1
|
Benchimol M, de Souza W. Endocytosis in anaerobic parasitic protists. Mem Inst Oswaldo Cruz 2024; 119:e240058. [PMID: 39082582 PMCID: PMC11285859 DOI: 10.1590/0074-02760240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 08/03/2024] Open
Abstract
The incorporation of different molecules by eukaryotic cells occurs through endocytosis, which is critical to the cell's survival and ability to reproduce. Although this process has been studied in greater detail in mammalian and yeast cells, several groups working with pathogenic protists have made relevant contributions. This review analysed the most relevant data on the endocytic process in anaerobic protists (Entamoeba histolytica, Giardia intestinalis, Trichomonas vaginalis, and Tritrichomonas foetus). Many protozoa can exert endocytic activity across their entire surface and do so with great intensity, as with E. histolytica. The available data on the endocytic pathway and the participation of PI-3 kinase, Rab, and Rho molecular complexes is reviewed from a historical perspective.
Collapse
Affiliation(s)
- Marlene Benchimol
- Universidade Federal do Rio de Janeiro, Centro Nacional de Biologia
Estrutural e Bioimagens, Rio de Janeiro, RJ, Brasil
- Universidade da Grande Rio, Duque de Caxias, RJ, Brasil
| | - Wanderley de Souza
- Universidade Federal do Rio de Janeiro, Centro Nacional de Biologia
Estrutural e Bioimagens, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica
Carlos Chagas Filho, Laboratório de Ultraestrutura Celular Hertha Meyer, Rio de
Janeiro, RJ, Brasil
| |
Collapse
|
2
|
Bañuelos C, Betanzos A, Javier-Reyna R, Galindo A, Orozco E. Molecular interplays of the Entamoeba histolytica endosomal sorting complexes required for transport during phagocytosis. Front Cell Infect Microbiol 2022; 12:855797. [PMID: 36389174 PMCID: PMC9647190 DOI: 10.3389/fcimb.2022.855797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 10/06/2022] [Indexed: 08/23/2024] Open
Abstract
Entamoeba histolytica, the causative agent of human amoebiasis, exhibits a continuous membrane remodelling to exert its virulence properties. During this dynamic process, the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery is a key player, particularly in phagocytosis, a virulence hallmark of this parasite. In addition to ESCRT, other molecules contribute to membrane remodelling, including the EhADH adhesin, EhRabs, actin, and the lysobisphosphatidic acid (LBPA). The endocytosis of a prey or molecules induces membrane invaginations, resulting in endosome and multivesicular bodies (MVBs) formation for cargo delivery into lysosomes. Alternatively, some proteins are recycled or secreted. Most of these pathways have been broadly characterized in other biological systems, but poorly described in protozoan parasites. Here, we encompass 10 years of ESCRT research in E. histolytica, highlighting the role of the ESCRT-I and ESCRT-III components and the EhADH and EhVps4-ATPase accessory proteins during phagocytosis. In particular, EhADH exhibits a multifunctional role along the endocytic pathway, from cargo recognition to endosome maturation and lysosomal degradation. Interestingly, the interaction of EhADH with EhVps32 seems to shape a concurrent route to the conventional one for MVBs biogenesis, that could optimize their formation. Furthermore, this adhesin is secreted, but its role in this event remains under study. Other components from the endosomal pathway, such as EhVps23 and LBPA, are also secreted. A proteomic approach performed here, using an anti-LBPA antibody, revealed that some proteins related to membrane trafficking, cellular transport, cytoskeleton dynamics, and transcriptional and translational functions are secreted and associated to LBPA. Altogether, the accumulated knowledge around the ESCRT machinery in E. histolytica, points it out as a dynamic platform facilitating the interaction of molecules participating in different cellular events. Seen as an integrated system, ESCRTs lead to a better understanding of E. histolytica phagocytosis.
Collapse
Affiliation(s)
- Cecilia Bañuelos
- Coordinación General de Programas de Posgrado Multidisciplinarios, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Abigail Betanzos
- Investigadores por Mexico, Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City, Mexico
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Ausencio Galindo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
3
|
Bharadwaj R, Bhattacharya A, Somlata. Coordinated activity of amoebic formin and profilin are essential for phagocytosis. Mol Microbiol 2021; 116:974-995. [PMID: 34278607 DOI: 10.1111/mmi.14787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 10/24/2022]
Abstract
For the protist parasite Entamoeba histolytica, endocytic processes, such as phagocytosis, are essential for its survival in the human gut. The actin cytoskeleton is involved in the formation of pseudopods and phagosomal vesicles by incorporating a number of actin-binding and modulating proteins along with actin in a temporal manner. The actin dynamics, which comprises polymerization, branching, and depolymerization is very tightly regulated and takes place directionally at the sites of initiation of phagocytosis. Formin and profilin are two actin-binding proteins that are known to regulate actin cytoskeleton dynamics and thereby, endocytic processes. In this article, we report the participation of formin and profilin in E. histolytica phagocytosis and propose that these two proteins interact with each other and their sequential recruitment at the site is required for the successful completion of phagocytosis. The evidence is based on detailed microscopic, live imaging, interaction studies, and expression downregulation. The cells downregulated for expression of formin show absence of profilin at the site of phagocytosis, whereas downregulation of profilin does not affect formin localization.
Collapse
Affiliation(s)
- Ravi Bharadwaj
- Department of Medicine, UMass Medical School, Worcester, MA, USA
| | | | - Somlata
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Shrivastav MT, Malik Z, Somlata. Revisiting Drug Development Against the Neglected Tropical Disease, Amebiasis. Front Cell Infect Microbiol 2021; 10:628257. [PMID: 33718258 PMCID: PMC7943716 DOI: 10.3389/fcimb.2020.628257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/30/2020] [Indexed: 11/15/2022] Open
Abstract
Amebiasis is a neglected tropical disease which is caused by the protozoan parasite Entamoeba histolytica. This disease is one of the leading causes of diarrhea globally, affecting largely impoverished residents in developing countries. Amebiasis also remains one of the top causes of gastrointestinal diseases in returning international travellers. Despite having many side effects, metronidazole remains the drug of choice as an amebicidal tissue-active agent. However, emergence of metronidazole resistance in pathogens having similar anaerobic metabolism and also in laboratory strains of E. histolytica has necessitated the identification and development of new drug targets and therapeutic strategies against the parasite. Recent research in the field of amebiasis has led to a better understanding of the parasite’s metabolic and cellular pathways and hence has been useful in identifying new drug targets. On the other hand, new molecules effective against amebiasis have been mined by modifying available compounds, thereby increasing their potency and efficacy and also by repurposing existing approved drugs. This review aims at compiling and examining up to date information on promising drug targets and drug molecules for the treatment of amebiasis.
Collapse
Affiliation(s)
- Manish T Shrivastav
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Zainab Malik
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Somlata
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
5
|
Kumar S, Mishra S, Gourinath S. Structural and functional diversity of Entamoeba histolytica calcium-binding proteins. Biophys Rev 2020; 12:10.1007/s12551-020-00766-6. [PMID: 33063237 PMCID: PMC7755952 DOI: 10.1007/s12551-020-00766-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022] Open
Abstract
Entamoeba histolytica (E. histolytica) is an etiological agent of human amoebic colitis, and it causes a high level of morbidity and mortality worldwide, particularly in developing countries. Ca2+ plays a pivotal role in amoebic pathogenesis, and Ca2+-binding proteins (CaBPs) of E. histolytica appear to be a major determinant in this process. E. histolytica has 27-EF-hand containing CaBPs, suggesting that this organism has complex Ca2+ signaling cascade. E. histolytica CaBPs share (29-47%) sequence identity with ubiquitous Ca2+-binding protein calmodulin (CaM); however, they do not show any significant structural similarity, indicating lack of a typical CaM in this organism. Structurally, these CaBPs are very diverse among themselves, and perhaps such diversity allows them to recognize different cellular targets, thereby enabling them to perform a range of cellular functions. The presence of such varied signaling molecules helps parasites to invade host cells and advance in disease progression. In the past two decades, tremendous progress has been made in understanding the structure of E. histolytica CaBPs by using the X-ray or NMR method. To gain greater insight into the structural and functional diversity of these amoebic CaBPs, we analyzed and compiled all the available literature. Most of the CaBPs has about 150 amino acids with 4-EF hand or EF-hand-like sequences, similar to CaM. In a few cases, all the EF-hand motifs are not capable of binding Ca2+, suggesting them to be pseudo EF-hand motifs. The CaBPs perform diverse cellular signaling that includes cytoskeleton remodeling, phagocytosis, cell proliferation, migration of trophozoites, and GTPase activity. Overall, the structural and functional diversity of E. histolytica CaBPs compiled here may offer a basis to develop an efficient drug to counter its pathogenesis.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Present Address: Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425 USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Shalini Mishra
- School of Life Science Jawaharlal Nehru University, New Delhi, 110067 India
| | - S. Gourinath
- School of Life Science Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
6
|
Agarwal S, Rath PP, Anand G, Gourinath S. Uncovering the Cyclic AMP Signaling Pathway of the Protozoan Parasite Entamoeba histolytica and Understanding Its Role in Phagocytosis. Front Cell Infect Microbiol 2020; 10:566726. [PMID: 33102254 PMCID: PMC7546249 DOI: 10.3389/fcimb.2020.566726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/17/2020] [Indexed: 01/13/2023] Open
Abstract
Second messenger signaling controls a surprisingly diverse range of processes in several eukaryotic pathogens. Molecular machinery and pathways involving these messengers thus hold tremendous opportunities for therapeutic interventions. Relative to Ca2+ signaling, the knowledge of a crucial second messenger cyclic AMP (cAMP) and its signaling pathway is very scant in the intestinal parasite Entamoeba histolytica. In the current study, mining the available genomic resources, we have for the first time identified the cAMP signal transduction pathway of E. histolytica. Three heptahelical proteins with variable G-protein-coupled receptor domains, heterotrimeric G-proteins (Gα, Gβ, and Gγ subunits), soluble adenylyl cyclase, cyclase-associated protein, and enzyme carbonic anhydrase were identified in its genome. We could also identify several putative candidate genes for cAMP downstream effectors such as protein kinase A, A-kinase anchoring proteins, and exchange protein directly activated by the cAMP pathway. Using specific inhibitors against key identified targets, we could observe changes in the intracellular cAMP levels as well as defect in the rate of phagocytosis of red blood cells by the parasite E. histolytica. We thus strongly believe that characterization of some of these unexplored crucial signaling determinants will provide a paradigm shift in understanding the pathogenicity of this organism.
