1
|
de Souza Carneiro VC, Leon LAA, de Paula VS. miRNAs: Targets to Investigate Herpesvirus Infection Associated with Neurological Disorders. Int J Mol Sci 2023; 24:15876. [PMID: 37958855 PMCID: PMC10650863 DOI: 10.3390/ijms242115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Herpesvirus is associated with various neurological disorders and a specific diagnosis is associated with a better prognosis. MicroRNAs (miRNAs) are potential diagnostic and prognostic biomarkers of neurological diseases triggered by herpetic infection. In this review, we discuss miRNAs that have been associated with neurological disorders related to the action of herpesviruses. Human miRNAs and herpesvirus-encoded miRNAs were listed and discussed. This review article will be valuable in stimulating the search for new diagnostic and prognosis alternatives and understanding the role of these miRNAs in neurological diseases triggered by herpesviruses.
Collapse
Affiliation(s)
- Vanessa Cristine de Souza Carneiro
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil; (V.C.d.S.C.); (V.S.d.P.)
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Luciane Almeida Amado Leon
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Vanessa Salete de Paula
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil; (V.C.d.S.C.); (V.S.d.P.)
| |
Collapse
|
2
|
Huang J, Ren H, Chen A, Li T, Wang H, Jiang L, Zheng S, Qi H, Ji B, Wang X, Qu J, Zhao J, Qiu L. Perfluorooctane sulfonate induces suppression of testosterone biosynthesis via Sertoli cell-derived exosomal/miR-9-3p downregulating StAR expression in Leydig cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118960. [PMID: 35150797 DOI: 10.1016/j.envpol.2022.118960] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/23/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is associated with male reproductive disorder, but the related mechanisms are still unclear. In this study, we used in vivo and in vitro models to explore the role of Sertoli cell-derived exosomes (SC-Exo)/miR-9-3p/StAR signaling pathway on PFOS-induced suppression of testosterone biosynthesis. Forty male ICR mice were orally administrated PFOS (0.5-10 mg/kg/bw) for 4 weeks. Bodyweight, organ index, sperm count, reproductive hormones were evaluated. Primary Sertoli cells and Leydig cells were used to delineate the molecular mechanisms that mediate the effects of PFOS on testosterone biosynthesis. Our results demonstrated that PFOS dose-dependently induced a decrease in sperm count, low levels of testosterone, and damage in testicular interstitium morphology. In vitro models, PFOS significantly increased miR-9-3p levels in Sertoli cells and SC-Exo, accompanied by a decrease in testosterone secretion and StAR expression in Leydig cells when Leydig cells were exposed to SC-Exo. Meanwhile, inhibition of SC-Exo or miR-9-3p by their inhibitors significantly rescued PFOS-induced decreases in testosterone secretion and the mRNA and protein expression of the StAR gene in Leydig cells. In summary, the present study highlights the role of the SC-Exo/miR-9-3p/StAR signaling pathway in PFOS-induced suppression of testosterone biosynthesis, advancing our understanding of molecular mechanisms for PFOS-induced male reproductive disorders.
Collapse
Affiliation(s)
- Jiyan Huang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hang Ren
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Anni Chen
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Ting Li
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hongxia Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianlian Jiang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Shaokai Zheng
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Han Qi
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Binyan Ji
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Xipei Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China; Jiangsu Province-Hai'an People's Hospital, Hai'an City, Nantong City, 17 Zhongba Middle Road, (Affiliated Haian Hospital of Nantong University), PR China
| | - Jianhua Qu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Jianya Zhao
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China.
| |
Collapse
|
3
|
Chinniah R, Adimulam T, Nandlal L, Arumugam T, Ramsuran V. The Effect of miRNA Gene Regulation on HIV Disease. Front Genet 2022; 13:862642. [PMID: 35601502 PMCID: PMC9117004 DOI: 10.3389/fgene.2022.862642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Over many years, research on HIV/AIDS has advanced with the introduction of HAART. Despite these advancements, significant gaps remain with respect to aspects in HIV life cycle, with specific attention to virus-host interactions. Investigating virus-host interactions may lead to the implementation of novel therapeutic strategies against HIV/AIDS. Notably, host gene silencing can be facilitated by cellular small non-coding RNAs such as microRNAs paving the way for epigenetic anti-viral therapies. Numerous studies have elucidated the importance of microRNAs in HIV pathogenesis. Some microRNAs can either promote viral infection, while others can be detrimental to viral replication. This is accomplished by targeting the HIV-proviral genome or by regulating host genes required for viral replication and immune responses. In this review, we report on 1) the direct association of microRNAs with HIV infection; 2) the indirect association of known human genetic factors with HIV infection; 3) the regulation of human genes by microRNAs in other diseases that can be explored experimentally to determine their effect on HIV-1 infection; and 4) therapeutic interactions of microRNA against HIV infection.
Collapse
Affiliation(s)
- Romona Chinniah
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Louansha Nandlal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Singh CP. Viral-encoded microRNAs in host-pathogen interactions in silkworm. Microrna 2021; 10:3-13. [PMID: 33475082 DOI: 10.2174/2211536610666210121154314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/30/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
The mulberry silkworm Bombyx mori, apart from its well-known economic importance, has also emerged as an insect model to study host-pathogen interactions. The major concern for silkworm cultivation and the sericulture industry is the attack by various types of pathogens mainly includes viruses, fungi, bacteria and protozoa. Successful infection requires specific arsenals to counter the host immune response. MicroRNAs (miRNAs) are one of the potential arsenals which are encoded by viruses and effectively used during host-pathogen interactions. MiRNAs are short noncoding 19-25 nucleotides long endogenous RNAs that post-transcriptionally regulate expression of protein-coding genes in a sequencespecific manner. Most of the higher eukaryotes encode miRNAs and utilize them in the regulation of important cellular pathways. In silkworm, promising functions of miRNAs have been characterized in development, metamorphosis, immunity, and host-pathogen interactions. The viral miRNA-mediated fine-tuning of the viral, as well as cellular genes, is beneficial for making a cellular environment favorable for the virus proliferation. Baculovirus and cypovirus which infect silkworm have been shown to encode miRNAs and their functions are implicated in controlling the expression of both viral and host genes. In the present review, the author discusses the diverse functions of viral-encoded miRNAs in evasion of the host immune responses and reshaping of the silkworm cellular environment for replication. Besides, a basic overview of miRNA biogenesis and mechanism of action is also provided. Our increasing understanding of the viral miRNAs role in silkworm-virus interactions would not only assist us to get insights into the intricate pathways but also provide tools to deal with dreaded pathogens.
Collapse
Affiliation(s)
- C P Singh
- Department of Botany, University of Rajasthan, Jaipur-302004, Rajasthan. India
| |
Collapse
|
5
|
Duan X, Wang L, Sun G, Yan W, Yang Y. Understanding the cross-talk between host and virus in poultry from the perspectives of microRNA. Poult Sci 2020; 99:1838-1846. [PMID: 32241464 PMCID: PMC7587795 DOI: 10.1016/j.psj.2019.11.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 01/05/2023] Open
Abstract
In poultry, viral infections (e.g., Marek's disease virus, avian leukosis virus, influenza A virus, and so on) can cause devastating mortality and economic losses. Because viruses are solely dependent on host cells to propagate, they alter the host intracellular microenvironment. Thus, understanding the virus-host interaction is important for antiviral immunity and drug development in the poultry industry. MicroRNAs are crucial posttranscriptional regulators of gene expression in a wide spectrum of biological processes, including viral infection. Recently, microRNAs have been identified as key players in virus-host interactions. In this review, we will discuss the intricacies involved in the virus-host cross-talk mediated by host and viral microRNAs in poultry (i.e., chicken and ducks), as well as recent trends and challenges in this field. These findings may provide some insights into the rapidly developing area of research regarding viral pathogenesis and antiviral immunity in poultry production.
