1
|
Wu KY, Chen YJ, Lin SF, Hsu HM. Iron triggers TvPI4P5K proteostasis and Arf-mediated cell membrane trafficking to regulate PIP 2 signaling crucial for multiple pathogenic activities of the parasitic protozoan Trichomonas vaginalis. mBio 2024:e0186424. [PMID: 39714186 DOI: 10.1128/mbio.01864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Trichomonas vaginalis is the etiologic agent of trichomoniasis, one of the most common non-viral sexually transmitted infections globally. Our previous work reported the role of phosphatidylinositol 4,5-bisphosphates (PIP2) signaling in the actin-dependent pathogenicity of T. vaginalis. This study further demonstrated that iron transiently regulated T. vaginalis phosphatidylinositol-4-phosphate 5-kinase (TvPI4P5K) proteostasis and its complex formation with an active ADP ribosylation factor TvArf220, facilitating co-trafficking to the plasma membrane, crucial for PIP2 production. In dominant-active HA-TvArf220 Q71L mutant, TvPI4P5K plasma membrane trafficking, PIP2 production, and intracellular calcium levels were increased, while these processes were inhibited in dominant-negative T31N mutant or those by Brefeldin A (BFA) treatment. Additionally, PIP2 replenishment reversed these inhibitions in the T31N mutant, suggesting the critical role of TvArf220 activation in PIP2-calcium signaling. Also, T31N mutant and BFA treatment impaired actin dynamics and cytoskeleton-dependent processes in T. vaginalis, further linking the role of TvArf220 to PIP2-calcium-dependent actin dynamics. Beyond cytoadherence, during host-parasite interactions, TvArf220 influenced both contact-dependent and -independent cytotoxicity, as well as phagocytotic capacity, contributing to the cytopathogenesis of human vaginal epithelial cells. Our findings underscore the key upstream regulation mechanisms of the PIP2 signaling, orchestrating the interplay between TvArf220-PIP2-calcium signaling and downstream actin cytoskeleton-driven pathogenicity in T. vaginalis.IMPORTANCETrichomonas vaginalis actin cytoskeleton-centric pathogenicity is regulated by the phosphatidylinositol 4,5-bisphosphates (PIP2)-triggered calcium signaling cascade in response to environmental iron, though the detailed mechanism by which iron modulates PIP2 signaling remains unclear. Our findings reveal that iron rapidly induces T. vaginalis phosphatidylinositol-4-phosphate 5-kinase (TvPI4P5K) translation followed by its degradation, while simultaneously activating TvArf220 binding, which facilitates TvPI4P5K localization to the plasma membrane for PIP2 production. In contrast to the TvArf220 Q71L mutant, the reduced PIP2 production, intracellular calcium, actin assembly, morphogenesis, and cytoadherence in the dominant-negative T31N mutant were recovered by PIP2 supplementation, indicating the essential role of TvArf220 in PIP2-dependent calcium signaling. Additionally, the contact-dependent or -independent cytotoxicity, along with the phagocytosis, was impaired in the TvPI4P5K- or TvArf220-deficient parasites, as well as in those treated with BAPTA or Latrunculin B. These findings highlight that TvArf220-mediated PIP2-calcium signaling cascade regulates actin cytoskeleton and cytopathogenicity of T. vaginalis. This study uncovers a novel pathogenic mechanism and suggests potential therapeutic targets for parasite control.