Collapse
Affiliation(s)
- Shalini Agarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Gaurav Anand
- International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | | |
Collapse
|
7
|
Calcium modulates the domain flexibility and function of an α-actinin similar to the ancestral α-actinin. Proc Natl Acad Sci U S A 2020; 117:22101-22112. [PMID: 32848067 DOI: 10.1073/pnas.1917269117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The actin cytoskeleton, a dynamic network of actin filaments and associated F-actin-binding proteins, is fundamentally important in eukaryotes. α-Actinins are major F-actin bundlers that are inhibited by Ca2+ in nonmuscle cells. Here we report the mechanism of Ca2+-mediated regulation of Entamoeba histolytica α-actinin-2 (EhActn2) with features expected for the common ancestor of Entamoeba and higher eukaryotic α-actinins. Crystal structures of Ca2+-free and Ca2+-bound EhActn2 reveal a calmodulin-like domain (CaMD) uniquely inserted within the rod domain. Integrative studies reveal an exceptionally high affinity of the EhActn2 CaMD for Ca2+, binding of which can only be regulated in the presence of physiological concentrations of Mg2+ Ca2+ binding triggers an increase in protein multidomain rigidity, reducing conformational flexibility of F-actin-binding domains via interdomain cross-talk and consequently inhibiting F-actin bundling. In vivo studies uncover that EhActn2 plays an important role in phagocytic cup formation and might constitute a new drug target for amoebic dysentery.
Collapse
|
8
|
Abstract
Calcium signaling plays a key role in many essential processes in almost all eukaryotic systems. It is believed that it may also be an important signaling system of the protist parasite Entamoeba histolytica. Motility, adhesion, cytolysis, and phagocytosis/trogocytosis are important steps in invasion and pathogenesis of E. histolytica, and Ca2+ signaling is thought to be associated with these processes leading to tissue invasion. There are a large number of Ca2+-binding proteins (CaBPs) in E. histolytica, and a number of these proteins appear to be associated with different steps in pathogenesis. The genome encodes 27 EF-hand–containing CaBPs in addition to a number of other Ca2+-binding domain/motif-containing proteins, which suggest intricate calcium signaling network in this parasite. Unlike other eukaryotes, a typical calmodulin-like protein has not been seen in E. histolytica. Though none of the CaBPs display sequence similarity with a typical calmodulin, extensive structural similarity has been seen in spite of lack of significant functional overlap with that of typical calmodulins. One of the unique features observed in E. histolytica is the identification of CaBPs (EhCaBP1, EhCaBP3) that have the ability to directly bind actin and modulate actin dynamics. Direct interaction of CaBPs with actin has not been seen in any other system. Pseudopod formation and phagocytosis are some of the processes that require actin dynamics, and some of the amoebic CaBPs (EhC2Pk, EhCaBP1, EhCaBP3, EhCaBP5) participate in this process. None of these E. histolytica CaBPs have any homolog in organisms other than different species of Entamoeba, suggesting a novel Ca2+ signaling pathway that has evolved in this genus.
Collapse
Affiliation(s)
- Mrigya Babuta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- Department of Biology, Ashoka University, Sonepat, Haryana, India
- * E-mail:
| |
Collapse
|
9
|
Tripathi A, Jain M, Chandra M, Parveen S, Yadav R, Collins BM, Maiti S, Datta S. EhC2B, a C2 domain-containing protein, promotes erythrophagocytosis in Entamoeba histolytica via actin nucleation. PLoS Pathog 2020; 16:e1008489. [PMID: 32365140 PMCID: PMC7197785 DOI: 10.1371/journal.ppat.1008489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
Remodelling of the actin cytoskeleton in response to external stimuli is obligatory for many cellular processes in the amoebic cell. A rapid and local rearrangement of the actin cytoskeleton is required for the development of the cellular protrusions during phagocytosis, trogocytosis, migration, and invasion. Here, we demonstrated that EhC2B, a C2 domain-containing protein, is an actin modulator. EhC2B was first identified as an effector of EhRab21 from E. histolytica. In vitro interaction studies including GST pull-down, fluorescence-based assay and ITC also corroborated with our observation. In the amoebic trophozoites, EhC2B accumulates at the pseudopods and the tips of phagocytic cups. FRAP based studies confirmed the recruitment and dynamics of EhC2B at the phagocytic cup. Moreover, we have shown the role of EhC2B in erythrophagocytosis. It is well known that calcium-dependent signal transduction is essential for the cytoskeletal dynamics during phagocytosis in the amoebic parasite. Using liposome pelleting assay, we demonstrated that EhC2B preferentially binds to the phosphatidylserine in the presence of calcium. The EhC2B mutants defective in calcium or lipid-binding failed to localise beneath the plasma membrane. The cells overexpressing these mutants have also shown a significant reduction in erythrophagocytosis. The role of EhC2B in erythrophagocytosis and pseudopod formation was also validated by siRNA-based gene knockdown approach. Finally, with the help of in vitro nucleation assay using fluorescence spectroscopy and total internal reflection fluorescence microscopy, we have established that EhC2B is an actin nucleator. Collectively, based on the results from the study, we propose that EhC2B acts like a molecular bridge which promotes membrane deformation via its actin nucleation activity during the progression of the phagocytic cup in a calcium-dependent manner.
Collapse
Affiliation(s)
- Aashutosh Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Megha Jain
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Mintu Chandra
- Institute for Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Sameena Parveen
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Rupali Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Brett M. Collins
- Institute for Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- * E-mail:
| |
Collapse
|
10
|
Sharma S, Agarwal S, Bharadwaj R, Somlata, Bhattacharya S, Bhattacharya A. Novel regulatory roles of PtdIns(4,5)P2generating enzyme EhPIPKI in actin dynamics and phagocytosis ofEntamoeba histolytica. Cell Microbiol 2019; 21:e13087. [DOI: 10.1111/cmi.13087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Shalini Sharma
- School of Life SciencesJawaharlal Nehru University New Delhi India
| | - Shalini Agarwal
- School of Life SciencesJawaharlal Nehru University New Delhi India
| | - Ravi Bharadwaj
- School of MedicineUMASS Medical School Worcester Massachusetts USA
| | - Somlata
- Multidisciplinary Centre for Advance Research and StudiesJamia Milia Islamia New Delhi India
| | - Sudha Bhattacharya
- School of Environmental SciencesJawaharlal Nehru University New Delhi India
| | | |
Collapse
|
11
|
Agarwal S, Anand G, Sharma S, Parimita Rath P, Gourinath S, Bhattacharya A. EhP3, a homolog of 14-3-3 family of protein participates in actin reorganization and phagocytosis in Entamoeba histolytica. PLoS Pathog 2019; 15:e1007789. [PMID: 31095644 PMCID: PMC6541287 DOI: 10.1371/journal.ppat.1007789] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/29/2019] [Accepted: 04/24/2019] [Indexed: 11/19/2022] Open
Abstract
The highly conserved proteins of the 14-3-3 family are universal adaptors known to regulate an enormous range of cellular processes in eukaryotes. However, their biological functions remain largely uncharacterized in pathogenic protists comprising of several 14-3-3 protein isoforms. In this study, we report the role of 14-3-3 in coordinating cytoskeletal dynamics during phagocytosis in a professional phagocytic protist Entamoeba histolytica, the etiological agent of human amebiasis. There are three isoforms of 14-3-3 protein in amoeba and here we have investigated Eh14-3-3 Protein 3 (EhP3). Live and fixed cell imaging studies revealed the presence of this protein throughout the parasite phagocytosis process, with high rate of accumulation at the phagocytic cups and closed phagosomes. Conditional suppression of EhP3 expression caused significant defects in phagocytosis accompanied by extensive diminution of F-actin at the site of cup formation. Downregulated cells also exhibited defective recruitment of an F-actin stabilizing protein, EhCoactosin at the phagocytic cups. In addition, mass spectrometry based analysis further revealed a large group of EhP3-associated proteins, many of these proteins are known to regulate cytoskeletal architecture in E histolytica. The dynamics of these proteins may also be controlled by EhP3. Taken together, our findings strongly suggest that EhP3 is a novel and a key regulatory element of actin dynamics and phagocytosis in E. histolytica. Phagocytosis of host cells is central to pathogenesis of protist parasite Entamoeba histolytica, the etiological agent of human amebiasis. It is a complex and multistep process that requires dynamic remodelling of the actin cytoskeleton by a large number of scaffolding, signaling and actin-binding proteins (ABPs). Although several parasite ligands such as EhC2PK, EhCaBP1, EhCaBP3, EhAK1, Arp2/3 complex and EhCoactosin that participate in the phagocytic machinery have been identified, the mechanistic insights to their regulation process remain largely elusive. We have in this study identified and characterized the important role of scaffolding protein EhP3 in modulating cytoskeletal dynamics and regulating phagocytosis in E. histolytica. Expression knockdown, imaging and interaction studies suggest that EhP3 function as an adaptor molecule that controls the localization of an F-actin stabilizing protein EhCoactosin and thus the dynamics of F-actin rearrangement during phagocytosis. EhP3 also interact with other actin dynamics regulating proteins that may in coordination regulate cytoskeletal dynamics and thereby phagocytosis in Entamoeba.