Collapse
Affiliation(s)
- Xiujun Duan
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China; National Gene Bank of Waterfowl Resources, Taizhou 225300, China
| | - Lihua Wang
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Guobo Sun
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China; National Gene Bank of Waterfowl Resources, Taizhou 225300, China
| | - Wenying Yan
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China.
| | - Yang Yang
- School of Computer Science and Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
6
|
Zhao Y, Wang X. miR-34a targets BCL-2 to suppress the migration and invasion of sinonasal squamous cell carcinoma. Oncol Lett 2018; 16:6566-6572. [PMID: 30405796 PMCID: PMC6202510 DOI: 10.3892/ol.2018.9427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022] Open
Abstract
Sinonasal squamous cell carcinomas (SN-SCC) are rare tumors with low survival rate. It was reported that miR-34a expression is low in many cancers and acted as a tumor suppressor. But the biological function of miR-34a in SN-SCC has hardly been reported. Therefore, we explored the role and underlying mechanism of miR-34a in the migration and invasion of SN-SCC. Western blot analysis and RT-PCR were carried out to examine B-cell lymphoma-2 (BCL-2) and miR-34a expression in SN-SCC. Transwell assay was performed to test the SN-SCC migratory and invasive ability. Luciferase reporter assay was carried out to verify the target of miR-34a. Results demonstrated that miR-34a expression was lower in SN-SCC tissues and cells than normal SN-SCC. Re-expression of miR-34a inhibited cell migration and invasion, while had the opposite effect on inhibition of miR-34a. We also found that BCL-2 expression was higher in SN-SCC and silencing BCL-2 curbed the development of SN-SCC. BCL-2 was found to be a target of miR-34a and negatively correlated with miR-34a expression. Furthermore, BCL-2 attenuated the miR-34a inhibitory effect on SN-SCC cell migration and invasion. In short, these data demonstrated that miR-34a inhibited SN-SCC cell migration and invasion through targeting BCL-2.
Collapse
Affiliation(s)
- Yigang Zhao
- Department of Otolaryngology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Xianzhi Wang
- Department of Otolaryngology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
7
|
Sannigrahi MK, Sharma R, Singh V, Panda NK, Rattan V, Khullar M. Role of Host miRNA Hsa-miR-139-3p in HPV-16-Induced Carcinomas. Clin Cancer Res 2017; 23:3884-3895. [PMID: 28143871 DOI: 10.1158/1078-0432.ccr-16-2936] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Human papillomavirus 16 (HPV-16) is an important risk factor in head and neck cancer (HNC). Studies suggest that miRNAs play an important role in cancer; however, their role in HPV-mediated oncogenesis remains largely unknown. We investigated the role of miRNAs with HPV-16 as putative target in HPV-16-mediated cancers.Experimental Design: Using in silico tools, we identified miRNAs with putative binding sequences on HPV-16 miRNAs. Hsa-miR-139-3p was identified as best candidate miRNA by luciferase reporter assay and was found to be significantly downregulated in HPV-16-positive tissues and cell lines. Overexpression/inhibition studies were performed to determine the role of miRNA in regulating oncogenic pathways.Results: Hsa-miR-139-3p was found to target high-risk HPV-16 oncogenic proteins and revive major tumor suppressor proteins (p53, p21, and p16). This resulted in inhibition of cell proliferation and cell migration, cell-cycle arrest at G2-M phase and increased cell death of HPV-16-positive cells. Analysis of The Cancer Genome Atlas (TCGA) data showed decreased expression of Hsa-miR-139-3p in HPV-16-positive HNC and cervical cancer cases, and its higher expression correlated with better survival outcome in both cases. Increased DNA methylation of Hsa-miR-139-3p harboring gene PDE2A at its promoter/CpG islands was observed in HPV-16-positive tissues and cell lines, which further correlated with Hsa-miR-139-3p expression, suggesting its role in regulating Hsa-miR-139-3p expression. Furthermore, we observed an increased sensitization of Hsa-miR-139-3p overexpressed HPV-16-positive cells to chemotherapeutic drugs (cisplatin and 5-fluorouracil).Conclusions: HPV-16-mediated downregulation of Hsa-miR-139-3p may promote oncogenesis in HNC and cervical cancer. Clin Cancer Res; 23(14); 3884-95. ©2017 AACR.
Collapse
Affiliation(s)
- M K Sannigrahi
- Department of Otolaryngology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rajni Sharma
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Varinder Singh
- Department of Otolaryngology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh K Panda
- Department of Otolaryngology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Vidya Rattan
- Unit of Oral Health Sciences, PGIMER, Chandigarh, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India.
| |
Collapse
|
8
|
Hodzic J, Sie D, Vermeulen A, van Beusechem VW. Functional Screening Identifies Human miRNAs that Modulate Adenovirus Propagation in Prostate Cancer Cells. Hum Gene Ther 2017; 28:766-780. [PMID: 28114818 DOI: 10.1089/hum.2016.143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oncolytic adenoviruses represent a novel class of anticancer agents. Their efficacy in killing cancer cells is variable, suggesting that there is room for improvement. Host miRNAs have been shown to play important roles in susceptibility of cells to replication of different viruses. This study investigated if adenovirus replication in human prostate cancer cells is influenced by host cell miRNA expression. To this end, human miRNA expression in response to adenovirus infection was analyzed, and functional screens for lytic adenovirus replication were performed using synthetic miRNA mimic and inhibitor libraries. Adenovirus infection generally reduced miRNA expression. On top of this nonspecific interference with miRNA biogenesis, a set of miRNAs, including in particular miR-222, was found specifically reduced. Another set of miRNAs was found to promote adenovirus-induced death of prostate cancer cells. In most cases, this did not stimulate adenovirus propagation. The exception was miR-26b. Overexpression of miR-26b inhibited adenovirus-induced NF-κB activation, augmented adenovirus-mediated cell death, increased adenovirus progeny release, and promoted adenovirus propagation and spread in several human prostate cancer cell lines. This suggests that miR-26b is particularly useful to be combined with oncolytic adenovirus for more effective treatment of prostate cancer.
Collapse
Affiliation(s)
- Jasmina Hodzic
- 1 Department of Medical Oncology, VU University Medical Center , Amsterdam, Netherlands
| | - Daoud Sie
- 2 Department of Pathology, VU University Medical Center , Amsterdam, Netherlands
| | | | | |
Collapse
|
9
|
Tahamtan A, Inchley CS, Marzban M, Tavakoli‐Yaraki M, Teymoori‐Rad M, Nakstad B, Salimi V. The role of microRNAs in respiratory viral infection: friend or foe? Rev Med Virol 2016; 26:389-407. [PMID: 27373545 PMCID: PMC7169129 DOI: 10.1002/rmv.1894] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) have emerged as a class of regulatory RNAs in host-pathogen interactions. Aberrant miRNA expression seems to play a central role in the pathology of several respiratory viruses, promoting development and progression of infection. miRNAs may thus serve as therapeutic and prognostic factors for respiratory viral infectious disease caused by a variety of agents. We present a comprehensive review of recent findings related to the role of miRNAs in different respiratory viral infections and discuss possible therapeutic opportunities aiming to attenuate the burden of viral infections. Our review supports the emerging concept that cellular and viral-encoded miRNAs might be broadly implicated in human respiratory viral infections, with either positive or negative effects on virus life cycle. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alireza Tahamtan
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Christopher S. Inchley
- Department of Pediatric and Adolescent MedicineAkershus University HospitalLørenskogNorway
| | - Mona Marzban
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | | | - Majid Teymoori‐Rad
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Britt Nakstad
- Department of Pediatric and Adolescent MedicineAkershus University HospitalLørenskogNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Vahid Salimi
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| |
Collapse
|
10
|
Sen R, Nayak L, De RK. A review on host-pathogen interactions: classification and prediction. Eur J Clin Microbiol Infect Dis 2016; 35:1581-99. [PMID: 27470504 DOI: 10.1007/s10096-016-2716-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/22/2016] [Indexed: 01/01/2023]
Abstract
The research on host-pathogen interactions is an ever-emerging and evolving field. Every other day a new pathogen gets discovered, along with comes the challenge of its prevention and cure. As the intelligent human always vies for prevention, which is better than cure, understanding the mechanisms of host-pathogen interactions gets prior importance. There are many mechanisms involved from the pathogen as well as the host sides while an interaction happens. It is a vis-a-vis fight of the counter genes and proteins from both sides. Who wins depends on whether a host gets an infection or not. Moreover, a higher level of complexity arises when the pathogens evolve and become resistant to a host's defense mechanisms. Such pathogens pose serious challenges for treatment. The entire human population is in danger of such long-lasting persistent infections. Some of these infections even increase the rate of mortality. Hence there is an immediate emergency to understand how the pathogens interact with their host for successful invasion. It may lead to discovery of appropriate preventive measures, and the development of rational therapeutic measures and medication against such infections and diseases. This review, a state-of-the-art updated scenario of host-pathogen interaction research, has been done by keeping in mind this urgency. It covers the biological and computational aspects of host-pathogen interactions, classification of the methods by which the pathogens interact with their hosts, different machine learning techniques for prediction of host-pathogen interactions, and future scopes of this research field.