Collapse
Affiliation(s)
- Kuan-Yi Wu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Ju Chen
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Fan Lin
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Ming Hsu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Artuyants A, Hong J, Dauros-Singorenko P, Phillips A, Simoes-Barbosa A. Lactobacillus gasseri and Gardnerella vaginalis produce extracellular vesicles that contribute to the function of the vaginal microbiome and modulate host-Trichomonas vaginalis interactions. Mol Microbiol 2024; 122:357-371. [PMID: 37485746 DOI: 10.1111/mmi.15130] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Trichomonas vaginalis is an extracellular protozoan parasite of the human urogenital tract, responsible for a prevalent sexually transmitted infection. Trichomoniasis is accompanied by a dysbiotic microbiome that is characterised by the depletion of host-protective commensals such as Lactobacillus gasseri, and the flourishing of a bacterial consortium that is comparable to the one seen for bacterial vaginosis, including the founder species Gardnerella vaginalis. These two vaginal bacteria are known to have opposite effects on T. vaginalis pathogenicity. Studies on extracellular vesicles (EVs) have been focused on the direction of a microbial producer (commensal or pathogen) to a host recipient, and largely in the context of the gut microbiome. Here, taking advantage of the simplicity of the human cervicovaginal microbiome, we determined the molecular cargo of EVs produced by L. gasseri and G. vaginalis and examined how these vesicles modulate the interaction of T. vaginalis and host cells. We show that these EVs carry a specific cargo of proteins, which functions can be attributed to the opposite roles that these bacteria play in the vaginal biome. Furthermore, these bacterial EVs are delivered to host and protozoan cells, modulating host-pathogen interactions in a way that mimics the opposite effects that these bacteria have on T. vaginalis pathogenicity. This is the first study to describe side-by-side the protein composition of EVs produced by two bacteria belonging to the opposite spectrum of a microbiome and to demonstrate that these vesicles modulate the pathogenicity of a protozoan parasite. Such as in trichomoniasis, infections and dysbiosis co-occur frequently resulting in significant co-morbidities. Therefore, studies like this provide the knowledge for the development of antimicrobial therapies that aim to clear the infection while restoring a healthy microbiome.
Collapse
Affiliation(s)
| | - Jiwon Hong
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | | | - Anthony Phillips
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
3
|
Agarwal K, Choudhury B, Robinson LS, Morrill SR, Bouchibiti Y, Chilin-Fuentes D, Rosenthal SB, Fisch KM, Peipert JF, Lebrilla CB, Allsworth JE, Lewis AL, Lewis WG. Resident microbes shape the vaginal epithelial glycan landscape. Sci Transl Med 2023; 15:eabp9599. [PMID: 38019934 PMCID: PMC11419735 DOI: 10.1126/scitranslmed.abp9599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
Epithelial cells are covered in carbohydrates (glycans). This glycan coat or "glycocalyx" interfaces directly with microbes, providing a protective barrier against potential pathogens. Bacterial vaginosis (BV) is a condition associated with adverse health outcomes in which bacteria reside in direct proximity to the vaginal epithelium. Some of these bacteria, including Gardnerella, produce glycosyl hydrolase enzymes. However, glycans of the human vaginal epithelial surface have not been studied in detail. Here, we elucidate key characteristics of the "normal" vaginal epithelial glycan landscape and analyze the impact of resident microbes on the surface glycocalyx. In human BV, glycocalyx staining was visibly diminished in electron micrographs compared to controls. Biochemical and mass spectrometric analysis showed that, compared to normal vaginal epithelial cells, BV cells were depleted of sialylated N- and O-glycans, with underlying galactose residues exposed on the surface. Treatment of primary epithelial cells from BV-negative women with recombinant Gardnerella sialidases generated BV-like glycan phenotypes. Exposure of cultured VK2 vaginal epithelial cells to recombinant Gardnerella sialidase led to desialylation of glycans and induction of pathways regulating cell death, differentiation, and inflammatory responses. These data provide evidence that vaginal epithelial cells exhibit an altered glycan landscape in BV and suggest that BV-associated glycosidic enzymes may lead to changes in epithelial gene transcription that promote cell turnover and regulate responses toward the resident microbiome.
