1
|
Strnad M, Rudenko N, Rego RO. Pathogenicity and virulence of Borrelia burgdorferi. Virulence 2023; 14:2265015. [PMID: 37814488 PMCID: PMC10566445 DOI: 10.1080/21505594.2023.2265015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Infection with Borrelia burgdorferi often triggers pathophysiologic perturbations that are further augmented by the inflammatory responses of the host, resulting in the severe clinical conditions of Lyme disease. While our apprehension of the spatial and temporal integration of the virulence determinants during the enzootic cycle of B. burgdorferi is constantly being improved, there is still much to be discovered. Many of the novel virulence strategies discussed in this review are undetermined. Lyme disease spirochaetes must surmount numerous molecular and mechanical obstacles in order to establish a disseminated infection in a vertebrate host. These barriers include borrelial relocation from the midgut of the feeding tick to its body cavity and further to the salivary glands, deposition to the skin, haematogenous dissemination, extravasation from blood circulation system, evasion of the host immune responses, localization to protective niches, and establishment of local as well as distal infection in multiple tissues and organs. Here, the various well-defined but also possible novel strategies and virulence mechanisms used by B. burgdorferi to evade obstacles laid out by the tick vector and usually the mammalian host during colonization and infection are reviewed.
Collapse
Affiliation(s)
- Martin Strnad
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| | - Natalie Rudenko
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
| | - Ryan O.M. Rego
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| |
Collapse
|
2
|
Wang X, Wu Y, Liu Y, Chen F, Chen S, Zhang F, Li S, Wang C, Gong Y, Huang R, Hu M, Ning Y, Zhao H, Guo X. Altered gut microbiome profile in patients with knee osteoarthritis. Front Microbiol 2023; 14:1153424. [PMID: 37250055 PMCID: PMC10213253 DOI: 10.3389/fmicb.2023.1153424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Osteoarthritis (OA) is a kind of chronic, degenerative disorder with unknown causes. In this study, we aimed to improve our understanding of the gut microbiota profile in patients with knee OA. Methods 16S rDNA gene sequencing was performed to detect the gut microbiota in fecal samples collected from the patients with OA (n = 32) and normal control (NC, n = 57). Then the metagenomic sequencing was used to identify the genes or functions linked with gut microbial changes at the species level in the fecal samples from patients with OA and NC groups. Results The Proteobacteria was identified as dominant bacteria in OA group. We identified 81 genera resulted significantly different in abundance between OA and NC. The abundance of Agathobacter, Ruminococcus, Roseburia, Subdoligranulum, and Lactobacillus showed significant decrease in the OA compared to the NC. The abundance of genera Prevotella_7, Clostridium, Flavonifractor and Klebsiella were increasing in the OA group, and the families Lactobacillaceae, Christensenellaceae, Clostridiaceae_1 and Acidaminococcaceae were increasing in the NC. The metagenomic sequencing showed that the abundance of Bacteroides stercoris, Bacteroides vulgatus and Bacteroides uniformis at the species level were significantly decreasing in the OA, and the abundance of Escherichia coli, Klebsiella pneumoniae, Shigella flexneri and Streptococcus salivarius were significantly increased in OA. Discussion The results of our study interpret a comprehensive profile of the gut microbiota in patients with knee OA and offer the evidence that the cartilage-gut-microbiome axis could play a crucial role in underlying the mechanisms and pathogenesis of OA.
Collapse
Affiliation(s)
- Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Sijie Chen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Feiyu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Shujin Li
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Chaowei Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yi Gong
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Ruitian Huang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Minhan Hu
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Ning Y, Hu M, Gong Y, Huang R, Xu K, Chen S, Zhang F, Liu Y, Chen F, Chang Y, Zhao G, Li C, Zhou R, Lammi MJ, Guo X, Wang X. Comparative analysis of the gut microbiota composition between knee osteoarthritis and Kashin-Beck disease in Northwest China. Arthritis Res Ther 2022; 24:129. [PMID: 35637503 PMCID: PMC9150333 DOI: 10.1186/s13075-022-02819-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/21/2022] [Indexed: 12/15/2022] Open
Abstract
Background Osteoarthritis (OA) and Kashin-Beck disease (KBD) both are two severe osteochondral disorders. In this study, we aimed to compare the gut microbiota structure between OA and KBD patients. Methods Fecal samples collected from OA and KBD patients were used to characterize the gut microbiota using 16S rDNA gene sequencing. To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria between OA and KBD groups, metagenomic sequencing of fecal samples from OA and KBD subjects was performed. Results The OA group was characterized by elevated Epsilonbacteraeota and Firmicutes levels. A total of 52 genera were identified to be significantly differentially abundant between the two groups. The genera Raoultella, Citrobacter, Flavonifractor, g__Lachnospiraceae_UCG-004, and Burkholderia-Caballeronia-Paraburkholderia were more abundant in the OA group. The KBD group was characterized by higher Prevotella_9, Lactobacillus, Coprococcus_2, Senegalimassilia, and Holdemanella. The metagenomic sequencing showed that the Subdoligranulum_sp._APC924/74, Streptococcus_parasanguinis, and Streptococcus_salivarius were significantly increased in abundance in the OA group compared to those in the KBD group, and the species Prevotella_copri, Prevotella_sp._CAG:386, and Prevotella_stercorea were significantly decreased in abundance in the OA group compared to those in the KBD group by using metagenomic sequencing. Conclusion Our study provides a comprehensive landscape of the gut microbiota between OA and KBD patients and provides clues for better understanding the mechanisms underlying the pathogenesis of OA and KBD. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02819-5.
Collapse
Affiliation(s)
- Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Minhan Hu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yi Gong
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ruitian Huang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ke Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road, Xi'an, People's Republic of China
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanli Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feihong Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanhai Chang
- Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Guanghui Zhao
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road, Xi'an, People's Republic of China
| | - Cheng Li
- Shaanxi Institute of Endemic Disease Prevention and Control, Xi'an, Shaanxi, 710003, People's Republic of China
| | - Rong Zhou
- Shaanxi Institute of Endemic Disease Prevention and Control, Xi'an, Shaanxi, 710003, People's Republic of China
| | - Mikko J Lammi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China.,Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xi Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China. .,Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China. .,Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
4
|
Hahn B, Anderson P, Lu Z, Danner R, Zhou Z, Hyun N, Gao L, Lin T, Norris SJ, Coburn J. BBB07 contributes to, but is not essential for, Borrelia burgdorferi infection in mice. MICROBIOLOGY-SGM 2021; 166:988-994. [PMID: 32936070 DOI: 10.1099/mic.0.000972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Borrelia burgdorferi, a causative agent of Lyme disease, encodes a protein BBB07 on the genomic plasmid cp26. BBB07 was identified as a candidate integrin ligand based on the presence of an RGD tripeptide motif, which is present in a number of mammalian ligands for β1 and β3 integrins . Previous work demonstrated that BBB07 in recombinant form binds to β1 integrins and induces inflammatory responses in synovial cells in culture. Several transposon mutants in bbb07 were attenuated in an in vivo screen of the transposon library in mice. We therefore tested individual transposon mutant clones in single-strain infections in mice and found that they were attenuated in terms of ID50 but did not have significantly reduced tissue burdens in mice. Based on data presented here we conclude that BBB07 is not essential for, but does contribute to, B. burgdorferi infectivity in mice.
Collapse
Affiliation(s)
- Beth Hahn
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Phillip Anderson
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zouyan Lu
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rebecca Danner
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zhipeng Zhou
- Present address: Cardiovascular Research Foundation, New York, NY, USA.,Center for Advancing Population Science, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Noorie Hyun
- Department of Health and Equity, Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lihui Gao
- Present address: Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Tao Lin
- Present address: Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Jenifer Coburn
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
5
|
Coburn J, Garcia B, Hu LT, Jewett MW, Kraiczy P, Norris SJ, Skare J. Lyme Disease Pathogenesis. Curr Issues Mol Biol 2020; 42:473-518. [PMID: 33353871 DOI: 10.21775/cimb.042.473] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lyme disease Borrelia are obligately parasitic, tick- transmitted, invasive, persistent bacterial pathogens that cause disease in humans and non-reservoir vertebrates primarily through the induction of inflammation. During transmission from the infected tick, the bacteria undergo significant changes in gene expression, resulting in adaptation to the mammalian environment. The organisms multiply and spread locally and induce inflammatory responses that, in humans, result in clinical signs and symptoms. Borrelia virulence involves a multiplicity of mechanisms for dissemination and colonization of multiple tissues and evasion of host immune responses. Most of the tissue damage, which is seen in non-reservoir hosts, appears to result from host inflammatory reactions, despite the low numbers of bacteria in affected sites. This host response to the Lyme disease Borrelia can cause neurologic, cardiovascular, arthritic, and dermatologic manifestations during the disseminated and persistent stages of infection. The mechanisms by which a paucity of organisms (in comparison to many other infectious diseases) can cause varied and in some cases profound inflammation and symptoms remains mysterious but are the subjects of diverse ongoing investigations. In this review, we provide an overview of virulence mechanisms and determinants for which roles have been demonstrated in vivo, primarily in mouse models of infection.
Collapse
Affiliation(s)
- Jenifer Coburn
- Center For Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd., TBRC C3980, Milwaukee, WI 53226, USA
| | - Brandon Garcia
- Department of Microbiology and Immunology, East Carolina University, Brody School of Medicine, Greenville, NC 27858, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Vice Dean of Research, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | - Mollie W Jewett
- Immunity and Pathogenesis Division Head, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd. Orlando, FL 32827, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt, Germany
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, P.O. Box 20708, Houston, TX 77225, USA
| | - Jon Skare
- Professor and Associate Head, Texas A and M University, 8447 Riverside Pkwy, Bryan, TX 77807, USA
| |
Collapse
|
6
|
Bockenstedt LK, Wooten RM, Baumgarth N. Immune Response to Borrelia: Lessons from Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:145-190. [PMID: 33289684 PMCID: PMC10842262 DOI: 10.21775/cimb.042.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The mammalian host responds to infection with Borrelia spirochetes through a highly orchestrated immune defense involving innate and adaptive effector functions aimed toward limiting pathogen burdens, minimizing tissue injury, and preventing subsequent reinfection. The evolutionary adaptation of Borrelia spirochetes to their reservoir mammalian hosts may allow for its persistence despite this immune defense. This review summarizes our current understanding of the host immune response to B. burgdorferi sensu lato, the most widely studied Borrelia spp. and etiologic agent of Lyme borreliosis. Pertinent literature will be reviewed with emphasis on in vitro, ex vivo and animal studies that influenced our understanding of both the earliest responses to B. burgdorferi as it enters the mammalian host and those that evolve as spirochetes disseminate and establish infection in multiple tissues. Our focus is on the immune response of inbred mice, the most commonly studied animal model of B. burgdorferi infection and surrogate for one of this pathogen's principle natural reservoir hosts, the white-footed deer mouse. Comparison will be made to the immune responses of humans with Lyme borreliosis. Our goal is to provide an understanding of the dynamics of the mammalian immune response during infection with B. burgdorferi and its relation to the outcomes in reservoir (mouse) and non-reservoir (human) hosts.