Collapse
Affiliation(s)
- R Sen
- Machine Intelligence Unit, Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700108, India
| | - L Nayak
- Machine Intelligence Unit, Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700108, India
| | - R K De
- Machine Intelligence Unit, Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700108, India.
| |
Collapse
|
11
|
Sharma N, Singh SK. Implications of non-coding RNAs in viral infections. Rev Med Virol 2016; 26:356-68. [PMID: 27401792 DOI: 10.1002/rmv.1893] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 02/06/2023]
Abstract
The advances in RNA sequencing have unveiled various non-coding RNAs (ncRNAs), which modulate the gene expression. ncRNAs do not get translated into proteins. These include transfer RNAs, ribosomal RNAs, microRNA (miRNA), short interfering RNA, long non-coding RNA, piwi-interacting RNA and small nuclear RNA. ncRNAs regulate gene expression at various levels and control cellular machinery. miRNAs have been reported in plants, animals, several invertebrates and viruses. The miRNAs regulate the gene expression post-transcriptionally. Viral infection strongly influences the abundance and the distribution of miRNAs and other ncRNAs within the host cells. Viruses may encode their own miRNA, which help in the viral life cycle and other aspects of pathogenesis. Viruses are known to successfully modulate the expression pattern of ncRNAs. The ncRNA-based strategies adopted by viruses for their survival present a complex picture of host-virus interactions. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nikhil Sharma
- Laboratory of Neurovirology and Inflammation Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Sunit K Singh
- Laboratory of Human Molecular Virology and Immunology, Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences (IMS), Banaras Hindu University (BHU), Varanasi, India.
| |
Collapse
|
12
|
Makkoch J, Poomipak W, Saengchoowong S, Khongnomnan K, Praianantathavorn K, Jinato T, Poovorawan Y, Payungporn S. Human microRNAs profiling in response to influenza A viruses (subtypes pH1N1, H3N2, and H5N1). Exp Biol Med (Maywood) 2015; 241:409-20. [PMID: 26518627 DOI: 10.1177/1535370215611764] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/21/2015] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) play an important role in regulation of gene silencing and are involved in many cellular processes including inhibition of infected viral replication. This study investigated cellular miRNA expression profiles operating in response to influenza virus in early stage of infection which might be useful for understanding and control of viral infection. A549 cells were infected with different subtypes of influenza virus (pH1N1, H3N2 and H5N1). After 24 h post-infection, miRNAs were extracted and then used for DNA library construction. All DNA libraries with different indexes were pooled together with equal concentration, followed by high-throughput sequencing based on MiSeq platform. The miRNAs were identified and counted from sequencing data by using MiSeq reporter software. The miRNAs expressions were classified into up and downregulated miRNAs compared to those found in non-infected cells. Mostly, each subtype of influenza A virus triggered the upregulated responses in miRNA expression profiles. Hsa-miR-101, hsa-miR-193b, hsa-miR-23b, and hsa-miR-30e* were upregulated when infected with all three subtypes of influenza A virus. Target prediction results showed that virus infection can trigger genes in cellular process, metabolic process, developmental process and biological regulation. This study provided some insights into the cellular miRNA profiling in response to various subtypes of influenza A viruses in circulation and which have caused outbreaks in human population. The regulated miRNAs might be involved in virus-host interaction or host defense mechanism, which should be investigated for effective antiviral therapeutic interventions.
Collapse
Affiliation(s)
- Jarika Makkoch
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand
| | - Witthaya Poomipak
- Research affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand
| | - Suthat Saengchoowong
- Joint Chulalongkorn University - University of Liverpool PhD Programme in Biomedical Sciences and Biotechnology, Bangkok 10330, Thailand
| | - Kritsada Khongnomnan
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand
| | | | - Thananya Jinato
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
13
|
Li L, Wei Z, Zhou Y, Gao F, Jiang Y, Yu L, Zheng H, Tong W, Yang S, Zheng H, Shan T, Liu F, Xia T, Tong G. Host miR-26a suppresses replication of porcine reproductive and respiratory syndrome virus by upregulating type I interferons. Virus Res 2015; 195:86-94. [PMID: 25218480 PMCID: PMC7114497 DOI: 10.1016/j.virusres.2014.08.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/12/2014] [Accepted: 08/19/2014] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) play important roles in viral infections, especially by modulating the expression of cellular factors essential to viral replication or the host innate immune response to infection. To identify host miRNAs important to controlling porcine reproductive and respiratory syndrome virus (PRRSV) infection, we screened 15 miRNAs that were previously implicated in innate immunity or antiviral functions. Over-expression of the miR-26 family strongly inhibited PRRSV replication in vitro, as shown by virus titer assays, Western blotting, and qRT-PCR assays. MiR-26a inhibited the replication of both type 1 and type 2 PRRSV strains. Mutating the seed region of miR-26 restored viral titers. Luciferase reporters showed that miR-26a does not target the PRRSV genome directly but instead affects the expression of type I interferon and the IFN-stimulated genes MX1 and ISG15 during PRRSV infection. These results demonstrate the important role of miR-26a in modulating PRRSV infection and also support the possibility of using host miR-26a to achieve RNAi-mediated antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Liwei Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Zuzhang Wei
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Hao Zheng
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Shen Yang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Haihong Zheng
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Tongling Shan
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Fei Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Tianqi Xia
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
14
|
Guo W, Yuan Y, Hou Z, Wang X, Yang S. Profiles of the auditory epithelia related microRNA expression in neonatal and adult rats. Eur J Med Res 2014; 19:48. [PMID: 25192719 PMCID: PMC4172914 DOI: 10.1186/s40001-014-0048-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/25/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The impact of miRNA differential expression on the auditory epithelium stem cell development in postnatal rats is not clear. The present study was designed to analyze miRNA expression in the organ of Corti of neonatal and adult rats. METHODS The cochleae of newborn (P0) and adult (P30) Sprague-Dawley rats were dissected in cold PBS to collect the sensory epithelia. Small RNAs were extracted using the mirVana RNA Isolation kit. Then, miRNA expression profiling was performed with RNAs from three newborns and three adult rats utilizing the TaqMan Array Rodent MicroRNA Panel. RESULTS Eighteen miRNAs were found be differentially expressed, 16 were unregulated in mature cochleae with the fold changes ranging from 17 to 600 folds. The expression levels of two miRNAs were reduced in the mature rat cochleae. GO analysis and signaling pathway analysis revealed the potential involvement of the miRNAs in the regulation of Wnt and TGF-β signaling pathways in hair cell development. CONCLUSIONS Our results provided novel insights into the functional significance of miRNAs in the basilar membrane cells development, and revealed the potential importance of miRNAs in the hair cell by regulation of Wnt and TGF-β signaling.
Collapse
|
15
|
Tian YC, Li YJ, Chen HC, Wu HH, Weng CH, Chen YC, Lee CC, Chang MY, Hsu HH, Yen TH, Hung CC, Yang CW. Polyomavirus BK-encoded microRNA suppresses autoregulation of viral replication. Biochem Biophys Res Commun 2014; 447:543-9. [PMID: 24735545 DOI: 10.1016/j.bbrc.2014.04.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/07/2014] [Indexed: 12/16/2022]
Abstract
Polyomavirus BK (BKV) infection is an important cause of renal allograft failure. Viral microRNAs are known to play a crucial role in viral replication. This study investigated the expression of BKV-encoded microRNAs (miR-B1) in patients with polyomavirus-associated nephropathy (PVAN) and their role in viral replication. Following BKV infection in renal proximal tubular cells, the 3p and 5p miR-B1 levels were significantly increased. Cells transfected with the vector containing the miR-B1 precursor (the miR-B1 vector) showed a significant increase in expression of 3p and 5p miR-B1 and decrease in luciferase activity of a reporter containing the 3p and 5p miR-B1 binding sites, compared to cells transfected with the miR-B1-mutated vector. Transfection of the miR-B1 expression vector or the 3p and 5p miR-B1 oligonucleotides inhibited expression of TAg. TAg-enhanced promoter activity and BKV replication were inhibited by miR-B1. In contrast, inhibition of miR-B1 expression by addition of miR-B1 antagomirs or silencing of Dicer upregulated the expression of TAg and VP1 proteins in BKV-infected cells. Importantly, patients with PVAN had significantly higher levels of 3p and 5p miR-B1 compared to renal transplant patients without PVAN. In conclusion, we demonstrated that (1) miR-B1 expression was upregulated during BKV infection and (2) miR-B1 suppressed TAg-mediated autoregulation of BKV replication. Use of miR-B1 can be evaluated as a potential treatment strategy against BKV infection.