Collapse
Affiliation(s)
- Shalini Agarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| | - Gaurav Anand
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shalini Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Ashoka University, P.O. Rai, Sonepat, Haryana, India
| |
Collapse
|
12
|
Sharma S, Bhattacharya S, Bhattacharya A. PtdIns(4,5)P 2 is generated by a novel phosphatidylinositol 4-phosphate 5-kinase in the protist parasite Entamoeba histolytica. FEBS J 2019; 286:2216-2234. [PMID: 30843363 DOI: 10.1111/febs.14804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/03/2019] [Accepted: 03/05/2019] [Indexed: 01/02/2023]
Abstract
Entamoeba histolytica is an intestinal protist parasite that causes amoebiasis, a major source of morbidity and mortality in developing countries. Phosphoinositides are involved in signalling systems that have a role in invasion and pathogenesis of this parasite. Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) catalyses the generation of phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P2 ), a key species of phosphoinositide that regulates various cellular processes. However, phosphatidylinositol phosphate kinase (PIPK) family of enzymes have not been characterized in E. histolytica. Here, we report the identification and characterization of type I PIPK (EhPIPKI) of E. histolytica. Computational analysis revealed homologs of type I and III PIPK family in E. histolytica and the absence of type II PIPK. In spite of low overall sequence identity, the kinase domain was found to be highly conserved. Interestingly, a unique insertion of a tandem repeat motif was observed in EhPIPKI distinguishing it from existing PIPKs of other organisms. Substrate profiling showed that EhPIPKI could phosphorylate at third and fifth hydroxyl positions of phosphatidylinositols, though the predominant substrate was phosphatidylinositol 4-phosphate (PtdIns(4)P). Furthermore, EhPIPKI underwent intracellular cleavage close to the amino-terminal, generating two distinct fragments Nter-EhPIPKI (27p) and Cter-EhPIPKI (47p). Immunofluorescence and cellular fractionation revealed that the full-length EhPIPKI and the Cter-EhPIPKI containing carboxyl-terminal activation loop were present in the plasma membrane while the Nter-EhPIPKI was observed in the cytosolic region. In conclusion, E. histolytica has a single EhPIPKI gene that displays novel properties of post-translational processing, the presence of a repeat domain and substrate specificity not observed in any PIPK enzyme so far.
Collapse
Affiliation(s)
- Shalini Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
13
|
Verma K, Srivastava VK, Datta S. Rab GTPases take centre stage in understanding Entamoeba histolytica biology. Small GTPases 2018; 11:320-333. [PMID: 30273093 DOI: 10.1080/21541248.2018.1528840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rab GTPases constitute the largest subgroup in the Ras superfamily of GTPases. It is well established that different Rab GTPases are localized in discrete subcellular localization and regulate the membrane trafficking in nearly all eukaryotic cells. Rab GTPase diversity is often regarded as an expression of vesicular trafficking complexity. The pathogenic amoeba Entamoeba histolytica harbours 91 Rab GTPases which is the highest among the currently available genome sequences from the eukaryotic kingdom. Here, we review the current status of amoebic Rab GTPases diversity, unique biochemical and structural features and summarise their predicted regulators. We discuss how amoebic Rab GTPases are involved in cellular processes such as endocytosis, phagocytosis, and invasion of host cellular components, which are essential for parasite survival and virulence.
Collapse
Affiliation(s)
- Kuldeep Verma
- Institute of Science, Nirma University , Ahmedabad, Gujarat, India.,Regional Centre for Biotechnology, NCR Biotech Science Cluster , Faridabad, India
| | | | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal , Bhauri, India
| |
Collapse
|
14
|
Valle-Solis M, Bolaños J, Orozco E, Huerta M, García-Rivera G, Salas-Casas A, Chávez-Munguía B, Rodríguez MA. A Calcium/Cation Exchanger Participates in the Programmed Cell Death and in vitro Virulence of Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:342. [PMID: 30327757 PMCID: PMC6174217 DOI: 10.3389/fcimb.2018.00342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/10/2018] [Indexed: 01/17/2023] Open
Abstract
Entamoeba histolytica is the etiologic agent of human amoebiasis, disease that causes 40,000 to 100,000 deaths annually worldwide. The cytopathic activity as well as the growth and differentiation of this microorganism is dependent on both, extracellular and free cytoplasmic calcium. However, few is known about the proteins that regulate the calcium flux in this parasite. In many cells, the calcium extrusion from the cytosol is performed by plasma membrane Ca2+-ATPases and calcium/cation exchangers. The aim of this work was to identify a calcium/cation exchanger of E. histolytica and to analyze its possible role in some cellular processes triggered by calcium flux, such as the programmed cell death and in vitro virulence. By searching putative calcium/cation exchangers in the genome database of E. histolyica we identified a protein belonging to the CCX family (EhCCX). We generated a specific antibody against EhCCX, which showed that this protein was expressed in higher levels in E. histolytica than its orthologous in the non-pathogenic amoeba E. dispar. In addition, the expression of EhCCX was increased in trophozoites incubated with hydrogen peroxide. This E. histolytica exchanger was localized in the plasma membrane and in the membrane of some cytoplasmic vesicles. However, after 10 min of erythrophagocytosis, EhCCX was found predominantly in the plasma membrane of the trophozoites. On the other hand, the parasites that overexpress this exchanger contained higher cytosolic calcium levels than control, but the extrusion of calcium after the addition of hydrogen peroxide was more efficient in EhCCX-overexpressing trophozoites; consequently, the programmed cell death was retarded in these parasites. Interestingly, the overexpression of EhCCX increased the in vitro virulence of trophozoites. These results suggest that EhCCX plays important roles in the programmed cell death and in the in vitro virulence of E. histolytica.
Collapse
Affiliation(s)
- Martha Valle-Solis
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Mexico City, Mexico
| | - Jeni Bolaños
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Mexico City, Mexico
| | - Miriam Huerta
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Mexico City, Mexico
| | | | - Andrés Salas-Casas
- Área Académica de Gerontología, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | | | - Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Mexico City, Mexico
| |
Collapse
|
15
|
Babuta M, Kumar S, Gourinath S, Bhattacharya S, Bhattacharya A. Calcium-binding protein EhCaBP3 is recruited to the phagocytic complex of Entamoeba histolytica by interacting with Arp2/3 complex subunit 2. Cell Microbiol 2018; 20:e12942. [PMID: 30133964 DOI: 10.1111/cmi.12942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/07/2018] [Accepted: 08/01/2018] [Indexed: 12/26/2022]
Abstract
Phagocytosis is involved in invasive disease of the parasite Entamoeba histolytica. Upon binding of red blood cells, there is a sequential recruitment of EhC2PK, EhCaBP1, EhAK1, and Arp2/3 complex during the initiation phase. In addition, EhCaBP3 is also recruited to the site and, along with myosin 1B, is thought to be involved in progression of phagocytic cups from initiation to phagosome formation. However, it is not clear how EhCaBP3 gets recruited to the rest of the phagocytic machinery. Here, we show that EhARPC2, a subunit of Arp2/3 complex, interacts with EhCaBP3 in a Ca2+ -dependent manner both in vivo and in vitro. Imaging and pull down experiments suggest that interaction with EhARPC2 is required for the closure of cups and formation of phagosomes. Moreover, downregulation of EhARPC2 prevents localisation of EhCaBP3 to phagocytic cups, suggesting that EhCaBP3 is part of EhC2PK-EhCaBP1-EhAK1-Arp2/3 complex (EhARPC1) pathway. In conclusion, these results suggest that the EhCaBP3-EhARPC2 interaction helps to recruit EhCaBP3 along with myosin 1B to the phagocytic machinery that plays an indispensable role in E. histolytica phagocytosis.
Collapse
Affiliation(s)
- Mrigya Babuta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sanjeev Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
16
|
Singh SS, Naiyer S, Bharadwaj R, Kumar A, Singh YP, Ray AK, Subbarao N, Bhattacharya A, Bhattacharya S. Stress-induced nuclear depletion of Entamoeba histolytica 3'-5' exoribonuclease EhRrp6 and its role in growth and erythrophagocytosis. J Biol Chem 2018; 293:16242-16260. [PMID: 30171071 DOI: 10.1074/jbc.ra118.004632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/10/2018] [Indexed: 01/24/2023] Open
Abstract
The 3'-5' exoribonuclease Rrp6 is a key enzyme in RNA homeostasis involved in processing and degradation of many stable RNA precursors, aberrant transcripts, and noncoding RNAs. We previously have shown that in the protozoan parasite Entamoeba histolytica, the 5'-external transcribed spacer fragment of pre-rRNA accumulates under serum starvation-induced growth stress. This fragment is a known target of degradation by Rrp6. Here, we computationally and biochemically characterized EhRrp6 and found that it contains the catalytically important EXO and HRDC domains and exhibits exoribonuclease activity with both unstructured and structured RNA substrates, which required the conserved DEDD-Y catalytic-site residues. It lacked the N-terminal PMC2NT domain for binding of the cofactor Rrp47, but could functionally complement the growth defect of a yeast rrp6 mutant. Of note, no Rrp47 homologue was detected in E. histolytica Immunolocalization studies revealed that EhRrp6 is present both in the nucleus and cytosol of normal E. histolytica cells. However, growth stress induced its complete loss from the nuclei, reversed by proteasome inhibitors. EhRrp6-depleted E. histolytica cells were severely growth restricted, and EhRrp6 overexpression protected the cells against stress, suggesting that EhRrp6 functions as a stress sensor. Importantly EhRrp6 depletion reduced erythrophagocytosis, an important virulence determinant of E. histolytica This reduction was due to a specific decrease in transcript levels of some phagocytosis-related genes (Ehcabp3 and Ehrho1), whereas expression of other genes (Ehcabp1, Ehcabp6, Ehc2pk, and Eharp2/3) was unaffected. This is the first report of the role of Rrp6 in cell growth and stress responses in a protozoan parasite.