Collapse
Affiliation(s)
- Linda K. Bockenstedt
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8031, USA
| | - R. Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases and Dept. Pathology, Microbiology and Immunology, University of California, Davis, Davis CA 95616, USA
| |
Collapse
|
7
|
Brouwer MAE, van de Schoor FR, Vrijmoeth HD, Netea MG, Joosten LAB. A joint effort: The interplay between the innate and the adaptive immune system in Lyme arthritis. Immunol Rev 2020; 294:63-79. [PMID: 31930745 PMCID: PMC7065069 DOI: 10.1111/imr.12837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
Articular joints are a major target of Borrelia burgdorferi, the causative agent of Lyme arthritis. Despite antibiotic treatment, recurrent or persistent Lyme arthritis is observed in a significant number of patients. The host immune response plays a crucial role in this chronic arthritic joint complication of Borrelia infections. During the early stages of B. burgdorferi infection, a major hinder in generating a proper host immune response is the lack of induction of a strong adaptive immune response. This may lead to a delayed hyperinflammatory reaction later in the disease. Several mechanisms have been suggested that might be pivotal for the development of Lyme arthritis and will be highlighted in this review, from molecular mimicry of matrix metallopeptidases and glycosaminoglycans, to autoimmune responses to live bacteria, or remnants of Borrelia spirochetes in joints. Murine studies have suggested that the inflammatory responses are initiated by innate immune cells, but this does not exclude the involvement of the adaptive immune system in this dysregulated immune profile. Genetic predisposition, via human leukocyte antigen-DR isotype and microRNA expression, has been associated with the development of antibiotic-refractory Lyme arthritis. Yet the ultimate cause for (antibiotic-refractory) Lyme arthritis remains unknown. Complex processes of different immune cells and signaling cascades are involved in the development of Lyme arthritis. When these various mechanisms are fully been unraveled, new treatment strategies can be developed to target (antibiotic-refractory) Lyme arthritis more effectively.
Collapse
Affiliation(s)
- Michelle A. E. Brouwer
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Freek R. van de Schoor
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Hedwig D. Vrijmoeth
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Mihai G. Netea
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
- Department for Genomics & ImmunoregulationLife and Medical Sciences Institute (LIMES)University of BonnBonnGermany
| | - Leo A. B. Joosten
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
8
|
Bamm VV, Ko JT, Mainprize IL, Sanderson VP, Wills MKB. Lyme Disease Frontiers: Reconciling Borrelia Biology and Clinical Conundrums. Pathogens 2019; 8:E299. [PMID: 31888245 PMCID: PMC6963551 DOI: 10.3390/pathogens8040299] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Lyme disease is a complex tick-borne zoonosis that poses an escalating public health threat in several parts of the world, despite sophisticated healthcare infrastructure and decades of effort to address the problem. Concepts like the true burden of the illness, from incidence rates to longstanding consequences of infection, and optimal case management, also remain shrouded in controversy. At the heart of this multidisciplinary issue are the causative spirochetal pathogens belonging to the Borrelia Lyme complex. Their unusual physiology and versatile lifestyle have challenged microbiologists, and may also hold the key to unlocking mysteries of the disease. The goal of this review is therefore to integrate established and emerging concepts of Borrelia biology and pathogenesis, and position them in the broader context of biomedical research and clinical practice. We begin by considering the conventions around diagnosing and characterizing Lyme disease that have served as a conceptual framework for the discipline. We then explore virulence from the perspective of both host (genetic and environmental predispositions) and pathogen (serotypes, dissemination, and immune modulation), as well as considering antimicrobial strategies (lab methodology, resistance, persistence, and clinical application), and borrelial adaptations of hypothesized medical significance (phenotypic plasticity or pleomorphy).
Collapse
Affiliation(s)
| | | | | | | | - Melanie K. B. Wills
- G. Magnotta Lyme Disease Research Lab, Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (V.V.B.); (J.T.K.); (I.L.M.); (V.P.S.)
| |
Collapse
|
9
|
Berthelot JM, Sellam J, Maugars Y, Berenbaum F. Cartilage-gut-microbiome axis: a new paradigm for novel therapeutic opportunities in osteoarthritis. RMD Open 2019; 5:e001037. [PMID: 31673418 PMCID: PMC6803002 DOI: 10.1136/rmdopen-2019-001037] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/31/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
DNA of gut microbiota can be found in synovium of osteoarthritis and rheumatoid arthritis. This finding could result from the translocation of still alive bacteria from gut to joints through blood, since the diversified dormant microbiota of healthy human blood can be transiently resuscitated in vitro. The recent finding of gut microbiome in human cartilage, which differed between osteoarthritis and controls, suggests that a similar trafficking of dead or alive bacteria from gut microbiota physiologically occurs between gut and epiphysial bone marrow. Subchondral microbiota could enhance cartilage healing and transform components of deep cartilage matrix in metabolites with immunosuppressive properties. The differences of microbiome observed between hip and knee cartilage, either in osteoarthritis or controls, might be the counterpart of subtle differences in chondrocyte metabolism, themselves in line with differences in DNA methylation according to joints. Although bacteria theoretically cannot reach chondrocytes from the surface of intact cartilage, some bacteria enter the vascular channels of the epiphysial growth cartilage in young animals, whereas others can infect chondrocytes in vitro. In osteoarthritis, the early osteochondral plate angiogenesis may further enhance the ability of microbiota to locate close to the deeper layers of cartilage, and this might lead to focal dysbiosis, low-grade inflammation, cartilage degradation, epigenetic changes in chondrocytes and worsening of osteoarthritis. More studies on cartilage across different ethnic groups, weights, and according to age, are needed, to confirm the silent presence of gut microbiota close to human cartilage and better understand its physiologic and pathogenic significance.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Rheumatology Unit, Nantes University Hospital, CHU Nantes, 44093 Nantes Cedex 01, France
| | - Jérémie Sellam
- Sorbonne University, Paris, France.,INSERM UMRS_938, CRSA, Paris, France.,Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint- Antoine Hospital, DMU 3iD, Paris, France
| | - Yves Maugars
- Rheumatology Unit, Nantes University Hospital, CHU Nantes, 44093 Nantes Cedex 01, France
| | - Francis Berenbaum
- Sorbonne University, Paris, France.,INSERM UMRS_938, CRSA, Paris, France.,Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint- Antoine Hospital, DMU 3iD, Paris, France
| |
Collapse
|
10
|
Investigating disease severity in an animal model of concurrent babesiosis and Lyme disease. Int J Parasitol 2018; 49:145-151. [PMID: 30367867 DOI: 10.1016/j.ijpara.2018.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 02/04/2023]
Abstract
The incidence of babesiosis, Lyme disease and other tick-borne diseases has increased steadily in Europe and North America during the last five decades. Babesia microti is transmitted by species of Ixodes, the same ticks that transmit the Lyme disease-causing spirochete, Borrelia burgdorferi. B. microti can also be transmitted through transfusion of blood products and is the most common transfusion-transmitted infection in the U.S.A. Ixodes ticks are commonly infected with both B. microti and B. burgdorferi, and are competent vectors for transmitting them together into hosts. Few studies have examined the effects of coinfections on humans and they had somewhat contradictory results. One study linked coinfection with B. microti to a greater number of symptoms of overall disease in patients, while another report indicated that B. burgdorferi infection either did not affect babesiosis symptoms or decreased its severity. Mouse models of infection that manifest pathological effects similar to those observed in human babesiosis and Lyme disease offer a unique opportunity to thoroughly investigate the effects of coinfection on the host. Lyme disease has been studied using the susceptible C3H mouse infection model, which can also be used to examine B. microti infection to understand pathological mechanisms of human diseases, both during a single infection and during coinfections. We observed that high B. microti parasitaemia leads to low haemoglobin levels in infected mice, reflecting the anaemia observed in human babesiosis. Similar to humans, B. microti coinfection appears to enhance the severity of Lyme disease-like symptoms in mice. Coinfected mice have lower peak B. microti parasitaemia compared to mice infected with B. microti alone, which may reflect attenuation of babesiosis symptoms reported in some human coinfections. These findings suggest that B. burgdorferi coinfection attenuates parasite growth while B. microti presence exacerbates Lyme disease-like symptoms in mice.
Collapse
|
11
|
Bernard Q, Thakur M, Smith AA, Kitsou C, Yang X, Pal U. Borrelia burgdorferi protein interactions critical for microbial persistence in mammals. Cell Microbiol 2018; 21:e12885. [PMID: 29934966 PMCID: PMC10082445 DOI: 10.1111/cmi.12885] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022]
Abstract
Borrelia burgdorferi is the causative agent of Lyme disease that persists in a complex enzootic life cycle, involving Ixodes ticks and vertebrate hosts. The microbe invades ticks and vertebrate hosts in spite of active immune surveillance and potent microbicidal responses, and establishes long-term infection utilising mechanisms that are yet to be unravelled. The pathogen can cause multi-system disorders when transmitted to susceptible mammalian hosts, including in humans. In the past decades, several studies identified a limited number of B. burgdorferi gene-products critical for pathogen persistence, transmission between the vectors and the host, and host-pathogen interactions. This review will focus on the interactions between B. burgdorferi proteins, as well as between microbial proteins and host components, protein and non-protein components, highlighting their roles in pathogen persistence in the mammalian host. A better understanding of the contributions of protein interactions in the microbial virulence and persistence of B. burgdorferi would support development of novel therapeutics against the infection.
Collapse
Affiliation(s)
- Quentin Bernard
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland
| | - Meghna Thakur
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland
| | - Alexis A Smith
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland
| |
Collapse
|
12
|
Beyond the Matrix: The Many Non-ECM Ligands for Integrins. Int J Mol Sci 2018; 19:ijms19020449. [PMID: 29393909 PMCID: PMC5855671 DOI: 10.3390/ijms19020449] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/21/2018] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
The traditional view of integrins portrays these highly conserved cell surface receptors as mediators of cellular attachment to the extracellular matrix (ECM), and to a lesser degree, as coordinators of leukocyte adhesion to the endothelium. These canonical activities are indispensable; however, there is also a wide variety of integrin functions mediated by non-ECM ligands that transcend the traditional roles of integrins. Some of these unorthodox roles involve cell-cell interactions and are engaged to support immune functions such as leukocyte transmigration, recognition of opsonization factors, and stimulation of neutrophil extracellular traps. Other cell-cell interactions mediated by integrins include hematopoietic stem cell and tumor cell homing to target tissues. Integrins also serve as cell-surface receptors for various growth factors, hormones, and small molecules. Interestingly, integrins have also been exploited by a wide variety of organisms including viruses and bacteria to support infectious activities such as cellular adhesion and/or cellular internalization. Additionally, the disruption of integrin function through the use of soluble integrin ligands is a common strategy adopted by several parasites in order to inhibit blood clotting during hematophagy, or by venomous snakes to kill prey. In this review, we strive to go beyond the matrix and summarize non-ECM ligands that interact with integrins in order to highlight these non-traditional functions of integrins.