Collapse
Affiliation(s)
- Kavita Agarwal
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, United States of America
- Glycobiology Research and Training Center, UCSD, La Jolla, CA 92093, United States of America
| | - Biswa Choudhury
- Glycobiology Research and Training Center, UCSD, La Jolla, CA 92093, United States of America
| | - Lloyd S. Robinson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Sydney R. Morrill
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, United States of America
- Glycobiology Research and Training Center, UCSD, La Jolla, CA 92093, United States of America
| | - Yasmine Bouchibiti
- Department of Chemistry, University of California, Davis, Davis, CA 95616, United States of America
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, United States of America
| | - Daisy Chilin-Fuentes
- Center for Computational Biology & Bioinformatics, UCSD, La Jolla, CA 92093, United States of America
| | - Sara B. Rosenthal
- Center for Computational Biology & Bioinformatics, UCSD, La Jolla, CA 92093, United States of America
| | - Kathleen M. Fisch
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, United States of America
- Center for Computational Biology & Bioinformatics, UCSD, La Jolla, CA 92093, United States of America
| | - Jeffrey F. Peipert
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA 95616, United States of America
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, United States of America
| | - Jenifer E. Allsworth
- Department of Biomedical and Health Informatics, University of Missouri, Kansas City School of Medicine, Kansas City, MO 64110, United States of America
| | - Amanda L. Lewis
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, United States of America
- Glycobiology Research and Training Center, UCSD, La Jolla, CA 92093, United States of America
| | - Warren G. Lewis
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, United States of America
- Glycobiology Research and Training Center, UCSD, La Jolla, CA 92093, United States of America
| |
Collapse
|
4
|
Ortiz SFDN, Verdan R, Fortes FDSDA, Benchimol M. Trichomonas vaginalis: Monolayer and Cluster Formation-Ultrastructural Aspects Using High-Resolution Scanning Electron Microscopy. Pathogens 2023; 12:1381. [PMID: 38133266 PMCID: PMC10747464 DOI: 10.3390/pathogens12121381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Trichomonas vaginalis is an extracellular protozoan parasite that causes human trichomoniasis, a sexually transmitted infection (STI) that affects approximately 270 million people worldwide. The phenomenon of T. vaginalis adhesion to inert substrates has been described in several reports. Still, very few studies on cluster formation have been conducted, and more detailed analyses of the contact regions between the parasites' membranes in these aggregate formations have not been carried out. The present study aims to show that T. vaginalis forms a tight monolayer, similar to an epithelium, with parasites firmly adhered to the culture flask bottom by interdigitations and in the absence of host cells. In addition, we analyzed and compared the formation of the clusters, focusing on parasite aggregates that float in the culture flasks. We employed various imaging techniques, including high-resolution scanning electron microscopy, transmission electron microscopy, cytochemistry, TEM tomography, and dye injection. We analyzed whether the monolayer behaves as an epithelium, analyzing cell junctions, cell communication, and ultrastructural aspects, and concluded that monolayer formation differs from cluster formation in many aspects. The monolayers form strong adhesion, whereas the clusters have fragile attachments. We did not find fusion or the passage of molecules between neighbor-attached cells; there is no need for different strains to form filopodia, cytonemes, and extracellular vesicles during cluster and monolayer formation.
Collapse
Affiliation(s)
- Sharmila Fiama das Neves Ortiz
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Pesquisa em Medicina de Precisão, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (S.F.d.N.O.); (R.V.)
| | - Raphael Verdan
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Pesquisa em Medicina de Precisão, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (S.F.d.N.O.); (R.V.)
