s)
- Amin Talebi Bezmin Abadi
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Department of Medical Bacteriology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
41
|
|
42
|
Rudnicka K, Matusiak A, Miszczyk E, Rudnicka W, Tenderenda M, Chmiela M. Immunophenotype of peripheral blood natural killer cells and IL-10 serum levels in relation to Helicobacter pylori status. APMIS 2013; 121:806-13. [PMID: 23758061 DOI: 10.1111/apm.12120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/08/2013] [Indexed: 12/25/2022]
Abstract
Recent findings suggest that NK (Natural Killer) cells may directly modulate the antimicrobial immune responses. In this study, we performed immunophenotypic analysis of peripheral blood NK cells with regard to CD56, CD16, Nkp46, and CD25 markers, as well as IL-10 levels quantification in the sera samples of asymptomatic, H. pylori (Hp)-infected or uninfected individuals, and combined these results with our previous findings on lymphocyte cytotoxic activity. Twenty healthy volunteers [10 Hp(-);10 Hp(+)] were included in the study. The percentages of classic lymphocytes (CD3(+) ) and NK cells (CD3(-) CD56(+) , CD3(-) Nkp46(+) , CD3(-) CD16(+) ) with or without CD25 receptor were evaluated by fluorochrome-conjugated monoclonal antibody staining and flow cytometry analysis. IL-10 quantification was performed by enzyme-linked immunosorbent assay-ELISA. Our study showed elevated levels of IL-10 and higher NK cell numbers of both CD3(-) CD56(+) CD25(+) and CD3(-) Nkp46(+) CD25(+) phenotypes, as well as CD3(+) CD25(+) classic lymphocytes in Hp(+) compared with Hp(-) individuals. No differences between Hp(-) and Hp(+) individuals were found either in total number of classic lymphocytes or NK cell subtypes. Our data suggest that in Hp(+) donors, there is a domination of lymphocytes and NK cells co-expressing CD25 marker, which might be influenced by the regulatory IL-10. This phenomenon may be a result of H. pylori adaptation to a changing environment in vivo leading to a chronic infection and lack of severe gastric pathologies.
Collapse
Affiliation(s)
- Karolina Rudnicka
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
43
|
Helicobacter pylori VacA suppresses Lactobacillus acidophilus-induced interferon beta signaling in macrophages via alterations in the endocytic pathway. mBio 2013; 4:e00609-12. [PMID: 23760466 PMCID: PMC3685213 DOI: 10.1128/mbio.00609-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori causes chronic gastritis and avoids elimination by the immune system of the infected host. The commensal bacterium Lactobacillus acidophilus has been suggested to exert beneficial effects as a supplement during H. pylori eradication therapy. In the present study, we applied whole-genome microarray analysis to compare the immune responses induced in murine bone marrow-derived macrophages (BMDMs) stimulated with L. acidophilus, H. pylori, or both bacteria in combination. While L. acidophilus induced a Th1-polarizing response characterized by high expression of interferon beta (IFN-β) and interleukin 12 (IL-12), H. pylori strongly induced the innate cytokines IL-1β and IL-1α. In BMDMs prestimulated with L. acidophilus, H. pylori blocked the expression of L. acidophilus-induced IFN-β and IL-12 and suppressed the expression of key regulators of the Rho, Rac, and Cdc42 GTPases. The inhibition of L. acidophilus-induced IFN-β was independent of H. pylori viability and the virulence factor CagPAI; however, a vacuolating cytotoxin (vacA) mutant was unable to block IFN-β. Confocal microscopy demonstrated that the addition of H. pylori to L. acidophilus-stimulated BMDMs redirects intracellular processing, leading to an accumulation of L. acidophilus in the endosomal and lysosomal compartments. Thus, our findings indicate that H. pylori inhibits the development of a strong Th1-polarizing response in BMDMs stimulated with L. acidophilus by blocking the production of IFN-β in a VacA-dependent manner. We suggest that this abrogation is caused by a redirection of the endocytotic pathway in the processing of L. acidophilus. Approximately half of the world’s population is infected with Helicobacter pylori. The factors that allow this pathogen to persist in the stomach and cause chronic infections have not yet been fully elucidated. In particular, how H. pylori avoids killing by macrophages, one of the main types of immune cell underlying the epithelium, remains elusive. Here we have shown that the H. pylori virulence factor VacA plays a key role by blocking the activation of innate cytokines induced by the probiotic Lactobacillus acidophilus in macrophages and suppresses the expression of key regulators required for the organization and dynamics of the intracellular cytoskeleton. Our results identify potential targets for the treatment of H. pylori infection and vaccination, since specific inhibition of the toxin VacA possibly allows the activation of an efficient immune response and thereby eradication of H. pylori in the host.