Collapse
Affiliation(s)
| | | | - Ravi Bharadwaj
- the School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Amarjeet Kumar
- the School of Computational and Integrative Sciences, and
| | | | | | - Naidu Subbarao
- the School of Computational and Integrative Sciences, and
| | - Alok Bhattacharya
- the School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | | |
Collapse
|
17
|
Rodríguez MA, Martínez-Higuera A, Valle-Solis MI, Hernandes-Alejandro M, Chávez-Munguía B, Figueroa-Gutiérrez AH, Salas-Casas A. A putative calcium-ATPase of the secretory pathway family may regulate calcium/manganese levels in the Golgi apparatus of Entamoeba histolytica. Parasitol Res 2018; 117:3381-3389. [PMID: 30084034 DOI: 10.1007/s00436-018-6030-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023]
Abstract
Calcium regulates many cellular processes in protozoa, including growth, differentiation, programmed cell death, exocytosis, endocytosis, phagocytosis, fusion of the endosomes of distinct stages with phagosomes, fusion of phagosomes with lysosomes, and recycling the membrane. In Entamoeba histolytica, the protozoa responsible for human amoebiasis, calcium ions are essential for signaling pathways that lead to growth and development. In addition, calcium is crucial in the modulation of gene expression in this microorganism. However, there is scant information about the proteins responsible for regulating calcium levels in this parasite. In this work, we characterized a protein of E. histolytica that shows a close phylogenetic relationship with Ca2+ pumps that belong to the family of secretory pathway calcium ATPases (SPCA), which for several organisms are located in the Golgi apparatus. The amoeba protein analyzed herein has several amino acid residues that are characteristic of SPCA members. By an immunofluorescent technique using specific antibodies and immunoelectron microscopy, the protein was detected on the membrane of some cytoplasmic vacuoles. Moreover, this putative calcium-ATPase was located in vacuoles stained with NBD C6-ceramide, a Golgi marker. Overall, the current findings support the hypothesis that the presently analyzed protein corresponds to the SPCA of E. histolytica.
Collapse
Affiliation(s)
- Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | | | - Martha I Valle-Solis
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Mario Hernandes-Alejandro
- Departamento de Bioingeniería, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional (UPIBI-IPN), Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Ana H Figueroa-Gutiérrez
- Instituto de Ciencias de la Salud, Área Académica de Gerontología, Universidad Autónoma del Estado de Hidalgo, Ex Hacienda la Concepción, s/n; Carretera Actopan-Tilcuautla, San Agustín Tlaxiaca, Hidalgo, Mexico
| | - Andrés Salas-Casas
- Instituto de Ciencias de la Salud, Área Académica de Gerontología, Universidad Autónoma del Estado de Hidalgo, Ex Hacienda la Concepción, s/n; Carretera Actopan-Tilcuautla, San Agustín Tlaxiaca, Hidalgo, Mexico.
| |
Collapse
|
18
|
Bharadwaj R, Sharma S, Arya R, Bhattacharya S, Bhattacharya A. EhRho1 regulates phagocytosis by modulating actin dynamics through EhFormin1 and EhProfilin1 inEntamoeba histolytica. Cell Microbiol 2018; 20:e12851. [DOI: 10.1111/cmi.12851] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/12/2018] [Accepted: 03/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Ravi Bharadwaj
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | - Shalini Sharma
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | - Ranjana Arya
- School of Biotechnology; Jawaharlal Nehru University; New Delhi India
| | - Sudha Bhattacharya
- School of Environmental Sciences; Jawaharlal Nehru University; New Delhi India
| | - Alok Bhattacharya
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | | |
Collapse
|
19
|
Avalos-Padilla Y, Knorr RL, Javier-Reyna R, García-Rivera G, Lipowsky R, Dimova R, Orozco E. The Conserved ESCRT-III Machinery Participates in the Phagocytosis of Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:53. [PMID: 29546036 PMCID: PMC5838018 DOI: 10.3389/fcimb.2018.00053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/12/2018] [Indexed: 01/22/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) orchestrates cell membrane-remodeling mechanisms in eukaryotes, including endocytosis. However, ESCRT functions in phagocytosis (ingestion of ≥250 nm particles), has been poorly studied. In macrophages and amoebae, phagocytosis is required for cell nutrition and attack to other microorganisms and cells. In Entamoeba histolytica, the voracious protozoan responsible for human amoebiasis, phagocytosis is a land mark of virulence. Here, we have investigated the role of ESCRT-III in the phagocytosis of E. histolytica, using mutant trophozoites, recombinant proteins (rEhVps20, rEhVps32, rEhVps24, and rEhVps2) and giant unilamellar vesicles (GUVs). Confocal images displayed the four proteins located around the ingested erythrocytes, in erythrocytes-containing phagosomes and in multivesicular bodies. EhVps32 and EhVps2 proteins co-localized at the phagocytic cups. Protein association increased during phagocytosis. Immunoprecipitation and flow cytometry assays substantiated these associations. GUVs revealed that the protein assembly sequence is essential to form intraluminal vesicles (ILVs). First, the active rEhVps20 bound to membranes and recruited rEhVps32, promoting membrane invaginations. rEhVps24 allowed the detachment of nascent vesicles, forming ILVs; and rEhVps2 modulated their size. The knock down of Ehvps20 and Ehvps24genes diminished the rate of erythrophagocytosis demonstrating the importance of ESCRT-III in this event. In conclusion, we present here evidence of the ESCRT-III participation in phagocytosis and delimitate the putative function of proteins, according to the in vitro reconstruction of their assembling.
Collapse
Affiliation(s)
- Yunuen Avalos-Padilla
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Departamento de Infectómica y Patogénesis Molecular, CINVESTAV IPN, Mexico City, Mexico
| | - Roland L Knorr
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV IPN, Mexico City, Mexico
| | | | - Reinhard Lipowsky
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV IPN, Mexico City, Mexico
| |
Collapse
|
20
|
Bharadwaj R, Arya R, Shahid mansuri M, Bhattacharya S, Bhattacharya A. EhRho1 regulates plasma membrane blebbing through PI3 kinase inEntamoeba histolytica. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/03/2017] [Accepted: 04/16/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Ravi Bharadwaj
- School of Biotechnology; Jawaharlal Nehru University; New Delhi India
| | - Ranjana Arya
- School of Biotechnology; Jawaharlal Nehru University; New Delhi India
| | | | - Sudha Bhattacharya
- School of environmental Sciences; Jawaharlal Nehru University; New Delhi India
| | - Alok Bhattacharya
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| |
Collapse
|
21
|
Verma K, Datta S. The Monomeric GTPase Rab35 Regulates Phagocytic Cup Formation and Phagosomal Maturation in Entamoeba histolytica. J Biol Chem 2017; 292:4960-4975. [PMID: 28126902 DOI: 10.1074/jbc.m117.775007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/25/2017] [Indexed: 12/27/2022] Open
Abstract
One of the hallmarks of amoebic colitis is the detection of Entamoeba histolytica (Eh) trophozoites with ingested erythrocytes. Therefore, erythrophagocytosis is traditionally considered as one of the most important criteria to identify the pathogenic behavior of the amoebic trophozoites. Phagocytosis is an essential process for the proliferation and virulence of this parasite. Phagocytic cargo, upon internalization, follows a defined trafficking route to amoebic lysosomal degradation machinery. Here, we demonstrated the role of EhRab35 in the early and late phases of erythrophagocytosis by the amoeba. EhRab35 showed large vacuolar as well as punctate vesicular localization. The spatiotemporal dynamics of vacuolar EhRab35 and its exchange with soluble cytosolic pool were monitored by fluorescence recovery after photobleaching experiments. Using extensive microscopy and biochemical methods, we demonstrated that upon incubation with RBCs EhRab35 is recruited to the site of phagocytic cups as well as to the nascent phagosomes that harbor Gal/GalNAc lectin and actin. Overexpression of a dominant negative mutant of EhRab35 reduced phagocytic cup formation and thereby reduced RBC internalization, suggesting a potential role of the Rab GTPase in the cup formation. Furthermore, we also performed a phagosomal maturation assay and observed that the activated form of EhRab35 significantly increased the rate of RBC degradation. Interestingly, this mutant also significantly enhanced the number of acidic compartments in the trophozoites. Taken together, our results suggest that EhRab35 is involved in the initial stage of phagocytosis as well as in the phagolysosomal biogenesis in E. histolytica and thus contributes to the pathogenicity of the parasite.
Collapse
Affiliation(s)
- Kuldeep Verma
- From the Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462030, India
| | - Sunando Datta
- From the Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462030, India
| |
Collapse
|
22
|
Verma K, Nozaki T, Datta S. Role of EhRab7A in phagocytosis of type 1 fimbriated E. coli by Entamoeba histolytica. Mol Microbiol 2016; 102:1043-1061. [PMID: 27663892 DOI: 10.1111/mmi.13533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2016] [Indexed: 01/16/2023]
Abstract
Entamoeba histolytica, the causative agent of amoebic colitis and liver abscess in human, ingests the intestinal bacteria and variety of host cells. Phagocytosis of bacteria by the amebic trophozoite has been reported to be important for the virulence of the parasite. Here, we set out to characterize different stages of phagocytosis of type 1 E. coli and investigated the role of a set of amoebic Rab GTPases in the process. The localizations of the Rab GTPases during different stages of the phagocytosis were investigated using laser scanning confocal microscopy and their functional relevance were determined using fluorescence activated cell sorter based assay as well as colony forming unit assay. Our results demonstrate that EhRab7A is localized on the phagosomes and involved in both early and late stages of type 1 E. coli phagocytosis. We further showed that the E. coli or RBC containing phagosomes are distinct from the large endocytic vacuoles in the parasite which are exclusively used to transport human holotransferrin and low density lipoprotein. Remarkably, type 1 E. coli uptake was found to be insensitive to cytochalasin D treatment, suggesting that the initial stage of E. coli phagocytosis is independent of the formation of actin filaments.
