1
|
Song Y, Yuan H, Yang X, Yang Z, Ren Z, Qi S, He H, Zhang XX, Jiang T, Yuan ZG. The opposing effect of acute and chronic Toxoplasma gondii infection on tumor development. Parasit Vectors 2024; 17:247. [PMID: 38835064 DOI: 10.1186/s13071-024-06240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/08/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The interplay between Toxoplasma gondii infection and tumor development is intriguing and not yet fully understood. Some studies showed that T. gondii reversed tumor immune suppression, while some reported the opposite, stating that T. gondii infection promoted tumor growth. METHODS We created three mouse models to investigate the interplay between T. gondii and tumor. Model I aimed to study the effect of tumor growth on T. gondii infection by measuring cyst number and size. Models II and III were used to investigate the effect of different stages of T. gondii infection on tumor development via flow cytometry and bioluminescent imaging. Mouse strains (Kunming, BALB/c, and C57BL/6J) with varying susceptibilities to tumors were used in the study. RESULTS The size and number of brain cysts in the tumor-infected group were significantly higher, indicating that tumor presence promotes T. gondii growth in the brain. Acute T. gondii infection, before or after tumor cell introduction, decreased tumor growth manifested by reduced bioluminescent signal and tumor size and weight. In the tumor microenvironment, CD4+ and CD8+ T cell number, including their subpopulations (cytotoxic CD8+ T cells and Th1 cells) had a time-dependent increase in the group with acute T. gondii infection compared with the group without infection. However, in the peripheral blood, the increase of T cells, including cytotoxic CD8+ T cells and Th1 cells, persisted 25 days after Lewis lung carcinoma (LLC) cell injection in the group with acute T. gondii. Chronic T. gondii infection enhanced tumor growth as reflected by increase in tumor size and weight. The LLC group with chronic T. gondii infection exhibited decreased percentages of cytotoxic CD8+ T cells and Th1 cells 25 days post-LLC injection as compared with the LLC group without T. gondii infection. At week 4 post-LLC injection, chronic T. gondii infection increased tumor formation rate [odds ratio (OR) 1.71] in both KM and BALB/c mice. CONCLUSIONS Our research elucidates the dynamics between T. gondii infection and tumorigenesis. Tumor-induced immune suppression promoted T. gondii replication in the brain. Acute and chronic T. gondii infection had opposing effects on tumor development.
Collapse
Affiliation(s)
- Yining Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Hao Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Xiaoying Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zipeng Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zhaowen Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Shuting Qi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Houjing He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Xiu-Xiang Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, People's Republic of China.
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| | - Tiantian Jiang
- Department of Pediatrics, School of Medicine, University of California, La Jolla, San Diego, CA, USA.
| | - Zi-Guo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, Guangdong, People's Republic of China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Rojas-Baron L, Senk K, Hermosilla C, Taubert A, Velásquez ZD. Toxoplasma gondii modulates the host cell cycle, chromosome segregation, and cytokinesis irrespective of cell type or species origin. Parasit Vectors 2024; 17:180. [PMID: 38581071 PMCID: PMC10996137 DOI: 10.1186/s13071-024-06244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Toxoplasma gondii is an apicomplexan intracellular obligate parasite and the etiological agent of toxoplasmosis in humans, domestic animals and wildlife, causing miscarriages and negatively impacting offspring. During its intracellular development, it relies on nutrients from the host cell, controlling several pathways and the cytoskeleton. T. gondii has been proven to control the host cell cycle, mitosis and cytokinesis, depending on the time of infection and the origin of the host cell. However, no data from parallel infection studies have been collected. Given that T. gondii can infect virtually any nucleated cell, including those of humans and animals, understanding the mechanism by which it infects or develops inside the host cell is essential for disease prevention. Therefore, we aimed here to reveal whether this modulation is dependent on a specific cell type or host cell species. METHODS We used only primary cells from humans and bovines at a maximum of four passages to ensure that all cells were counted with appropriate cell cycle checkpoint control. The cell cycle progression was analysed using fluorescence-activated cell sorting (FACS)-based DNA quantification, and its regulation was followed by the quantification of cyclin B1 (mitosis checkpoint protein). The results demonstrated that all studied host cells except bovine colonic epithelial cells (BCEC) were arrested in the S-phase, and none of them were affected in cyclin B1 expression. Additionally, we used an immunofluorescence assay to track mitosis and cytokinesis in uninfected and T. gondii-infected cells. RESULTS The results demonstrated that all studied host cell except bovine colonic epithelial cells (BCEC) were arrested in the S-phase, and none of them were affected in cyclin B1 expression. Our findings showed that the analysed cells developed chromosome segregation problems and failed to complete cytokinesis. Also, the number of centrosomes per mitotic pole was increased after infection in all cell types. Therefore, our data suggest that T. gondii modulates the host cell cycle, chromosome segregation and cytokinesis during infection or development regardless of the host cell origin or type.
Collapse
Affiliation(s)
- Lisbeth Rojas-Baron
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| | - Kira Senk
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| | - Zahady D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany.
| |
Collapse
|
3
|
Rojas-Barón L, Hermosilla C, Taubert A, Velásquez ZD. Toxoplasma gondii infection-induced host cellular DNA damage is strain-dependent and leads to the activation of the ATM-dependent homologous recombination pathway. Front Cell Infect Microbiol 2024; 14:1374659. [PMID: 38524184 PMCID: PMC10957594 DOI: 10.3389/fcimb.2024.1374659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Toxoplasma gondii is a globally occurring apicomplexan parasite that infects humans and animals. Globally, different typical and atypical haplotypes of T. gondii induce varying pathologies in hosts. As an obligate intracellular protozoon, T. gondii was shown to interfere with host cell cycle progression, leading to mitotic spindle alteration, chromosome segregation errors and cytokinesis failure which all may reflect chromosomal instability. Referring to strain-dependent virulence, we here studied the potential of different T. gondii strains (RH, Me49 and NED) to drive DNA damage in primary endothelial host cells. Utilizing microscopic analyses, comet assays and γ-H2AX quantification, we demonstrated a strain-dependent induction of binucleated host cells, DNA damage and DNA double strand breaks, respectively, in T. gondii-infected cells with the RH strain driving the most prominent effects. Interestingly, only the NED strain significantly triggered micronuclei formation in T. gondii-infected cells. Focusing on the RH strain, we furthermore demonstrated that T. gondii-infected primary host cells showed a DNA damage response by activating the ATM-dependent homologous recombination (HR) pathway. In contrast, key molecules of the nonhomologous DNA end joining (NHEJ) pathway were either not affected or downregulated in RH-infected host cells, suggesting that this pathway is not activated by infection. In conclusion, current finding suggests that T. gondii infection affects the host cell genome integrity in a strain-dependent manner by causing DNA damage and chromosomal instability.
Collapse
Affiliation(s)
| | | | | | - Zahady D. Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Rojas-Barón L, Hermosilla C, Taubert A, Velásquez ZD. Toxoplasma gondii Me49 and NED strains arrest host cell cycle progression and alter chromosome segregation in a strain-independent manner. Front Microbiol 2024; 15:1336267. [PMID: 38450167 PMCID: PMC10915083 DOI: 10.3389/fmicb.2024.1336267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that modulates a broad range of host cell functions to guarantee its intracellular development and replication. T. gondii includes three classical clonal lineages exhibiting different degrees of virulence. Regarding the genetic diversity of T. gondii circulating in Europe, type II strains and, to a lesser extent, type III strains are the dominant populations, both in humans and animals. Infections with the type I strain led to widespread parasite dissemination and death in mice, while type III is considered avirulent. Previously, we demonstrated that primary endothelial cells infected with the T. gondii RH strain (haplotype I) were arrested in the G2/M-phase transition, triggering cytokinesis failure and chromosome missegregation. Since T. gondii haplotypes differ in their virulence, we here studied whether T. gondii-driven host cell cycle perturbation is strain-dependent. Primary endothelial cells were infected with T. gondii Me49 (type II strain) or NED (type III strain), and their growth kinetics were compared up to cell lysis (6-30 h p. i.). In this study, only slight differences in the onset of full proliferation were observed, and developmental data in principle matched those of the RH strain. FACS-based DNA quantification to estimate cell proportions experiencing different cell cycle phases (G0/1-, S-, and G2/M-phase) revealed that Me49 and NED strains both arrested the host cell cycle in the S-phase. Cyclins A2 and B1 as key molecules of S- and M-phase were not changed by Me49 infection, while NED infection induced cyclin B1 upregulation. To analyze parasite-driven alterations during mitosis, we demonstrated that both Me49 and NED infections led to impaired host cellular chromosome segregation and irregular centriole overduplication. Moreover, in line with the RH strain, both strains boosted the proportion of binucleated cells within infected endothelial cell layers, thereby indicating enhanced cytokinesis failure. Taken together, we demonstrate that all parasite-driven host cell cycle arrest, chromosome missegregation, and binucleated phenotypes are T. gondii-specific but strain independent.
Collapse
Affiliation(s)
- Lisbeth Rojas-Barón
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | |
Collapse
|
5
|
Grochow T, Beck B, Rentería-Solís Z, Schares G, Maksimov P, Strube C, Raqué L, Kacza J, Daugschies A, Fietz SA. Reduced neural progenitor cell count and cortical neurogenesis in guinea pigs congenitally infected with Toxoplasma gondii. Commun Biol 2023; 6:1209. [PMID: 38012384 PMCID: PMC10682419 DOI: 10.1038/s42003-023-05576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Toxoplasma (T.) gondii is an obligate intracellular parasite with a worldwide distribution. Congenital infection can lead to severe pathological alterations in the brain. To examine the effects of toxoplasmosis in the fetal brain, pregnant guinea pigs are infected with T. gondii oocysts on gestation day 23 and dissected 10, 17 and 25 days afterwards. We show the neocortex to represent a target region of T. gondii and the parasite to infect neural progenitor cells (NPCs), neurons and astrocytes in the fetal brain. Importantly, we observe a significant reduction in neuron number at end-neurogenesis and find a marked reduction in NPC count, indicating that impaired neurogenesis underlies the neuronal decrease in infected fetuses. Moreover, we observe focal microglioses to be associated with T. gondii in the fetal brain. Our findings expand the understanding of the pathophysiology of congenital toxoplasmosis, especially contributing to the development of cortical malformations.
Collapse
Affiliation(s)
- Thomas Grochow
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Britta Beck
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Zaida Rentería-Solís
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gereon Schares
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Pavlo Maksimov
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lisa Raqué
- Veterinary practice Raqué, Leipzig, Germany
| | - Johannes Kacza
- BioImaging Core Facility, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany.
| |
Collapse
|
6
|
Dupont D, Robert M, Brenier-Pinchart M, Lefevre A, Wallon M, Pelloux H. Toxoplasma gondii, a plea for a thorough investigation of its oncogenic potential. Heliyon 2023; 9:e22147. [PMID: 38034818 PMCID: PMC10685377 DOI: 10.1016/j.heliyon.2023.e22147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
It is estimated that 30 % of the world's population harbours the parasite Toxoplasma gondii, particularly in the brain. Beyond its implication in potentially severe opportunistic or congenital infections, this persistence has long been considered as without consequence. However, certain data in animals and humans suggest that this carriage may be linked to various neuropsychiatric or neurodegenerative disorders. The hypothesis of a potential cerebral oncogenicity of the parasite is also emerging. In this personal view, we will present the epidemiological arguments in favour of an association between toxoplasmosis and cerebral malignancy, before considering the points that could underlie a potential causal link. More specifically, we will focus on the brain as the preferred location for T. gondii persistence and the propensity of this parasite to interfere with the apoptosis and cell cycle signalling pathways of their host cell.