Collapse
Affiliation(s)
- Ya-Chung Tian
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei 105, Taiwan; Department of medicine, Chang Gung University, Tao Yuan 333, Taiwan.
| | - Yi-Jung Li
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei 105, Taiwan; Department of medicine, Chang Gung University, Tao Yuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 333, Taiwan
| | - Hua-Chien Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 333, Taiwan
| | - Hsin-Hsu Wu
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei 105, Taiwan; Department of medicine, Chang Gung University, Tao Yuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 333, Taiwan
| | - Cheng-Hao Weng
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei 105, Taiwan; Department of medicine, Chang Gung University, Tao Yuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 333, Taiwan
| | - Yung-Chang Chen
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei 105, Taiwan; Department of medicine, Chang Gung University, Tao Yuan 333, Taiwan
| | - Cheng-Chia Lee
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei 105, Taiwan; Department of medicine, Chang Gung University, Tao Yuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, 333, Taiwan
| | - Ming-Yang Chang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei 105, Taiwan; Department of medicine, Chang Gung University, Tao Yuan 333, Taiwan
| | - Hsiang-Hao Hsu
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei 105, Taiwan; Department of medicine, Chang Gung University, Tao Yuan 333, Taiwan
| | - Tzung-Hai Yen
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei 105, Taiwan; Department of medicine, Chang Gung University, Tao Yuan 333, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei 105, Taiwan; Department of medicine, Chang Gung University, Tao Yuan 333, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei 105, Taiwan; Department of medicine, Chang Gung University, Tao Yuan 333, Taiwan
| |
Collapse
|
16
|
MicroRNAs contribute to the anticancer effect of 1'-acetoxychavicol acetate in human head and neck squamous cell carcinoma cell line HN4. Biosci Biotechnol Biochem 2013; 77:2348-55. [PMID: 24317043 DOI: 10.1271/bbb.130389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1'-Acetoxychavicol acetate (ACA), extracted from rhizomes of tropical ginger, possesses antitumor properties against a wide variety of malignancies. MicroRNAs have been found to act as oncogenes and as tumor suppressor genes in the development of cancer. The purpose of this study was to investigate the miRNA involved in the molecular mechanisms of ACA action on tumor inhibition. It was found that ACA significantly inhibited the growth of human head and neck squamous cell carcinoma cell line HN4 and induced cell apoptosis. Further studies indicated that ACA downregulated the expression of miR-23a in HN4 cells. Transfection with anti-miR-23a inhibited the proliferation of HN4 cells and induced cell apoptosis. In addition, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was confirmed to be the target of miR-23a. Taken together, our findings suggest that ACA might have anticancer effects against human head and neck cancer through downregulation of miR-23a, which can repress tumor suppressor PTEN.
Collapse
|
17
|
Wei YF, Cui GY, Ye P, Chen JN, Diao HY. MicroRNAs may solve the mystery of chronic hepatitis B virus infection. World J Gastroenterol 2013; 19:4867-4876. [PMID: 23946591 PMCID: PMC3740416 DOI: 10.3748/wjg.v19.i30.4867] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/04/2013] [Accepted: 07/05/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health problem that causes persistent liver diseases such as chronic hepatitis, cirrhosis, and hepatocellular carcinoma. A large amount of people die annually from HBV infection. However, the pathogenesises of the HBV-related diseases are ill defined and the therapeutic strategies for the diseases are less than optimum. The recently discovered microRNAs (miRNAs) are tiny noncoding RNAs that regulate gene expression primarily at the post-transcriptional level by binding to mRNAs. miRNAs contribute to a variety of physiological and pathological processes. A number of miRNAs have been found to play a pivotal role in the host-virus interaction including host-HBV interaction. Numerous studies have indicated that HBV infection could change the cellular miRNA expression patterns and different stages of HBV associated disease have displayed distinctive miRNA profiles. Furthermore, the differential expressed miRNAs have been found involved in the progression of HBV-related diseases, for instance some miRNAs are involved in liver tumorigenesis and tumor metastasis. Studies have also shown that the circulating miRNA in serum or plasma might be a very useful biomarker for the diagnosis and prognosis of HBV-related diseases. In addition, miRNA-based therapy strategies have attracted increasing attention, indicating a promising future in the treatment of HBV-related diseases.
Collapse
|
18
|
Loinger A, Shemla Y, Simon I, Margalit H, Biham O. Competition between small RNAs: a quantitative view. Biophys J 2012; 102:1712-21. [PMID: 22768926 DOI: 10.1016/j.bpj.2012.01.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/28/2011] [Accepted: 01/11/2012] [Indexed: 11/17/2022] Open
Abstract
Two major classes of small regulatory RNAs--small interfering RNAs (siRNAs) and microRNA (miRNAs)--are involved in a common RNA interference processing pathway. Small RNAs within each of these families were found to compete for limiting amounts of shared components, required for their biogenesis and processing. Association with Argonaute (Ago), the catalytic component of the RNA silencing complex, was suggested as the central mechanistic point in RNA interference machinery competition. Aiming to better understand the competition between small RNAs in the cell, we present a mathematical model and characterize a range of specific cell and experimental parameters affecting the competition. We apply the model to competition between miRNAs and study the change in the expression level of their target genes under a variety of conditions. We show quantitatively that the amount of Ago and miRNAs in the cell are dominant factors contributing greatly to the competition. Interestingly, we observe what to our knowledge is a novel type of competition that takes place when Ago is abundant, by which miRNAs with shared targets compete over them. Furthermore, we use the model to examine different interaction mechanisms that might operate in establishing the miRNA-Ago complexes, mainly those related to their stability and recycling. Our model provides a mathematical framework for future studies of competition effects in regulation mechanisms involving small RNAs.
Collapse
Affiliation(s)
- Adiel Loinger
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
19
|
Abstract
In a recent study, plant microRNAs (miRNAs) have been found in the sera and tissues of various animals including humans. These miRNAs are acquired orally by food intake and can pass through the mammalian gastrointestinal tract into sera and organs. In vitro and in vivo studies have demonstrated that these plant microRNAs in food can regulate the expression of target genes in mammals. Correct regulation or dysregulation of miRNAs is linked to important gene expression patterns and diseases, such as cancer and arteriosclerosis. Interestingly, plant miRNA function in mammalian cells is similar to the function of mammalian miRNAs; this gives rise to some notable questions.
Collapse
|
20
|
Onnis A, Navari M, Antonicelli G, Morettini F, Mannucci S, De Falco G, Vigorito E, Leoncini L. Epstein-Barr nuclear antigen 1 induces expression of the cellular microRNA hsa-miR-127 and impairing B-cell differentiation in EBV-infected memory B cells. New insights into the pathogenesis of Burkitt lymphoma. Blood Cancer J 2012; 2:e84. [PMID: 22941339 PMCID: PMC3432484 DOI: 10.1038/bcj.2012.29] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr Virus (EBV) is a γ-herpesvirus that infects >90% of the human population. Although EBV persists in its latent form in healthy carriers, the virus is also associated with several human cancers. EBV is strongly associated with Burkitt lymphoma (BL), even though there is still no satisfactory explanation of how EBV participates in BL pathogenesis. However, new insights into the interplay between viruses and microRNAs (miRNAs) have recently been proposed. In particular, it has been shown that B-cell differentiation in EBV-positive BL is impaired at the post-transcriptional level by altered expression of hsa-miR-127. Here, we show that the overexpression of hsa-miR-127 is due to the presence of the EBV-encoded nuclear antigen 1 (EBNA1) and give evidence of a novel mechanism of direct regulation of the human miRNA by this viral product. Finally, we show that the combinatorial expression of EBNA1 and hsa-miR-127 affects the expression of master B-cell regulators in human memory B cells, confirming the scenario previously observed in EBV-positive BL primary tumors and cell lines. A good understanding of these mechanisms will help to clarify the complex regulatory networks between host and pathogen, and favor the design of more specific treatments for EBV-associated malignancies.