Collapse
|
13
|
Brock CM, Bañó-Polo M, Garcia-Murria MJ, Mingarro I, Esteve-Gasent M. Characterization of the inner membrane protein BB0173 from Borrelia burgdorferi. BMC Microbiol 2017; 17:219. [PMID: 29166863 PMCID: PMC5700661 DOI: 10.1186/s12866-017-1127-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The bacterial spirochete Borrelia burgdorferi is the causative agent of the most commonly reported arthropod-borne illness in the United States, Lyme disease. A family of proteins containing von Willebrand Factor A (VWFA) domains adjacent to a MoxR AAA+ ATPase have been found to be highly conserved in the genus Borrelia. Previously, a VWFA domain containing protein of B. burgdorferi, BB0172, was determined to be an outer membrane protein capable of binding integrin α3β1. In this study, the characterization of a new VWFA domain containing membrane protein, BB0173, is evaluated in order to define the location and topology of this multi-spanning membrane protein. In addition, functional predictions are made. RESULTS Our results show that BB0173, in contrast to BB0172, is an inner membrane protein, in which the VWFA domain is exposed to the periplasmic space. Further, BB0173 was predicted to have an aerotolerance regulator domain, and expression of BB0173 and the surrounding genes was evaluated under aerobic and microaerophilic conditions, revealing that these genes are downregulated under aerobic conditions. Since the VWFA domain containing proteins of B. burgdorferi are highly conserved, they are likely required for survival of the pathogen through sensing diverse environmental oxygen conditions. CONCLUSIONS Presently, the complex mechanisms that B. burgdorferi uses to detect and respond to environmental changes are not completely understood. However, studying the mechanisms that allow B. burgdorferi to survive in the highly disparate environments of the tick vector and mammalian host could allow for the development of novel methods of preventing acquisition, survival, or transmission of the spirochete. In this regard, a putative membrane protein, BB0173, was characterized. BB0173 was found to be highly conserved across pathogenic Borrelia, and additionally contains several truly transmembrane domains, and a Bacteroides aerotolerance-like domain. The presence of these functional domains and the highly conserved nature of this protein, strongly suggests a required function of BB0173 in the survival of B. burgdorferi.
Collapse
Affiliation(s)
- Christina M Brock
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TAMU-4467, College Station, TX, 77843, USA.,Current affiliation: Department of Entomology, College of Agricultural and Life Sciences, Texas A&M University, College Station, USA
| | - Manuel Bañó-Polo
- Department of Biochemistry and Molecular Biology, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Faculty of Biology, University of Valencia, E-46100, Burjassot, Valencia, Spain
| | - Maria J Garcia-Murria
- Department of Biochemistry and Molecular Biology, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Faculty of Biology, University of Valencia, E-46100, Burjassot, Valencia, Spain
| | - Ismael Mingarro
- Department of Biochemistry and Molecular Biology, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Faculty of Biology, University of Valencia, E-46100, Burjassot, Valencia, Spain
| | - Maria Esteve-Gasent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TAMU-4467, College Station, TX, 77843, USA.
| |
Collapse
|
14
|
Caine JA, Coburn J. Multifunctional and Redundant Roles of Borrelia burgdorferi Outer Surface Proteins in Tissue Adhesion, Colonization, and Complement Evasion. Front Immunol 2016; 7:442. [PMID: 27818662 PMCID: PMC5073149 DOI: 10.3389/fimmu.2016.00442] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/07/2016] [Indexed: 12/24/2022] Open
Abstract
Borrelia burgdorferi is the causative agent of Lyme disease in the U.S., with at least 25,000 cases reported to the CDC each year. B. burgdorferi is thought to enter and exit the bloodstream to achieve rapid dissemination to distal tissue sites during infection. Travel through the bloodstream requires evasion of immune surveillance and pathogen clearance in the host, a process at which B. burgdorferi is adept. B. burgdorferi encodes greater than 19 adhesive outer surface proteins many of which have been found to bind to host cells or components of the extracellular matrix. Several others bind to host complement regulatory factors, in vitro. Production of many of these adhesive proteins is tightly regulated by environmental cues, and some have been shown to aid in vascular interactions and tissue colonization, as well as survival in the blood, in vivo. Recent work has described multifaceted and redundant roles of B. burgdorferi outer surface proteins in complement component interactions and tissue targeted adhesion and colonization, distinct from their previously identified in vitro binding capabilities. Recent insights into the multifunctional roles of previously well-characterized outer surface proteins such as BBK32, DbpA, CspA, and OspC have changed the way we think about the surface proteome of these organisms during the tick-mammal life cycle. With the combination of new and old in vivo models and in vitro techniques, the field has identified distinct ligand binding domains on BBK32 and DbpA that afford tissue colonization or blood survival to B. burgdorferi. In this review, we describe the multifunctional and redundant roles of many adhesive outer surface proteins of B. burgdorferi in tissue adhesion, colonization, and bloodstream survival that, together, promote the survival of Borrelia spp. throughout maintenance in their multi-host lifestyle.
Collapse
Affiliation(s)
- Jennifer A. Caine
- Division of Infectious Disease, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jenifer Coburn
- Division of Infectious Disease, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
15
|
Intravital Imaging of Vascular Transmigration by the Lyme Spirochete: Requirement for the Integrin Binding Residues of the B. burgdorferi P66 Protein. PLoS Pathog 2015; 11:e1005333. [PMID: 26684456 PMCID: PMC4686178 DOI: 10.1371/journal.ppat.1005333] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 11/17/2015] [Indexed: 01/13/2023] Open
Abstract
Vascular extravasation, a key step in systemic infection by hematogenous microbial pathogens, is poorly understood, but has been postulated to encompass features similar to vascular transmigration by leukocytes. The Lyme disease spirochete can cause a variety of clinical manifestations, including arthritis, upon hematogenous dissemination. This pathogen encodes numerous surface adhesive proteins (adhesins) that may promote extravasation, but none have yet been implicated in this process. In this work we report the novel use of intravital microscopy of the peripheral knee vasculature to study transmigration of the Lyme spirochete in living Cd1d-/-mice. In the absence of iNKT cells, major immune modulators in the mouse joint, spirochetes that have extravasated into joint-proximal tissue remain in the local milieu and can be enumerated accurately. We show that BBK32, a fibronectin and glycosaminoglycan adhesin of B. burgdorferi involved in early steps of endothelial adhesion, is not required for extravasation from the peripheral knee vasculature. In contrast, almost no transmigration occurs in the absence of P66, an outer membrane protein that has porin and integrin adhesin functions. Importantly, P66 mutants specifically defective in integrin binding were incapable of promoting extravasation. P66 itself does not promote detectable microvascular interactions, suggesting that vascular adhesion of B. burgdorferi mediated by other adhesins, sets the stage for P66-integrin interactions leading to transmigration. Although integrin-binding proteins with diverse functions are encoded by a variety of bacterial pathogens, P66 is the first to have a documented and direct role in vascular transmigration. The emerging picture of vascular escape by the Lyme spirochete shows similarities, but distinct differences from leukocyte transmigration. Lyme disease is the most common vector-transmitted infection in North America and Europe. Diverse clinical manifestations of Lyme disease result from the dissemination of the spirochetes causing the disease into a variety of tissue sites. Dissemination results from invasion of the vasculature by the bacteria, followed by exit into virtually all tissue types. The mechanism of vascular transmigration by Lyme disease spirochetes remains uncharacterized. Here we describe a novel approach to study transmigration of Lyme disease spirochetes using intravital microscopy of the peripheral knee vasculature in living mice. Our studies have identified an adhesin, P66, and its integrin-binding function as playing important roles in Lyme spirochete transmigration and dissemination.
Collapse
|
16
|
Navasa N, Martin-Ruiz I, Atondo E, Sutherland JD, Angel Pascual-Itoiz M, Carreras-González A, Izadi H, Tomás-Cortázar J, Ayaz F, Martin-Martin N, Torres IM, Barrio R, Carracedo A, Olivera ER, Rincón M, Anguita J. Ikaros mediates the DNA methylation-independent silencing of MCJ/DNAJC15 gene expression in macrophages. Sci Rep 2015; 5:14692. [PMID: 26419808 PMCID: PMC4588509 DOI: 10.1038/srep14692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/04/2015] [Indexed: 01/14/2023] Open
Abstract
MCJ (DNAJC15) is a mitochondrial protein that regulates the mitochondrial metabolic status of macrophages and their response to inflammatory stimuli. CpG island methylation in cancer cells constitutes the only mechanism identified for the regulation of MCJ gene expression. However, whether DNA methylation or transcriptional regulation mechanisms are involved in the physiological control of this gene expression in non-tumor cells remains unknown. We now demonstrate a mechanism of regulation of MCJ expression that is independent of DNA methylation. IFNγ, a protective cytokine against cardiac inflammation during Lyme borreliosis, represses MCJ transcription in macrophages. The transcriptional regulator, Ikaros, binds to the MCJ promoter in a Casein kinase II-dependent manner, and mediates the repression of MCJ expression. These results identify the MCJ gene as a transcriptional target of IFNγ and provide evidence of the dynamic adaptation of normal tissues to changes in the environment as a way to adapt metabolically to new conditions.