Collapse
Affiliation(s)
- D. Dupont
- Institut des Agents Infectieux, Parasitologie Mycologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, 69004, France
- Physiologie intégrée du système d’éveil, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, Faculté de Médecine, Université Claude Bernard Lyon 1, Bron, 69500, France
| | - M.G. Robert
- Service de Parasitologie-Mycologie, CHU Grenoble Alpes, Grenoble, 38000, France
- Université Grenoble Alpes, Institut pour l'Avancée des Biosciences (IAB), INSERM U1209-CNRS UMR 5309, Grenoble, 38000, France
| | - M.P. Brenier-Pinchart
- Service de Parasitologie-Mycologie, CHU Grenoble Alpes, Grenoble, 38000, France
- Université Grenoble Alpes, Institut pour l'Avancée des Biosciences (IAB), INSERM U1209-CNRS UMR 5309, Grenoble, 38000, France
| | - A. Lefevre
- Institut des Agents Infectieux, Parasitologie Mycologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, 69004, France
| | - M. Wallon
- Institut des Agents Infectieux, Parasitologie Mycologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, 69004, France
- Physiologie intégrée du système d’éveil, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, Faculté de Médecine, Université Claude Bernard Lyon 1, Bron, 69500, France
| | - H. Pelloux
- Service de Parasitologie-Mycologie, CHU Grenoble Alpes, Grenoble, 38000, France
- Université Grenoble Alpes, Institut pour l'Avancée des Biosciences (IAB), INSERM U1209-CNRS UMR 5309, Grenoble, 38000, France
| |
Collapse
|
7
|
Hildebrandt F, Mohammed M, Dziedziech A, Bhandage AK, Divne AM, Barrenäs F, Barragan A, Henriksson J, Ankarklev J. scDual-Seq of Toxoplasma gondii-infected mouse BMDCs reveals heterogeneity and differential infection dynamics. Front Immunol 2023; 14:1224591. [PMID: 37575232 PMCID: PMC10415529 DOI: 10.3389/fimmu.2023.1224591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Dendritic cells and macrophages are integral parts of the innate immune system and gatekeepers against infection. The protozoan pathogen, Toxoplasma gondii, is known to hijack host immune cells and modulate their immune response, making it a compelling model to study host-pathogen interactions. Here we utilize single cell Dual RNA-seq to parse out heterogeneous transcription of mouse bone marrow-derived dendritic cells (BMDCs) infected with two distinct genotypes of T. gondii parasites, over multiple time points post infection. We show that the BMDCs elicit differential responses towards T. gondii infection and that the two parasite lineages distinctly manipulate subpopulations of infected BMDCs. Co-expression networks define host and parasite genes, with implications for modulation of host immunity. Integrative analysis validates previously established immune pathways and additionally, suggests novel candidate genes involved in host-pathogen interactions. Altogether, this study provides a comprehensive resource for characterizing host-pathogen interplay at high-resolution.
Collapse
Affiliation(s)
- Franziska Hildebrandt
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mubasher Mohammed
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexis Dziedziech
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Global Health, Institut Pasteur, Paris, France
| | - Amol K. Bhandage
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anna-Maria Divne
- Microbial Single Cell Genomics Facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden
| | - Fredrik Barrenäs
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Johan Henriksson
- Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
- Microbial Single Cell Genomics Facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
de Campos VS, Magalhães CF, da Rosa BG, dos Santos CM, Fragel-Madeira L, Figueiredo DP, Calaza KC, Adesse D. Maternal Toxoplasma gondii infection affects proliferation, differentiation and cell cycle regulation of retinal neural progenitor cells in mouse embryo. Front Cell Neurosci 2023; 17:1211446. [PMID: 37545879 PMCID: PMC10400775 DOI: 10.3389/fncel.2023.1211446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
Background Toxoplasmosis affects one third of the world population and has the protozoan Toxoplasma gondii as etiological agent. Congenital toxoplasmosis (CT) can cause severe damage to the fetus, including miscarriages, intracranial calcification, hydrocephalus and retinochoroiditis. Severity of CT depends on the gestational period in which infection occurs, and alterations at the cellular level during retinal development have been reported. In this study, we proposed a mouse CT model to investigate the impact of infection on retinal development. Methods Pregnant females of pigmented C57BL/6 strain mice were infected intragastrically with two T. gondii cysts (ME49 strain) at embryonic day 10 (E10), and the offspring were analyzed at E18. Results Infected embryos had significantly smaller body sizes and weights than the PBS-treated controls, indicating that embryonic development was affected. In the retina, a significant increase in the number of Ki-67-positive cells (marker of proliferating cells) was found in the apical region of the NBL of infected mice compared to the control. Supporting this, cell cycle proteins Cyclin D3, Cdk6 and pChK2 were significantly altered in infected retinas. Interestingly, the immunohistochemical analysis showed a significant increase in the population of β-III-tubulin-positive cells, one of the earliest markers of neuronal differentiation. Conclusions Our data suggests that CT affects cell cycle progression in retinal progenitor cells, possibly inducing the arrest of these cells at G2/M phase. Such alterations could influence the differentiation, anticipating/increasing neuronal maturation, and therefore leading to abnormal retinal formation. Our model mimics important events observed in ocular CT.
Collapse
Affiliation(s)
- Viviane Souza de Campos
- Laboratório de Neurobiologia da Retina, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Camila Feitosa Magalhães
- Laboratório de Neurobiologia da Retina, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Barbara Gomes da Rosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | - Lucianne Fragel-Madeira
- Laboratório de Desenvolvimento e Regeneração Neural, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Danniel Pereira Figueiredo
- Laboratório de Neurobiologia da Retina, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Karin C. Calaza
- Laboratório de Neurobiologia da Retina, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
9
|
A. PORTES JULIANA, C. VOMMARO ROSSIANE, AYRES CALDAS LUCIO, S. MARTINS-DUARTE ERICA. Intracellular life of protozoan Toxoplasma gondii: Parasitophorous vacuole establishment and survival strategies. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
10
|
Velásquez ZD, Rojas-Barón L, Larrazabal C, Salierno M, Gärtner U, Pervizaj-Oruqaj L, Herold S, Hermosilla C, Taubert A. Neospora caninum Infection Triggers S-phase Arrest and Alters Nuclear Characteristics in Primary Bovine Endothelial Host Cells. Front Cell Dev Biol 2022; 10:946335. [PMID: 36111335 PMCID: PMC9469085 DOI: 10.3389/fcell.2022.946335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Neospora caninum represents a major cause of abortive disease in bovines and small ruminants worldwide. As a typical obligate intracellular apicomplexan parasite, N. caninum needs to modulate its host cell for successful replication. In the current study, we focused on parasite-driven interference with host cell cycle progression. By performing DNA content-based cell cycle phase analyses in N. caninum-infected primary bovine umbilical vein endothelial cells (BUVEC), a parasite-driven S-phase arrest was detected at both 24 and 32 h p. i., being paralleled by fewer host cells experiencing the G0/G1 cell cycle phase. When analyzing S-subphases, proliferation cell nuclear antigen (per PCNA)-based experiments showed a reduced population of BUVEC in the late S-phase. Analyses on key molecules of cell cycle regulation documented a significant alteration of cyclin A2 and cyclin B1 abundance in N. caninum-infected host endothelial cells, thereby confirming irregularities in the S-phase and S-to-G2/M-phase transition. In line with cell cycle alterations, general nuclear parameters revealed smaller nuclear sizes and morphological abnormalities of BUVEC nuclei within the N. caninum-infected host cell layer. The latter observations were also confirmed by transmission electron microscopy (TEM) and by analyses of lamin B1 as a marker of nuclear lamina, which illustrated an inhomogeneous nuclear lamin B1 distribution, nuclear foldings, and invaginations, thereby reflecting nuclear misshaping. Interestingly, the latter finding applied to both non-infected and infected host cells within parasitized BUVEC layer. Additionally, actin detection indicated alterations in the perinuclear actin cap formation since typical nucleo-transversal filaments were consistently lacking in N. caninum-infected BUVEC, as also documented by significantly decreased actin-related intensities in the perinuclear region. These data indicate that N. caninum indeed alters host cell cycle progression and severely affects the host cell nuclear phenotype in primary bovine endothelial host cells. In summary, these findings add novel data on the complex N. caninum-specific modulation of host cell and nucleus, thereby demonstrating clear differences in cell cycle progression modulation driven by other closely related apicomplexans like Toxoplasma gondii and Besnotia besnoiti.
Collapse
Affiliation(s)
- Zahady D. Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
- *Correspondence: Zahady D. Velásquez,
| | - Lisbeth Rojas-Barón
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Camilo Larrazabal
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Marcelo Salierno
- Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Learta Pervizaj-Oruqaj
- Department of Medicine V Internal Medicine Infectious Diseases and Infection Control Universities of Giessen and Marburg Lung Center (UGMLC) Member of the German Center for Lung Research (DZL) Justus-Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Excellence Cluster Cardipulmonary Institute (CPI), Giessen, Germany
| | - Susanne Herold
- Department of Medicine V Internal Medicine Infectious Diseases and Infection Control Universities of Giessen and Marburg Lung Center (UGMLC) Member of the German Center for Lung Research (DZL) Justus-Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Excellence Cluster Cardipulmonary Institute (CPI), Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
11
|
Disruption of Toxoplasma gondii-Induced Host Cell DNA Replication Is Dependent on Contact Inhibition and Host Cell Type. mSphere 2022; 7:e0016022. [PMID: 35587658 PMCID: PMC9241542 DOI: 10.1128/msphere.00160-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan Toxoplasma gondii is a highly successful obligate intracellular parasite that, upon invasion of its host cell, releases an array of host-modulating protein effectors to counter host defenses and further its own replication and dissemination. Early studies investigating the impact of T. gondii infection on host cell function revealed that this parasite can force normally quiescent cells to activate their cell cycle program. Prior reports by two independent groups identified the dense granule protein effector HCE1/TEEGR as being solely responsible for driving host cell transcriptional changes through its direct interaction with the cyclin E regulatory complex DP1 and associated transcription factors. Our group independently identified HCE1/TEEGR through the presence of distinct repeated regions found in a number of host nuclear targeted parasite effectors and verified its central role in initiating host cell cycle changes. Additionally, we report here the time-resolved kinetics of host cell cycle transition in response to HCE1/TEEGR, using the fluorescence ubiquitination cell cycle indicator reporter line (FUCCI), and reveal the existence of a block in S-phase progression and host DNA synthesis in several cell lines commonly used in the study of T. gondii. Importantly, we have observed that this S-phase block is not due to additional dense granule effectors but rather is dependent on the host cell line background and contact inhibition status of the host monolayer in vitro. This work highlights intriguing differences in the host response to reprogramming by the parasite and raises interesting questions regarding how parasite effectors differentially manipulate the host cell depending on the in vitro or in vivo context. IMPORTANCEToxoplasma gondii chronically infects approximately one-third of the global population and can produce severe pathology in immunologically immature or compromised individuals. During infection, this parasite releases numerous host-targeted effector proteins that can dramatically alter the expression of a variety of host genes. A better understanding of parasite effectors and their host targets has the potential to not only provide ways to control infection but also inform us about our own basic biology. One host pathway that has been known to be altered by T. gondii infection is the cell cycle, and prior reports have identified a parasite effector, known as HCE1/TEEGR, as being responsible. In this report, we further our understanding of the kinetics of cell cycle transition induced by this effector and show that the capacity of HCE1/TEEGR to induce host cell DNA synthesis is dependent on both the cell type and the status of contact inhibition.
Collapse
|
12
|
Hartman EJ, Asady B, Romano JD, Coppens I. The Rab11-Family Interacting Proteins reveal selective interaction of mammalian recycling endosomes with the Toxoplasma parasitophorous vacuole in a Rab11- and Arf6-dependent manner. Mol Biol Cell 2022; 33:ar34. [PMID: 35274991 PMCID: PMC9282008 DOI: 10.1091/mbc.e21-06-0284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
After mammalian cell invasion, the parasite Toxoplasma multiplies in a self-made membrane-bound compartment, the parasitophorous vacuole (PV). We previously showed that Toxoplasma interacts with many host cell organelles, especially from recycling pathways, and sequestrates Rab11A and Rab11B vesicles into the PV. Here, we examine the specificity of host Rab11 vesicle interaction with the PV by focusing on the recruitment of subpopulations of Rab11 vesicles characterized by different effectors, for example, Rab11-family interacting roteins (FIPs) or Arf6. Our quantitative microscopic analysis illustrates the presence of intra-PV vesicles with FIPs from class I (FIP1C, FIP2, FIP5) and class II (FIP3, FIP4) but to various degrees. The intra-PV delivery of vesicles with class I, but not class II, FIPs is dependent on Rab11 binding. Cell depletion of Rab11A results in a significant decrease in intra-PV FIP5, but not FIP3 vesicles. Class II FIPs also bind to Arf6, and we observe vesicles associated with FIP3-Rab11A or FIP3-Arf6 complexes concomitantly within the PV. Abolishing FIP3 binding to both Rab11 and Arf6 reduces the number of intra-PV FIP3 vesicles. These data point to a selective process of mammalian Rab11 vesicle recognition and scavenging mediated by Toxoplasma, suggesting that specific parasite PV proteins may be involved in these processes.