Collapse
Affiliation(s)
- Kuldeep Verma
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Bypass Road, Bhauri, Bhopal, 462 066, Madhya Pradesh, India
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Bypass Road, Bhauri, Bhopal, 462 066, Madhya Pradesh, India
| |
Collapse
|
23
|
Dhanalakshmi S, Meenachi C, Parija SC. Indirect Haemagglutination Test in Comparison with ELISA for Detection of Antibodies against Invasive Amoebiasis. J Clin Diagn Res 2016; 10:DC05-8. [PMID: 27656436 DOI: 10.7860/jcdr/2016/21566.8326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/19/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Diagnosis of amoebiasis is based on combination of tests like microscopy, imaging, serology and molecular methods. In absence of molecular techniques, serology can be used as an alternative aid. Various serological techniques were reported with different sensitivity and specificity. The diagnostic efficiency of these assays mainly depends on the characteristics of antigen that is being used and various conditions of performance. AIM To evaluate the efficiency of recombinant calcium binding domain containing protein by Indirect Haemagglutination Assay (IHA) against a commercial ELISA among amoebic liver abscess cases and control group. MATERIALS AND METHODS The study was carried out during the period of 2011-2015 and blood samples were collected from suspected amoebiasis cases who were attending the clinics of Medicine and Paediatrics department, JIPMER. A total of 200 sera samples which included 100 Amoebic Liver Abscess (ALA), 50 cases of other parasitic infections and liver diseases and 50 presumed healthy controls were examined by IHA and commercial ELISA. In brief, chick cells were stabilized by Double Aldehyde Sensitization (DAS) method. Optimum Sensitizing Dose (OSD) of the antigen was determined. The test was performed in a U-bottomed microtiter plate with recombinant amoebic antigen (12.5μg/ml), incubated at Room Temperature (RT) for 2 hours. RIDASCREEN Entamoeba IgG ELISA kit which is commercially available was used to evaluate the samples as per manufacturer's instruction. RESULTS The overall sensitivity and specificity of the IHA was 62% and 96%, respectively when compared to ELISA having sensitivity and specificity of 69% and 90%, respectively. The positive predictive value of the IHA was 91% while negative predictive value was 79%. Similarly, the positive predictive value of the ELISA was 87% while negative predictive value was 74%. CONCLUSION As serology heavily suffers due to lack of a standardised test system employing the native antigen, there arises need to identify alternative source of recombinant antigen which could effectively improvise the existing lacunae in the current system. Serology acts as an adjunct in clinical decision making if properly interpreted. This is an important consideration in endemic region where health services resources are limited.
Collapse
Affiliation(s)
- Sankaramoorthy Dhanalakshmi
- Ph.D Scholar, Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research , Puducherry, Tamil Nadu, India
| | - Chidambaram Meenachi
- Junior Resident, Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research , Puducherry, Tamil Nadu, India
| | - Subhash Chandra Parija
- Director and Senior Professor of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research , Puducherry, Tamil Nadu, India
| |
Collapse
|
24
|
Mansuri MS, Babuta M, Ali MS, Bharadwaj R, Deep jhingan G, Gourinath S, Bhattacharya S, Bhattacharya A. Autophosphorylation at Thr279 of Entamoeba histolytica atypical kinase EhAK1 is required for activity and regulation of erythrophagocytosis. Sci Rep 2016; 6:16969. [PMID: 26739245 PMCID: PMC4703981 DOI: 10.1038/srep16969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/22/2015] [Indexed: 11/09/2022] Open
Abstract
Phagocytosis plays a key role in survival and pathogenicity of Entamoeba histolytica. We have recently demonstrated that an atypical kinase EhAK1 is involved in phagocytosis in this parasite. It is recruited to the phagocytic cups through interaction with EhCaBP1. EhAK1 manipulates actin dynamics by multiple mechanisms including phosphorylation of G-actin. Biochemical analysis showed that EhAK1 is a serine/threonine kinase with broad ion specificity and undergoes multiple trans-autophosphorylation. Three autophosphorylation sites were identified by mass spectrometry. Out of these Thr279 appears to be involved in both autophosphorylation as well as substrate phosphorylation. Over expression of the mutant Thr279A inhibited erythrophagocytosis showing dominant negative phenotype. Multiple alignments of different kinases including alpha kinases displayed conserved binding sites that are thought to be important for function of the protein. Mutation studies demonstrated the importance of some of these binding sites in kinase activity. Binding studies with fluorescent-ATP analogs supported our prediction regarding ATP binding site based on sequence alignment. In conclusion, EhAK1 has multiple regulatory features and enrichment of EhAK1 at the site of phagocytosis stimulates trans-autophosphorylation reaction that increases kinase activity resulting in enhanced actin dynamics and phagocytosis. Some of the properties of EhAK1 are similar to that seen in alpha kinases.
Collapse
Affiliation(s)
- M Shahid Mansuri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mrigya Babuta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohammad Sabir Ali
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Bharadwaj
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Samudrala Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
25
|
Entamoeba invadens: Identification of a SERCA protein and effect of SERCA inhibitors on encystation. Microb Pathog 2015; 89:18-26. [DOI: 10.1016/j.micpath.2015.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 11/22/2022]
|
26
|
|
27
|
Silvestre A, Plaze A, Berthon P, Thibeaux R, Guillen N, Labruyère E. In Entamoeba histolytica, a BspA family protein is required for chemotaxis toward tumour necrosis factor. MICROBIAL CELL (GRAZ, AUSTRIA) 2015; 2:235-246. [PMID: 28357299 PMCID: PMC5349171 DOI: 10.15698/mic2015.07.214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/04/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Entamoeba histolytica cell migration is essential for the development of human amoebiasis (an infectious disease characterized by tissue invasion and destruction). The tissue inflammation associated with tumour necrosis factor (TNF) secretion by host cells is a well-documented feature of amoebiasis. Tumour necrosis factor is a chemoattractant for E. histolytica, and the parasite may have a TNF receptor at its cell surface. METHODS confocal microscopy, RNA Sequencing, bioinformatics, RNA antisense techniques and histological analysis of human colon explants were used to characterize the interplay between TNF and E. histolytica. RESULTS an antibody against human TNF receptor 1 (TNFR1) stained the E. histolytica trophozoite surface and (on immunoblots) binds to a 150-kDa protein. Proteome screening with the TNFR1 sequence revealed a BspA family protein in E. histolytica that carries a TNFR signature domain and six leucine-rich repeats (named here as "cell surface protein", CSP, in view of its cellular location). Cell surface protein shares structural homologies with Toll-Like receptors, colocalizes with TNF and is internalized in TNF-containing vesicles. Reduction of cellular CSP levels abolished chemotaxis toward TNF and blocked parasite invasion of human colon. CONCLUSIONS there is a clear link between TNF chemotaxis, CSP and pathogenesis.
Collapse
Affiliation(s)
- Anne Silvestre
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, F-75015 Paris, France
- INSERM U786, F-75015 Paris, France
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
- Université de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Aurélie Plaze
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, F-75015 Paris, France
- INSERM U786, F-75015 Paris, France
| | - Patricia Berthon
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
- Université de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Roman Thibeaux
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, F-75015 Paris, France
- INSERM U786, F-75015 Paris, France
| | - Nancy Guillen
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, F-75015 Paris, France
- INSERM U786, F-75015 Paris, France
| | - Elisabeth Labruyère
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, F-75015 Paris, France
- INSERM U786, F-75015 Paris, France
| |
Collapse
|
28
|
Ralston KS. Chew on this: amoebic trogocytosis and host cell killing by Entamoeba histolytica. Trends Parasitol 2015; 31:442-52. [PMID: 26070402 DOI: 10.1016/j.pt.2015.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 01/23/2023]
Abstract
Entamoeba histolytica was named 'histolytica' (from histo-, 'tissue'; lytic-, 'dissolving') for its ability to destroy host tissues. Direct killing of host cells by the amoebae is likely to be the driving factor that underlies tissue destruction, but the mechanism was unclear. We recently showed that, after attaching to host cells, amoebae bite off and ingest distinct host cell fragments, and that this contributes to cell killing. We review this process, termed 'amoebic trogocytosis' (trogo-, 'nibble'), and how this process interplays with phagocytosis, or whole cell ingestion, in this organism. 'Nibbling' processes have been described in other microbes and in multicellular organisms. The discovery of amoebic trogocytosis in E. histolytica may also shed light on an evolutionarily conserved process for intercellular exchange.
Collapse
Affiliation(s)
- Katherine S Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA.
| |
Collapse
|
29
|
Picazarri K, Nakada-Tsukui K, Tsuboi K, Miyamoto E, Watanabe N, Kawakami E, Nozaki T. Atg8 is involved in endosomal and phagosomal acidification in the parasitic protist Entamoeba histolytica. Cell Microbiol 2015; 17:1510-22. [PMID: 25923949 PMCID: PMC4744732 DOI: 10.1111/cmi.12453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 04/09/2015] [Accepted: 04/23/2015] [Indexed: 01/08/2023]
Abstract
Autophagy is one of two major bulk protein degradation systems and is conserved throughout eukaryotes. The protozoan Entamoeba histolytica, which is a human intestinal parasite, possesses a restricted set of autophagy‐related (Atg) proteins compared with other eukaryotes and thus represents a suitable model organism for studying the minimal essential components and ancestral functions of autophagy. E. histolytica possesses two conjugation systems: Atg8 and Atg5/12, although a gene encoding Atg12 is missing in the genome. Atg8 is considered to be the central and authentic marker of autophagosomes, but recent studies have demonstrated that Atg8 is not exclusively involved in autophagy per se, but other fundamental mechanisms of vesicular traffic. To investigate this question in E. histolytica, we studied on Atg8 during the proliferative stage. Atg8 was constitutively expressed in both laboratory‐maintained and recently established clinical isolates and appeared to be lipid‐modified in logarithmic growth phase, suggesting a role of Atg8 in non‐stress and proliferative conditions. These findings are in contrast to those for Entamoeba invadens, in which autophagy is markedly induced during an early phase of differentiation from the trophozoite into the cyst. The repression of Atg8 gene expression in En. histolytica by antisense small RNA‐mediated transcriptional gene silencing resulted in growth retardation, delayed endocytosis and reduced acidification of endosomes and phagosomes. Taken together, these results suggest that Atg8 and the Atg8 conjugation pathway have some roles in the biogenesis of endosomes and phagosomes in this primitive eukaryote.