| | - Fabio da Silva de Azevedo Fortes
- BIOTRANS-CAXIAS Campus, Universidade do Grande Rio, UNIGRANRIO, Rio de Janeiro 96200-000, Brazil;
- Laboratório de Terapia e Fisiologia Celular e Molecular, Departamento de Biologia, Faculdade de Ciências Biológicas e Saúde, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 23070-200, Brazil
| | - Marlene Benchimol
- BIOTRANS-CAXIAS Campus, Universidade do Grande Rio, UNIGRANRIO, Rio de Janeiro 96200-000, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
5
|
Zhang Z, Song X, Deng Y, Li Y, Li F, Sheng W, Tian X, Yang Z, Mei X, Wang S. Trichomonas vaginalis adhesion protein 65 (TvAP65) modulates parasite pathogenicity by interacting with host cell proteins. Acta Trop 2023; 246:106996. [PMID: 37536435 DOI: 10.1016/j.actatropica.2023.106996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Trichomonas vaginalis (T. vaginalis) is a widespread and important sexually transmitted pathogen. Adherence to the surface of the host cell is the precondition forthis parasite's parasitism and pathogenicity. Adhesion protein 65 (TvAP65) plays a key role in the process of adhesion. However, how TvAP65 mediates the adhesion and pathogenicity of T. vaginalis to host cellsis unclear. In this study, we knocked down the expression of TvAP65 in trophozoites by small RNA interference. The number of T. vaginalis trophozoites adhering to VK2/E6E7 cells was decreased significantly, and the inhibition of VK2/E6E7 cells proliferation and VK2/E6E7 cells apoptosis and death induced by T. vaginalis were reduced, after the expression of TvAP65 was knocked down. Animal challenge experiments showed that the pathogenicity of trophozoites was decreased by passive immunization with anti-rTvAP65 PcAbs or blocking the TvAP65 protein. Immunofluorescence analysis showed that TvAP65 could bind to VK2/E6E7 cells. In order to screen the molecules interacting with TvAP65 on the host cells, we successfully constructed the cDNA library of VK2/E6E7 cells, and thirteen protein molecules interacting with TvAP65 were screened by yeast two-hybrid system. The interaction between TvAP65 and BNIP3 was further confirmed by coimmunoprecipitation and colocalization. When both TvAP65 and BNIP3 were knocked down by small RNA interference, the number of T. vaginalis adhering to VK2/E6E7 cells and the inhibition of VK2/E6E7 cells proliferation were significantly lower than those of the group with knockdown of TvAP65 or BNIP3 alone. Therefore, the interaction of TvAP65 and BNIP3 in the pathogenesis of T. vaginalis infecting host cells is not unique and involves other molecules. Our study elucidated that the interaction between TvAP65 and BNIP3 mediated the adhesion and pathogenicity of T. vaginalis to host cells, provided a basis for searching for the drug targets of anti-T. vaginalis, and afforded new ideas for the prevention and treatment of trichomoniasis.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xiaoxiao Song
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Yangyang Deng
- The Third Affiliated Hospital Of Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Yuhua Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Fakun Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Wanxin Sheng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xiaowei Tian
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Zhenke Yang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xuefang Mei
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| | - Shuai Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| |
Collapse
|
6
|
Molgora BM, Mukherjee SK, Baumel-Alterzon S, Santiago FM, Muratore KA, Sisk AE, Mercer F, Johnson PJ. Trichomonas vaginalis adherence phenotypes and extracellular vesicles impact parasite survival in a novel in vivo model of pathogenesis. PLoS Negl Trop Dis 2023; 17:e0011693. [PMID: 37871037 PMCID: PMC10621976 DOI: 10.1371/journal.pntd.0011693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/02/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023] Open
Abstract
Trichomonas vaginalis is a human infective parasite responsible for trichomoniasis-the most common, non-viral, sexually transmitted infection worldwide. T. vaginalis resides exclusively in the urogenital tract of both men and women. In women, T. vaginalis has been found colonizing the cervix and vaginal tract while in men it has been identified in the upper and lower urogenital tract and in secreted fluids such as semen, urethral discharge, urine, and prostatic fluid. Despite the over 270 million cases of trichomoniasis annually worldwide, T. vaginalis continues to be a highly neglected organism and thus poorly studied. Here we have developed a male mouse model for studying T. vaginalis pathogenesis in vivo by delivering parasites into the murine urogenital tract (MUT) via transurethral catheterization. Parasite burden was assessed ex-vivo using a nanoluciferase-based gene expression assay which allowed quantification of parasites pre- and post-inoculation. Using this model and read-out approach, we show that T. vaginalis can be found within MUT tissue up to 72 hrs post-inoculation. Furthermore, we also demonstrate that parasites that exhibit increased parasite adherence in vitro also have higher parasite burden in mice in vivo. These data provide evidence that parasite adherence to host cells aids in parasite persistence in vivo and molecular determinants found to correlate with host cell adherence in vitro are applicable to infection in vivo. Finally, we show that co-inoculation of T. vaginalis extracellular vesicles (TvEVs) and parasites results in higher parasite burden in vivo. These findings confirm our previous in vitro-based predictions that TvEVs assist the parasite in colonizing the host. The establishment of this pathogenesis model for T. vaginalis sets the stage for identifying and examining parasite factors that contribute to and influence infection outcomes.