Collapse
Affiliation(s)
- Eric J Hartman
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615N Wolfe Street, Baltimore, MD 21205, USA
| | - Beejan Asady
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615N Wolfe Street, Baltimore, MD 21205, USA
| | - Julia D Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615N Wolfe Street, Baltimore, MD 21205, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615N Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Velásquez ZD, López-Osorio S, Waiger D, Manosalva C, Pervizaj-Oruqaj L, Herold S, Hermosilla C, Taubert A. Eimeria bovis infections induce G 1 cell cycle arrest and a senescence-like phenotype in endothelial host cells. Parasitology 2021; 148:341-353. [PMID: 33100232 PMCID: PMC7890351 DOI: 10.1017/s0031182020002097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 01/10/2023]
Abstract
Apicomplexan parasites are well-known to modulate their host cells at diverse functional levels. As such, apicomplexan-induced alteration of host cellular cell cycle was described and appeared dependent on both, parasite species and host cell type. As a striking evidence of species-specific reactions, we here show that Eimeria bovis drives primary bovine umbilical vein endothelial cells (BUVECs) into a senescence-like phenotype during merogony I. In line with senescence characteristics, E. bovis induces a phenotypic change in host cell nuclei being characterized by nucleolar fusion and heterochromatin-enriched peripheries. By fibrillarin staining we confirm nucleoli sizes to be increased and their number per nucleus to be reduced in E. bovis-infected BUVECs. Additionally, nuclei of E. bovis-infected BUVECs showed enhanced signals for HH3K9me2 as heterochromatin marker thereby indicating an infection-induced change in heterochromatin transition. Furthermore, E. bovis-infected BUVECs show an enhanced β-galactosidase activity, which is a well-known marker of senescence. Referring to cell cycle progression, protein abundance profiles in E. bovis-infected endothelial cells revealed an up-regulation of cyclin E1 thereby indicating a cell cycle arrest at G1/S transition, signifying a senescence key feature. Similarly, abundance of G2 phase-specific cyclin B1 was found to be downregulated at the late phase of macromeront formation. Overall, these data indicate that the slow proliferative intracellular parasite E. bovis drives its host endothelial cells in a senescence-like status. So far, it remains to be elucidated whether this phenomenon indeed reflects an intentionally induced mechanism to profit from host cell-derived energy and metabolites present in a non-dividing cellular status.
Collapse
Affiliation(s)
- Zahady D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Sara López-Osorio
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
- Research Group CIVAB, School of Veterinary Medicine, Faculty of Agrarian Sciences, University of Antioquia, Medellin, Colombia
| | - Daniel Waiger
- Center for Scientific Imaging, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Hebrew University of Jerusalem Israel, Rehovot, Israel
| | - Carolina Manosalva
- Faculty of Veterinary Sciences, Institute of Pharmacology, Universidad Austral de Chile, Valdivia, Chile
| | - Learta Pervizaj-Oruqaj
- Cardio Pulmonary Institute (CPI), Giessen, Germany
- Universities Giessen & Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Susanne Herold
- Cardio Pulmonary Institute (CPI), Giessen, Germany
- Universities Giessen & Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
14
|
Panas MW, Boothroyd JC. Seizing control: How dense granule effector proteins enable Toxoplasma to take charge. Mol Microbiol 2021; 115:466-477. [PMID: 33400323 PMCID: PMC8344355 DOI: 10.1111/mmi.14679] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/24/2022]
Abstract
Control of the host cell is crucial to the Apicomplexan parasite, Toxoplasma gondii, while it grows intracellularly. To achieve this goal, these single-celled eukaryotes export a series of effector proteins from organelles known as "dense granules" that interfere with normal cellular processes and responses to invasion. While some effectors are found attached to the outer surface of the parasitophorous vacuole (PV) in which Toxoplasma tachyzoites reside, others are found in the host cell's cytoplasm and yet others make their way into the host nucleus, where they alter host transcription. Among the processes that are severely altered are innate immune responses, host cell cycle, and association with host organelles. The ways in which these crucial processes are altered through the coordinated action of a large collection of effectors is as elegant as it is complex, and is the central focus of the following review; we also discuss the recent advances in our understanding of how dense granule effector proteins are trafficked out of the PV.
Collapse
Affiliation(s)
- Michael W. Panas
- Dept. Microbiology and Immunology, Stanford University School of Medicine, Stanford CA 94305
| | - John C. Boothroyd
- Dept. Microbiology and Immunology, Stanford University School of Medicine, Stanford CA 94305
| |
Collapse
|
15
|
Marcos‐López M, Rodger HD. Amoebic gill disease and host response in Atlantic salmon (
Salmo salar
L.): A review. Parasite Immunol 2020; 42:e12766. [DOI: 10.1111/pim.12766] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/13/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022]
|
16
|
Abstract
Manipulation of the host cell is a crucial part of life for many intracellular organisms. We have recently come to appreciate the extent to which the intracellular pathogen Toxoplasma gondii reprograms its host cell, and this is illustrated by the marked upregulation of the central regulator c-Myc, an oncogene that coordinates myriad cellular functions. In an effort to identify an effector protein capable of regulating c-Myc, our laboratory constructed a screen for mutant parasites unable to accomplish this upregulation. Interestingly, this screen identified numerous components of a complex located in/on the parasitophorous vacuole membrane necessary to translocate Toxoplasma proteins out into the host cytosol, but it never identified a specific effector protein. Thus, how the parasite upregulates c-Myc has largely been a mystery. Previously, the Toxoplasma dense granule protein GRA16 has been described to bind to one isoform of PP2A-B, a regulatory subunit that coordinates the activity of the catalytic protein phosphatase PP2A. As other PP2A subunits have been reported to target PP2A protein phosphatase activity to c-Myc, subsequently leading to c-Myc destabilization, we examined whether GRA16 has an impact on host c-Myc accumulation. Expression of Toxoplasma's GRA16 protein in Neospora caninum, a close relative of Toxoplasma that does not naturally upregulate host c-Myc, conferred the ability on Neospora to do this now. Further support was obtained by deleting the GRA16 gene from Toxoplasma and observing a severely diminished ability of Toxoplasma tachyzoites to upregulate host c-Myc. Thus, GRA16 is an effector protein central to Toxoplasma's ability to upregulate host c-Myc.IMPORTANCE The proto-oncogene c-Myc plays a crucial role in the growth and division of many animal cells. Previous studies have identified an active upregulation of c-Myc by Toxoplasma tachyzoites, suggesting the existence of one or more exported "effector" proteins. The identity of such an effector, however, has not previously been known. Here, we show that a previously known secreted protein, GRA16, plays a crucial role in c-Myc upregulation. This finding will enable further dissection of the precise mechanism and role of c-Myc upregulation in Toxoplasma-infected cells.
Collapse
Affiliation(s)
- Michael W Panas
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - John C Boothroyd
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| |
Collapse
|
17
|
Harun MSR, Marsh V, Elsaied NA, Webb KF, Elsheikha HM. Effects of Toxoplasma gondii infection on the function and integrity of human cerebrovascular endothelial cells and the influence of verapamil treatment in vitro. Brain Res 2020; 1746:147002. [PMID: 32592740 DOI: 10.1016/j.brainres.2020.147002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 06/07/2020] [Accepted: 06/20/2020] [Indexed: 12/16/2022]
Abstract
Toxoplasma gondii can cause parasitic encephalitis, a life-threatening infection that predominately occurs in immunocompromised individuals. T. gondii has the ability to invade the brain, but the mechanisms by which this parasite crosses the blood-brain-barrier (BBB) remain incompletely understood. The present study reports the changes associated with infection and replication of T. gondii within human brain microvascular endothelial cells (BMECs) in vitro. Our results indicated that exposure to T. gondii had an adverse impact on the function and integrity of the BMECs - through induction of cell cycle arrest, disruption of the BMEC barrier integrity, reduction of cellular viability and vitality, depolarization of the mitochondrial membrane potential, increase of the DNA fragmentation, and alteration of the expression of immune response and tight junction genes. The calcium channel/P-glycoprotein transporter inhibitor verapamil was effective in inhibiting T. gondii crossing the BMECs in a dose-dependent manner. The present study showed that T. gondii can compromise several functions of BMECs and demonstrated the ability of verapamil to inhibit T. gondii crossing of the BMECs in vitro.
Collapse
Affiliation(s)
- M S R Harun
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK; Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Victoria Marsh
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Nashwa A Elsaied
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Kevin F Webb
- Department of Electrical & Electronic Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK.
| |
Collapse
|
18
|
Besnoitia besnoiti-driven endothelial host cell cycle alteration. Parasitol Res 2020; 119:2563-2577. [PMID: 32548739 PMCID: PMC7366594 DOI: 10.1007/s00436-020-06744-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023]
Abstract
Besnoitia besnoiti is an important obligate intracellular parasite of cattle which primarily infects host endothelial cells of blood vessels during the acute phase of infection. Similar to the closely related parasite Toxoplasma gondii, B. besnoiti has fast proliferating properties leading to rapid host cell lysis within 24–30 h p.i. in vitro. Some apicomplexan parasites were demonstrated to modulate the host cellular cell cycle to successfully perform their intracellular development. As such, we recently demonstrated that T. gondii tachyzoites induce G2/M arrest accompanied by chromosome missegregation, cell spindle alteration, formation of supernumerary centrosomes, and cytokinesis impairment when infecting primary bovine umbilical vein endothelial cells (BUVEC). Here, we follow a comparative approach by using the same host endothelial cell system for B. besnoiti infections. The current data showed that—in terms of host cell cycle modulation—infections of BUVEC by B. besnoiti tachyzoites indeed differ significantly from those by T. gondii. As such, cyclin expression patterns demonstrated a significant upregulation of cyclin E1 in B. besnoiti–infected BUVEC, thereby indicating parasite-driven host cell stasis at G1-to-S phase transition. In line, the mitotic phase of host cell cycle was not influenced since alterations of chromosome segregation, mitotic spindle formation, and cytokinesis were not observed. In contrast to respective T. gondii–related data, we furthermore found a significant upregulation of histone H3 (S10) phosphorylation in B. besnoiti–infected BUVEC, thereby indicating enhanced chromosome condensation to occur in these cells. In line to altered G1/S-transition, we here additionally showed that subcellular abundance of proliferating cell nuclear antigen (PCNA), a marker for G1 and S phase sub-stages, was affected by B. besnoiti since infected cells showed increased nuclear PCNA levels when compared with that of control cells.
Collapse
|
19
|
Rastogi S, Xue Y, Quake SR, Boothroyd JC. Differential Impacts on Host Transcription by ROP and GRA Effectors from the Intracellular Parasite Toxoplasma gondii. mBio 2020; 11:e00182-20. [PMID: 32518180 PMCID: PMC7373195 DOI: 10.1128/mbio.00182-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii employs a vast array of effector proteins from the rhoptry and dense granule organelles to modulate host cell biology; these effectors are known as ROPs and GRAs, respectively. To examine the individual impacts of ROPs and GRAs on host gene expression, we developed a robust, novel protocol to enrich for ultrapure populations of a naturally occurring and reproducible population of host cells called uninfected-injected (U-I) cells, which Toxoplasma injects with ROPs but subsequently fails to invade. We then performed single-cell transcriptomic analysis at 1 to 3 h postinfection on U-I cells (as well as on uninfected and infected controls) arising from infection with either wild-type parasites or parasites lacking the MYR1 protein, which is required for soluble GRAs to cross the parasitophorous vacuole membrane (PVM) and reach the host cell cytosol. Based on comparisons of infected and U-I cells, the host's earliest response to infection appears to be driven primarily by the injected ROPs, which appear to induce immune and cellular stress pathways. These ROP-dependent proinflammatory signatures appear to be counteracted by at least some of the MYR1-dependent GRAs and may be enhanced by the MYR-independent GRAs (which are found embedded within the PVM). Finally, signatures detected in uninfected bystander cells from the infected monolayers suggest that MYR1-dependent paracrine effects also counteract inflammatory ROP-dependent processes.IMPORTANCE This work performs transcriptomic analysis of U-I cells, captures the earliest stage of a host cell's interaction with Toxoplasma gondii, and dissects the effects of individual classes of parasite effectors on host cell biology.