Collapse
Affiliation(s)
- Nicolás Navasa
- Department of Veterinary and Animal Sciences. University of Massachusetts Amherst. Amherst, MA 01003.,CIC bioGUNE. 48160 Derio, Bizkaia, Spain
| | | | | | | | | | | | - Hooman Izadi
- Department of Veterinary and Animal Sciences. University of Massachusetts Amherst. Amherst, MA 01003
| | | | - Furkan Ayaz
- Department of Veterinary and Animal Sciences. University of Massachusetts Amherst. Amherst, MA 01003
| | | | - Iviana M Torres
- Department of Veterinary and Animal Sciences. University of Massachusetts Amherst. Amherst, MA 01003
| | | | - Arkaitz Carracedo
- CIC bioGUNE. 48160 Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science. 48011 Bilbao, Bizkaia, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P. O. Box 644, E-48080 Bilbao, Spain
| | - Elias R Olivera
- Department of Molecular Biology, Veterinary School, University of León. 24071 León, Spain
| | - Mercedes Rincón
- Department of Medicine. University of Vermont College of Medicine. Burlington, VT 05405
| | - Juan Anguita
- Department of Veterinary and Animal Sciences. University of Massachusetts Amherst. Amherst, MA 01003.,CIC bioGUNE. 48160 Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science. 48011 Bilbao, Bizkaia, Spain
| |
Collapse
|
17
|
Dyer A, Brown G, Stejskal L, Laity PR, Bingham RJ. The Borrelia afzelii outer membrane protein BAPKO_0422 binds human factor-H and is predicted to form a membrane-spanning β-barrel. Biosci Rep 2015; 35:e00240. [PMID: 26181365 PMCID: PMC4613713 DOI: 10.1042/bsr20150095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/23/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022] Open
Abstract
The deep evolutionary history of the Spirochetes places their branch point early in the evolution of the diderms, before the divergence of the present day Proteobacteria. As a spirochete, the morphology of the Borrelia cell envelope shares characteristics of both Gram-positive and Gram-negative bacteria. A thin layer of peptidoglycan, tightly associated with the cytoplasmic membrane, is surrounded by a more labile outer membrane (OM). This OM is rich in lipoproteins but with few known integral membrane proteins. The outer membrane protein A (OmpA) domain is an eight-stranded membrane-spanning β-barrel, highly conserved among the Proteobacteria but so far unknown in the Spirochetes. In the present work, we describe the identification of four novel OmpA-like β-barrels from Borrelia afzelii, the most common cause of erythema migrans (EM) rash in Europe. Structural characterization of one these proteins (BAPKO_0422) by SAXS and CD indicate a compact globular structure rich in β-strand consistent with a monomeric β-barrel. Ab initio molecular envelopes calculated from the scattering profile are consistent with homology models and demonstrate that BAPKO_0422 adopts a peanut shape with dimensions 25×45 Å (1 Å=0.1 nm). Deviations from the standard C-terminal signature sequence are apparent; in particular the C-terminal phenylalanine residue commonly found in Proteobacterial OM proteins is replaced by isoleucine/leucine or asparagine. BAPKO_0422 is demonstrated to bind human factor H (fH) and therefore may contribute to immune evasion by inhibition of the complement response. Encoded by chromosomal genes, these proteins are highly conserved between Borrelia subspecies and may be of diagnostic or therapeutic value.
Collapse
Affiliation(s)
- Adam Dyer
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Gemma Brown
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Lenka Stejskal
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Peter R Laity
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K. Present Address: Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, University of Sheffield, Sheffield S1 3JD, U.K
| | - Richard J Bingham
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| |
Collapse
|
18
|
BB0744 Affects Tissue Tropism and Spatial Distribution of Borrelia burgdorferi. Infect Immun 2015; 83:3693-703. [PMID: 26150534 DOI: 10.1128/iai.00828-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 12/18/2022] Open
Abstract
Borrelia burgdorferi, the etiologic agent of Lyme disease, produces a variety of proteins that promote survival and colonization in both the Ixodes species vector and various mammalian hosts. We initially identified BB0744 (also known as p83/100) by screening for B. burgdorferi strain B31 proteins that bind to α1β1 integrin and hypothesized that, given the presence of a signal peptide, BB0744 may be a surface-exposed protein. In contrast to this expectation, localization studies suggested that BB0744 resides in the periplasm. Despite its subsurface location, we were interested in testing whether BB0744 is required for borrelial pathogenesis. To this end, a bb0744 deletion was isolated in a B. burgdorferi strain B31 infectious background, complemented, and queried for the role of BB0744 following experimental infection. A combination of bioluminescent imaging, cultivation of infected tissues, and quantitative PCR (qPCR) demonstrated that Δbb0744 mutant B. burgdorferi bacteria were attenuated in the ability to colonize heart tissue, as well as skin locations distal to the site of infection. Furthermore, qPCR indicated a significantly reduced spirochetal load in distal skin and joint tissue infected with Δbb0744 mutant B. burgdorferi. Complementation with bb0744 restored infectivity, indicating that the defect seen in Δbb0744 mutant B. burgdorferi was due to the loss of BB0744. Taken together, these results suggest that BB0744 is necessary for tissue tropism, particularly in heart tissue, alters the ability of B. burgdorferi to disseminate efficiently, or both. Additional studies are warranted to address the mechanism employed by BB0744 that alters the pathogenic potential of B. burgdorferi.
Collapse
|
19
|
A short-term Borrelia burgdorferi infection model identifies tissue tropisms and bloodstream survival conferred by adhesion proteins. Infect Immun 2015; 83:3184-94. [PMID: 26015482 DOI: 10.1128/iai.00349-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/22/2015] [Indexed: 12/18/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease in the United States, is able to persist in the joint, heart, skin, and central nervous system for the lifetime of its mammalian host. Borrelia species achieve dissemination to distal sites in part by entry into and travel within the bloodstream. Much work has been performed in vitro describing the roles of many B. burgdorferi outer surface proteins in adhesion to host cell surface proteins and extracellular matrix components, although the biological relevance of these interactions is only beginning to be explored in vivo. A need exists in the field for an in vivo model to define the biological roles of B. burgdorferi adhesins in tissue-specific vascular interactions. We have developed an in vivo model of vascular interaction of B. burgdorferi in which the bacteria are injected intravenously and allowed to circulate for 1 h. This model has shown that the fibronectin binding protein BB0347 has a tropism for joint tissue. We also have shown an importance of the integrin binding protein, P66, in binding to vasculature of the ear and heart. This model also revealed unexpected roles for Borrelia adhesins BBK32 and OspC in bacterial burdens in the bloodstream. The intravenous inoculation model of short-term infection provides new insights into critical B. burgdorferi interactions with the host required for initial survival and tissue colonization.
Collapse
|
20
|
Ristow LC, Bonde M, Lin YP, Sato H, Curtis M, Wesley E, Hahn BL, Fang J, Wilcox DA, Leong JM, Bergström S, Coburn J. Integrin binding by Borrelia burgdorferi P66 facilitates dissemination but is not required for infectivity. Cell Microbiol 2015; 17:1021-36. [PMID: 25604835 PMCID: PMC4478124 DOI: 10.1111/cmi.12418] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 12/20/2022]
Abstract
P66, a Borrelia burgdorferi surface protein with porin and integrin‐binding activities, is essential for murine infection. The role of P66 integrin‐binding activity in B. burgdorferi infection was investigated and found to affect transendothelial migration. The role of integrin binding, specifically, was tested by mutation of two amino acids (D205A,D207A) or deletion of seven amino acids (Del202–208). Neither change affected surface localization or channel‐forming activity of P66, but both significantly reduced binding to αvβ3. Integrin‐binding deficient B. burgdorferi strains caused disseminated infection in mice at 4 weeks post‐subcutaneous inoculation, but bacterial burdens were significantly reduced in some tissues. Following intravenous inoculation, the Del202–208 bacteria were below the limit of detection in all tissues assessed at 2 weeks post‐inoculation, but bacterial burdens recovered to wild‐type levels at 4 weeks post‐inoculation. The delay in tissue colonization correlated with reduced migration of the Del202–208 strains across microvascular endothelial cells, similar to Δp66 bacteria. These results indicate that integrin binding by P66 is important to efficient dissemination of B. burgdorferi, which is critical to its ability to cause disease manifestations in incidental hosts and to its maintenance in the enzootic cycle.
Collapse
Affiliation(s)
- Laura C Ristow
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA.,Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mari Bonde
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Yi-Pin Lin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Hiromi Sato
- Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael Curtis
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA.,Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Erin Wesley
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Beth L Hahn
- Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Juan Fang
- Department of Pediatrics, MACC Fund Research Center, Children's Research Institute, Children's Hospital of Wisconsin and Medical College of Wisconsin, Milwaukee, WI, USA
| | - David A Wilcox
- Department of Pediatrics, MACC Fund Research Center, Children's Research Institute, Children's Hospital of Wisconsin and Medical College of Wisconsin, Milwaukee, WI, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Jenifer Coburn
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA.,Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
21
|
Zhi H, Weening EH, Barbu EM, Hyde JA, Höök M, Skare JT. The BBA33 lipoprotein binds collagen and impacts Borrelia burgdorferi pathogenesis. Mol Microbiol 2015; 96:68-83. [PMID: 25560615 DOI: 10.1111/mmi.12921] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2015] [Indexed: 12/14/2022]
Abstract
Borrelia burgdorferi, the etiologic agent of Lyme disease, adapts to the mammalian hosts by differentially expressing several genes in the BosR and Rrp2-RpoN-RpoS dependent pathways, resulting in a distinct protein profile relative to that seen for survival in the Ixodes spp. tick. Previous studies indicate that a putative lipoprotein, BBA33, is produced in an RpoS-dependent manner under conditions that mimic the mammalian component of the borrelial lifecycle. However, the significance and function for BBA33 is not known. Given its linkage to the BosR/Rrp2-RpoN-RpoS regulatory cascade, we hypothesized that BBA33 facilitates B. burgdorferi infection in the mammalian host. The deletion of bba33 eliminated B. burgdorferi infectivity in C3H mice, which was rescued by genetic complementation with intact bba33. With regard to function, a combinatorial peptide approach, coupled with subsequent in vitro binding assays, indicated that BBA33 binds to collagen type VI and, to a lesser extent, collagen type IV. Whole cell binding assays demonstrated BBA33-dependent binding to human collagen type VI. Taken together, these results suggest that BBA33 interacts with collagenous structures and may function as an adhesin in a process that is required to prevent bacterial clearance.
Collapse
Affiliation(s)
- Hui Zhi
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | | | | | | | | | | |
Collapse
|
22
|
Kelesidis T. The Cross-Talk between Spirochetal Lipoproteins and Immunity. Front Immunol 2014; 5:310. [PMID: 25071771 PMCID: PMC4075078 DOI: 10.3389/fimmu.2014.00310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022] Open
Abstract
Spirochetal diseases such as syphilis, Lyme disease, and leptospirosis are major threats to public health. However, the immunopathogenesis of these diseases has not been fully elucidated. Spirochetes interact with the host through various structural components such as lipopolysaccharides (LPS), surface lipoproteins, and glycolipids. Although spirochetal antigens such as LPS and glycolipids may contribute to the inflammatory response during spirochetal infections, spirochetes such as Treponema pallidum and Borrelia burgdorferi lack LPS. Lipoproteins are most abundant proteins that are expressed in all spirochetes and often determine how spirochetes interact with their environment. Lipoproteins are pro-inflammatory, may regulate responses from both innate and adaptive immunity and enable the spirochetes to adhere to the host or the tick midgut or to evade the immune system. However, most of the spirochetal lipoproteins have unknown function. Herein, the immunomodulatory effects of spirochetal lipoproteins are reviewed and are grouped into two main categories: effects related to immune evasion and effects related to immune activation. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate immunopathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and to inflammatory events associated with spirochetal diseases.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|
23
|
Cervantes JL, Hawley KL, Benjamin SJ, Weinerman B, Luu SM, Salazar JC. Phagosomal TLR signaling upon Borrelia burgdorferi infection. Front Cell Infect Microbiol 2014; 4:55. [PMID: 24904837 PMCID: PMC4033037 DOI: 10.3389/fcimb.2014.00055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/09/2014] [Indexed: 12/31/2022] Open
Abstract
Internalization and degradation of live Bb within phagosomal compartments of monocytes, macrophages and dendritic cells (DCs), allows for the release of lipoproteins, nucleic acids and other microbial products, triggering a broad and robust inflammatory response. Toll-like receptors (TLRs) are key players in the recognition of spirochetal ligands from whole viable organisms (i.e., vita-PAMPs). Herein we will review the role of endosomal TLRs in the response to the Lyme disease spirochete.