Collapse
|
44
|
Mutations to essential orphan response regulator HP1043 of Helicobacter pylori result in growth-stage regulatory defects. Infect Immun 2013; 81:1439-49. [PMID: 23429531 DOI: 10.1128/iai.01193-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Helicobacter pylori establishes lifelong infections of the gastric mucosa, a niche considered hostile to most microbes. While responses to gastric acidity and local inflammation are understood, little is known as to how they are integrated into homeostatic control of cell division and growth-stage gene expression. Here we investigate the essential orphan response regulator HP1043, a member of the OmpR/PhoB subfamily of transcriptional regulators that is unique to the Epsilonproteobacteria and that lacks phosphorylation domains. To test the hypothesis that conformational changes in the homodimer might lead to defects in gene expression, we sought mutations that might alter DNA-binding efficiency. Two introduced mutations (C215S, C221S) C terminal to the DNA-binding domain of HP1043 (HP1043CC11) resulted in a 2-fold higher affinity for its own promoter by footprinting. Modeling studies with the crystal structure of HP1043 suggested that C215S might affect the helix-turn-helix domain. Genomic replacement of the hp1043 allele with the hp1043CC11 mutant allele resulted in a 2-fold decrease in protein levels, despite a dramatic increase in mRNA. The mutations did not affect in vitro growth rates or colonization efficiency in a mouse model. Proteomic profiling (CC11 mutant strain versus wild type) identified many expression differences, and quantitative PCR further revealed that 11 out of 12 examined genes had lost growth-stage regulation and that 6 of the genes contained HP1043 binding consensus sequences within the promoter regions (fur, cagA, cag23, flhA, flip, and napA). Our studies show that mutations that affect DNA-binding affinity can be used to identify new members of the HP1043 regulon.
Collapse
|
45
|
Deen NS, Huang SJ, Gong L, Kwok T, Devenish RJ. The impact of autophagic processes on the intracellular fate of Helicobacter pylori: more tricks from an enigmatic pathogen? Autophagy 2013; 9:639-52. [PMID: 23396129 DOI: 10.4161/auto.23782] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori is a Gram-negative pathogen that colonizes the gastric epithelium of 50-60% of the world's population. Approximately one-fifth of the infected individuals manifest severe diseases such as peptic ulcers or gastric cancer. H. pylori infection has proven difficult to cure despite intensive antibiotic treatment. One possible reason for the relatively high resistance to antimicrobial therapy is the ability of H. pylori to reside inside host cells. Although considered by most as an extracellular pathogen, H. pylori can invade both gastric epithelial cells and immunocytes to some extent. The intracellular survival of H. pylori has been implicated in its ability to persist in the stomach, evade host immune responses and resist eradication by membrane-impermeable antibiotics. Interestingly, recent evidence suggests that macroautophagy, a cellular self-degradation process characterized by the formation of double-membraned autophagosomes, plays an important role in determining the intracellular fate of H. pylori. Detailed understanding of the interaction between H. pylori and host cell autophagic processes is anticipated to provide novel insights into the molecular mechanisms of macroautophagy and H. pylori pathogenesis, opening new avenues for the therapeutic intervention of autophagy-related and H. pylori-related disorders.
Collapse
Affiliation(s)
- Nadia S Deen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria, Australia
| | | | | | | | | |
Collapse
|
46
|
Han JP, Hong SJ. Immune Response toHelicobacter pyloriInfection. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2013. [DOI: 10.7704/kjhugr.2013.13.4.220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jae Pil Han
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Su Jin Hong
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
| |
Collapse
|
47
|
Helicobacter pylori colonization ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism. PLoS One 2012; 7:e50069. [PMID: 23166823 PMCID: PMC3499487 DOI: 10.1371/journal.pone.0050069] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 10/18/2012] [Indexed: 02/06/2023] Open
Abstract
Background There is an inverse secular trend between the incidence of obesity and gastric colonization with Helicobacter pylori, a bacterium that can affect the secretion of gastric hormones that relate to energy homeostasis. H. pylori strains that carry the cag pathogenicity island (PAI) interact more intimately with gastric epithelial cells and trigger more extensive host responses than cag− strains. We hypothesized that gastric colonization with H. pylori strains differing in cag PAI status exert distinct effects on metabolic and inflammatory phenotypes. Methodology/Principal Findings To test this hypothesis, we examined metabolic and inflammatory markers in db/db mice and mice with diet-induced obesity experimentally infected with isogenic forms of H. pylori strain 26695: the cag PAI wild-type and its cag PAI mutant strain 99–305. H. pylori colonization decreased fasting blood glucose levels, increased levels of leptin, improved glucose tolerance, and suppressed weight gain. A response found in both wild-type and mutant H. pylori strain-infected mice included decreased white adipose tissue macrophages (ATM) and increased adipose tissue regulatory T cells (Treg) cells. Gene expression analyses demonstrated upregulation of gastric PPAR γ-responsive genes (i.e., CD36 and FABP4) in H. pylori-infected mice. The loss of PPAR γ in immune and epithelial cells in mice impaired the ability of H. pylori to favorably modulate glucose homeostasis and ATM infiltration during high fat feeding. Conclusions/Significance Gastric infection with some commensal strains of H. pylori ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism and modulates macrophage and Treg cell infiltration into the abdominal white adipose tissue.