Collapse
Affiliation(s)
- Suchita Rastogi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Yuan Xue
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Applied Physics, Stanford University, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - John C Boothroyd
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
20
|
Sabou M, Doderer-Lang C, Leyer C, Konjic A, Kubina S, Lennon S, Rohr O, Viville S, Cianférani S, Candolfi E, Pfaff AW, Brunet J. Toxoplasma gondii ROP16 kinase silences the cyclin B1 gene promoter by hijacking host cell UHRF1-dependent epigenetic pathways. Cell Mol Life Sci 2020; 77:2141-2156. [PMID: 31492965 PMCID: PMC7256068 DOI: 10.1007/s00018-019-03267-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
Abstract
Toxoplasmosis, caused by the apicomplexan parasite Toxoplasma gondii, is one of the most common infections in the world due to the lifelong persistence of this parasite in a latent stage. This parasite hijacks host signaling pathways through epigenetic mechanisms which converge on key nuclear proteins. Here, we report a new parasite persistence strategy involving T. gondii rhoptry protein ROP16 secreted early during invasion, which targets the transcription factor UHRF1 (ubiquitin-like containing PHD and RING fingers domain 1), and leads to host cell cycle arrest. This is mediated by DNMT activity and chromatin remodeling at the cyclin B1 gene promoter through recruitment of phosphorylated UHRF1 associated with a repressive multienzymatic protein complex. This leads to deacetylation and methylation of histone H3 surrounding the cyclin B1 promoter to epigenetically silence its transcriptional activity. Moreover, T. gondii infection causes DNA hypermethylation in its host cell, by upregulation of DNMTs. ROP16 is already known to activate and phosphorylate protective immunity transcription factors such as STAT 3/6/5 and modulate host signaling pathways in a strain-dependent manner. Like in the case of STAT6, the strain-dependent effects of ROP16 on UHRF1 are dependent on a single amino-acid polymorphism in ROP16. This study demonstrates that Toxoplasma hijacks a new epigenetic initiator, UHRF1, through an early event initiated by the ROP16 parasite kinase.
Collapse
Affiliation(s)
- Marcela Sabou
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France
- Service de Parasitologie et Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Centre National de Référence de la Toxoplasmose, Pôle Sérologie, Strasbourg, France
| | - Cécile Doderer-Lang
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France
| | - Caroline Leyer
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France
| | - Ana Konjic
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France
| | - Sophie Kubina
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France
| | - Sarah Lennon
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, CNRS, UMR7178, Strasbourg, France
| | - Olivier Rohr
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France
| | - Stéphane Viville
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, CNRS, UMR7178, Strasbourg, France
| | - Ermanno Candolfi
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France
- Service de Parasitologie et Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Centre National de Référence de la Toxoplasmose, Pôle Sérologie, Strasbourg, France
| | - Alexander W Pfaff
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France.
- Service de Parasitologie et Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Centre National de Référence de la Toxoplasmose, Pôle Sérologie, Strasbourg, France.
| | - Julie Brunet
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, « Dynamics of Host-Pathogen Interactions » EA 7292, Fédération de Médecine Translationelle Université de Strasbourg, Strasbourg, France
- Service de Parasitologie et Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Centre National de Référence de la Toxoplasmose, Pôle Sérologie, Strasbourg, France
| |
Collapse
|
21
|
Wong ZS, Sokol-Borrelli SL, Olias P, Dubey JP, Boyle JP. Head-to-head comparisons of Toxoplasma gondii and its near relative Hammondia hammondi reveal dramatic differences in the host response and effectors with species-specific functions. PLoS Pathog 2020; 16:e1008528. [PMID: 32574210 PMCID: PMC7360062 DOI: 10.1371/journal.ppat.1008528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/14/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023] Open
Abstract
Toxoplasma gondii and Hammondia hammondi are closely-related coccidian intracellular parasites that differ in their ability to cause disease in animal and (likely) humans. The role of the host response in these phenotypic differences is not known and to address this we performed a transcriptomic analysis of a monocyte cell line (THP-1) infected with these two parasite species. The pathways altered by infection were shared between species ~95% the time, but the magnitude of the host response to H. hammondi was significantly higher compared to T. gondii. Accompanying this divergent host response was an equally divergent impact on the cell cycle of the host cell. In contrast to T. gondii, H. hammondi infection induces cell cycle arrest via pathways linked to DNA-damage responses and cellular senescence and robust secretion of multiple chemokines that are known to be a part of the senescence associated secretory phenotype (SASP). Remarkably, prior T. gondii infection or treatment with T. gondii-conditioned media suppressed responses to H. hammondi infection, and promoted the replication of H. hammondi in recipient cells. Suppression of inflammatory responses to H. hammondi was found to be mediated by the T. gondii effector IST, and this finding was consistent with reduced functionality of the H. hammondi IST ortholog compared to its T. gondii counterpart. Taken together our data suggest that T. gondii manipulation of the host cell is capable of suppressing previously unknown stress and/or DNA-damage induced responses that occur during infection with H. hammondi, and that one important impact of this T. gondii mediated suppression is to promote parasite replication.
Collapse
Affiliation(s)
- Zhee Sheen Wong
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah L. Sokol-Borrelli
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - J. P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland, United States of America
| | - Jon P. Boyle
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
22
|
Wong ZS, Borrelli SLS, Coyne CC, Boyle JP. Cell type- and species-specific host responses to Toxoplasma gondii and its near relatives. Int J Parasitol 2020; 50:423-431. [PMID: 32407716 PMCID: PMC8281328 DOI: 10.1016/j.ijpara.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
Toxoplasma gondii is remarkably unique in its ability to successfully infect vertebrate hosts from multiple phyla and can successfully infect most cells within these organisms. The infection outcome in each of these species is determined by the complex interaction between parasite and host genotype. As techniques to quantify global changes in cell function become more readily available and precise, new data are coming to light about how (i) different host cell types respond to parasitic infection and (ii) different parasite species impact the host. Here we focus on recent studies comparing the response to intracellular parasitism by different cell types and insights into understanding host-parasite interactions from comparative studies on T. gondii and its close extant relatives.
Collapse
Affiliation(s)
- Zhee S Wong
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah L Sokol Borrelli
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Carolyn C Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jon P Boyle
- Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
23
|
Host and Symbiont Cell Cycle Coordination Is Mediated by Symbiotic State, Nutrition, and Partner Identity in a Model Cnidarian-Dinoflagellate Symbiosis. mBio 2020; 11:mBio.02626-19. [PMID: 32156819 PMCID: PMC7064764 DOI: 10.1128/mbio.02626-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biomass regulation is critical to the overall health of cnidarian-dinoflagellate symbioses. Despite the central role of the cell cycle in the growth and proliferation of cnidarian host cells and dinoflagellate symbionts, there are few studies that have examined the potential for host-symbiont coregulation. This study provides evidence for the acceleration of host cell proliferation when in local proximity to clusters of symbionts within cnidarian tentacles. The findings suggest that symbionts augment the cell cycle of not only their enveloping host cells but also neighboring cells in the epidermis and gastrodermis. This provides a possible mechanism for rapid colonization of cnidarian tissues. In addition, the cell cycles of symbionts differed depending on nutritional regime, symbiotic state, and species identity. The responses of cell cycle profiles to these different factors implicate a role for species-specific regulation of symbiont cell cycles within host cnidarian tissues. The cell cycle is a critical component of cellular proliferation, differentiation, and response to stress, yet its role in the regulation of intracellular symbioses is not well understood. To explore host-symbiont cell cycle coordination in a marine symbiosis, we employed a model for coral-dinoflagellate associations: the tropical sea anemone Aiptasia (Exaiptasia pallida) and its native microalgal photosymbionts (Breviolum minutum and Breviolum psygmophilum). Using fluorescent labeling and spatial point-pattern image analyses to characterize cell population distributions in both partners, we developed protocols that are tailored to the three-dimensional cellular landscape of a symbiotic sea anemone tentacle. Introducing cultured symbiont cells to symbiont-free adult hosts increased overall host cell proliferation rates. The acceleration occurred predominantly in the symbiont-containing gastrodermis near clusters of symbionts but was also observed in symbiont-free epidermal tissue layers, indicating that the presence of symbionts contributes to elevated proliferation rates in the entire host during colonization. Symbiont cell cycle progression differed between cultured algae and those residing within hosts; the endosymbiotic state resulted in increased S-phase but decreased G2/M-phase symbiont populations. These phenotypes and the deceleration of cell cycle progression varied with symbiont identity and host nutritional status. These results demonstrate that host and symbiont cells have substantial and species-specific effects on the proliferation rates of their mutualistic partners. This is the first empirical evidence to support species-specific regulation of the symbiont cell cycle within a single cnidarian-dinoflagellate association; similar regulatory mechanisms likely govern interpartner coordination in other coral-algal symbioses and shape their ecophysiological responses to a changing climate.
Collapse
|
24
|
Franklin-Murray AL, Mallya S, Jankeel A, Sureshchandra S, Messaoudi I, Lodoen MB. Toxoplasma gondii Dysregulates Barrier Function and Mechanotransduction Signaling in Human Endothelial Cells. mSphere 2020; 5:e00550-19. [PMID: 31996420 PMCID: PMC6992369 DOI: 10.1128/msphere.00550-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/07/2020] [Indexed: 01/15/2023] Open
Abstract
Toxoplasma gondii can infect and replicate in vascular endothelial cells prior to entering host tissues. However, little is known about the molecular interactions at the parasite-endothelial cell interface. We demonstrate that T. gondii infection of primary human umbilical vein endothelial cells (HUVEC) altered cell morphology and dysregulated barrier function, increasing permeability to low-molecular-weight polymers. T. gondii disrupted vascular endothelial cadherin (VE-cadherin) and β-catenin localization to the cell periphery and reduced VE-cadherin protein expression. Notably, T. gondii infection led to reorganization of the host cytoskeleton by reducing filamentous actin (F-actin) stress fiber abundance under static and microfluidic shear stress conditions and by reducing planar cell polarity. RNA sequencing (RNA-Seq) comparing genome-wide transcriptional profiles of infected to uninfected endothelial cells revealed changes in gene expression associated with cell-cell adhesion, extracellular matrix reorganization, and cytokine-mediated signaling. In particular, genes downstream of Hippo signaling and the biomechanical sensor and transcriptional coactivator Yes-associated protein (YAP) were downregulated in infected endothelial cells. Interestingly, T. gondii infection activated Hippo signaling by increasing phosphorylation of LATS1, leading to cytoplasmic retention of YAP, and reducing YAP target gene expression. These findings suggest that T. gondii infection triggers Hippo signaling and YAP nuclear export, leading to an altered transcriptional profile of infected endothelial cells.IMPORTANCE Toxoplasma gondii is a foodborne parasite that infects virtually all warm-blooded animals and can cause severe disease in individuals with compromised or weakened immune systems. During dissemination in its infected hosts, T. gondii breaches endothelial barriers to enter tissues and establish the chronic infections underlying the most severe manifestations of toxoplasmosis. The research presented here examines how T. gondii infection of primary human endothelial cells induces changes in cell morphology, barrier function, gene expression, and mechanotransduction signaling under static conditions and under the physiological conditions of shear stress found in the bloodstream. Understanding the molecular interactions occurring at the interface between endothelial cells and T. gondii may provide insights into processes linked to parasite dissemination and pathogenesis.