Collapse
Affiliation(s)
- Jorge L Cervantes
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA ; Division of Infectious Diseases, Connecticut Children's Medical Center Hartford, CT, USA
| | - Kelly L Hawley
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA ; Division of Infectious Diseases, Connecticut Children's Medical Center Hartford, CT, USA
| | - Sarah J Benjamin
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA
| | - Bennett Weinerman
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA
| | - Stephanie M Luu
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center Farmington, CT, USA
| | - Juan C Salazar
- Department of Pediatrics, University of Connecticut Health Center Farmington, CT, USA ; Division of Infectious Diseases, Connecticut Children's Medical Center Hartford, CT, USA ; Department of Immunology, University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|
24
|
Identification of lysine residues in the Borrelia burgdorferi DbpA adhesin required for murine infection. Infect Immun 2014; 82:3186-98. [PMID: 24842928 DOI: 10.1128/iai.02036-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Decorin-binding protein A (DbpA) of Borrelia burgdorferi mediates bacterial adhesion to heparin and dermatan sulfate associated with decorin. Lysines K82, K163, and K170 of DbpA are known to be important for in vitro interaction with decorin, and the DbpA structure, initially solved by nuclear magnetic resonance (NMR) spectroscopy, suggests these lysine residues colocalize in a pocket near the C terminus of the protein. In the current study, we solved the structure of DbpA from B. burgdorferi strain 297 using X-ray crystallography and confirmed the existing NMR structural data. In vitro binding experiments confirmed that recombinant DbpA proteins with mutations in K82, K163, or K170 did not bind decorin, which was due to an inability to interact with dermatan sulfate. Most importantly, we determined that the in vitro binding defect observed upon mutation of K82, K163, or K170 in DbpA also led to a defect during infection. The infectivity of B. burgdorferi expressing individual dbpA lysine point mutants was assessed in mice challenged via needle inoculation. Murine infection studies showed that strains expressing dbpA with mutations in K82, K163, and K170 were significantly attenuated and could not be cultured from any tissue. Proper expression and cellular localization of the mutated DbpA proteins were examined, and NMR spectroscopy determined that the mutant DbpA proteins were structurally similar to wild-type DbpA. Taken together, these data showed that lysines K82, K163, and K170 potentiate the binding of DbpA to dermatan sulfate and that an interaction(s) mediated by these lysines is essential for B. burgdorferi murine infection.
Collapse
|
25
|
Brissette CA, Gaultney RA. That's my story, and I'm sticking to it--an update on B. burgdorferi adhesins. Front Cell Infect Microbiol 2014; 4:41. [PMID: 24772392 PMCID: PMC3982108 DOI: 10.3389/fcimb.2014.00041] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/18/2014] [Indexed: 11/25/2022] Open
Abstract
Adhesion is the initial event in the establishment of any infection. Borrelia burgdorferi, the etiological agent of Lyme disease, possesses myriad proteins termed adhesins that facilitate contact with its vertebrate hosts. B. burgdorferi adheres to host tissues through interactions with host cells and extracellular matrix, as well as other molecules present in serum and extracellular fluids. These interactions, both general and specific, are critical in the establishment of infection. Modulation of borrelial adhesion to host tissues affects the microorganisms's ability to colonize, disseminate, and persist. In this review, we update the current knowledge on structure, function, and role in pathogenesis of these “sticky” B. burgdorferi infection-associated proteins.
Collapse
Affiliation(s)
- Catherine A Brissette
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences Grand Forks, ND, USA
| | - Robert A Gaultney
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences Grand Forks, ND, USA
| |
Collapse
|
26
|
Evangelista K, Franco R, Schwab A, Coburn J. Leptospira interrogans binds to cadherins. PLoS Negl Trop Dis 2014; 8:e2672. [PMID: 24498454 PMCID: PMC3907533 DOI: 10.1371/journal.pntd.0002672] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/16/2013] [Indexed: 11/19/2022] Open
Abstract
Leptospirosis, caused by pathogenic species of Leptospira, is the most widespread zoonosis and has emerged as a major public health problem worldwide. The adhesion of pathogenic Leptospira to host cells, and to extracellular matrix (ECM) components, is likely to be necessary for the ability of leptospires to penetrate, disseminate and persist in mammalian host tissues. Previous work demonstrated that pathogenic L. interrogans binds to host cells more efficiently than to ECM. Using two independent screening methods, mass spectrometry and protein arrays, members of the cadherin family were identified as potential L. interrogans receptors on mammalian host surfaces. We focused our investigation on vascular endothelial (VE)-cadherin, which is widely expressed on endothelia and is primarily responsible for endothelial cell-cell adhesion. Monolayers of EA.hy926 and HMEC-1 endothelial cells produce VE-cadherin, bind L. interrogans in vitro, and are disrupted upon incubation with the bacteria, which may reflect the endothelial damage seen in vivo. Dose-dependent and saturable binding of L. interrogans to the purified VE-cadherin receptor was demonstrated and pretreatment of purified receptor or endothelial cells with function-blocking antibody against VE-cadherin significantly inhibited bacterial attachment. The contribution of VE-cadherin to leptospiral adherence to host endothelial cell surfaces is biologically significant because VE-cadherin plays an important role in maintaining the barrier properties of the vasculature. Attachment of L. interrogans to the vasculature via VE-cadherin may result in vascular damage, facilitating the escape of the pathogen from the bloodstream into different tissues during disseminated infection, and may contribute to the hemorrhagic manifestations of leptospirosis. This work is first to describe a mammalian cell surface protein as a receptor for L. interrogans.
Collapse
Affiliation(s)
- Karen Evangelista
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ricardo Franco
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Andrew Schwab
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jenifer Coburn
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
27
|
Gaultney RA, Gonzalez T, Floden AM, Brissette CA. BB0347, from the lyme disease spirochete Borrelia burgdorferi, is surface exposed and interacts with the CS1 heparin-binding domain of human fibronectin. PLoS One 2013; 8:e75643. [PMID: 24086600 PMCID: PMC3785480 DOI: 10.1371/journal.pone.0075643] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022] Open
Abstract
The causative agent of Lyme disease, Borrelia burgdorferi, codes for several known fibronectin-binding proteins. Fibronectin a common the target of diverse bacterial pathogens, and has been shown to be essential in allowing for the development of certain disease states. Another borrelial protein, BB0347, has sequence similarity with these other known fibronectin-binding proteins, and may be important in Lyme disease pathogenesis. Herein, we perform an initial characterization of BB0347 via the use of molecular and biochemical techniques. We found that BB0347 is expressed, produced, and presented on the outer surface of intact B. burgdorferi. We also demonstrate that BB0347 has the potential to be important in Lyme disease progression, and have begun to characterize the nature of the interaction between human fibronectin and this bacterial protein. Further work is needed to define the role of this protein in the borrelial infection process.
Collapse
Affiliation(s)
- Robert A. Gaultney
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Edwin C. James Medical Research Facility Grand Forks, North Dakota, United States of America
| | - Tammy Gonzalez
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Edwin C. James Medical Research Facility Grand Forks, North Dakota, United States of America
| | - Angela M. Floden
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Edwin C. James Medical Research Facility Grand Forks, North Dakota, United States of America
| | - Catherine A. Brissette
- Department of Microbiology and Immunology, University of North Dakota School of Medicine and Health Sciences, Edwin C. James Medical Research Facility Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
28
|
Coburn J, Leong J, Chaconas G. Illuminating the roles of the Borrelia burgdorferi adhesins. Trends Microbiol 2013; 21:372-9. [PMID: 23876218 DOI: 10.1016/j.tim.2013.06.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 01/13/2023]
Abstract
The Lyme disease spirochetes, Borrelia burgdorferi (sensu lato), must cause persistent, disseminated infection to be maintained in the natural enzootic cycle. In human Lyme disease, spirochetes spread from the site of a tick bite to colonize multiple tissue sites, causing multisystem clinical manifestations. The Lyme spirochetes produce many adhesive surface proteins that collectively recognize diverse host substrates and cell types and are likely to promote dissemination and chronic infection in a variety of tissues. Recent application of state-of-the-art in vivo imaging technologies is illuminating mechanisms of interaction of B. burgdorferi with the host and the importance of multiple adhesins during mammalian infection.
Collapse
Affiliation(s)
- Jenifer Coburn
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
29
|
Abstract
Borrelia species of relapsing fever (RF) and Lyme disease (LD) lineages have linear chromosomes and both linear and circular plasmids. Unique to RF species, and little characterized to date, are large linear plasmids of ∼160 kb, or ∼10% of the genome. By a combination of Sanger and next-generation methods, we determined the sequences of large linear plasmids of two New World species: Borrelia hermsii, to completion of its 174-kb length, and B. turicatae, partially to 114 kb of its 150 kb. These sequences were then compared to corresponding sequences of the Old World species B. duttonii and B. recurrentis and to plasmid sequences of LD Borrelia species. The large plasmids were largely colinear, except for their left ends, about 27 kb of which was inverted in New World species. Approximately 60% of the B. hermsii lp174 plasmid sequence was repetitive for 6 types of sequence, and half of its open reading frames encoded hypothetical proteins not discernibly similar to proteins in the database. The central ∼25 kb of all 4 linear plasmids was syntenic for orthologous genes for plasmid maintenance or partitioning in Borrelia species. Of all the sequenced linear and circular plasmids in Borrelia species, the large plasmid's putative partition/replication genes were most similar to those of the 54-kb linear plasmids of LD species. Further evidence for shared ancestry was the observation that two of the hypothetical proteins were predicted to be structurally similar to the LD species' CspA proteins, which are encoded on the 54-kb plasmids.
Collapse
|
30
|
BB0172, a Borrelia burgdorferi outer membrane protein that binds integrin α3β1. J Bacteriol 2013; 195:3320-30. [PMID: 23687274 DOI: 10.1128/jb.00187-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lyme disease is a multisystemic disorder caused by Borrelia burgdorferi infection. Upon infection, some B. burgdorferi genes are upregulated, including members of the microbial surface components recognizing adhesive matrix molecule (MSCRAMM) protein family, which facilitate B. burgdorferi adherence to extracellular matrix components of the host. Comparative genome analysis has revealed a new family of B. burgdorferi proteins containing the von Willebrand factor A (vWFA) domain. In the present study, we characterized the expression and membrane association of the vWFA domain-containing protein BB0172 by using in vitro transcription/translation systems in the presence of microsomal membranes and with detergent phase separation assays. Our results showed evidence of BB0172 localization in the outer membrane, the orientation of the vWFA domain to the extracellular environment, and its function as a metal ion-dependent integrin-binding protein. This is the first report of a borrelial adhesin with a metal ion-dependent adhesion site (MIDAS) motif that is similar to those observed in eukaryotic integrins and has a similar function.