Collapse
Affiliation(s)
- A Onnis
- Department of Human Pathology and Oncology, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ogawa T, Saiki Y, Shiga K, Chen N, Fukushige S, Sunamura M, Nagase H, Hashimoto S, Matsuura K, Saijo S, Kobayashi T, Horii A. miR-34a is downregulated in cis-diamminedichloroplatinum treated sinonasal squamous cell carcinoma patients with poor prognosis. Cancer Sci 2012; 103:1737-43. [PMID: 22624980 DOI: 10.1111/j.1349-7006.2012.02338.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/14/2012] [Accepted: 05/21/2012] [Indexed: 01/07/2023] Open
Abstract
For the purpose of analyzing mechanisms related to the cis-diamminedichloroplatinum resistance in head and neck squamous cell carcinoma, we analyzed RPMI2650 and its derived previously established cis-diamminedichloroplatinum resistant cell line RPMI2650CR. To identify resistant phenotype-related microRNAs, we compared microRNA expressions between RPMI2650CR and RPMI2650 by microarray. One of the microRNAs as downregulated, miR-34a, was further investigated. Decreased expression of miR-34a in RPMI2650CR was confirmed by quantitative reverse transcription-polymerase chain reaction, but introduction of the miR-34a precursor into RPMI2650CR or the inhibitor of miR-34a into RPMI2650 did not change cis-diamminedichloroplatinum sensitivities. However, 24 patients with sinonasal squamous cell carcinomas treated with intra-arterial infusion of cis-diamminedichloroplatinum showed a significant association between decreased expression of miR-34a and poor disease specific survival (P = 0.0015), poor disease free survival (P = 0.0019), and poor local control rates (P = 0.017) (median follow-up period: 53 months). Furthermore, multivariate analyses demonstrated significant associations between miR-34a expression and the hazard ratios of disease free survival at 0.005 (95% confidence interval [CI] 0.00-0.29, P = 0.011) and local control rate at 0.008 (95% CI 0.00-0.44, P = 0.019), although other parameters such as age, gender, treatment method, T and N stages did not show any similar association. These results strongly suggest that miR-34a expression can be an independent prognostic biomarker in patients with sinonasal squamous cell carcinoma who are undergoing treatment with cis-diamminedichloroplatinum.
Collapse
Affiliation(s)
- Takenori Ogawa
- Department of Molecular Pathology, Tohoku University School of Medicine, Miyagi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wei–wei G, Zhao–hui H, Shi–ming Y. Analysis of microRNA expression in organ of Corti in neonatal and adult rats. J Otol 2012. [DOI: 10.1016/s1672-2930(12)50002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
23
|
He ML, Luo MXM, Lin MC, Kung HF. MicroRNAs: potential diagnostic markers and therapeutic targets for EBV-associated nasopharyngeal carcinoma. Biochim Biophys Acta Rev Cancer 2011; 1825:1-10. [PMID: 21958739 DOI: 10.1016/j.bbcan.2011.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/10/2011] [Indexed: 12/12/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a highly malignant cancer with local invasion and early distant metastasis. NPC is highly prevalent in the Southern China and South-eastern Asia. The genetic susceptibility, endemic environment factors, and Epstein-Barr virus (EBV) infection are believed to be the major etiologic factors of NPC. Once metastasis occurs, the prognosis is very poor. It is urgently needed to develop biomarkers for early clinical diagnosis/prognosis, and novel effective therapies for nasopharyngeal carcinoma. In this paper, we systematically reviewed the current progress of miRNA studies in NPC. It has been shown that both host encoded miRNAs and EBV encoded miRNAs play key roles in almost all the steps of epithelia cell carcinogenesis, including epithelial-mesenchymal to stem-like transition, cell growth, migration, invasion, and tumorigenesis. More importantly, some miRNAs could be secreted out and play a role in the microenvironments. The level of sera miRNAs is correlated with the copy numbers of host miRNAs in tumor biopsies. Promising results of gene therapy have been also achieved by lentiviral delivered miRNAs. Taken together, cell free miRNAs would be potential biomarkers of early clinical diagnosis/prognosis; while some miRNAs could be further developed into therapeutic agents in the future.
Collapse
Affiliation(s)
- Ming-Liang He
- Stanley Ho Center for Emerging Infectious Diseases, School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | | | |
Collapse
|
24
|
Kumar A. MicroRNA in HCV infection and liver cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:694-9. [PMID: 21821155 DOI: 10.1016/j.bbagrm.2011.07.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 01/08/2023]
Abstract
In the more than two-decades since hepatitis C virus (HCV) was identified, there has been considerable improvement in our understanding of virus life cycle due largely to the development of in vitro culture systems for virus replication. Still challenges remain: HCV infection is a major risk factor for chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide; yet mechanistic details of HCV infection-associated hepatocarcinogenesis remain incompletely understood. A protective vaccine is not yet available, and current therapeutic options result in sustained virus clearance only in a subset of patients. Recent interest has focused on small non-protein coding RNAs, microRNAs (miRNAs), the dependence of virus replication on miRNAs, and miRNA-regulated genes in liver cancer. Functional analysis of the miRNA-targeted genes in liver cancer has advanced our understanding of the "oncomiRs" and their role in hepatocarcinogenesis. This review focuses on the dependence of HCV replication on miRNA and role of miRNA-targeted tumor suppressor genes as molecular markers of and possible targets for developing oncomiR-targeted therapy of chronic hepatitis and HCC. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
Affiliation(s)
- Ajit Kumar
- George Washington University, Department of Biochemistry and Molecular Biology, Washington, DC, USA.
| |
Collapse
|
25
|
MicroRNA: implications in HIV, a brief overview. J Neurovirol 2011; 17:416-23. [PMID: 21786074 DOI: 10.1007/s13365-011-0046-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/27/2011] [Accepted: 06/29/2011] [Indexed: 10/18/2022]
Abstract
MicroRNAs (miRNAs) are 20-22 nucleotide length noncoding RNA molecules that represent key regulators of many normal cellular functions. miRNAs undergo two processing steps which transform a long primary transcript into the mature miRNA. Available literatures demonstrate the association between alterations in the expression of miRNAs and the progression of numerous human disorders. Even though significant advances have been made, many fundamental questions about their expression and function still remain unanswered. Identifying factors that block the negative action of drugs of abuse on the miRNAs could help in identifying new therapeutic strategies. In this review, we briefly discuss the importance of miRNAs on HIV, strategies used by virus to avoid the cells' antiviral miRNA defenses, and how HIV might control and regulate host cell genes by encoding viral miRNAs.
Collapse
|
26
|
Abstract
Small noncoding RNAs regulate a variety of cellular processes, including genomic imprinting, chromatin remodeling, replication, transcription, and translation. Here, we report small replication-regulating RNAs (srRNAs) that specifically inhibit DNA replication of the human BK polyomavirus (BKV) in vitro and in vivo. srRNAs from FM3A murine mammary tumor cells were enriched by DNA replication assay-guided fractionation and hybridization to the BKV noncoding control region (NCCR) and synthesized as cDNAs. Selective mutagenesis of the cDNA sequences and their putative targets suggests that the inhibition of BKV DNA replication is mediated by srRNAs binding to the viral NCCR, hindering early steps in the initiation of DNA replication. Ectopic expression of srRNAs in human cells inhibited BKV DNA replication in vivo. Additional srRNAs were designed and synthesized that specifically inhibit simian virus 40 (SV40) DNA replication in vitro. These observations point to novel mechanisms for regulating DNA replication and suggest the design of synthetic agents for inhibiting replication of polyomaviruses and possibly other viruses.
Collapse
|
27
|
Marek's disease virus type 1 microRNA miR-M3 suppresses cisplatin-induced apoptosis by targeting Smad2 of the transforming growth factor beta signal pathway. J Virol 2010; 85:276-85. [PMID: 20962090 DOI: 10.1128/jvi.01392-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Viruses cause about 15% of the cancers that are still the leading causes of human mortality. The discovery of viral oncogenes has enhanced our understanding of viral oncogenesis. However, the underlying molecular mechanisms of virus-induced cancers are complex and require further investigation. The present study has attempted to investigate the effects of the microRNAs (miRNAs) encoded by Marek's disease virus 1 (MDV1), a chicken herpesvirus causing acute T-cell lymphomas and solid visceral tumors in chickens, on anti-cancer drug-induced apoptosis and identify the targets of the miRNAs. The results showed that of the total 14 miRNAs encoded by MDV1, MDV1-miR-M3 significantly promoted cell survival under treatment with cisplatin, a widely used chemotherapy drug. MDV1-miR-M3 suppressed cisplatin-induced apoptosis by directly downregulating expression at the protein but not the mRNA level of Smad2, a critical component in the transforming growth factor β signal pathway. Our data suggest that latent/oncogenic viruses may encode miRNAs to directly target cellular factors involved in antiviral processes including apoptosis, thus proactively creating a cellular environment beneficial to viral latency and oncogenesis. Furthermore, the knowledge of the apoptosis resistance conferred by viral miRNAs has great practical implications for improving the efficacy of chemotherapies for treating cancers, especially those induced by oncogenic viruses.