Collapse
Affiliation(s)
- Armond L Franklin-Murray
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, California, USA
| | - Sharmila Mallya
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, California, USA
| | - Allen Jankeel
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, California, USA
| | - Suhas Sureshchandra
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, California, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, California, USA
| | - Melissa B Lodoen
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, California, USA
| |
Collapse
|
25
|
Molecular Basis of The Retinal Pigment Epithelial Changes That Characterize The Ocular Lesion in Toxoplasmosis. Microorganisms 2019; 7:microorganisms7100405. [PMID: 31569536 PMCID: PMC6843916 DOI: 10.3390/microorganisms7100405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022] Open
Abstract
When a person becomes infected with Toxoplasma gondii, ocular toxoplasmosis is the most common clinical presentation. The medical literature describes retinitis with surrounding hyperpigmentation secondary to proliferative changes in the retinal pigment epithelium, which is sufficiently characteristic that investigation often is not needed to make the diagnosis. We aimed to establish the frequency of “typical” ocular toxoplasmosis and delineate its molecular basis. Among 263 patients presenting consecutively with ocular toxoplasmosis to Ribeirão Preto General Hospital in Brazil, where T. gondii infection is endemic, 94.2% of 345 eyes had retinal hyperpigmentation. In ARPE-19 and primary human retinal pigment epithelial cell monolayers exposed to minimal numbers of T. gondii tachyzoites, the proliferation marker–KI-67–was increased in uninfected cells, which also were rendered more susceptible to infection. RT-qPCR and ELISA detected increased expression of vascular endothelial growth factor A (VEGF) and insulin-like growth factor (IGF)1, and decreased expression of thrombospondin (TSP)1 by infected cells. Blockade of VEGF and IGF1—or supplementation of TSP1—reversed the proliferation phenotype in uninfected cells. Our findings confirm that hyperpigmentation is a characteristic feature of retinitis in ocular toxoplasmosis, and demonstrate that T. gondii-infected human retinal pigment epithelial cells secrete VEGF and IGF1, and reduce production of TSP1, to promote proliferation of adjacent uninfected cells and create this disease-specific appearance.
Collapse
|
26
|
Rochet E, Appukuttan B, Ma Y, Ashander LM, Smith JR. Expression of Long Non-Coding RNAs by Human Retinal Müller Glial Cells Infected with Clonal and Exotic Virulent Toxoplasma gondii. Noncoding RNA 2019; 5:ncrna5040048. [PMID: 31547203 PMCID: PMC6958423 DOI: 10.3390/ncrna5040048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Retinal infection with Toxoplasma gondii-ocular toxoplasmosis-is a common cause of vision impairment worldwide. Pathology combines parasite-induced retinal cell death and reactive intraocular inflammation. Müller glial cells, which represent the supporting cell population of the retina, are relatively susceptible to infection with T. gondii. We investigated expression of long non-coding RNAs (lncRNAs) with immunologic regulatory activity in Müller cells infected with virulent T. gondii strains-GT1 (haplogroup 1, type I) and GPHT (haplogroup 6). We first confirmed expression of 33 lncRNA in primary cell isolates. MIO-M1 human retinal Müller cell monolayers were infected with T. gondii tachyzoites (multiplicity of infection = 5) and harvested at 4, 12, 24, and 36 h post-infection, with infection being tracked by the expression of parasite surface antigen 1 (SAG1). Significant fold-changes were observed for 31 lncRNAs at one or more time intervals. Similar changes between strains were measured for BANCR, CYTOR, FOXD3-AS1, GAS5, GSTT1-AS1, LINC-ROR, LUCAT1, MALAT1, MIR22HG, MIR143HG, PVT1, RMRP, SNHG15, and SOCS2-AS1. Changes differing between strains were measured for APTR, FIRRE, HOTAIR, HOXD-AS1, KCNQ1OT1, LINC00968, LINC01105, lnc-SGK1, MEG3, MHRT, MIAT, MIR17HG, MIR155HG, NEAT1, NeST, NRON, and PACER. Our findings suggest roles for lncRNAs in regulating retinal Müller cell immune responses to T. gondii, and encourage future studies on lncRNA as biomarkers and/or drug targets in ocular toxoplasmosis.
Collapse
Affiliation(s)
- Elise Rochet
- Flinders University College of Medicine & Public Health, Adelaide, SA 5042, Australia.
| | - Binoy Appukuttan
- Flinders University College of Medicine & Public Health, Adelaide, SA 5042, Australia.
| | - Yuefang Ma
- Flinders University College of Medicine & Public Health, Adelaide, SA 5042, Australia.
| | - Liam M Ashander
- Flinders University College of Medicine & Public Health, Adelaide, SA 5042, Australia.
| | - Justine R Smith
- Flinders University College of Medicine & Public Health, Adelaide, SA 5042, Australia.
| |
Collapse
|
27
|
Velásquez ZD, Conejeros I, Larrazabal C, Kerner K, Hermosilla C, Taubert A. Toxoplasma gondii-induced host cellular cell cycle dysregulation is linked to chromosome missegregation and cytokinesis failure in primary endothelial host cells. Sci Rep 2019; 9:12496. [PMID: 31467333 PMCID: PMC6715697 DOI: 10.1038/s41598-019-48961-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 08/14/2019] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii is a zoonotic and intracellular parasite with fast proliferating properties leading to rapid host cell lysis. T. gondii modulates its host cell on numerous functional levels. T. gondii was previously reported to influence host cellular cell cycle and to dampen host cell division. By using primary endothelial host cells, we show for the first time that T. gondii tachyzoite infections led to increased host cell proliferation and to an enhanced number of multi-nucleated host cells. As detected on DNA content level, parasite infections induced a G2/M cell cycle arrest without affecting expression of G2-specific cyclin B1. In line, parasite-driven impairment mainly concerned mitotic phase of host cells by propagating several functional alterations, such as chromosome segregation errors, mitotic spindle alteration and blockage of cytokinesis progression, with the latter most likely being mediated by the downregulation of the Aurora B kinase expression.
Collapse
Affiliation(s)
- Zahady D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany.
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Camilo Larrazabal
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Katharina Kerner
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
28
|
Bonilla-Ramírez L, Galiano S, Quiliano M, Aldana I, Pabón A. Primaquine-quinoxaline 1,4-di-N-oxide hybrids with action on the exo-erythrocytic forms of Plasmodium induce their effect by the production of reactive oxygen species. Malar J 2019; 18:201. [PMID: 31217011 PMCID: PMC6582477 DOI: 10.1186/s12936-019-2825-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Background The challenge in anti-malarial chemotherapy is based on the emergence of resistance to drugs and the search for medicines against all stages of the life cycle of Plasmodium spp. as a therapeutic target. Nowadays, many molecules with anti-malarial activity are reported. However, few studies about the cellular and molecular mechanisms to understand their mode of action have been explored. Recently, new primaquine-based hybrids as new molecules with potential multi-acting anti-malarial activity were reported and two hybrids of primaquine linked to quinoxaline 1,4-di-N-oxide (PQ–QdNO) were identified as the most active against erythrocytic, exoerythrocytic and sporogonic stages. Methods To further understand the anti-malarial mode of action (MA) of these hybrids, hepg2-CD81 were infected with Plasmodium yoelii 17XNL and treated with PQ–QdNO hybrids during 48 h. After were evaluated the production of ROS, the mitochondrial depolarization, the total glutathione content, the DNA damage and proteins related to oxidative stress and death cell. Results In a preliminary analysis as tissue schizonticidals, these hybrids showed a mode of action dependent on peroxides production, but independent of the activation of transcription factor p53, mitochondrial depolarization and arrest cell cycle. Conclusions Primaquine–quinoxaline 1,4-di-N-oxide hybrids exert their antiplasmodial activity in the exoerythrocytic phase by generating high levels of oxidative stress which promotes the increase of total glutathione levels, through oxidation stress sensor protein DJ-1. In addition, the role of HIF1a in the mode of action of quinoxaline 1,4-di-N-oxide is independent of biological activity.
Collapse
Affiliation(s)
- Leonardo Bonilla-Ramírez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia (UdeA), Sede de Investigación Universitaria (SIU), Medellín, Colombia.,GIEPRONAL, Escuela de Ciencias Básicas Tecnología e Ingeniería, Universidad Nacional Abierta y a Distancia, Medellín, 050012, Colombia
| | - Silvia Galiano
- Institute of Tropical Health (ISTUN), Universidad de Navarra, Campus Universitario, 31008, Pamplona, Spain.,Department of Organic and Pharmaceutical Chemistry, Universidad de Navarra, Facultad de Farmacia y Nutrición, Campus Universitario, 31008, Pamplona, Spain
| | - Miguel Quiliano
- Centre for Research and Innovation, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), 15023, Lima, Peru
| | - Ignacio Aldana
- Institute of Tropical Health (ISTUN), Universidad de Navarra, Campus Universitario, 31008, Pamplona, Spain.,Department of Organic and Pharmaceutical Chemistry, Universidad de Navarra, Facultad de Farmacia y Nutrición, Campus Universitario, 31008, Pamplona, Spain
| | - Adriana Pabón
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia (UdeA), Sede de Investigación Universitaria (SIU), Medellín, Colombia.
| |
Collapse
|
29
|
Abstract
Toxoplasma gondii is a single-celled parasite that has infected up to one-third of the world’s population. Significant overhauls in gene expression in both the parasite and the host cell accompany parasite invasion, and a better understanding of these changes may lead to the development of new therapeutic agents. In this study, we employed ribosome profiling to determine the changes that occur at the levels of transcription and translation in both the parasite and the infected host cell at the same time. We discovered features of Toxoplasma mRNAs that suggest a means for controlling parasite gene expression under stressful conditions. We also show that differences in host gene expression occur depending on whether they are confluent or not. Our findings demonstrate the feasibility of using ribosomal profiling to interrogate the host-parasite dynamic under a variety of conditions. Toxoplasma gondii is a ubiquitous obligate intracellular parasite that infects the nucleated cells of warm-blooded animals. From within the parasitophorous vacuole in which they reside, Toxoplasma tachyzoites secrete an arsenal of effector proteins that can reprogram host gene expression to facilitate parasite survival and replication. Gaining a better understanding of how host gene expression is altered upon infection is central for understanding parasite strategies for host invasion and for developing new parasite therapies. Here, we applied ribosome profiling coupled with mRNA measurements to concurrently study gene expression in the parasite and in host human foreskin fibroblasts. By examining the parasite transcriptome and translatome, we identified potential upstream open reading frames that may permit the stress-induced preferential translation of parasite mRNAs. We also determined that tachyzoites reduce host death-associated pathways and increase survival, proliferation, and motility in both quiescent and proliferative host cell models of infection. Additionally, proliferative cells alter their gene expression in ways that are consistent with massive transcriptional rewiring, while quiescent cells were best characterized by reentry into the cell cycle. We also identified a translational control regimen consistent with mechanistic target of rapamycin (mTOR) activation in quiescent cells and, to a lesser degree, in proliferative cells. This study illustrates the utility of the method for dissection of gene expression programs simultaneously in the parasite and host. IMPORTANCEToxoplasma gondii is a single-celled parasite that has infected up to one-third of the world’s population. Significant overhauls in gene expression in both the parasite and the host cell accompany parasite invasion, and a better understanding of these changes may lead to the development of new therapeutic agents. In this study, we employed ribosome profiling to determine the changes that occur at the levels of transcription and translation in both the parasite and the infected host cell at the same time. We discovered features of Toxoplasma mRNAs that suggest a means for controlling parasite gene expression under stressful conditions. We also show that differences in host gene expression occur depending on whether they are confluent or not. Our findings demonstrate the feasibility of using ribosomal profiling to interrogate the host-parasite dynamic under a variety of conditions.