Collapse
|
31
|
Yang X, Qin J, Promnares K, Kariu T, Anderson JF, Pal U. Novel microbial virulence factor triggers murine lyme arthritis. J Infect Dis 2013; 207:907-18. [PMID: 23303811 DOI: 10.1093/infdis/jis930] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Borrelia burgdorferi bba57 is a conserved gene encoding a potential lipoprotein of unknown function. Here we show that bba57 is up-regulated in vivo and is required for early murine infection and potential spirochete transmission process. Although BBA57 is dispensable for late murine infection, the mutants were unable to induce disease. We show that BBA57, an outer membrane and surface-exposed antigen, is a major trigger of murine Lyme arthritis; even in cases of larger challenge inocula, which allow their persistence in joints at a level similar to wild-type spirochetes, bba57 mutants are unable to induce joint inflammation. We further showed that BBA57 deficiency reduces the expression of selected "neutrophil-recruiting" chemokines and associated receptors, causing significant impairment of neutrophil chemotaxis. New approaches to combat Lyme disease may include strategies to interfere with BBA57, a novel virulence factor and a trigger of murine Lyme arthritis.
Collapse
Affiliation(s)
- Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD, USA
| | | | | | | | | | | |
Collapse
|
32
|
Gautam A, Dixit S, Embers M, Gautam R, Philipp MT, Singh SR, Morici L, Dennis VA. Different patterns of expression and of IL-10 modulation of inflammatory mediators from macrophages of Lyme disease-resistant and -susceptible mice. PLoS One 2012; 7:e43860. [PMID: 23024745 PMCID: PMC3443101 DOI: 10.1371/journal.pone.0043860] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 07/26/2012] [Indexed: 12/04/2022] Open
Abstract
C57BL/6J (C57) mice develop mild arthritis (Lyme disease-resistant) whereas C3H/HeN (C3H) mice develop severe arthritis (Lyme disease-susceptible) after infection with the spirochete Borrelia burgdorferi. We hypothesized that susceptibility and resistance to Lyme disease, as modeled in mice, is associated with early induction and regulation of inflammatory mediators by innate immune cells after their exposure to live B. burgdorferi spirochetes. Here, we employed multiplex ELISA and qRT-PCR to investigate quantitative differences in the levels of cytokines and chemokines produced by bone marrow-derived macrophages from C57 and C3H mice after these cells were exposed ex vivo to live spirochetes or spirochetal lipoprotein. Upon stimulation, the production of both cytokines and chemokines was up-regulated in macrophages from both mouse strains. Interestingly, however, our results uncovered two distinct patterns of spirochete- and lipoprotein-inducible inflammatory mediators displayed by mouse macrophages, such that the magnitude of the chemokine up-regulation was larger in C57 cells than it was in C3H cells, for most chemokines. Conversely, cytokine up-regulation was more intense in C3H cells. Gene transcript analyses showed that the displayed patterns of inflammatory mediators were associated with a TLR2/TLR1 transcript imbalance: C3H macrophages expressed higher TLR2 transcript levels as compared to those expressed by C57 macrophages. Exogenous IL-10 dampened production of inflammatory mediators, especially those elicited by lipoprotein stimulation. Neutralization of endogenously produced IL-10 increased production of inflammatory mediators, notably by macrophages of C57 mice, which also displayed more IL-10 than C3H macrophages. The distinct patterns of pro-inflammatory mediator production, along with TLR2/TLR1 expression, and regulation in macrophages from Lyme disease-resistant and -susceptible mice suggests itself as a blueprint to further investigate differential pathogenesis of Lyme disease.
Collapse
Affiliation(s)
- Aarti Gautam
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
| | - Saurabh Dixit
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
- Center for Nanobiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| | - Monica Embers
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
| | - Rajeev Gautam
- Division of Microbiology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
| | - Mario T. Philipp
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
| | - Shree R. Singh
- Center for Nanobiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| | - Lisa Morici
- Department of Microbiology and Immunology, Tulane University, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Vida A. Dennis
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
- Center for Nanobiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| |
Collapse
|
33
|
EbfC (YbaB) is a new type of bacterial nucleoid-associated protein and a global regulator of gene expression in the Lyme disease spirochete. J Bacteriol 2012; 194:3395-406. [PMID: 22544270 DOI: 10.1128/jb.00252-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nearly every known species of Eubacteria encodes a homolog of the Borrelia burgdorferi EbfC DNA-binding protein. We now demonstrate that fluorescently tagged EbfC associates with B. burgdorferi nucleoids in vivo and that chromatin immunoprecipitation (ChIP) of wild-type EbfC showed it to bind in vivo to sites throughout the genome, two hallmarks of nucleoid-associated proteins. Comparative RNA sequencing (RNA-Seq) of a mutant B. burgdorferi strain that overexpresses EbfC indicated that approximately 4.5% of borrelial genes are significantly impacted by EbfC. The ebfC gene was highly expressed in rapidly growing bacteria, but ebfC mRNA was undetectable in stationary phase. Combined with previous data showing that EbfC induces bends in DNA, these results demonstrate that EbfC is a nucleoid-associated protein and lead to the hypothesis that B. burgdorferi utilizes cellular fluctuations in EbfC levels to globally control transcription of numerous genes. The ubiquity of EbfC proteins in Eubacteria suggests that these results apply to a wide range of pathogens and other bacteria.
Collapse
|
34
|
Casjens SR, Mongodin EF, Qiu WG, Luft BJ, Schutzer SE, Gilcrease EB, Huang WM, Vujadinovic M, Aron JK, Vargas LC, Freeman S, Radune D, Weidman JF, Dimitrov GI, Khouri HM, Sosa JE, Halpin RA, Dunn JJ, Fraser CM. Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS One 2012; 7:e33280. [PMID: 22432010 PMCID: PMC3303823 DOI: 10.1371/journal.pone.0033280] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/06/2012] [Indexed: 11/21/2022] Open
Abstract
Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33–40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi ∼900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short ≤20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Altered murine tissue colonization by Borrelia burgdorferi following targeted deletion of linear plasmid 17-carried genes. Infect Immun 2012; 80:1773-82. [PMID: 22354033 DOI: 10.1128/iai.05984-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The causative agent of Lyme disease, Borrelia burgdorferi, possesses a segmented genome comprised of a single linear chromosome and upwards of 23 linear and circular plasmids. Much of what is known about plasmid-borne genes comes from studying laboratory clones that have spontaneously lost one or more plasmids during in vitro passage. Some plasmids, including the linear plasmid lp17, are never or rarely reported to be lost during routine culture; therefore, little is known about the requirement of these conserved plasmids for infectivity. In this study, the effects of deleting regions of lp17 were examined both in vitro and in vivo. A mutant strain lacking the genes bbd16 to bbd25 showed no deficiency in the ability to establish infection or disseminate to the bloodstream of mice; however, colonization of peripheral tissues was delayed. Despite the ability to colonize ear, heart, and joint tissues, this mutant exhibited a defect in bladder tissue colonization for up to 56 days postinfection. This phenotype was not observed in immunodeficient mice, suggesting that bladder colonization by the mutant strain was inhibited by an adaptive immune-based mechanism. Moreover, the mutant displayed increased expression of outer surface protein C in vitro, which was correlated with the absence of the gene bbd18. To our knowledge, this is the first report involving genetic manipulation of lp17 in an infectious clone of B. burgdorferi and reveals for the first time the effects of lp17 gene deletion during murine infection by the Lyme disease spirochete.
Collapse
|
36
|
CD14 cooperates with complement receptor 3 to mediate MyD88-independent phagocytosis of Borrelia burgdorferi. Proc Natl Acad Sci U S A 2012; 109:1228-32. [PMID: 22232682 DOI: 10.1073/pnas.1112078109] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Phagocytosis of Borrelia burgdorferi, the causative agent of Lyme disease, is a poorly understood process, despite its importance during the host immune response to infection. B. burgdorferi has been shown to bind to different receptors on the surface of phagocytic cells, including the β(2) integrin, complement receptor 3 (CR3). However, whether these receptors mediate the phagocytosis of the spirochete remains unknown. We now demonstrate that CR3 mediates the phagocytosis of the spirochete by murine macrophages and human monocytes. Interaction of B. burgdorferi with the integrin is not sufficient, however, to internalize the spirochete; phagocytosis requires the interaction of CR3 with the GPI-anchored protein, CD14, independently of TLR/MyD88-induced or inside-out signals. Interestingly, the absence of CR3 leads to marked increases in the production of TNF in vitro and in vivo, despite reduced spirochetal uptake. Furthermore, the absence of CR3 during infection with B. burgdorferi results in the inefficient control of bacterial burdens in the heart and increased Lyme carditis. Overall, our data identify CR3 as a MyD88-independent phagocytic receptor for B. burgdorferi that also participates in the modulation of the proinflammatory output of macrophages. These data also establish a unique mechanism of CR3-mediated phagocytosis that requires the direct cooperation of GPI-anchored proteins.
Collapse
|
37
|
Radolf JD, Caimano MJ, Stevenson B, Hu LT. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 2012; 10:87-99. [PMID: 22230951 PMCID: PMC3313462 DOI: 10.1038/nrmicro2714] [Citation(s) in RCA: 511] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In little more than 30 years, Lyme disease, which is caused by the spirochaete Borrelia burgdorferi, has risen from relative obscurity to become a global public health problem and a prototype of an emerging infection. During this period, there has been an extraordinary accumulation of knowledge on the phylogenetic diversity, molecular biology, genetics and host interactions of B. burgdorferi. In this Review, we integrate this large body of information into a cohesive picture of the molecular and cellular events that transpire as Lyme disease spirochaetes transit between their arthropod and vertebrate hosts during the enzootic cycle.
Collapse
Affiliation(s)
- Justin D Radolf
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | | | |
Collapse
|
38
|
Salo J, Loimaranta V, Lahdenne P, Viljanen MK, Hytönen J. Decorin binding by DbpA and B of Borrelia garinii, Borrelia afzelii, and Borrelia burgdorferi sensu Stricto. J Infect Dis 2011; 204:65-73. [PMID: 21628660 DOI: 10.1093/infdis/jir207] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Decorin adherence is crucial in the pathogenesis of Lyme borreliosis. Decorin-binding proteins (Dbp) A and B are the adhesins that mediate this interaction. DbpA and B of Borrelia garinii, Borrelia afzelii, and Borrelia burgdorferi sensu stricto (ss) differ in their amino acid sequence, but little attention has been paid to the potential difference in their decorin binding. METHODS We expressed recombinant DbpA and DbpB of B. garinii, B. afzelii, and B. burgdorferi ss and studied their binding to decorin. We also generated recombinant Borrelia strains to study the role of DbpA and DbpB in the adhesion of live spirochetes to decorin and decorin-expressing cells. RESULTS. Recombinant DbpA of B. garinii and DbpB of B. garinii and B. burgdorferi ss showed strong binding to decorin, whereas DbpA of B. burgdorferi ss and both DbpA and DbpB of B. afzelii exhibited no or only minor binding activity. DbpA and DbpB of B. garinii and B. burgdorferi ss also supported the adhesion of whole spirochetes to decorin and decorin-expressing cells, whereas DbpA and DbpB of B. afzelii did not exhibit this activity. CONCLUSIONS Dbp A and B of B. garinii and B. burgdorferi ss mediate the interaction between the spirochete and decorin, whereas the same adhesins of B. afzelii show only negligible activity.