Collapse
|
28
|
Chang SS, Smith I, Glazer C, Hennessey P, Califano JA. EIF2C is overexpressed and amplified in head and neck squamous cell carcinoma. ORL J Otorhinolaryngol Relat Spec 2010; 72:337-43. [PMID: 20924207 PMCID: PMC2975733 DOI: 10.1159/000320597] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/23/2010] [Indexed: 01/03/2023]
Abstract
AIM To discover putative oncogenes in head and neck squamous cell carcinoma (HNSCC) by integrating data from whole-genome comparison of array-based comparative genomic hybridization (CGH) and expression microarray analysis of HNSCC. METHODS We integrated published data defining regions of loss/gain identified from the profiling of 21 HNSCC using high-resolution (<1 Mb) CGH arrays and data from an mRNA expression microarray (approx. 12,000 genes) comparing 6 normal tissues and 8 HNSCC tumor tissues. Eukaryotic translation initiation factor 2C subunit 2 (EIF2C2) was found to be the most significantly overexpressed gene by mRNA expression array, and corresponded to the most common region of amplification found by the CGH array described by Sparano et al. We validated EIF2C2 overexpression in primary tissue, overexpression and amplification in HNSCC lines (JHU-011, JHU-012, FADU) relative to a minimally transformed oral keratinocyte cell line (OKF6) and performed knockdown experiments. RESULTS The tumor tissues had an average mRNA expression level of 123 (SD = 49) compared to the normal tissues (18.6, SD = 10) (p = 0.0005) by expression array. Quantitative RT-PCR validation of our expression arrays found that normal tissues had an average expression of 0.76 (SE = 0.08) and tumor tissues of 2.1 (SE = 0.35) (p = 0.0008). EIF2C2 was found to be amplified and overexpressed in 3 HNSCC cell lines. Knockdown of EIF2C2 in cell lines (JHU-012 and JHU-011) inhibited proliferation. CONCLUSION EIF2C2 is amplified and overexpressed in HNSCC cell lines and primary tumors and functionally significant in cell lines.
Collapse
Affiliation(s)
- Steven S. Chang
- Department of Otolaryngology – Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Md., USA
| | - Ian Smith
- Department of Otolaryngology – Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Md., USA
| | - Chad Glazer
- Department of Otolaryngology – Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Md., USA
| | - Patrick Hennessey
- Department of Otolaryngology – Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Md., USA
| | - Joseph A. Califano
- Department of Otolaryngology – Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Md., USA
- Milton J. Dance Head and Neck Center, Greater Baltimore Medical Center, Baltimore, Md., USA
| |
Collapse
|
29
|
Onnis A, De Falco G, Antonicelli G, Onorati M, Bellan C, Sherman O, Sayed S, Leoncini L. Alteration of microRNAs regulated by c-Myc in Burkitt lymphoma. PLoS One 2010; 5. [PMID: 20930934 PMCID: PMC2945769 DOI: 10.1371/journal.pone.0012960] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/27/2010] [Indexed: 02/02/2023] Open
Abstract
Background Burkitt lymphoma (BL) is an aggressive B-cell lymphoma, with a characteristic clinical presentation, morphology and immunophenotype. Over the past years, the typical translocation t(8;14) and its variants have been considered the molecular hallmark of this tumor. However, BL cases with no detectable MYC rearrangement have been identified. Intriguingly, these cases express MYC at levels comparable with cases carrying the translocation. In normal cells c-Myc expression is tightly regulated through a complex feedback loop mechanism. In cancer, MYC is often dysregulated, commonly due to genomic abnormalities. It has recently emerged that this phenomenon may rely on an alteration of post-transcriptional regulation mediated by microRNAs (miRNAs), whose functional alterations are associated with neoplastic transformation. It is also emerging that c-Myc modulates miRNA expression, revealing an intriguing crosstalk between c-Myc and miRNAs. Principal Findings Here, we investigated the expression of miRNAs possibly regulated by c-Myc in BL cases positive or negative for the translocation. A common trend of miRNA expression, with the exception of hsa-miR-9*, was observed in all of the cases. Intriguingly, down-regulation of this miRNA seems to specifically identify a particular subset of BL cases, lacking MYC translocation. Here, we provided evidence that hsa-miR-9-1 gene is heavily methylated in those cases. Finally, we showed that hsa-miR-9* is able to modulate E2F1 and c-Myc expression. Conclusions Particularly, this study identifies hsa-miR-9* as potentially relevant for malignant transformation in BL cases with no detectable MYC translocation. Deregulation of hsa-miR-9* may therefore be useful as a diagnostic tool, suggesting it as a promising novel candidate for tumor cell marker.
Collapse
Affiliation(s)
- Anna Onnis
- Department of Human Pathology and Oncology, University of Siena, Siena, Italy
| | - Giulia De Falco
- Department of Human Pathology and Oncology, University of Siena, Siena, Italy
| | | | - Monica Onorati
- Department of Human Pathology and Oncology, University of Siena, Siena, Italy
| | - Cristiana Bellan
- Department of Human Pathology and Oncology, University of Siena, Siena, Italy
| | | | | | - Lorenzo Leoncini
- Department of Human Pathology and Oncology, University of Siena, Siena, Italy
- * E-mail:
| |
Collapse
|
30
|
Pérez-Quintero ÁL, Neme R, Zapata A, López C. Plant microRNAs and their role in defense against viruses: a bioinformatics approach. BMC PLANT BIOLOGY 2010; 10:138. [PMID: 20594353 PMCID: PMC3017820 DOI: 10.1186/1471-2229-10-138] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 07/01/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND microRNAs (miRNAs) are non-coding short RNAs that regulate gene expression in eukaryotes by translational inhibition or cleavage of complementary mRNAs. In plants, miRNAs are known to target mostly transcription factors and are implicated in diverse aspects of plant growth and development. A role has been suggested for the miRNA pathway in antiviral defense in plants. In this work, a bioinformatics approach was taken to test whether plant miRNAs from six species could have antiviral activity by targeting the genomes of plant infecting viruses. RESULTS All plants showed a repertoire of miRNAs with potential for targeting viral genomes. The viruses were targeted by abundant and conserved miRNA families in regions coding for cylindrical inclusion proteins, capsid proteins, and nuclear inclusion body proteins. The parameters for our predicted miRNA:target pairings in the viral genomes were similar to those for validated targets in the plant genomes, indicating that our predicted pairings might behave in-vivo as natural miRNa-target pairings. Our screening was compared with negative controls comprising randomly generated miRNAs, animal miRNAs, and genomes of animal-infecting viruses. We found that plant miRNAs target plant viruses more efficiently than any other sequences, but also, miRNAs can either preferentially target plant-infecting viruses or target any virus without preference. CONCLUSIONS Our results show a strong potential for antiviral activity of plant miRNAs and suggest that the miRNA pathway may be a support mechanism to the siRNA pathway in antiviral defense.
Collapse
Affiliation(s)
- Álvaro L Pérez-Quintero
- Universidad Nacional de Colombia, Bogotá, Departamento de Biología, Oficina 222. Calle 45 Cra 30. Bogota D.C. Colombia
| | - Rafik Neme
- Universidad Nacional de Colombia, Bogotá, Departamento de Biología, Oficina 222. Calle 45 Cra 30. Bogota D.C. Colombia
| | - Andrés Zapata
- Universidad Nacional de Colombia, Bogotá, Departamento de Biología, Oficina 222. Calle 45 Cra 30. Bogota D.C. Colombia
| | - Camilo López
- Universidad Nacional de Colombia, Bogotá, Departamento de Biología, Oficina 222. Calle 45 Cra 30. Bogota D.C. Colombia
| |
Collapse
|
31
|
Bilodeau E, Alawi F, Costello BJ, Prasad JL. Molecular diagnostics for head and neck pathology. Oral Maxillofac Surg Clin North Am 2010; 22:183-94. [PMID: 20159486 DOI: 10.1016/j.coms.2009.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Molecular diagnostic techniques are quickly finding a role in the detection and diagnosis of tumors, and in predicting their behavior. They may also prove useful in developing new therapeutic approaches to head and neck cancer. The surgeon working in the craniomaxillofacial region should have an understanding of these technologies, their availability in various settings, and how they affect various aspects of treatment, particularly in the detection and treatment of malignancies. This article offers an overview of recent advances in molecular diagnostic techniques, with their implications for diagnosis and management of head and neck tumors.