Collapse
Affiliation(s)
- Brenda M. Molgora
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Sandip Kumar Mukherjee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Sharon Baumel-Alterzon
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Fernanda M. Santiago
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Katherine A. Muratore
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Anthony E. Sisk
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Frances Mercer
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, California, United States of America
| | - Patricia J. Johnson
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
7
|
Pinho SS, Alves I, Gaifem J, Rabinovich GA. Immune regulatory networks coordinated by glycans and glycan-binding proteins in autoimmunity and infection. Cell Mol Immunol 2023; 20:1101-1113. [PMID: 37582971 PMCID: PMC10541879 DOI: 10.1038/s41423-023-01074-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
The immune system is coordinated by an intricate network of stimulatory and inhibitory circuits that regulate host responses against endogenous and exogenous insults. Disruption of these safeguard and homeostatic mechanisms can lead to unpredictable inflammatory and autoimmune responses, whereas deficiency of immune stimulatory pathways may orchestrate immunosuppressive programs that contribute to perpetuate chronic infections, but also influence cancer development and progression. Glycans have emerged as essential components of homeostatic circuits, acting as fine-tuners of immunological responses and potential molecular targets for manipulation of immune tolerance and activation in a wide range of pathologic settings. Cell surface glycans, present in cells, tissues and the extracellular matrix, have been proposed to serve as "self-associated molecular patterns" that store structurally relevant biological data. The responsibility of deciphering this information relies on different families of glycan-binding proteins (including galectins, siglecs and C-type lectins) which, upon recognition of specific carbohydrate structures, can recalibrate the magnitude, nature and fate of immune responses. This process is tightly regulated by the diversity of glycan structures and the establishment of multivalent interactions on cell surface receptors and the extracellular matrix. Here we review the spatiotemporal regulation of selected glycan-modifying processes including mannosylation, complex N-glycan branching, core 2 O-glycan elongation, LacNAc extension, as well as terminal sialylation and fucosylation. Moreover, we illustrate examples that highlight the contribution of these processes to the control of immune responses and their integration with canonical tolerogenic pathways. Finally, we discuss the power of glycans and glycan-binding proteins as a source of immunomodulatory signals that could be leveraged for the treatment of autoimmune inflammation and chronic infection.
Collapse
Affiliation(s)
- Salomé S Pinho
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal.
- Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
| | - Inês Alves
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
| | - Joana Gaifem
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Ciudad de Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
8
|
Margarita V, Congiargiu A, Diaz N, Fiori PL, Rappelli P. Mycoplasma hominis and Candidatus Mycoplasma girerdii in Trichomonas vaginalis: Peaceful Cohabitants or Contentious Roommates? Pathogens 2023; 12:1083. [PMID: 37764891 PMCID: PMC10535475 DOI: 10.3390/pathogens12091083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Trichomonas vaginalis is a pathogenic protozoan diffused worldwide capable of infecting the urogenital tract in humans, causing trichomoniasis. One of its most intriguing aspects is the ability to establish a close relationship with endosymbiotic microorganisms: the unique association of T. vaginalis with the bacterium Mycoplasma hominis represents, to date, the only example of an endosymbiosis involving two true human pathogens. Since its discovery, several aspects of the symbiosis between T. vaginalis and M. hominis have been characterized, demonstrating that the presence of the intracellular guest strongly influences the pathogenic characteristics of the protozoon, making it more aggressive towards host cells and capable of stimulating a stronger proinflammatory response. The recent description of a further symbiont of the protozoon, the newly discovered non-cultivable mycoplasma Candidatus Mycoplasma girerdii, makes the picture even more complex. This review provides an overview of the main aspects of this complex microbial consortium, with particular emphasis on its effect on protozoan pathobiology and on the interplays among the symbionts.