Collapse
|
30
|
Panas MW, Naor A, Cygan AM, Boothroyd JC. Toxoplasma Controls Host Cyclin E Expression through the Use of a Novel MYR1-Dependent Effector Protein, HCE1. mBio 2019; 10:e00674-19. [PMID: 31040242 PMCID: PMC6495377 DOI: 10.1128/mbio.00674-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 01/27/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that establishes a favorable environment in the host cells in which it replicates. We have previously reported that it uses MYR-dependent translocation of dense granule proteins to elicit a key set of host responses related to the cell cycle, specifically, E2F transcription factor targets, including cyclin E. We report here the identification of a novel Toxoplasma effector protein that is exported from the parasitophorous vacuole in a MYR1-dependent manner and localizes to the host's nucleus. Parasites lacking this inducer of host cyclin E (HCE1) are unable to modulate E2F transcription factor target genes and exhibit a substantial growth defect. Immunoprecipitation of HCE1 from infected host cells showed that HCE1 efficiently binds elements of the cyclin E regulatory complex, namely, DP1 and its partners E2F3 and E2F4. Expression of HCE1 in Neospora caninum, or in uninfected human foreskin fibroblasts (HFFs), showed localization of the expressed protein to the host nuclei and strong cyclin E upregulation. Thus, HCE1 is a novel effector protein that is necessary and sufficient to impact the E2F axis of transcription, resulting in co-opting of host functions to the advantage of ToxoplasmaIMPORTANCE Like most Apicomplexan parasites, Toxoplasma gondii has the remarkable ability to invade and establish a replicative niche within another eukaryotic cell, in this case, any of a large number of cell types in almost any warm-blooded animals. Part of the process of establishing this niche is the export of effector proteins to co-opt host cell functions in favor of the parasite. Here we identify a novel effector protein, HCE1, that the parasites export into the nucleus of human cells, where it modulates the expression of multiple genes, including the gene encoding cyclin E, one of the most crucial proteins involved in controlling when and whether a human cell divides. We show that HCE1 works through binding to specific transcription factors, namely, E2F3, E2F4, and DP1, that normally carefully regulate these all-important pathways. This represents a new way in which these consummately efficient infectious agents co-opt the human cells that they so efficiently grow within.
Collapse
Affiliation(s)
- Michael W Panas
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Adit Naor
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Alicja M Cygan
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - John C Boothroyd
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| |
Collapse
|
31
|
Lima TS, Lodoen MB. Mechanisms of Human Innate Immune Evasion by Toxoplasma gondii. Front Cell Infect Microbiol 2019; 9:103. [PMID: 31041194 PMCID: PMC6476913 DOI: 10.3389/fcimb.2019.00103] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
Toxoplasma gondii is an intracellular protozoan parasite of global importance that can remarkably infect, survive, and replicate in nearly all mammalian cells. Notably, 110 years after its discovery, Toxoplasmosis is still a neglected parasitic infection. Although most human infections with T. gondii are mild or asymptomatic, T. gondii infection can result in life-threatening disease in immunocompromised individuals and in the developing fetus due to congenital infection, underscoring the role of the host immune system in controlling the parasite. Recent evidence indicates that T. gondii elicits a robust innate immune response during infection. Interestingly, however, T. gondii has evolved strategies to successfully bypass or manipulate the immune system and establish a life-long infection in infected hosts. In particular, T. gondii manipulates host immunity through the control of host gene transcription and dysregulation of signaling pathways that result in modulation of cell adhesion and migration, secretion of immunoregulatory cytokines, production of microbicidal molecules, and apoptosis. Many of these host-pathogen interactions are governed by parasite effector proteins secreted from the apical secretory organelles, including the rhoptries and dense granules. Here, we review recent findings on mechanisms by which T. gondii evades host innate immunity, with a focus on parasite evasion of the human innate immune system.
Collapse
Affiliation(s)
- Tatiane S Lima
- Department of Molecular Biology and Biochemistry and the Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| | - Melissa B Lodoen
- Department of Molecular Biology and Biochemistry and the Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
32
|
He C, Kong L, Puthiyakunnon S, Wei HX, Zhou LJ, Peng HJ. iTRAQ-based phosphoproteomic analysis reveals host cell's specific responses to Toxoplasma gondii at the phases of invasion and prior to egress. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:202-212. [PMID: 30576742 DOI: 10.1016/j.bbapap.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
Abstract
Protein phosphorylation plays a key role in host cell-T. gondii interaction. However, the phosphoproteome data of host cell at various phases of T. gondii infection has not been thoroughly described. In this study, we assessed the host phosphoproteome data with isobaric tags for relative and absolute quantification (iTRAQ) method during the phases of T. gondii invasion (30 min post infection, PI) and prior to egress (28 h PI). Our iTRAQ analysis revealed a total of 665 phosphoproteins, among which the significantly regulated phosphoproteins in different between-group comparisons were further analyzed. Functional analysis of these significantly regulated phosphoproteins suggested that T. gondii modulated host cell processes through phosphorylation including cell cycle regulation, inducing apoptosis, blocking the synthesis of some inflammatory factors, mediating metabolism to support its proliferation at the infection phase prior to egress, and utilizing membrane and energy from host cell, reorganizing cytoskeleton to favor its invasion and PV formation at the phase of invasion. The phosphorylation level of Smad2, CTNNA1, and HSPB1 identified with western blot revealed a consistent trend of change with iTRAQ result. These newly identified and significantly regulated phosphoproteins from our phosphoproteome data may provide new clues to unravel the host cell's complex reaction against T. gondii infection and the interaction between the host cell and T. gondii.
Collapse
Affiliation(s)
- Cheng He
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Ling Kong
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Santhosh Puthiyakunnon
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hai-Xia Wei
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Li-Juan Zhou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
33
|
The Protozoan Parasite Toxoplasma gondii Selectively Reprograms the Host Cell Translatome. Infect Immun 2018; 86:IAI.00244-18. [PMID: 29967092 DOI: 10.1128/iai.00244-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii promotes infection by targeting multiple host cell processes; however, whether it modulates mRNA translation is currently unknown. Here, we show that infection of primary murine macrophages with type I or II T. gondii strains causes a profound perturbation of the host cell translatome. Notably, translation of transcripts encoding proteins involved in metabolic activity and components of the translation machinery was activated upon infection. In contrast, the translational efficiency of mRNAs related to immune cell activation and cytoskeleton/cytoplasm organization was largely suppressed. Mechanistically, T. gondii bolstered mechanistic target of rapamycin (mTOR) signaling to selectively activate the translation of mTOR-sensitive mRNAs, including those with a 5'-terminal oligopyrimidine (5' TOP) motif and those encoding mitochondrion-related proteins. Consistent with parasite modulation of host mTOR-sensitive translation to promote infection, inhibition of mTOR activity suppressed T. gondii replication. Thus, selective reprogramming of host mRNA translation represents an important subversion strategy during T. gondii infection.
Collapse
|
34
|
Guimarães-Pinto K, Nascimento DO, Corrêa-Ferreira A, Morrot A, Freire-de-Lima CG, Lopes MF, DosReis GA, Filardy AA. Trypanosoma cruzi Infection Induces Cellular Stress Response and Senescence-Like Phenotype in Murine Fibroblasts. Front Immunol 2018; 9:1569. [PMID: 30038622 PMCID: PMC6047053 DOI: 10.3389/fimmu.2018.01569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Trypanosoma cruzi infects and replicates within a wide variety of immune and non-immune cells. Here, we investigated early cellular responses induced in NIH-3T3 fibroblasts upon infection with trypomastigote forms of T. cruzi. We show that fibroblasts were susceptible to T. cruzi infection and started to release trypomastigotes to the culture medium after 4 days of infection. Also, we found that T. cruzi infection reduced the number of fibroblasts in 3-day cell cultures, by altering fibroblast proliferation. Infected fibroblasts displayed distinctive phenotypic alterations, including enlarged and flattened morphology with a nuclei accumulation of senescence-associated heterochromatin foci. In addition, infection induced an overexpression of the enzyme senescence-associated β-galactosidase (SA-β-gal), an activation marker of the cellular senescence program, as well as the production of cytokines and chemokines involved with the senescence-associated secretory phenotype (SASP) such as IL-6, TNF-α, IL-1β, and MCP-1. Infected fibroblasts released increased amounts of stress-associated factors nitric oxide (NO) and reactive oxygen species (ROS), and the treatment with antioxidants deferoxamine (DFO) and N-acetylcysteine reduced ROS generation, secretion of SASP-related cytokine IL-6, SA-β-gal activity, and parasite load by infected fibroblasts. Taken together, our data suggest that T. cruzi infection triggers a rapid cellular stress response followed by induction of a senescent-like phenotype in NIH-3T3 fibroblasts, enabling them to act as reservoirs of parasites during the early stages of the Chagas disease.
Collapse
Affiliation(s)
- Kamila Guimarães-Pinto
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Antonia Corrêa-Ferreira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Celio G Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela F Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - George A DosReis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Rio de Janeiro, Brazil
| | - Alessandra A Filardy
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Liu W, Huang L, Wei Q, Zhang Y, Zhang S, Zhang W, Cai L, Liang S. Microarray analysis of long non-coding RNA expression profiles uncovers a Toxoplasma-induced negative regulation of host immune signaling. Parasit Vectors 2018. [PMID: 29530077 PMCID: PMC5848448 DOI: 10.1186/s13071-018-2697-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular protozoan parasite that can infect mammalian cells and thereby regulate host gene expression. The long non-coding RNAs (lncRNAs) have been demonstrated to be an important class of RNA molecules that regulate many biological processes, including host-pathogen interactions. However, the role of host lncRNAs in the response to T. gondii infection remains largely unknown. METHODS We applied a microarray approach to determine the differential expression profiles of both lncRNAs and mRNAs in the human foreskin fibroblast (HFF) cells after T. gondii infection. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to reveal the potential functions of T. gondii-induced genes. Based on the co-expression networks of lncRNAs and immune-related genes, the role of NONSHAT022487 on the regulation of UNC93B1 related immune signaling was investigated by the knockdown and over-expression of lncRNA in human macrophage derived from the PMA-induced promonocytic cell line THP-1. RESULTS Our data showed that 996 lncRNAs and 109 mRNAs in HFF cells were significantly and differentially expressed following T. gondii infection (fold change ≥ 5, P < 0.05). The results from the GO and KEGG pathway analyses indicated that the mRNAs with differential expression were mainly involved in the host immune response. Remarkably, we identified a novel lncRNA, NONSHAT022487, which suppresses the expression of the immune-related molecule UNC93B1. After T. gondii infection, NONSHAT022487 impaired the secretion of the cytokines IL-12, TNF-α, IL-1β and IFN-γ by downregulating UNC93B1 expression in human macrophage cells. CONCLUSIONS Our study identified infection-induced lncRNA expression as a novel mechanism by which the Toxoplasma parasite regulates host immune signaling, which advances our understanding of the interaction of T. gondii parasites and host cells.
Collapse
Affiliation(s)
- Wenquan Liu
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liyang Huang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qimei Wei
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yu Zhang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shengnan Zhang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wenting Zhang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liya Cai
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shaohui Liang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
36
|
Oliveira T, Costa I, Marinho V, Carvalho V, Uchôa K, Ayres C, Teixeira S, Vasconcelos DFP. Human foreskin fibroblasts: from waste bag to important biomedical applications. JOURNAL OF CLINICAL UROLOGY 2018. [DOI: 10.1177/2051415818761526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circumcision is one of the most performed surgical procedures worldwide, and it is estimated that one in three men worldwide is circumcised, which makes the preputial skin removed after surgery an abundant material for possible applications. In particular, it is possible efficiently to isolate the cells of the foreskin, with fibroblasts being the most abundant cells of the dermis and the most used in biomedical research. This work aimed to review the knowledge and obtain a broad view of the main applications of human foreskin fibroblast cell culture. A literature search was conducted, including clinical trials, preclinical basic research studies, reviews and experimental studies. Several medical and laboratory applications of human foreskin fibroblast cell culture have been described, especially when it comes to the use of human foreskin fibroblasts as feeder cells for the cultivation of human embryonic stem cells, in addition to co-culture with other cell types. The culture of foreskin fibroblasts has also been used to: obtain induced pluripotent stem cells; the diagnosis of Clostridium difficile; to test the toxicity and effect of substances on normal cells, especially the toxicity of possible antineoplastic drugs; in viral culture, mainly of the human cytomegalovirus, study of the pathogenesis of other microorganisms; varied studies of cellular physiology and cellular interactions. Fibroblasts are important for cell models for varied application cultures, demonstrating how the preputial material can be reused, making possible new applications. Level of evidence: Not applicable for this multicentre audit.