Collapse
Affiliation(s)
- Karina Picazarri
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kumiko Tsuboi
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Eri Miyamoto
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Naoko Watanabe
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Eiryo Kawakami
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Laboratory for Disease Systems Modeling, RIKEN Center for integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
30
|
Crystal structure of calcium binding protein-5 from Entamoeba histolytica and its involvement in initiation of phagocytosis of human erythrocytes. PLoS Pathog 2014; 10:e1004532. [PMID: 25502654 PMCID: PMC4263763 DOI: 10.1371/journal.ppat.1004532] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 10/20/2014] [Indexed: 11/19/2022] Open
Abstract
Entamoeba histolytica is the etiological agent of human amoebic colitis and liver abscess, and causes a high level of morbidity and mortality worldwide, particularly in developing countries. There are a number of studies that have shown a crucial role for Ca2+ and its binding protein in amoebic biology. EhCaBP5 is one of the EF hand calcium-binding proteins of E. histolytica. We have determined the crystal structure of EhCaBP5 at 1.9 Å resolution in the Ca2+-bound state, which shows an unconventional mode of Ca2+ binding involving coordination to a closed yet canonical EF-hand motif. Structurally, EhCaBP5 is more similar to the essential light chain of myosin than to Calmodulin despite its somewhat greater sequence identity with Calmodulin. This structure-based analysis suggests that EhCaBP5 could be a light chain of myosin. Surface plasmon resonance studies confirmed this hypothesis, and in particular showed that EhCaBP5 interacts with the IQ motif of myosin 1B in calcium independent manner. It also appears from modelling of the EhCaBP5-IQ motif complex that EhCaBP5 undergoes a structural change in order to bind the IQ motif of myosin. This specific interaction was further confirmed by the observation that EhCaBP5 and myosin 1B are colocalized in E. histolytica during phagocytic cup formation. Immunoprecipitation of EhCaBP5 from total E. histolytica cellular extract also pulls out myosin 1B and this interaction was confirmed to be Ca2+ independent. Confocal imaging of E. histolytica showed that EhCaBP5 and myosin 1B are part of phagosomes. Overexpression of EhCaBP5 increases slight rate (∼20%) of phagosome formation, while suppression reduces the rate drastically (∼55%). Taken together, these experiments indicate that EhCaBP5 is likely to be the light chain of myosin 1B. Interestingly, EhCaBP5 is not present in the phagosome after its formation suggesting EhCaBP5 may be playing a regulatory role.
Collapse
|
31
|
Mansuri MS, Bhattacharya S, Bhattacharya A. A novel alpha kinase EhAK1 phosphorylates actin and regulates phagocytosis in Entamoeba histolytica. PLoS Pathog 2014; 10:e1004411. [PMID: 25299184 PMCID: PMC4192601 DOI: 10.1371/journal.ppat.1004411] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/19/2014] [Indexed: 01/09/2023] Open
Abstract
Phagocytosis plays a key role in nutrient uptake and virulence of the protist parasite Entamoeba histolytica. Phagosomes have been characterized by proteomics, and their maturation in the cells has been studied. However, there is so far not much understanding about initiation of phagocytosis and formation of phagosomes at the molecular level. Our group has been studying initiation of phagocytosis and formation of phagosomes in E. histolytica, and have described some of the molecules that play key roles in the process. Here we show the involvement of EhAK1, an alpha kinase and a SH3 domain containing protein in the pathway that leads to formation of phagosomes using red blood cell as ligand particle. A number of approaches, such as proteomics, biochemical, confocal imaging using specific antibodies or GFP tagged molecules, expression down regulation by antisense RNA, over expression of wild type and mutant proteins, were used to understand the role of EhAK1 in phagocytosis. EhAK1 was found in the phagocytic cups during the progression of cups, until closure of phagosomes, but not in the phagosomes themselves. It is recruited to the phagosomes through interaction with the calcium binding protein EhCaBP1. A reduction in phagocytosis was observed when EhAK1 was down regulated by antisense RNA, or by over expression of the kinase dead mutant. G-actin was identified as one of the major substrates of EhAK1. Phosphorylated actin preferentially accumulated at the phagocytic cups and over expression of a phosphorylation defective actin led to defects in phagocytosis. In conclusion, we describe an important component of the pathway that is initiated on attachment of red blood cells to E. histolytica cells. The main function of EhAK1 is to couple signalling events initiated after accumulation of EhC2PK to actin dynamics.
Collapse
Affiliation(s)
- M. Shahid Mansuri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
32
|
EhCoactosin stabilizes actin filaments in the protist parasite Entamoeba histolytica. PLoS Pathog 2014; 10:e1004362. [PMID: 25210743 PMCID: PMC4161475 DOI: 10.1371/journal.ppat.1004362] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/28/2014] [Indexed: 11/19/2022] Open
Abstract
Entamoeba histolytica is a protist parasite that is the causative agent of amoebiasis, and is a highly motile organism. The motility is essential for its survival and pathogenesis, and a dynamic actin cytoskeleton is required for this process. EhCoactosin, an actin-binding protein of the ADF/cofilin family, participates in actin dynamics, and here we report our studies of this protein using both structural and functional approaches. The X-ray crystal structure of EhCoactosin resembles that of human coactosin-like protein, with major differences in the distribution of surface charges and the orientation of terminal regions. According to in vitro binding assays, full-length EhCoactosin binds both F- and G-actin. Instead of acting to depolymerize or severe F-actin, EhCoactosin directly stabilizes the polymer. When EhCoactosin was visualized in E. histolytica cells using either confocal imaging or total internal reflectance microscopy, it was found to colocalize with F-actin at phagocytic cups. Over-expression of this protein stabilized F-actin and inhibited the phagocytic process. EhCoactosin appears to be an unusual type of coactosin involved in E. histolytica actin dynamics. E. histolytica is an important pathogen and a major cause of morbidity and mortality in developing nations. High level of motility and phagocytosis is responsible for the parasite invading different tissues of the host. Phagocytosis and motility depend on highly dynamic actin cytoskeleton of this organism. The mechanisms of actin dynamics is not well understood in E. histolytica. Here we report that coactosin like molecule from E. histolytica, EhCoactosin is involved in F-actin stabilization. The crystal structure obtained for the protein provides explanation for some functional differences observed with respect to the human homologue, such as ability to bind G-actin. Moreover, computational modelling along with crystal structure helps to explain the F-actin binding and stabilization by wild type protein. The mutational analysis further suggests that F-actin binding property does not depend on conserved Lys75 residue as observed in Human coactosin like protein (HCLP) but other regions present in protein are involved in binding. Overexpression of this protein in trophozoites leads to stabilization of actin filaments which are not accessible to actin remodelling machinery thereby reducing the growth of parasite due to decreased rate of actin dependent endocytosis. Overall, EhCoactosin behaves as F-actin stabilizing protein in vitro and it also participates in processes like phagocytosis and pseudopod formation.
Collapse
|
33
|
Martinez-Higuera A, Salas-Casas A, Calixto-Gálvez M, Chávez-Munguía B, Pérez-Ishiwara DG, Ximénez C, Rodríguez MA. Identification of calcium-transporting ATPases of Entamoeba histolytica and cellular localization of the putative SERCA. Exp Parasitol 2013; 135:79-86. [DOI: 10.1016/j.exppara.2013.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 05/15/2013] [Accepted: 06/12/2013] [Indexed: 11/28/2022]
|
34
|
Grewal JS, Padhan N, Aslam S, Bhattacharya A, Lohia A. The calcium binding protein EhCaBP6 is a microtubular-end binding protein inEntamoeba histolytica. Cell Microbiol 2013; 15:2020-33. [DOI: 10.1111/cmi.12167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 06/28/2013] [Accepted: 07/08/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Jaspreet Singh Grewal
- Department of Biochemistry; Bose Institute; P-1/12, C. I. T. Scheme VII-M Kolkata 700 054 India
| | - Narendra Padhan
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | - Saima Aslam
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | - Alok Bhattacharya
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | - Anuradha Lohia
- Department of Biochemistry; Bose Institute; P-1/12, C. I. T. Scheme VII-M Kolkata 700 054 India
| |
Collapse
|
35
|
Rout AK, Patel S, Somlata, Shukla M, Saraswathi D, Bhattacharya A, Chary KVR. Functional manipulation of a calcium-binding protein from Entamoeba histolytica guided by paramagnetic NMR. J Biol Chem 2013; 288:23473-87. [PMID: 23782698 DOI: 10.1074/jbc.m112.411058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EhCaBP1, one of the calcium-binding proteins from Entamoeba histolytica, is a two-domain EF-hand protein. The two domains of EhCaBP1 are structurally and functionally different from each other. However, both domains are required for structural stability and a full range of functional diversity. Analysis of sequence and structure of EhCaBP1 and other CaBPs indicates that the C-terminal domain of EhCaBP1 possesses a unique structure compared with other family members. This had been attributed to the absence of a Phe-Phe interaction between highly conserved Phe residues at the -4 position in EF-hand III (F[-4]; Tyr(81)) and at the 13th position in EF-hand IV (F[+13]; Phe(129)) of the C-terminal domain. Against this backdrop, we mutated the Tyr residue at the -4th position of EF III to the Phe residue (Y81F), to bring in the Phe-Phe interaction and understand the nature of structural and functional changes in the protein by NMR spectroscopy, molecular dynamics (MD) simulation, isothermal titration calorimetry (ITC), and biological assays, such as imaging and actin binding. The Y81F mutation in EhCaBP1 resulted in a more compact structure for the C-terminal domain of the mutant as in the case of calmodulin and troponin C. The compact structure is favored by the presence of a π-π interaction between Phe(81) and Phe(129) along with several hydrophobic interactions of Phe(81), which are not seen in the wild-type protein. Furthermore, the biological assays reveal preferential membrane localization of the mutant, loss of its colocalization with actin in the phagocytic cups, whereas retaining its ability to bind G- and F-actin.