Collapse
Affiliation(s)
- Valentina Margarita
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (A.C.); (N.D.); (P.L.F.)
- Mediterranean Centre for Disease Control (MCDC), 07110 Sassari, Italy
| | - Antonella Congiargiu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (A.C.); (N.D.); (P.L.F.)
| | - Nicia Diaz
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (A.C.); (N.D.); (P.L.F.)
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (A.C.); (N.D.); (P.L.F.)
- Mediterranean Centre for Disease Control (MCDC), 07110 Sassari, Italy
- Microbiology Unit, University Hospital of Sassari (AOU), 07110 Sassari, Italy
| | - Paola Rappelli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (A.C.); (N.D.); (P.L.F.)
- Mediterranean Centre for Disease Control (MCDC), 07110 Sassari, Italy
- Microbiology Unit, University Hospital of Sassari (AOU), 07110 Sassari, Italy
| |
Collapse
|
9
|
Zhang Z, Deng Y, Sheng W, Song X, Li Y, Li F, Pan Y, Tian X, Yang Z, Wang S, Wang M, Mei X. The interaction between adhesion protein 33 (TvAP33) and BNIP3 mediates the adhesion and pathogenicity of Trichomonas vaginalis to host cells. Parasit Vectors 2023; 16:210. [PMID: 37344876 PMCID: PMC10286359 DOI: 10.1186/s13071-023-05798-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Trichomonas vaginalis is a widespread and important sexually transmitted pathogen. Adherence to the surface of the host cell is the precondition for the parasitism and pathogenicity of this parasite. Trichomonas vaginalis adhesion protein 33 (TvAP33) plays a key role in the process of adhesion, but how this protein mediates the adhesion and pathogenicity of T. vaginalis to host cells is unclear. METHODS The expression of TvAP33 in trophozoites was knocked down by small interfering RNA. VK2/E6E7 cells and mice infected with T. vaginalis were used to evaluate the pathogenicity of T. vaginalis. We constructed a complementary DNA library of VK2/E6E7 cells and screened the protein molecules interacting with TvAP33 by the yeast two-hybrid system. The interaction between TvAP33 and BNIP3 (Bcl-2 interacting protein 3) was analyzed by co-immunoprecipitation and colocalization. RESULTS Following knockdown of TvAP33 expression, the number of T. vaginalis trophozoites adhering to VK2/E6E7 cells decreased significantly, and the inhibition of VK2/E6E7 cell proliferation and VK2/E6E7 cell apoptosis and death induced by T. vaginalis were reduced. Animal challenge experiments showed that the pathogenicity of trophozoites decreased following passive immunization with TvAP33 antiserum or blocking of the TvAP33 protein. Immunofluorescence analysis revealed that TvAP33 could bind to VK2/E6E7 cells. Eighteen protein molecules interacting with TvAP33 were identified by the yeast two-hybrid system. The interaction between TvAP33 and BNIP3 was further confirmed by co-immunoprecipitation and colocalization. When the expression of both TvAP33 and BNIP3 in trophozoites was knocked down by small RNA interference, the number of T. vaginalis adhering to VK2/E6E7 cells and the inhibition of VK2/E6E7 cell proliferation were significantly lower compared to trophozoites with only knockdown of TvAP33 or only BNIP3. Therefore, the interaction of TvAP33 and BNIP3 in the pathogenesis of T. vaginalis infecting host cells is not unique and involves other molecules. CONCLUSIONS Our study showed that the interaction between TvAP33 and BNIP3 mediated the adhesion and pathogenicity of T. vaginalis to host cells, providing a basis for searching for drug targets for T. vaginalis as well as new ideas for the prevention and treatment of trichomoniasis.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Yangyang Deng
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Wanxin Sheng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Xiaoxiao Song
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Yuhua Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Fakun Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Ying Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Xiaowei Tian
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Zhenke Yang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Shuai Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Mingyong Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 China