Collapse
Affiliation(s)
- Jemiina Salo
- Department of Medical Microbiology and Immunology, University of Turku, Kiinamyllynkatu 13, Turku, Finland.
| | | | | | | | | |
Collapse
|
39
|
Antonara S, Ristow L, Coburn J. Adhesion mechanisms of Borrelia burgdorferi. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 715:35-49. [PMID: 21557056 DOI: 10.1007/978-94-007-0940-9_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Borrelia are widely distributed agents of Lyme disease and Relapsing Fever. All are vector-borne zoonotic pathogens, have segmented genomes, and enigmatic mechanisms of pathogenesis. Adhesion to mammalian and tick substrates is one pathogenic mechanism that has been widely studied. At this point, the primary focus of research in this area has been on Borrelia burgdorferi, one agent of Lyme disease, but many of the adhesins of B. burgdorferi are conserved in other Lyme disease agents, and some are conserved in the Relapsing Fever Borrelia. B. burgdorferi adhesins that mediate attachment to cell-surface molecules may influence the host response to the bacteria, while adhesins that mediate attachment to soluble proteins or extracellular matrix components may cloak the bacterial surface from recognition by the host immune system as well as facilitate colonization of tissues. While targeted mutations in the genes encoding some adhesins have been shown to affect the infectivity and pathogenicity of B. burgdorferi, much work remains to be done to understand the roles of the adhesins in promoting the persistent infection required to maintain the bacteria in reservoir hosts.
Collapse
Affiliation(s)
- Styliani Antonara
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| | | | | |
Collapse
|
40
|
Schmit VL, Patton TG, Gilmore RD. Analysis of Borrelia burgdorferi Surface Proteins as Determinants in Establishing Host Cell Interactions. Front Microbiol 2011; 2:141. [PMID: 21747816 PMCID: PMC3129520 DOI: 10.3389/fmicb.2011.00141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/14/2011] [Indexed: 11/13/2022] Open
Abstract
Borrelia burgdorferi infection causes Lyme borreliosis in humans, a condition which can involve a systemic spread of the organism to colonize various tissues and organs. If the infection is left untreated by antimicrobials, it can lead to manifestations including, arthritis, carditis, and/or neurological problems. Identification and characterization of B. burgdorferi outer membrane proteins that facilitate cellular attachment and invasion to establish infection continue to be investigated. In this study, we sought to further define putative cell binding properties of surface-exposed B. burgdorferi proteins by observing whether cellular adherence could be blocked by antibodies. B. burgdorferi mixed separately with monoclonal antibodies (mAbs) against outer surface protein (Osp) A, OspC, decorin-binding protein (Dbp) A, BBA64, and RevA antigens were incubated with human umbilical vein endothelial cells (HUVEC) and human neuroglial cells (H4). B. burgdorferi treated with anti-OspA, -DbpA, and -BBA64 mAbs showed a significant decrease in cellular association compared to controls, whereas B. burgdorferi treated with anti-OspC and anti-RevA showed no reduction in cellular attachment. Additionally, temporal transcriptional analyses revealed upregulated expression of bba64, ospA, and dbpA during coincubation with cells. Together, the data provide evidence that OspA, DbpA, and BBA64 function in host cell adherence and infection mechanisms.
Collapse
Affiliation(s)
- Virginia L Schmit
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Fort Collins, CO, USA
| | | | | |
Collapse
|
41
|
The Borrelia burgdorferi integrin ligand P66 affects gene expression by human cells in culture. Infect Immun 2011; 79:3249-61. [PMID: 21576330 DOI: 10.1128/iai.05122-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, an agent of Lyme disease, establishes persistent infection in immunocompetent animals and humans. Although the infection in humans can be cleared by antibiotic therapy, persistence in reservoir animals is necessary for the maintenance of the bacterium in the natural reservoir host⇔tick vector infectious cycle. B. burgdorferi binds to β(1)- and β(3)-chain integrins, and the P66 outer membrane protein is responsible for at least some of the integrin binding activity of the spirochete. Because integrins are transmembrane, bidirectional signaling molecules, integrin binding may alter the nature of the host response to the bacteria. We used isogenic B. burgdorferi p66(+) and Δp66 strains to analyze the responses of cultured human cells to P66-integrin interaction during infection. Microarray results suggest that the response differs according to the cell type, infection time, and experimental conditions. Clusters of genes in functionally related categories that showed significant changes included proteins involved in cell-extracellular matrix interactions, actin dynamics, stress response, and immune responses. Integrin binding by P66 may therefore help B. burgdorferi establish infection by facilitating tissue invasion and modulating the activation of the immune system to other components of the bacteria, e.g., lipoproteins. These results provide insight into how B. burgdorferi is able to establish infection in immunocompetent hosts.
Collapse
|
42
|
Lcl of Legionella pneumophila is an immunogenic GAG binding adhesin that promotes interactions with lung epithelial cells and plays a crucial role in biofilm formation. Infect Immun 2011; 79:2168-81. [PMID: 21422183 DOI: 10.1128/iai.01304-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Legionellosis is mostly caused by Legionella pneumophila and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In vitro and in vivo, interactions of L. pneumophila with lung epithelial cells are mediated by the sulfated glycosaminoglycans (GAGs) of the host extracellular matrix. In this study, we have identified several Legionella heparin binding proteins. We have shown that one of these proteins, designated Lcl, is a polymorphic adhesin of L. pneumophila that is produced during legionellosis. Homologues of Lcl are ubiquitous in L. pneumophila serogroups but are undetected in other Legionella species. Recombinant Lcl binds to GAGs, and a Δlpg2644 mutant demonstrated reduced binding to GAGs and human lung epithelial cells. Importantly, we showed that the Δlpg2644 strain is dramatically impaired in biofilm formation. These data delineate the role of Lcl in the GAG binding properties of L. pneumophila and provide molecular evidence regarding its role in L. pneumophila adherence and biofilm formation.
Collapse
|
43
|
Invasion of eukaryotic cells by Borrelia burgdorferi requires β(1) integrins and Src kinase activity. Infect Immun 2010; 79:1338-48. [PMID: 21173306 DOI: 10.1128/iai.01188-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lyme disease, caused by the bacterium Borrelia burgdorferi, is the most widespread tick-borne infection in the northern hemisphere that results in a multistage disorder with concomitant pathology, including arthritis. During late-stage experimental infection in mice, B. burgdorferi evades the adaptive immune response despite the presence of borrelia-specific bactericidal antibodies. In this study we asked whether B. burgdorferi could invade fibroblasts or endothelial cells as a mechanism to model the avoidance from humorally based clearance. A variation of the gentamicin protection assay, coupled with the detection of borrelial transcripts following gentamicin treatment, indicated that a portion of B. burgdorferi cells were protected in the short term from antibiotic killing due to their ability to invade cultured mammalian cells. Long-term coculture of B. burgdorferi with primary human fibroblasts provided additional support for intracellular protection. Furthermore, decreased invasion of B. burgdorferi in murine fibroblasts that do not synthesize the β(1) integrin subunit was observed, indicating that β(1)-containing integrins are required for optimal borrelial invasion. However, β(1)-dependent invasion did not require either the α(5)β(1) integrin or the borrelial fibronectin-binding protein BBK32. The internalization of B. burgdorferi was inhibited by cytochalasin D and PP2, suggesting that B. burgdorferi invasion required the reorganization of actin filaments and Src family kinases (SFK), respectively. Taken together, these results suggest that B. burgdorferi can invade and retain viability in nonphagocytic cells in a process that may, in part, help to explain the phenotype observed in untreated experimental infection.
Collapse
|
44
|
Marre ML, Petnicki-Ocwieja T, DeFrancesco AS, Darcy CT, Hu LT. Human integrin α(3)β(1) regulates TLR2 recognition of lipopeptides from endosomal compartments. PLoS One 2010; 5:e12871. [PMID: 20877569 PMCID: PMC2943923 DOI: 10.1371/journal.pone.0012871] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/28/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Toll-like receptor (TLR)-2/TLR1 heterodimers recognize bacterial lipopeptides and initiate the production of inflammatory mediators. Adaptors and co-receptors that mediate this process, as well as the mechanisms by which these adaptors and co-receptors function, are still being discovered. METHODOLOGY/PRINCIPAL FINDINGS Using shRNA, blocking antibodies, and fluorescent microscopy, we show that U937 macrophage responses to the TLR2/1 ligand, Pam(3)CSK(4), are dependent upon an integrin, α(3)β(1). The mechanism for integrin α(3)β(1) involvement in TLR2/1 signaling is through its role in endocytosis of lipopeptides. Using inhibitors of endosomal acidification/maturation and physical tethering of the ligand, we show that the endocytosis of Pam(3)CSK(4) is necessary for the complete TLR2/1-mediated pro-inflammatory cytokine response. We also show that TLR2/1 signaling from the endosome results in the induction of different inflammatory mediators than TLR2/1 signaling from the plasma membrane. CONCLUSION/SIGNIFICANCE Here we identify integrin α(3)β(1) as a novel regulator for the recognition of bacterial lipopeptides. We demonstrate that induction of a specific subset of cytokines is dependent upon integrin α(3)β(1)-mediated endocytosis of the ligand. In addition, we address an ongoing controversy regarding endosomal recognition of bacterial lipopeptides by demonstrating that TLR2/1 signals from within endosomal compartments as well as the plasma membrane, and that downstream responses may differ depending upon receptor localization. We propose that the regulation of endosomal TLR2/1 signaling by integrin α(3)β(1) serves as a mechanism for modulating inflammatory responses.
Collapse
Affiliation(s)
- Meghan L. Marre
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Tanja Petnicki-Ocwieja
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Alicia S. DeFrancesco
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Courtney T. Darcy
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Linden T. Hu
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, United States of America
| |
Collapse
|
45
|
Abstract
Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne disease in the United States. The clinical presentation varies depending on the stage of the illness: early disease includes erthyma migrans, early disseminated disease includes multiple erythema migrans, meningitis, cranial nerve palsies, and carditis; late disease is primarily arthritis. The symptoms and signs of infection resolve in most patients after treatment with appropriate antimicrobials for 2 to 4 weeks. Serologic testing should be used judiciously as it often results in misdiagnosis when performed on blood from patients with a low prior probability of disease and those with only nonspecific symptoms such as fatigue or arthralgia without objective signs of infection.