Collapse
Affiliation(s)
- Thomaz Oliveira
- Genetics and Molecular Biology Laboratory, Federal University of Piauí (UFPI), Brazil
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Ilana Costa
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Victor Marinho
- Genetics and Molecular Biology Laboratory, Federal University of Piauí (UFPI), Brazil
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Valécia Carvalho
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Karla Uchôa
- Genetics and Molecular Biology Laboratory, Federal University of Piauí (UFPI), Brazil
- Biomedical Sciences, Federal University of Piauí (UFPI), Brazil
| | - Carla Ayres
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
| | - Silmar Teixeira
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Brazil
| | | |
Collapse
|
37
|
Syn G, Anderson D, Blackwell JM, Jamieson SE. Toxoplasma gondii Infection Is Associated with Mitochondrial Dysfunction in-Vitro. Front Cell Infect Microbiol 2017; 7:512. [PMID: 29312892 PMCID: PMC5733060 DOI: 10.3389/fcimb.2017.00512] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022] Open
Abstract
Upon invasion of host cells, the ubiquitous pathogen Toxoplasma gondii manipulates several host processes, including re-organization of host organelles, to create a replicative niche. Host mitochondrial association to T. gondii parasitophorous vacuoles is rapid and has roles in modulating host immune responses. Here gene expression profiling of T. gondii infected cells reveals enrichment of genes involved in oxidative phosphorylation (OXPHOS) and mitochondrial dysfunction 6 h post-infection. We identified 11 hub genes (HIF-1α, CASP8, FN1, POU5F1, CD44, ISG15, HNRNPA1, MDM2, RPL35, VHL, and NUPR1) and 10 predicted upstream regulators, including 4 endogenous regulators RICTOR, KDM5A, RB1, and D-glucose. We characterized a number of mitochondrial parameters in T. gondii infected human foreskin fibroblast cells over a 36 h time-course. In addition to the usual rapid recruitment and apparent enlargement of mitochondria around the parasitophorous vacuole we observed fragmented host mitochondria in infected cells, not linked to cellular apoptosis, from 24 h post-infection. An increase in mitochondrial superoxide levels in T. gondii infected cells was observed that required active parasite invasion and peaked at 30 h post-infection. Measurement of OXPHOS proteins showed decreased expression of Complex IV in infected cells at 24 h post-infection, followed by decreased expression of Complexes I and II at 36 h post-infection. No change occurred in Complex V. No difference in host mitochondrial membrane potential between infected and mock-infected cells was observed at any time. Our results show perturbation of host mitochondrial function following T. gondii infection that likely impacts on pathogenesis of disease.
Collapse
Affiliation(s)
- Genevieve Syn
- Genetics and Health, Telethon Kids Institute, University of Western Australia, Subiaco, WA, Australia
| | - Denise Anderson
- Genetics and Health, Telethon Kids Institute, University of Western Australia, Subiaco, WA, Australia
| | - Jenefer M Blackwell
- Genetics and Health, Telethon Kids Institute, University of Western Australia, Subiaco, WA, Australia
| | - Sarra E Jamieson
- Genetics and Health, Telethon Kids Institute, University of Western Australia, Subiaco, WA, Australia
| |
Collapse
|
38
|
Use of Human Neurons Derived via Cellular Reprogramming Methods to Study Host-Parasite Interactions of Toxoplasma gondii in Neurons. Cells 2017; 6:cells6040032. [PMID: 28946615 PMCID: PMC5755492 DOI: 10.3390/cells6040032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/12/2017] [Accepted: 09/22/2017] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii is an intracellular protozoan parasite, with approximately one-third of the worlds' population chronically infected. In chronically infected individuals, the parasite resides in tissue cysts in neurons in the brain. The chronic infection in immunocompetant individuals has traditionally been considered to be asymptomatic, but increasing evidence indicates that chronic infection is associated with diverse neurological disorders such as schizophrenia, cryptogenic epilepsy, and Parkinson's Disease. The mechanisms by which the parasite exerts affects on behavior and other neuronal functions are not understood. Human neurons derived from cellular reprogramming methods offer the opportunity to develop better human neuronal models to study T. gondii in neurons. Results from two studies using human neurons derived via cellular reprogramming methods indicate these human neuronal models provide better in vitro models to study the effects of T. gondii on neurons and neurological functions. In this review, an overview of the current neural reprogramming methods will be given, followed by a summary of the studies using human induced pluripotent stem cell (hiPSC)-derived neurons and induced neurons (iNs) to study T. gondii in neurons. The potential of these neural reprogramming methods for further study of the host-parasite interactions of T. gondii in neurons will be discussed.
Collapse
|
39
|
He C, Chen AY, Wei HX, Feng XS, Peng HJ. Phosphoproteome of Toxoplasma gondii Infected Host Cells Reveals Specific Cellular Processes Predominating in Different Phases of Infection. Am J Trop Med Hyg 2017; 97:236-244. [PMID: 28719319 DOI: 10.4269/ajtmh.16-0901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The invasion of Toxoplasma gondii tachyzoites into the host cell results in extensive host cell signaling activation/deactivation that is usually regulated by the phosphorylation/dephosphorylation. To elucidate how T. gondii regulates host cell signal transduction, the comparative phosphoproteome of stable isotope labeling with amino acids in cell culture-labeled human foreskin fibroblast cells was analyzed. The cells were grouped (Light [L], Medium [M], and Heavy [H] groups) based on the labeling isotope weight and were infected with T. gondii for different lengths of time (L: 0 hour; M: 2 hours; and H: 6 hours). A total of 892 phosphoproteins were identified with 1,872 phosphopeptides and 1,619 phosphorylation sites. The M versus L comparison revealed 694 significantly regulated phosphopeptides (436 upregulated and 258 downregulated). The H versus L comparison revealed 592 significantly regulated phosphopeptides (146 upregulated and 446 downregulated). The H versus M comparison revealed 794 significantly regulated phosphopeptides (149 upregulated and 645 downregulated). At 2 and 6 hours post-T. gondii infection, the most predominant host cell reactions were cell cycle regulation and cytoskeletal reorganization, which might be required for the efficient invasion and multiplication of T. gondii. Similar biological process profiles but different molecular function categories of host cells infected with T. gondii for 2 and 6 hours, which suggested that the host cell processes were not affected significantly by T. gondii infection but emphasized some differences in specific cellular processes at this two time points. Western blotting verification of some significantly regulated phosphoprotein phosphorylation sites was consistent with the mass spectra data. This study provided new insights into and further understanding of pathogen-host interactions from the host cell perspective.
Collapse
Affiliation(s)
- Cheng He
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Ai-Yuan Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Hai-Xia Wei
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Xiao-Shuang Feng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| |
Collapse
|
40
|
Wijetunga NA, Johnston AD, Maekawa R, Delahaye F, Ulahannan N, Kim K, Greally JM. SMITE: an R/Bioconductor package that identifies network modules by integrating genomic and epigenomic information. BMC Bioinformatics 2017; 18:41. [PMID: 28100166 PMCID: PMC5242055 DOI: 10.1186/s12859-017-1477-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 01/07/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The molecular assays that test gene expression, transcriptional, and epigenetic regulation are increasingly diverse and numerous. The information generated by each type of assay individually gives an insight into the state of the cells tested. What should be possible is to add the information derived from separate, complementary assays to gain higher-confidence insights into cellular states. At present, the analysis of multi-dimensional, massive genome-wide data requires an initial pruning step to create manageable subsets of observations that are then used for integration, which decreases the sizes of the intersecting data sets and the potential for biological insights. Our Significance-based Modules Integrating the Transcriptome and Epigenome (SMITE) approach was developed to integrate transcriptional and epigenetic regulatory data without a loss of resolution. RESULTS SMITE combines p-values by accounting for the correlation between non-independent values within data sets, allowing genes and gene modules in an interaction network to be assigned significance values. The contribution of each type of genomic data can be weighted, permitting integration of individually under-powered data sets, increasing the overall ability to detect effects within modules of genes. We apply SMITE to a complex genomic data set including the epigenomic and transcriptomic effects of Toxoplasma gondii infection on human host cells and demonstrate that SMITE is able to identify novel subnetworks of dysregulated genes. Additionally, we show that SMITE outperforms Functional Epigenetic Modules (FEM), the current paradigm of using the spin-glass algorithm to integrate gene expression and epigenetic data. CONCLUSIONS SMITE represents a flexible, scalable tool that allows integration of transcriptional and epigenetic regulatory data from genome-wide assays to boost confidence in finding gene modules reflecting altered cellular states.
Collapse
Affiliation(s)
- N Ari Wijetunga
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Andrew D Johnston
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Ryo Maekawa
- Division of Obstetrics and Gynecology, Yamaguchi University, 677-1 Yoshida, Yamaguchi Prefecture, 753-8511, Japan
| | - Fabien Delahaye
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.,Department of Obstetrics, Gynecology and Women's Health, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Netha Ulahannan
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Kami Kim
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.,Department of Pathology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.,Department of Medicine, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - John M Greally
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
41
|
Jones EJ, Korcsmaros T, Carding SR. Mechanisms and pathways of Toxoplasma gondii transepithelial migration. Tissue Barriers 2016; 5:e1273865. [PMID: 28452683 PMCID: PMC5362999 DOI: 10.1080/21688370.2016.1273865] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Toxoplasma gondii is a ubiquitous parasite and a prevalent food-borne parasitic pathogen. Infection of the host occurs principally through oral consumption of contaminated food and water with the gastrointestinal tract being the primary route for entry into the host. To promote infection, T. gondii has evolved highly specialized strategies for rapid traversal of the single cell thick intestinal epithelial barrier. Parasite transmigration via the paracellular pathway between adjacent cells enables parasite dissemination to secondary sites of infection where chronic infection of muscle and brain tissue is established. It has recently been proposed that parasite interactions with the integral tight junction (TJ) protein occludin influences parasite transmigration of the intestinal epithelium. We review here the emerging mechanisms of T. gondii transmigration of the small intestinal epithelium alongside the developing role played in modulating the wider TJ-associated proteome to rewire host cell regulatory systems for the benefit of the parasite.