Collapse
Affiliation(s)
- Ashok K Rout
- Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | | | | | | | |
Collapse
|
36
|
The Calmodulin-like calcium binding protein EhCaBP3 of Entamoeba histolytica regulates phagocytosis and is involved in actin dynamics. PLoS Pathog 2012; 8:e1003055. [PMID: 23300437 PMCID: PMC3531509 DOI: 10.1371/journal.ppat.1003055] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/11/2012] [Indexed: 11/20/2022] Open
Abstract
Phagocytosis is required for proliferation and pathogenesis of Entamoeba histolytica and erythrophagocytosis is considered to be a marker of invasive amoebiasis. Ca2+ has been found to play a central role in the process of phagocytosis. However, the molecular mechanisms and the signalling mediated by Ca2+ still remain largely unknown. Here we show that Calmodulin-like calcium binding protein EhCaBP3 of E. histolytica is directly involved in disease pathomechanism by its capacity to participate in cytoskeleton dynamics and scission machinery during erythrophagocytosis. Using imaging techniques EhCaBP3 was found in phagocytic cups and newly formed phagosomes along with actin and myosin IB. In vitro studies confirmed that EhCaBP3 directly binds actin, and affected both its polymerization and bundling activity. Moreover, it also binds myosin 1B in the presence of Ca2+. In cells where EhCaBP3 expression was down regulated by antisense RNA, the level of RBC uptake was reduced, myosin IB was found to be absent at the site of pseudopod cup closure and the time taken for phagocytosis increased, suggesting that EhCaBP3 along with myosin 1B mediate the closure of phagocytic cups. Experiments with EhCaBP3 mutant defective in Ca2+ -binding showed that Ca2+ binding is required for phagosome formation. Liposome binding assay revealed that EhCaBP3 recruitment and enrichment to membrane is independent of any cellular protein as it binds directly to phosphatidylserine. Taken together, our results suggest a novel pathway mediating phagocytosis in E. histolytica, and an unusual mechanism of modulation of cytoskeleton dynamics by two calcium binding proteins, EhCaBP1 and EhCaBP3 with mostly non-overlapping functions. Entamoeba histolytica is one of the major causes of morbidity and mortality in developing countries. Phagocytosis plays an important role in both survival and virulence and has been used as a virulence marker. Inhibition of phagocytosis leads to a defect in cellular proliferation. Therefore, the molecules that participate in phagocytosis are good targets for developing new drugs. However, the molecular mechanism of the process is still largely unknown. Here, we demonstrate that Calmodulin-like calcium binding protein EhCaBP3 is involved in erythrophagocytosis. We show this by a number of different approaches including immunostaining of actin, myosin1B, EhCaBP1 and EhCaBP3 during uptake of RBC; over expression and down regulation of EhCaBP3, and over expression of calcium defective mutant of EhCaBP3. Our analysis suggests that EhCaBP3 can regulate actin dynamics. Along with actin and myosin 1B it can participate in both initiation and formation of phagosomes. The Ca2+-bound form of this protein is required only for progression from cups into early phagosomes but not for initiation. Our results demonstrate the complex role of Ca2+ binding proteins, EhCaBP1 and EhCaBP3 in regulation of phagocytosis in the protist parasite E. histolytica and the novel mechanisms of manipulating actin dynamics at multiple levels.
Collapse
|
37
|
Kumar S, Zaidi R, Gourinath S. Cloning, purification, crystallization and preliminary crystallographic study of calcium-binding protein 5 from Entamoeba histolytica. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1542-4. [PMID: 23192043 PMCID: PMC3509984 DOI: 10.1107/s1744309112044612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/28/2012] [Indexed: 11/10/2022]
Abstract
Entamoeba histolytica is the causative agent of human amoebiasis. Phagocytosis is the major route of food intake by this parasite and is responsible for its virulence. Calcium and calcium-binding proteins play major roles in its phagocytosis. Calcium-binding protein 5 from E. histolytica (EhCaBP5) is a cytoplasmic protein; its expression is very sensitive to serum starvation and it seems to be involved in binding to myosin I. In this study, EhCaBP5 was cloned, expressed in Escherichia coli and purified using affinity and size-exclusion chromatography. The purified protein crystallized in space group C222 and the crystals diffracted to 2 Å resolution. The Matthews coefficient indicated the presence of one molecule in the asymmetric unit, with a VM of 2.35 Å3 Da(-1) and a solvent content of 47.7%.
Collapse
Affiliation(s)
- Sanjeev Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
- Department of Biochemistry, Jamia Hamdard University, New Delhi, India
| | - Rana Zaidi
- Department of Biochemistry, Jamia Hamdard University, New Delhi, India
| | - Samudrala Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| |
Collapse
|
38
|
Bosch DE, Kimple AJ, Muller RE, Giguère PM, Machius M, Willard FS, Temple BRS, Siderovski DP. Heterotrimeric G-protein signaling is critical to pathogenic processes in Entamoeba histolytica. PLoS Pathog 2012; 8:e1003040. [PMID: 23166501 PMCID: PMC3499586 DOI: 10.1371/journal.ppat.1003040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/03/2012] [Indexed: 01/08/2023] Open
Abstract
Heterotrimeric G-protein signaling pathways are vital components of physiology, and many are amenable to pharmacologic manipulation. Here, we identify functional heterotrimeric G-protein subunits in Entamoeba histolytica, the causative agent of amoebic colitis. The E. histolytica Gα subunit EhGα1 exhibits conventional nucleotide cycling properties and is seen to interact with EhGβγ dimers and a candidate effector, EhRGS-RhoGEF, in typical, nucleotide-state-selective fashions. In contrast, a crystal structure of EhGα1 highlights unique features and classification outside of conventional mammalian Gα subfamilies. E. histolytica trophozoites overexpressing wildtype EhGα1 in an inducible manner exhibit an enhanced ability to kill host cells that may be wholly or partially due to enhanced host cell attachment. EhGα1-overexpressing trophozoites also display enhanced transmigration across a Matrigel barrier, an effect that may result from altered baseline migration. Inducible expression of a dominant negative EhGα1 variant engenders the converse phenotypes. Transcriptomic studies reveal that modulation of pathogenesis-related trophozoite behaviors by perturbed heterotrimeric G-protein expression includes transcriptional regulation of virulence factors and altered trafficking of cysteine proteases. Collectively, our studies suggest that E. histolytica possesses a divergent heterotrimeric G-protein signaling axis that modulates key aspects of cellular processes related to the pathogenesis of this infectious organism.
Collapse
Affiliation(s)
- Dustin E. Bosch
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Adam J. Kimple
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robin E. Muller
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Patrick M. Giguère
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mischa Machius
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Francis S. Willard
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brenda R. S. Temple
- Department of Biochemistry & Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- R. L. Juliano Structural Bioinformatics Core, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David P. Siderovski
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia, United States of America
| |
Collapse
|
39
|
Baumel-Alterzon S, Weber C, Guillén N, Ankri S. Identification of dihydropyrimidine dehydrogenase as a virulence factor essential for the survival of Entamoeba histolytica in glucose-poor environments. Cell Microbiol 2012; 15:130-44. [PMID: 23016994 DOI: 10.1111/cmi.12036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/11/2012] [Accepted: 09/19/2012] [Indexed: 11/28/2022]
Abstract
Adaptation to nutritional changes is a key feature for successful survival of a pathogen within its host. The protozoan parasite Entamoeba histolytica normally colonizes the human colon and in rare occasions, this parasite spread to distant organs, such as the liver. E. histolytica obtains most of its energy from the fermentation of glucose into ethanol. In this study, we were intrigued to know how this parasite reacts to changes in glucose availability and we addressed this issue by performing a DNA microarray analysis of gene expression. Results show that parasites that were adapted to growth in absence of glucose increased their virulence and altered the transcription of several genes. One of these genes is the dihydropyrimidine dehydrogenase (DPD), which is involved in degradation of pyrimidines. We showed that this gene is crucial for the parasite's growth when the availability of glucose is limited. These data contribute to our understanding of the parasite's ability to survive in glucose-poor environments and reveal a new role for the DPD enzyme.
Collapse
Affiliation(s)
- Sharon Baumel-Alterzon
- Department of Molecular Microbiology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
40
|
Somlata, Kamanna S, Agrahari M, Babuta M, Bhattacharya S, Bhattacharya A. Autophosphorylation of Ser428 of EhC2PK plays a critical role in regulating erythrophagocytosis in the parasite Entamoeba histolytica. J Biol Chem 2012; 287:10844-52. [PMID: 22753771 DOI: 10.1074/jbc.m111.308874] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The protozoan parasite Entamoeba histolytica can invade both intestinal and extra intestinal tissues resulting in amoebiasis. During the process of invasion E. histolytica ingests red blood and host cells using phagocytic processes. Though phagocytosis is considered to be a key virulence determinant, the mechanism is not very well understood in E. histolytica. We have recently demonstrated that a novel C2 domain-containing protein kinase, EhC2PK is involved in the initiation of erythrophagocytosis. Because cells overexpressing the kinase-dead mutant of EhC2PK displayed a reduction in erythrophagocytosis, it appears that kinase activity is necessary for initiation. Biochemical analysis showed that EhC2PK is an unusual Mn(2+)-dependent serine kinase. It has a trans-autophosphorylated site at Ser(428) as revealed by mass spectrometric and biochemical analysis. The autophosphorylation defective mutants (S428A, KDΔC) showed a reduction in auto and substrate phosphorylation. Time kinetics of in vitro kinase activity suggested two phases, an initial short slow phase followed by a rapid phase for wild type protein, whereas mutations in the autophosphorylation sites that cause defect (S428A) or conferred phosphomimetic property (S428E) displayed no distinct phases, suggesting that autophosphorylation may be controlling kinase activity through an autocatalytic mechanism. A reduction and delay in erythrophagocytosis was observed in E. histolytica cells overexpressing S428A and KDΔC proteins. These results indicate that enrichment of EhC2PK at the site of phagocytosis enhances the rate of trans-autophosphorylation, thereby increasing kinase activity and regulating the initiation of erythrophagocytosis in E. histolytica.
Collapse
Affiliation(s)
- Somlata
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | | | | | | | |
Collapse
|
41
|
Christy NCV, Petri WA. Mechanisms of adherence, cytotoxicity and phagocytosis modulate the pathogenesis of Entamoeba histolytica. Future Microbiol 2011; 6:1501-19. [DOI: 10.2217/fmb.11.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The unicellular parasite Entamoeba histolytica, the causative agent of the human disease amebiasis, has traditionally been distinguished from its nonpathogenic cousin Entamoeba dispar by its propensity for the ingestion of erythrocytes. This classic feature, along with the parasite’s ability to cause extensive host cell death, are critical mechanisms of pathogenesis during human infection. Recent advances have led to a greater understanding of the molecular components that allow E. histolytica to kill and phagocytose extracellular targets during human infection and include detailed studies of the role of the parasite’s cysteine proteinases and other effectors of cytotoxicity, as well as the mechanisms of ligand recognition, signaling and intracellular trafficking during phagocytosis.