Collapse
|
48
|
Borlace GN, Keep SJ, Prodoehl MJR, Jones HF, Butler RN, Brooks DA. A role for altered phagosome maturation in the long-term persistence of Helicobacter pylori infection. Am J Physiol Gastrointest Liver Physiol 2012; 303:G169-79. [PMID: 22575220 DOI: 10.1152/ajpgi.00320.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The vigorous host immune response that is mounted against Helicobacter pylori is unable to eliminate this pathogenic bacterium from its niche in the human gastric mucosa. This results in chronic inflammation, which can develop into gastric or duodenal ulcers in 10% of infected individuals and gastric cancer in 1% of infections. The determinants for these more severe pathologies include host (e.g., high IL-1β expression polymorphisms), bacterial [e.g., cytotoxicity-associated gene (cag) pathogenicity island], and environmental (e.g., dietary nitrites) factors. However, it is the failure of host immune effector cells to eliminate H. pylori that underlies its persistence and the subsequent H. pylori-associated disease. Here we discuss the mechanisms used by H. pylori to survive the host immune response and, in particular, the role played by altered phagosome maturation.
Collapse
Affiliation(s)
- Glenn N Borlace
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, Univ. of South Australia, South Australia 5001, Australia.
| | | | | | | | | | | |
Collapse
|
49
|
Rudnicka K, Włodarczyk M, Moran AP, Rechciński T, Miszczyk E, Matusiak A, Szczęsna E, Walencka M, Rudnicka W, Chmiela M. Helicobacter pylori antigens as potential modulators of lymphocytes' cytotoxic activity. Microbiol Immunol 2012; 56:62-75. [PMID: 22040089 DOI: 10.1111/j.1348-0421.2011.00399.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori (H.p) colonizes human gastric mucosa and causes gastric and duodenal ulcer disease or gastric cancer. Various H.p compounds may modulate the host immune response in regards to tolerance of the infection or disease development. The aim of this study was to determine whether H.p lipopolysaccharide (LPS) and glycine acid extract antigens (GE) or E. coli LPS influence the cytotoxic activity of peripheral blood lymphocytes from H.p infected - H.p (+) or uninfected - H.p (-) individuals, in the presence or absence of exogenous interleukin (IL)12. Individual H.p status was defined by the urea breath test. Lymphocytes, stimulated or not with H.p, and control antigens, with or without IL-12, were used as effector cells and epithelial HeLa cells as targets. The cytotoxicity of lymphocytes was expressed as the percentage of dead target cells unable to reduce tetrazolium salt. The supernatants from HeLa/lymphocyte cultures were used for detection of the cellular cytotoxicity markers granzyme B and caspase 8. The natural cytotoxic activity of lymphocytes from H.p (+) was less than that of H.p (-) donors. This may have been due to fewer natural killer cells of CD3(-) CD56(+) Nkp46(+) phenotype in H.p (+) in comparison to H.p (-) subjects. H.p GE and standard E. coli LPS enhanced the cytotoxicity of lymphocytes towards target cells whereas H.p LPS downregulated this activity. The decrease in lymphocyte cytotoxicity in response to H.p LPS correlated with a lack of IL-2 and IL-12 production, inhibition of interferon-γ production, and low IL-10 secretion by mononuclear leukocytes. IL-12 significantly enhanced the natural as well as H.p LPS and H.p GE driven cytotoxic capacity of lymphocytes. In conclusion, H.p LPS may negatively modulate natural cytotoxic activity and cytokine secretion by immunocompetent cells and thus be involved in the maintenance of infection and development of gastric pathologies.
Collapse
Affiliation(s)
- Karolina Rudnicka
- Department of Immunology and Infectious Biology, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tsugawa H, Suzuki H, Matsuzaki J, Hirata K, Hibi T. FecA1, a bacterial iron transporter, determines the survival of Helicobacter pylori in the stomach. Free Radic Biol Med 2012; 52:1003-10. [PMID: 22245091 DOI: 10.1016/j.freeradbiomed.2011.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/16/2011] [Accepted: 12/14/2011] [Indexed: 01/14/2023]
Abstract
Helicobacter pylori encodes a single iron-cofactored superoxide dismutase (SodB), which is regulated by the ferric uptake regulator (Fur). Ferrous ion (Fe(2+)) is necessary for the activation of SodB. The activity of SodB is an important determinant of the capability of H. pylori for long-term colonization of the stomach and of the development of metronidazole (Mtz) resistance of the bacterium. This study is conducted to characterize the Fe(2+)-supply mechanisms for the activation of SodB in H. pylori, which, as mentioned above, is associated with the host-colonization ability and Mtz resistance of H. pylori. In this study, we demonstrate that fecA1, a Fe(3+)-dicitrate transporter homolog, is an essential gene for SodB activation, but not for the biogenic activity of H. pylori. H. pylori with SodB inactivation by fecA1 deletion showed reduced resistance to H(2)O(2), reduced gastric mucosal-colonization ability in Mongolian gerbils, and also reduced resistance to Mtz. Our experiment demonstrated that FecA1 is an important determinant of the host-colonization ability and Mtz resistance of H. pylori through Fe(2+) supply to SodB, suggesting that FecA1 may be a possible target for the development of a novel bactericidal drug.
Collapse
Affiliation(s)
- Hitoshi Tsugawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | |
Collapse
|