Collapse
Affiliation(s)
- Emily J Jones
- a Gut Health and Food Safety Institute Strategic Programme , Institute of Food Research, Norwich Research Park , Norwich , UK.,b Earlham Institute, Norwich Research Park , Norwich , UK
| | - Tamas Korcsmaros
- a Gut Health and Food Safety Institute Strategic Programme , Institute of Food Research, Norwich Research Park , Norwich , UK.,b Earlham Institute, Norwich Research Park , Norwich , UK
| | - Simon R Carding
- a Gut Health and Food Safety Institute Strategic Programme , Institute of Food Research, Norwich Research Park , Norwich , UK.,c Norwich Medical School, University of East Anglia, Norwich Research Park , Norwich , UK
| |
Collapse
|
42
|
A Cell Cycle-Regulated Toxoplasma Deubiquitinase, TgOTUD3A, Targets Polyubiquitins with Specific Lysine Linkages. mSphere 2016; 1:mSphere00085-16. [PMID: 27340699 PMCID: PMC4917281 DOI: 10.1128/msphere.00085-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/28/2016] [Indexed: 11/20/2022] Open
Abstract
The role of ubiquitin-mediated processes in the regulation of the apicomplexan cell cycle is beginning to be elucidated. The recent analysis of the Toxoplasma “ubiquitome” highlights the importance of ubiquitination in the parasite cell cycle. The machinery regulating the ubiquitin dynamics in T. gondii has remained understudied. Here, we provide a biochemical characterization of an OTU (ovarian tumor) family deubiquitinase, TgOTUD3A, defining its localization and dynamic expression pattern at various stages of the cell cycle. We further establish that TgOTUD3A has activity preference for polyubiquitin chains with certain lysine linkages—such unique activity has not been previously reported in any apicomplexan. This is particularly important given the finding in this study that Toxoplasma gondii proteins are modified by diverse lysine-linked polyubiquitin chains and that these modifications are very dynamic across the cell cycle, pointing toward the sophistication of the “ubiquitin code” as a potential mechanism to regulate parasite biology. The contribution of ubiquitin-mediated mechanisms in the regulation of the Toxoplasma gondii cell cycle has remained largely unexplored. Here, we describe the functional characterization of a T. gondii deubiquitinase (TGGT1_258780) of the ovarian-tumor domain-containing (OTU) family, which, based on its structural homology to the human OTUD3 clade, has been designated TgOTUD3A. The TgOTUD3A protein is expressed in a cell cycle-dependent manner mimicking its mRNA expression, indicating that it is regulated primarily at the transcriptional level. TgOTUD3A, which was found in the cytoplasm at low levels in G1 parasites, increased in abundance with the progression of the cell cycle and exhibited partial localization to the developing daughter scaffolds during cytokinesis. Recombinant TgOTUD3A but not a catalytic-site mutant TgOTUD3A (C229A) exhibited activity against poly- but not monoubiquitinated targets. This activity was selective for polyubiquitin chains with preference for specific lysine linkages (K48 > K11 > K63). All three of these polyubiquitin linkage modifications were found to be present in Toxoplasma, where they exhibited differential levels and localization patterns in a cell cycle-dependent manner. TgOTUD3A removed ubiquitin from the K48- but not the K63-linked ubiquitinated T. gondii proteins independently of the modified target protein, thereby exhibiting the characteristics of an exodeubiquitinase. In addition to cell cycle association, the demonstration of multiple ubiquitin linkages together with the selective deubiquitinase activity of TgOTUD3A reveals an unappreciated level of complexity in the T. gondii “ubiquitin code.” IMPORTANCE The role of ubiquitin-mediated processes in the regulation of the apicomplexan cell cycle is beginning to be elucidated. The recent analysis of the Toxoplasma “ubiquitome” highlights the importance of ubiquitination in the parasite cell cycle. The machinery regulating the ubiquitin dynamics in T. gondii has remained understudied. Here, we provide a biochemical characterization of an OTU (ovarian tumor) family deubiquitinase, TgOTUD3A, defining its localization and dynamic expression pattern at various stages of the cell cycle. We further establish that TgOTUD3A has activity preference for polyubiquitin chains with certain lysine linkages—such unique activity has not been previously reported in any apicomplexan. This is particularly important given the finding in this study that Toxoplasma gondii proteins are modified by diverse lysine-linked polyubiquitin chains and that these modifications are very dynamic across the cell cycle, pointing toward the sophistication of the “ubiquitin code” as a potential mechanism to regulate parasite biology.
Collapse
|
43
|
Jung BK, Song H, Kim MJ, Cho J, Shin EH, Chai JY. High Toxoplasma gondii Seropositivity among Brain Tumor Patients in Korea. THE KOREAN JOURNAL OF PARASITOLOGY 2016; 54:201-4. [PMID: 27180580 PMCID: PMC4870975 DOI: 10.3347/kjp.2016.54.2.201] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 11/23/2022]
Abstract
Toxoplasma gondii is an intracellular protozoan that can modulate the environment of the infected host. An unfavorable environment modulated by T. gondii in the brain includes tumor microenvironment. Literature has suggested that T. gondii infection is associated with development of brain tumors. However, in Korea, epidemiological data regarding this correlation have been scarce. In this study, in order to investigate the relationship between T. gondii infection and brain tumor development, we investigated the seroprevalence of T. gondii among 93 confirmed brain tumor patients (various histological types, including meningioma and astrocytoma) in Korea using ELISA. The results revealed that T. gondii seropositivity among brain tumor patients (18.3%) was significantly (P<0.05) higher compared with that of healthy controls (8.6%). The seropositivity of brain tumor patients showed a significant age-tendency, i.e., higher in younger age group, compared with age-matched healthy controls (P<0.05). In conclusion, this study supports the close relationship between T. gondii infection and incidence of brain tumors.
Collapse
Affiliation(s)
- Bong-Kwang Jung
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyemi Song
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.,Korea Association of Health Promotion, Seoul 07653, Korea
| | - Min-Jae Kim
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jaeeun Cho
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.,Korea Association of Health Promotion, Seoul 07653, Korea
| | - Eun-Hee Shin
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.,Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Jong-Yil Chai
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.,Korea Association of Health Promotion, Seoul 07653, Korea
| |
Collapse
|
44
|
Kim MJ, Jung BK, Cho J, Song H, Pyo KH, Lee JM, Kim MK, Chai JY. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes. THE KOREAN JOURNAL OF PARASITOLOGY 2016; 54:147-54. [PMID: 27180572 PMCID: PMC4870968 DOI: 10.3347/kjp.2016.54.2.147] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 03/26/2016] [Accepted: 03/27/2016] [Indexed: 01/17/2023]
Abstract
Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle.
Collapse
Affiliation(s)
- Min Jae Kim
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Bong-Kwang Jung
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jaeeun Cho
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.,Korean Association of Health Promotion, Seoul 07649, Korea
| | - Hyemi Song
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.,Korean Association of Health Promotion, Seoul 07649, Korea
| | - Kyung-Ho Pyo
- JE-UK laboratory of Molecular Cancer Therapeutics, Yonsei Cancer Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji Min Lee
- JE-UK laboratory of Molecular Cancer Therapeutics, Yonsei Cancer Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Min-Kyung Kim
- Korean Centers for Disease Control and Prevention, Osong 28159, Korea
| | - Jong-Yil Chai
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.,Korean Association of Health Promotion, Seoul 07649, Korea
| |
Collapse
|
45
|
Neospora caninum Recruits Host Cell Structures to Its Parasitophorous Vacuole and Salvages Lipids from Organelles. EUKARYOTIC CELL 2015; 14:454-73. [PMID: 25750213 DOI: 10.1128/ec.00262-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii and Neospora caninum, which cause the diseases toxoplasmosis and neosporosis, respectively, are two closely related apicomplexan parasites. They have similar heteroxenous life cycles and conserved genomes and share many metabolic features. Despite these similarities, T. gondii and N. caninum differ in their transmission strategies and zoonotic potential. Comparative analyses of the two parasites are important to identify the unique biological features that underlie the basis of host preference and pathogenicity. T. gondii and N. caninum are obligate intravacuolar parasites; in contrast to T. gondii, events that occur during N. caninum infection remain largely uncharacterized. We examined the capability of N. caninum (Liverpool isolate) to interact with host organelles and scavenge nutrients in comparison to that of T. gondii (RH strain). N. caninum reorganizes the host microtubular cytoskeleton and attracts endoplasmic reticulum (ER), mitochondria, lysosomes, multivesicular bodies, and Golgi vesicles to its vacuole though with some notable differences from T. gondii. For example, the host ER gathers around the N. caninum parasitophorous vacuole (PV) but does not physically associate with the vacuolar membrane; the host Golgi apparatus surrounds the N. caninum PV but does not fragment into ministacks. N. caninum relies on plasma lipoproteins and scavenges cholesterol from NPC1-containing endocytic organelles. This parasite salvages sphingolipids from host Golgi Rab14 vesicles that it sequesters into its vacuole. Our data highlight a remarkable degree of conservation in the intracellular infection program of N. caninum and T. gondii. The minor differences between the two parasites related to the recruitment and rearrangement of host organelles around their vacuoles likely reflect divergent evolutionary paths.
Collapse
|
46
|
In vitro alterations do not reflect a requirement for host cell cycle progression during Plasmodium liver stage infection. EUKARYOTIC CELL 2014; 14:96-103. [PMID: 25416236 DOI: 10.1128/ec.00166-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prior to invading nonreplicative erythrocytes, Plasmodium parasites undergo their first obligate step in the mammalian host inside hepatocytes, where each sporozoite replicates to generate thousands of merozoites. While normally quiescent, hepatocytes retain proliferative capacity and can readily reenter the cell cycle in response to diverse stimuli. Many intracellular pathogens, including protozoan parasites, manipulate the cell cycle progression of their host cells for their own benefit, but it is not known whether the hepatocyte cell cycle plays a role during Plasmodium liver stage infection. Here, we show that Plasmodium parasites can be observed in mitotic hepatoma cells throughout liver stage development, where they initially reduce the likelihood of mitosis and ultimately lead to significant acquisition of a binucleate phenotype. However, hepatoma cells pharmacologically arrested in S phase still support robust and complete Plasmodium liver stage development, which thus does not require cell cycle progression in the infected cell in vitro. Furthermore, murine hepatocytes remain quiescent throughout in vivo infection with either Plasmodium berghei or Plasmodium yoelii, as do Plasmodium falciparum-infected primary human hepatocytes, demonstrating that the rapid and prodigious growth of liver stage parasites is accomplished independent of host hepatocyte cell cycle progression during natural infection.
Collapse
|
47
|
Swierzy IJ, Lüder CGK. Withdrawal of skeletal muscle cells from cell cycle progression triggers differentiation ofToxoplasma gondiitowards the bradyzoite stage. Cell Microbiol 2014; 17:2-17. [DOI: 10.1111/cmi.12342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/03/2014] [Accepted: 08/07/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Izabela J. Swierzy
- Institute for Medical Microbiology; University Medical Center; Georg-August-University; Kreuzbergring 57 D-37075 Göttingen Germany
| | - Carsten G. K. Lüder
- Institute for Medical Microbiology; University Medical Center; Georg-August-University; Kreuzbergring 57 D-37075 Göttingen Germany
| |
Collapse
|
48
|
Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression. Cell Host Microbe 2014; 13:489-500. [PMID: 23601110 DOI: 10.1016/j.chom.2013.03.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/17/2013] [Accepted: 02/14/2013] [Indexed: 01/17/2023]
Abstract
After invading host cells, Toxoplasma gondii multiplies within a parasitophorous vacuole (PV) that is maintained by parasite proteins secreted from organelles called dense granules. Most dense granule proteins remain within the PV, and few are known to access the host cell cytosol. We identify GRA16 as a dense granule protein that is exported through the PV membrane and reaches the host cell nucleus, where it positively modulates genes involved in cell-cycle progression and the p53 tumor suppressor pathway. GRA16 binds two host enzymes, the deubiquitinase HAUSP and PP2A phosphatase, which exert several functions, including regulation of p53 and the cell cycle. GRA16 alters p53 levels in a HAUSP-dependent manner and induces nuclear translocation of the PP2A holoenzyme. Additionally, certain GRA16-deficient strains exhibit attenuated virulence, indicating the importance of these host alterations in pathogenesis. Therefore, GRA16 represents a potentially emerging subfamily of exported dense granule proteins that modulate host function.
Collapse
|
49
|
Infection by Toxoplasma gondii specifically induces host c-Myc and the genes this pivotal transcription factor regulates. EUKARYOTIC CELL 2014; 13:483-93. [PMID: 24532536 DOI: 10.1128/ec.00316-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Toxoplasma gondii infection has previously been described to cause dramatic changes in the host transcriptome by manipulating key regulators, including STATs, NF-κB, and microRNAs. Here, we report that Toxoplasma tachyzoites also mediate rapid and sustained induction of another pivotal regulator of host cell transcription, c-Myc. This induction is seen in cells infected with all three canonical types of Toxoplasma but not the closely related apicomplexan parasite Neospora caninum. Coinfection of cells with both Toxoplasma and Neospora still results in an increase in the level of host c-Myc, showing that c-Myc is actively upregulated by Toxoplasma infection (rather than repressed by Neospora). We further demonstrate that this upregulation may be mediated through c-Jun N-terminal protein kinase (JNK) and is unlikely to be a nonspecific host response, as heat-killed Toxoplasma parasites do not induce this increase and neither do nonviable parasites inside the host cell. Finally, we show that the induced c-Myc is active and that transcripts dependent on its function are upregulated, as predicted. Hence, c-Myc represents an additional way in which Toxoplasma tachyzoites have evolved to specifically alter host cell functions during intracellular growth.
Collapse
|
50
|
Toxoplasma gondii within skeletal muscle cells: a critical interplay for food-borne parasite transmission. Int J Parasitol 2014; 44:91-8. [DOI: 10.1016/j.ijpara.2013.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/12/2013] [Accepted: 10/03/2013] [Indexed: 01/30/2023]
|