Collapse
Affiliation(s)
- Nathaniel CV Christy
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, 22908, USA
| | | |
Collapse
|
42
|
A C2 domain protein kinase initiates phagocytosis in the protozoan parasite Entamoeba histolytica. Nat Commun 2011; 2:230. [PMID: 21407196 DOI: 10.1038/ncomms1199] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 01/19/2010] [Indexed: 11/08/2022] Open
Abstract
Phagocytosis is a process whereby particles are taken in by cells through mechanisms superficially similar to those for endocytosis. It serves a wide range of functions, from providing nutrition in unicellular organisms to initiation of both innate and adaptive immunity in vertebrates. In the protozoan parasite Entamoeba histolytica, it has an essential role in survival and pathogenesis. In this study, we show that EhC2PK, a C2-domain-containing protein kinase, and the Ca²(+) and actin-binding protein, EhCaBP1, are involved in the initiation of phagocytosis in E. histolytica. Conditional suppression of EhC2PK expression and overexpression of a mutant form reveals its role in the initiation of phagocytic cups. EhC2PK binds phosphatidylserine in the presence of Ca²(+) and thereby recruits EhCaBP1 and actin to the membrane. Identification of these proteins in phagocytosis is an important step in amoebic biology and these molecules could be the important targets for developing novel therapies against amoebiasis.
Collapse
|
43
|
Rout AK, Padhan N, Barnwal RP, Bhattacharya A, Chary KVR. Calmodulin-like protein from Entamoeba histolytica: solution structure and calcium-binding properties of a partially folded protein. Biochemistry 2010; 50:181-93. [PMID: 21114322 DOI: 10.1021/bi101411q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism of Ca(2+)-signaling in the protozoan parasite Entamoeba histolytica is yet to be understood as many of the key regulators are still to be identified. E. histolytica encodes a number of multi-EF-hand Ca(2+)-binding proteins (EhCaBPs). Functionally only one of these molecules, EhCaBP1, has been characterized to date. The calmodulin-like protein from E. histolytica (abbreviated as EhCaM or EhCaBP3) is a 17.23 kDa monomeric protein that shows maximum sequence identity with heterologous calmodulins (CaMs). Though CaM activity has been biochemically shown in E. histolytica, there are no reports on the presence of a typical CaM. In an attempt to understand the structural and functional similarity of EhCaM with CaM, we have determined the three-dimensional (3D) solution structure of EhCaM using NMR. The EhCaM has a well-folded N-terminal domain and an unstructured C-terminal counterpart. Further, it sequentially binds only two calcium ions, an unusual mode of Ca(2+)-binding among the known CaBPs, notably both in the N-terminal domain of EhCaM. Further, EhCaM is present in the nucleus in addition to the cytoplasm as detected by immunofluorescence staining, unlike other EhCaBPs that are detected only in the cytoplasm. Therefore, this protein is likely to have a different function. The presence of unusual and a diverse set of CaBPs in E. histolytica suggests a distinct Ca(2+)-signaling process in E. histolytica. The results reported here help in understanding the structure-function relationship of CaBPs including their Ca(2+)-binding properties.
Collapse
Affiliation(s)
- Ashok K Rout
- Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | | | |
Collapse
|
44
|
The domain structure of Entamoeba α-actinin2. Cell Mol Biol Lett 2010; 15:665-78. [PMID: 20865366 PMCID: PMC6275957 DOI: 10.2478/s11658-010-0035-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 09/10/2010] [Indexed: 11/26/2022] Open
Abstract
Entamoeba histolytica, a major agent of human amoebiasis, expresses two distinct forms of α-actinin, a ubiquitous actin-binding protein that is present in most eukaryotic organisms. In contrast to all metazoan α-actinins, in both isoforms the intervening rod domain that connects the N-terminal actin-binding domain with the C-terminal EF-hands is much shorter. It is suggested that these α-actinins may be involved in amoeboid motility and phagocytosis, so we cloned and characterised each domain of one of these α-actinins to better understand their functional role. The results clearly showed that the domains have properties very similar to those of conventional α-actinins.
Collapse
|
45
|
Crystal structure and trimer-monomer transition of N-terminal domain of EhCaBP1 from Entamoeba histolytica. Biophys J 2010; 98:2933-42. [PMID: 20550906 DOI: 10.1016/j.bpj.2010.03.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/16/2010] [Accepted: 03/22/2010] [Indexed: 11/20/2022] Open
Abstract
EhCaBP1 is a well-characterized calcium binding protein from Entamoeba histolytica with four canonical EF-hand motifs. The crystal structure of EhCaBP1 reveals the trimeric organization of N-terminal domain. The solution structure obtained at pH 6.0 indicated its monomeric nature, similar to that of calmodulin. Recent domain-wise studies showed clearly that the N-terminal domain of EhCaBP1 is capable of performing most of the functions of the full-length protein. Additionally, the mode of target binding in the trimer is similar to that found in calmodulin. To study the dynamic nature of this protein and further validate the trimerization of N-terminal domain at physiological conditions, the crystal structure of N-terminal domain was determined at 2.5 A resolution. The final structure consists of EF-1 and EF-2 motifs separated by a long straight helix as seen in the full-length protein. The spectroscopic and stability studies, like far and near-ultraviolet circular dichroism spectra, intrinsic and extrinsic fluorescence spectra, acrylamide quenching, thermal denaturation, and dynamic light scattering, provided clear evidence for a conversion from trimeric state to monomeric state. As the pH was lowered from the physiological pH, a dynamic trimer-monomer transition was observed. The trimeric state and monomeric state observed in spectroscopic studies may represent the x-ray and NMR structures of the EhCaBP1. At pH 6.0, the endogenous kinase activation function was almost lost, indicating that the monomeric state of the protein, where EF-hand motifs are far apart, is not a functional state.
Collapse
|
46
|
Identification and partial characterization of a dynamin-like protein, EhDLP1, from the protist parasite Entamoeba histolytica. EUKARYOTIC CELL 2009; 9:215-23. [PMID: 19915078 DOI: 10.1128/ec.00214-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dynamin superfamily of proteins includes a large repertoire of evolutionarily conserved GTPases that interact with different subcellular organelle membranes in eukaryotes. Dynamins are thought to participate in a number of cellular processes involving membrane remodeling and scission. Dynamin-like proteins (DLPs) form a subfamily of this vast class and play important roles in cellular processes, such as mitochondrial fission, cytokinesis, and endocytosis. In the present study, a gene encoding a dynamin-like protein (EhDLP1) from the protist parasite Entamoeba histolytica was identified and the protein was partially characterized using a combination of in silico, biochemical, and imaging methods. The protein was capable of GTP binding and hydrolysis, lipid binding, and oligomerization. Immunofluorescence studies showed the protein to be associated with the nuclear membrane. A mutant of EhDLP1 lacking GTP binding and hydrolyzing activities did not associate with the nuclear membrane. The results suggest a nucleus-associated function for EhDLP1.
Collapse
|
47
|
Nakada-Tsukui K, Okada H, Mitra BN, Nozaki T. Phosphatidylinositol-phosphates mediate cytoskeletal reorganization during phagocytosis via a unique modular protein consisting of RhoGEF/DH and FYVE domains in the parasitic protozoonEntamoeba histolytica. Cell Microbiol 2009; 11:1471-91. [DOI: 10.1111/j.1462-5822.2009.01341.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
Jain R, Kumar S, Gourinath S, Bhattacharya S, Bhattacharya A. N- and C-terminal domains of the calcium binding protein EhCaBP1 of the parasite Entamoeba histolytica display distinct functions. PLoS One 2009; 4:e5269. [PMID: 19384409 PMCID: PMC2668073 DOI: 10.1371/journal.pone.0005269] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 03/18/2009] [Indexed: 11/23/2022] Open
Abstract
Entamoeba histolytica, a protozoan parasite, is the causative agent of amoebiasis, and calcium signaling is thought to be involved in amoebic pathogenesis. EhCaBP1, a Ca2+ binding protein of E. histolytica, is essential for parasite growth. High resolution crystal structure of EhCaBP1 suggested an unusual arrangement of the EF-hand domains in the N-terminal part of the structure, while C-terminal part of the protein was not traced. The structure revealed a trimer with amino terminal domains of the three molecules interacting in a head-to-tail manner forming an assembled domain at the interface with EF1 and EF2 motifs of different molecules coming close to each other. In order to understand the specific roles of the two domains of EhCaBP1, the molecule was divided into two halves, and each half was separately expressed. The domains were characterized with respect to their structure, as well as specific functional features, such as ability to activate kinase and bind actin. The domains were also expressed in E. histolytica cells along with green fluorescent protein. The results suggest that the N-terminal domain retains some of the properties, such as localization in phagocytic cups and activation of kinase. Crystal structure of EhCaBP1 with Phenylalanine revealed that the assembled domains, which are similar to Calmodulin N-terminal domain, bind to Phenylalanine revealing the binding mode to the target proteins. The C-terminal domain did not show any of the activities tested. However, over-expression in amebic cells led to a dominant negative phenotype. The results suggest that the two domains of EhCaBP1 are functionally and structurally different from each other. Both the domains are required for structural stability and full range of functional diversity.
Collapse
Affiliation(s)
- Ruchi Jain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shivesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
49
|
de Souza W, Sant'Anna C, Cunha-e-Silva NL. Electron microscopy and cytochemistry analysis of the endocytic pathway of pathogenic protozoa. ACTA ACUST UNITED AC 2009; 44:67-124. [PMID: 19410686 DOI: 10.1016/j.proghi.2009.01.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Endocytosis is essential for eukaryotic cell survival and has been well characterized in mammal and yeast cells. Among protozoa it is also important for evading from host immune defenses and to support intense proliferation characteristic of some life cycle stages. Here we focused on the contribution of morphological and cytochemical studies to the understanding of endocytosis in Trichomonas, Giardia, Entamoeba, Plasmodium, and trypanosomatids, mainly Trypanosoma cruzi, and also Trypanosoma brucei and Leishmania.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil.
| | | | | |
Collapse
|