Collapse
Affiliation(s)
- Elizabeth Bilodeau
- Department of Oral and Maxillofacial Surgery, University of Pittsburgh School of Dental Medicine, 3501 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
32
|
Veksler-Lublinsky I, Shemer-Avni Y, Kedem K, Ziv-Ukelson M. Gene bi-targeting by viral and human miRNAs. BMC Bioinformatics 2010; 11:249. [PMID: 20465802 PMCID: PMC3583137 DOI: 10.1186/1471-2105-11-249] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 05/13/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are an abundant class of small noncoding RNAs (20-24 nts) that can affect gene expression by post-transcriptional regulation of mRNAs. They play important roles in several biological processes (e.g., development and cell cycle regulation). Numerous bioinformatics methods have been developed to identify the function of miRNAs by predicting their target mRNAs. Some viral organisms also encode miRNAs, a fact that contributes to the complex interactions between viruses and their hosts. A need arises to understand the functional relationship between viral and host miRNAs and their effect on viral and host genes. Our approach to meet this challenge is to identify modules where viral and host miRNAs cooperatively regulate host gene expression. RESULTS We present a method to identify groups of viral and host miRNAs that cooperate in post-transcriptional gene regulation, and their target genes that are involved in similar biological processes. We call these groups (genes and miRNAs of human and viral origin) - modules. The modules are found in a new two-stage procedure, which we call bi-targeting, and is presented in this paper. The stages are (i) a new and efficient target prediction, and (ii) a new method for clustering objects of three different data types. In this work we integrate multiple information sources, including miRNA-target binding information, miRNA expression profiles, and GO annotations. Our hypotheses and the methods have been tested on human and Epstein Barr virus (EBV) miRNAs and human genes, for which we found 34 modules. We provide supporting evidence from biological and medical literature for two of our modules. Our code and data are available at http://www.cs.bgu.ac.il/~vaksler/BiTargeting.htm CONCLUSIONS The presented algorithm, which makes use of diverse biological data, is demonstrated to be an efficient approach for finding bi-targeting modules of viral and human miRNAs. These modules can contribute to a better understanding of viral-host interactions and the role that miRNAs play in them.
Collapse
Affiliation(s)
| | - Yonat Shemer-Avni
- Virology and Developmental Genetics/Health Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Klara Kedem
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Michal Ziv-Ukelson
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel
| |
Collapse
|
33
|
Mydlarz WK, Hennessey PT, Califano JA. Advances and Perspectives in the Molecular Diagnosis of Head and Neck Cancer. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2010; 4:53-65. [PMID: 20161611 PMCID: PMC2811380 DOI: 10.1517/17530050903338068] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is a debilitating and lethal disease. Despite significant advances in radiotherapy and surgical management, the 5-year survival rate for head and neck cancer has remained a dismal 50%. Advances in early detection have been made, but to improve patient outcomes better biomarkers and targeted therapeutic agents are needed. Novel biomarkers can improve early detection and provide data to optimize therapeutic strategy and patient survival, and could lead to potentially effective targeted therapies. OBJECTIVE: Report the advances in the discovery of novel biomarkers for HNSCC, and review the potential utility of biomarkers in the molecular diagnosis of HNSCC. METHODS: A review of the English literature (PubMed) from 1980 to 2009. RESULTS/CONCLUSION: Currently the most widely accepted biomarker for HNSCC is high risk HPV status. EGFR is another promising biomarker, however, further research is necessary to determine its prognostic benefit. A large number of promising biomarker candidates are currently being evaluated including epigenetic, expression, and genomic based markers. Studies to validate the sensitivity and specificity of these biomarkers in clinical samples from adequately powered prospective cohorts are needed for successful translation of these findings into potential molecular diagnostic, prognostic, and therapeutic biomarkers for HNSCC.
Collapse
Affiliation(s)
- Wojciech K. Mydlarz
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD 21231 United States
| | - Patrick T. Hennessey
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD 21231 United States
| | - Joseph A. Califano
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD 21231 United States
- Milton J Dance Head and Neck Center, Greater Baltimore Medical Center, Baltimore, MD 21204, United States
| |
Collapse
|
34
|
De Falco G, Antonicelli G, Onnis A, Lazzi S, Bellan C, Leoncini L. Role of EBV in microRNA dysregulation in Burkitt lymphoma. Semin Cancer Biol 2009; 19:401-6. [DOI: 10.1016/j.semcancer.2009.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 07/10/2009] [Indexed: 12/12/2022]
|
35
|
Abstract
A large range of human viruses are associated with the development of arthritis or arthralgia. Although there are many parallels with autoimmune arthritides, there is little evidence that viral arthritides lead to autoimmune disease. In humans viral arthritides usually last from weeks to months, can be debilitating, and are usually treated with non-steroidal anti-inflammatory drugs, but with variable success. Viral arthritides likely arise from immunopathological inflammatory responses directed at viruses and/or their products residing and/or replicating within joint tissues. Macrophages recruited by monocyte chemoattractant protein-1 (MCP-1/CCL2) and activated by interferon, and proinflammatory mediators like tumour necrosis factor alpha, interferon gamma, interleukin-6 and interleukin-1beta appear to be common elements in this group of diseases. The challenge for new treatments is to target excessive inflammation without compromising anti-viral immunity. Recent evidence from mouse models suggests targeting MCP-1 or complement may emerge as viable new treatment options for viral arthritides.
Collapse
|
36
|
Kato Y, Sawata SY, Inoue A. A lentiviral vector encoding two fluorescent proteins enables imaging of adenoviral infection via adenovirus-encoded miRNAs in single living cells. ACTA ACUST UNITED AC 2009; 147:63-71. [DOI: 10.1093/jb/mvp144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
A statistical model for genetic mapping of viral infection by integrating epidemiological behavior. Stat Appl Genet Mol Biol 2009; 8:Article 38. [PMID: 19799557 DOI: 10.2202/1544-6115.1475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Large-scale studies of genetic variation may be helpful for understanding the genetic control mechanisms of viral infection and, ultimately, predicting and eliminating infectious disease outbreaks. We propose a new statistical model for detecting specific DNA sequence variants that are responsible for viral infection. This model considers additive, dominance and epistatic effects of haplotypes from three different genomes, recipient, transmitter and virus, through an epidemiological process. The model is constructed within the maximum likelihood framework and implemented with the EM algorithm. A number of hypothesis tests about population genetic structure and diversity and the pattern of genetic control are formulated. A series of closed forms for the EM algorithm to estimate haplotype frequencies and haplotype effects in a network of genetic interactions among three genomes are derived. Simulation studies were performed to test the statistical properties of the model, recommending necessary sample sizes for obtaining reasonably good accuracy and precision of parameter estimation. By integrating, for the first time, the epidemiological principle of viral infection into genetic mapping, the new model shall find an immediate application to studying the genetic architecture of viral infection.
Collapse
|
38
|
Human herpesvirus miRNAs statistically preferentially target host genes involved in cell signaling and adhesion/junction pathways. Cell Res 2009; 19:665-7. [PMID: 19381166 DOI: 10.1038/cr.2009.45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
39
|
Jadhav VM, Scaria V, Maiti S. Antagomirzymes: oligonucleotide enzymes that specifically silence microRNA function. Angew Chem Int Ed Engl 2009; 48:2557-60. [PMID: 19229913 DOI: 10.1002/anie.200805521] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many important cellular processes are regulated by small endogenous noncoding RNAs known as microRNAs (miRNAs). The precise molecular function of many miRNAs is unknown; different loss-of-function methods are required to gain insight into the biology of these small RNA molecules. Nucleic acid enzymes termed antagomirzymes are now shown to be valuable tools for the specific knockdown of miRNA in vitro and in vivo (see scheme).
Collapse
Affiliation(s)
- Vaibhav M Jadhav
- Institute for Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | | | |
Collapse
|
40
|
Hariharan M, Scaria V, Brahmachari SK. dbSMR: a novel resource of genome-wide SNPs affecting microRNA mediated regulation. BMC Bioinformatics 2009; 10:108. [PMID: 19371411 PMCID: PMC2676258 DOI: 10.1186/1471-2105-10-108] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 04/16/2009] [Indexed: 11/24/2022] Open
Abstract
Background MicroRNAs (miRNAs) regulate several biological processes through post-transcriptional gene silencing. The efficiency of binding of miRNAs to target transcripts depends on the sequence as well as intramolecular structure of the transcript. Single Nucleotide Polymorphisms (SNPs) can contribute to alterations in the structure of regions flanking them, thereby influencing the accessibility for miRNA binding. Description The entire human genome was analyzed for SNPs in and around predicted miRNA target sites. Polymorphisms within 200 nucleotides that could alter the intramolecular structure at the target site, thereby altering regulation were annotated. Collated information was ported in a MySQL database with a user-friendly interface accessible through the URL: . Conclusion The database has a user-friendly interface where the information can be queried using either the gene name, microRNA name, polymorphism ID or transcript ID. Combination queries using 'AND' or 'OR' is also possible along with specifying the degree of change of intramolecular bonding with and without the polymorphism. Such a resource would enable researchers address questions like the role of regulatory SNPs in the 3' UTRs and population specific regulatory modulations in the context of microRNA targets.