Collapse
Affiliation(s)
- Thomas S. Murray
- Associate Research Scientist of Pediatrics and Laboratory Medicine, Yale University School of Medicine
| | - Eugene D. Shapiro
- Professor of Pediatrics, Epidemiology and Public Health and Investigative Medicine, Yale University School of Medicine
| |
Collapse
|
46
|
CD14 signaling restrains chronic inflammation through induction of p38-MAPK/SOCS-dependent tolerance. PLoS Pathog 2009; 5:e1000687. [PMID: 20011115 PMCID: PMC2781632 DOI: 10.1371/journal.ppat.1000687] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 11/10/2009] [Indexed: 11/19/2022] Open
Abstract
Current thinking emphasizes the primacy of CD14 in facilitating recognition of microbes by certain TLRs to initiate pro-inflammatory signaling events and the importance of p38-MAPK in augmenting such responses. Herein, this paradigm is challenged by demonstrating that recognition of live Borrelia burgdorferi not only triggers an inflammatory response in the absence of CD14, but one that is, in part, a consequence of altered PI3K/AKT/p38-MAPK signaling and impaired negative regulation of TLR2. CD14 deficiency results in increased localization of PI3K to lipid rafts, hyperphosphorylation of AKT, and reduced activation of p38. Such aberrant signaling leads to decreased negative regulation by SOCS1, SOCS3, and CIS, thereby compromising the induction of tolerance in macrophages and engendering more severe and persistent inflammatory responses to B. burgdorferi. Importantly, these altered signaling events and the higher cytokine production observed can be mimicked through shRNA and pharmacological inhibition of p38 activity in CD14-expressing macrophages. Perturbation of this CD14/p38-MAPK-dependent immune regulation may underlie development of infectious chronic inflammatory syndromes. Macrophages express CD14 which partners with Toll-like receptor 2/1 to recognize bacterial lipoproteins such as those of Borrelia burgdorferi, the causative agent of Lyme disease. In vitro evidence demonstrates that blocking CD14 recognition of bacterial components ablates innate host cell inflammatory responses. Similarly, blocking downstream p38 kinase activity dampens the cellular response to these same microbial stimuli. This body of work underpins two well-established paradigms which cite the primacy of CD14 in facilitating TLR recognition of microbes to initiate proinflammatory signaling events and the importance of p38 in augmenting such responses. However, contrary to these paradigms, our prior study using a mouse model of Lyme disease demonstrated an association between CD14 deficiency, increased bacterial burden, and more severe and persistent disease. Herein, we provide a mechanistic explanation for this unanticipated host immune response implicating impaired negative regulation of inflammatory signaling pathways as an underlying cause. Consequent to impaired negative regulation the host becomes “intolerant” of continued exposure to bacteria and thus mounts a perpetual inflammatory response to their presence. An intriguing question raised by these findings is whether individual differences in the severity and clinical course of infection might reflect the susceptibility of the patient's innate immune system to tolerization.
Collapse
|
47
|
Live Borrelia burgdorferi spirochetes elicit inflammatory mediators from human monocytes via the Toll-like receptor signaling pathway. Infect Immun 2009; 77:1238-45. [PMID: 19139200 DOI: 10.1128/iai.01078-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We investigated the mechanisms that lead to the production of proinflammatory mediators by human monocytes when these cells are exposed in vitro to live Borrelia burgdorferi spirochetes. We first focused on myeloid differentiation primary response protein 88 (MyD88), an adapter molecule that is essential in the Toll-like receptor (TLR) pathway. Real-time PCR, flow cytometry, and confocal microscopy experiments revealed that MyD88 was maximally expressed in THP-1 cells after 24-h stimulation of these cells with live B. burgdorferi. Silencing of the MYD88 gene by using small interfering RNA resulted in 24%, 35%, and 84% down-modulation of the production of tumor necrosis factor alpha (TNF-alpha), interleukin-8 (IL-8), and IL-6, respectively, in THP-1 cells stimulated with live B. burgdorferi. Specific silencing of the TLR1, TLR2, or TLR5 gene by RNA interference further revealed that silencing of the TLR1 and TLR2 genes alone or combined, but not the TLR5 gene, caused a downregulation of IL-6, IL-8, and TNF-alpha in live B. burgdorferi-stimulated THP-1 cells. Overall, similar results were obtained for THP-1 cells stimulated with purified lipoproteins. Our results indicate that the TLR pathway mediates, at least in part, the release of inflammatory mediators in human monocytes stimulated with live B. burgdorferi spirochetes and furthermore suggest that the TLR-dependent interaction between these cells and live spirochetes is mediated by spirochetal lipoproteins but not by flagellin.
Collapse
|
48
|
Norman MU, Moriarty TJ, Dresser AR, Millen B, Kubes P, Chaconas G. Molecular mechanisms involved in vascular interactions of the Lyme disease pathogen in a living host. PLoS Pathog 2008; 4:e1000169. [PMID: 18833295 PMCID: PMC2542414 DOI: 10.1371/journal.ppat.1000169] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 09/08/2008] [Indexed: 11/19/2022] Open
Abstract
Hematogenous dissemination is important for infection by many bacterial pathogens, but is poorly understood because of the inability to directly observe this process in living hosts at the single cell level. All disseminating pathogens must tether to the host endothelium despite significant shear forces caused by blood flow. However, the molecules that mediate tethering interactions have not been identified for any bacterial pathogen except E. coli, which tethers to host cells via a specialized pillus structure that is not found in many pathogens. Furthermore, the mechanisms underlying tethering have never been examined in living hosts. We recently engineered a fluorescent strain of Borrelia burgdorferi, the Lyme disease pathogen, and visualized its dissemination from the microvasculature of living mice using intravital microscopy. We found that dissemination was a multistage process that included tethering, dragging, stationary adhesion and extravasation. In the study described here, we used quantitative real-time intravital microscopy to investigate the mechanistic features of the vascular interaction stage of B. burgdorferi dissemination. We found that tethering and dragging interactions were mechanistically distinct from stationary adhesion, and constituted the rate-limiting initiation step of microvascular interactions. Surprisingly, initiation was mediated by host Fn and GAGs, and the Fn- and GAG-interacting B. burgdorferi protein BBK32. Initiation was also strongly inhibited by the low molecular weight clinical heparin dalteparin. These findings indicate that the initiation of spirochete microvascular interactions is dependent on host ligands known to interact in vitro with numerous other bacterial pathogens. This conclusion raises the intriguing possibility that fibronectin and GAG interactions might be a general feature of hematogenous dissemination by other pathogens. Many bacterial pathogens can cause systemic illness by disseminating through the blood to distant target sites. However, hematogenous dissemination is still poorly understood, in part because of an inability to directly observe this process in living hosts in real time and at the level of individual pathogens. We recently engineered a fluorescent strain of Borrelia burgdorferi, the Lyme disease pathogen, and visualized its dissemination from the microvasculature of living mice using intravital microscopy. We found that dissemination was a multistage process that included tethering, dragging, stationary adhesion and extravasation. In the study described here, we used quantitative real-time intravital microscopy to investigate the mechanistic features of the vascular interaction stage of B. burgdorferi dissemination in living hosts. We found that tethering and dragging interactions (collectively referred to as initiation interactions) were mechanistically distinct from stationary adhesion. Initiation of microvascular interactions required the B. burgdorferi protein BBK32, and host ligands fibronectin and glycosaminoglycans. Initiation interactions were also strongly inhibited by the low molecular weight clinical heparin dalteparin. Since numerous bacterial pathogens can interact with fibronectin and glycosaminoglycans in vitro, these observations raise the intriguing possibility that fibronectin and glycosaminoglycan recruitment might be a feature of hematogenous dissemination by other pathogens.
Collapse
Affiliation(s)
- M. Ursula Norman
- Department of Physiology & Biophysics, University of Calgary, Calgary, Alberta, Canada
| | - Tara J. Moriarty
- Departments of Biochemistry & Molecular Biology and Microbiology & Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Ashley R. Dresser
- Departments of Biochemistry & Molecular Biology and Microbiology & Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Brandie Millen
- Department of Physiology & Biophysics, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Department of Physiology & Biophysics, University of Calgary, Calgary, Alberta, Canada
| | - George Chaconas
- Departments of Biochemistry & Molecular Biology and Microbiology & Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
49
|
Yang X, Izadi H, Coleman AS, Wang P, Ma Y, Fikrig E, Anguita J, Pal U. Borrelia burgdorferi lipoprotein BmpA activates pro-inflammatory responses in human synovial cells through a protein moiety. Microbes Infect 2008; 10:1300-8. [PMID: 18725314 DOI: 10.1016/j.micinf.2008.07.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/20/2008] [Accepted: 07/29/2008] [Indexed: 11/26/2022]
Abstract
Borrelia burgdorferi invasion of mammalian joints results in genesis of Lyme arthritis. Other than spirochete lipids, existence of protein antigens, which are abundant in joints and participate in B. burgdorferi-induced host inflammatory response, is unknown. Here, we report that major products of the B. burgdorferi basic membrane protein (bmp) A/B operon that are induced in murine and human joints, possess inflammatory properties. Compared to the wild type B. burgdorferi, an isogenic bmpA/B mutant induced significantly lower levels of pro-inflammatory cytokines TNF-alpha and IL-1beta in cultured human synovial cells, which could be restored using bmpA/B-complemented mutants, and more directly, upon addition of recombinant BmpA, but not BmpB or control spirochete proteins. Non-lipidated and lipidated versions of BmpA induced similar levels of cytokines, and remained unaffected by treatment with lipopolysaccharide inhibitor, polymyxin B. The bmpA/B mutant was also impaired in the induction of NF-kappaB and p38 MAP kinase signaling pathways in synovial cells, which were activated by non-lipidated BmpA. These results show that a protein moiety of BmpA can induce cytokine responses in synovial cells via activation of the NF-kappaB and p38 MAP kinase pathways and thus, could potentially contribute to the genesis of Lyme arthritis.
Collapse
Affiliation(s)
- Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ulanova M, Gravelle S, Barnes R. The role of epithelial integrin receptors in recognition of pulmonary pathogens. J Innate Immun 2008; 1:4-17. [PMID: 20375562 PMCID: PMC7190199 DOI: 10.1159/000141865] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 04/30/2008] [Indexed: 12/19/2022] Open
Abstract
Integrins are a large family of heterodimeric transmembrane cell adhesion receptors. During the last decade, it has become clear that integrins significantly participate in various host-pathogen interactions involving pathogenic bacteria, fungi, and viruses. Many bacteria possess adhesins that can bind either directly or indirectly to integrins. However, there appears to be an emerging role for integrins beyond simply adhesion molecules. Given the conserved nature of integrin structure and function, and the diversity of the pathogens which use integrins, it appears that they may act as pattern recognition receptors important for the innate immune response. Several clinically significant bacterial pathogens target lung epithelial integrins, and this review will focus on exploring various structures and mechanisms involved in these interactions.
Collapse
Affiliation(s)
- Marina Ulanova
- Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ont., Canada.
| | | | | |
Collapse
|