Collapse
Affiliation(s)
- Manoj Hariharan
- GN Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology (CSIR), Delhi, India.
| | | | | |
Collapse
|
41
|
Jadhav V, Scaria V, Maiti S. Antagomirzymes: Oligonucleotide Enzymes That Specifically Silence MicroRNA Function. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200805521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Taneja B, Yadav J, Chakraborty TK, Brahmachari SK. An Indian effort towards affordable drugs: “Generic to designer drugs”. Biotechnol J 2009; 4:348-60. [DOI: 10.1002/biot.200900031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Chang SS, Jiang WW, Smith I, Poeta LM, Begum S, Glazer C, Shan S, Westra W, Sidransky D, Califano JA. MicroRNA alterations in head and neck squamous cell carcinoma. Int J Cancer 2009; 123:2791-7. [PMID: 18798260 DOI: 10.1002/ijc.23831] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (mirs) are small noncoding RNA molecules (~22 nucleotides) that regulate posttranscriptional gene expression. Currently, there has not been a comprehensive study of their role in primary head and neck squamous cell carcinoma (HNSCC). To determine the role of mirs in HNSCC, we screened for altered microRNA expression in HNSCC primary tissue and cell lines. We then further tested the functional impact of alterations of specific mirs. An initial screening of 4 primary HNSCC, 4 normal mucosal controls and 4 HNSCC cell lines was analyzed for mature microRNA expression by microarray. Significance was determined using significance analysis of microarrays (SAM). Nine microRNAs were found by SAM to be upregulated or downregulated in tumor tissue including mir-21, let-7, 18, 29c, 142-3p, 155, 146b (overexpressed) and 494 (underexpressed). Mir-21 was validated by qRT-PCR. Functional validation by growth assays was performed, further validating mir-21. Transfection of mir-21 into JHU-011 and JHU-012 cell lines showed a 39% increase in cell growth at 72 hr relative to controls (p < 0.05). Transfection of the inhibitor into JHU-O12 cell lines showed a 92% decrease in cell growth relative to controls at 72 hr (p < 0.05). In addition, flow cytometry analysis of JHU-012 cells 48 hr after mir-21 inhibitor transfection showed a statistically significant increase in cytochrome c release and increased apoptosis. These differentially expressed microRNAs may be of interest as potential novel oncogenes and tumor suppressor genes in HNSCC. Mir-21 is a putative oncogenic microRNA in head and neck cancer.
Collapse
Affiliation(s)
- Steven S Chang
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD 21287-0910, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ahluwalia JK, Khan SZ, Soni K, Rawat P, Gupta A, Hariharan M, Scaria V, Lalwani M, Pillai B, Mitra D, Brahmachari SK. Human cellular microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication. Retrovirology 2008; 5:117. [PMID: 19102781 PMCID: PMC2635386 DOI: 10.1186/1742-4690-5-117] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 12/23/2008] [Indexed: 01/02/2023] Open
Abstract
Background Cellular miRNAs play an important role in the regulation of gene expression in eukaryotes. Recently, miRNAs have also been shown to be able to target and inhibit viral gene expression. Computational predictions revealed earlier that the HIV-1 genome includes regions that may be potentially targeted by human miRNAs. Here we report the functionality of predicted miR-29a target site in the HIV-1 nef gene. Results We find that the human miRNAs hsa-miR-29a and 29b are expressed in human peripheral blood mononuclear cells. Expression of a luciferase reporter bearing the nef miR-29a target site was decreased compared to the luciferase construct without the target site. Locked nucleic acid modified anti-miRNAs targeted against hsa-miR-29a and 29b specifically reversed the inhibitory effect mediated by cellular miRNAs on the target site. Ectopic expression of the miRNA results in repression of the target Nef protein and reduction of virus levels. Conclusion Our results show that the cellular miRNA hsa-miR29a downregulates the expression of Nef protein and interferes with HIV-1 replication.
Collapse
|
45
|
Saini HK, Enright AJ, Griffiths-Jones S. Annotation of mammalian primary microRNAs. BMC Genomics 2008; 9:564. [PMID: 19038026 PMCID: PMC2632650 DOI: 10.1186/1471-2164-9-564] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 11/27/2008] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are important regulators of gene expression and have been implicated in development, differentiation and pathogenesis. Hundreds of miRNAs have been discovered in mammalian genomes. Approximately 50% of mammalian miRNAs are expressed from introns of protein-coding genes; the primary transcript (pri-miRNA) is therefore assumed to be the host transcript. However, very little is known about the structure of pri-miRNAs expressed from intergenic regions. Here we annotate transcript boundaries of miRNAs in human, mouse and rat genomes using various transcription features. The 5' end of the pri-miRNA is predicted from transcription start sites, CpG islands and 5' CAGE tags mapped in the upstream flanking region surrounding the precursor miRNA (pre-miRNA). The 3' end of the pri-miRNA is predicted based on the mapping of polyA signals, and supported by cDNA/EST and ditags data. The predicted pri-miRNAs are also analyzed for promoter and insulator-associated regulatory regions. RESULTS We define sets of conserved and non-conserved human, mouse and rat pre-miRNAs using bidirectional BLAST and synteny analysis. Transcription features in their flanking regions are used to demarcate the 5' and 3' boundaries of the pri-miRNAs. The lengths and boundaries of primary transcripts are highly conserved between orthologous miRNAs. A significant fraction of pri-miRNAs have lengths between 1 and 10 kb, with very few introns. We annotate a total of 59 pri-miRNA structures, which include 82 pre-miRNAs. 36 pri-miRNAs are conserved in all 3 species. In total, 18 of the confidently annotated transcripts express more than one pre-miRNA. The upstream regions of 54% of the predicted pri-miRNAs are found to be associated with promoter and insulator regulatory sequences. CONCLUSION Little is known about the primary transcripts of intergenic miRNAs. Using comparative data, we are able to identify the boundaries of a significant proportion of human, mouse and rat pri-miRNAs. We confidently predict the transcripts including a total of 77, 58 and 47 human, mouse and rat pre-miRNAs respectively. Our computational annotations provide a basis for subsequent experimental validation of predicted pri-miRNAs.
Collapse
Affiliation(s)
- Harpreet K Saini
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | | | | |
Collapse
|
46
|
Concatameric cloning of porcine microRNA molecules after assembly PCR. Biochem Biophys Res Commun 2008; 375:484-9. [PMID: 18722348 DOI: 10.1016/j.bbrc.2008.08.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 08/12/2008] [Indexed: 11/22/2022]
Abstract
While the number of human or murine microRNAs (miRNAs) increases continuously, there are limited data available from other species. We report a novel identification method of small RNAs such as miRNAs, which allows simultaneous cloning of five RNA molecules within the same insert. First, RNA molecules <40nt were polyadenylated and five concatamerising 5' DNA adaptors were ligated to the molecules in independent reactions. Reverse transcription was carried out using oligo d(T)(18) primers with concatamerising 5' overhangs. The introduced complementary termini in the different reactions enabled the subsequent coupling of five purified antisense strands to one molecule by means of an assembly PCR. After cloning, small RNAs were identified by DNA sequencing. By means of this cloning approach, we identified 10 novel and one known porcine miRNAs. Furthermore, the endogenous expression of the cloned miRNAs was quantified in various tissues using a qRT-PCR approach.
Collapse
|
47
|
Scaria V, Jadhav V. microRNAs in viral oncogenesis. Retrovirology 2007; 4:82. [PMID: 18036240 PMCID: PMC2217556 DOI: 10.1186/1742-4690-4-82] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Accepted: 11/24/2007] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are a recently discovered class of small noncoding functional RNAs. These molecules mediate post-transcriptional regulation of gene expression in a sequence specific manner. MicroRNAs are now known to be key players in a variety of biological processes and have been shown to be deregulated in a number of cancers. The discovery of viral encoded microRNAs, especially from a family of oncogenic viruses, has attracted immense attention towards the possibility of microRNAs as critical modulators of viral oncogenesis. The host-virus crosstalk mediated by microRNAs, messenger RNAs and proteins, is complex and involves the different cellular regulatory layers. In this commentary, we describe models of microRNA mediated viral oncogenesis.
Collapse
|