- School of Medical Technology, Shangqiu Medical College, Shangqiu, 476100 China
| | - Xuefang Mei
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| |
Collapse
|
10
|
Yu X, Qian J, Ding L, Yin S, Zhou L, Zheng S. Galectin-1: A Traditionally Immunosuppressive Protein Displays Context-Dependent Capacities. Int J Mol Sci 2023; 24:ijms24076501. [PMID: 37047471 PMCID: PMC10095249 DOI: 10.3390/ijms24076501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Galectin–Carbohydrate interactions are indispensable to pathogen recognition and immune response. Galectin-1, a ubiquitously expressed 14-kDa protein with an evolutionarily conserved β-galactoside binding site, translates glycoconjugate recognition into function. That galectin-1 is demonstrated to induce T cell apoptosis has led to substantial attention to the immunosuppressive properties of this protein, such as inducing naive immune cells to suppressive phenotypes, promoting recruitment of immunosuppressing cells as well as impairing functions of cytotoxic leukocytes. However, only in recent years have studies shown that galectin-1 appears to perform a pro-inflammatory role in certain diseases. In this review, we describe the anti-inflammatory function of galectin-1 and its possible mechanisms and summarize the existing therapies and preclinical efficacy relating to these agents. In the meantime, we also discuss the potential causal factors by which galectin-1 promotes the progression of inflammation.
Collapse
|
11
|
Hsu HM, Yang YY, Huang YH, Chu CH, Tu TJ, Wu YT, Chiang CJ, Yang SB, Hsu DK, Liu FT, Tai JH. Distinct features of the host-parasite interactions between nonadherent and adherent Trichomonas vaginalis isolates. PLoS Negl Trop Dis 2023; 17:e0011016. [PMID: 36595499 PMCID: PMC9810166 DOI: 10.1371/journal.pntd.0011016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023] Open
Abstract
Cytoadherence of Trichomonas vaginalis to human vaginal epithelial cells (hVECs) was previously shown to involve surface lipoglycans and several reputed adhesins on the parasite. Herein, we report some new observations on the host-parasite interactions of adherent versus nonadherent T. vaginalis isolates to hVECs. The binding of the TH17 adherent isolate to hVECs exhibited an initial discrete phase followed by an aggregation phase inhibited by lactose. T. vaginalis infection immediately induced surface expression of galectin-1 and -3, with extracellular amounts in the spent medium initially decreasing and then increasing thereafter over the next 60 min. Extracellular galectin-1 and -3 were detected on the parasite surface but only the TH17 adherent isolate could uptake galectin-3 via the lysosomes. Only the adherent isolate could morphologically transform from the round-up flagellate with numerous transient protrusions into a flat amoeboid form on contact with the solid surface. Cytochalasin D challenge revealed that actin organization was essential to parasite morphogenesis and cytoadherence. Real-time microscopy showed that parasite exploring and anchoring on hVECs via the axostyle may be required for initial cytoadherence. Together, the parasite cytoskeleton behaviors may collaborate with cell surface adhesion molecules for cytoadherence. The nonadherent isolate migrated faster than the adherent isolate, with motility transiently increasing in the presence of hVECs. Meanwhile, differential histone acetylation was detected between the two isolates. Also, TH17 without Mycoplasma symbiosis suggests that symbiont might not determine TH17 innate cytoadherence. Our findings regarding distinctive host-parasite interactions of the isolates may provide novel insights into T. vaginalis infection.
Collapse
Affiliation(s)
- Hong-Ming Hsu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| | - Yen-Yu Yang
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Hsin Huang
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Hsin Chu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Jui Tu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yen-Ting Wu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- High School Talent Student in Life Science Project at Academia Sinica and Taipei Municipal Chenggong High School, Taipei, Taiwan
| | - Chu-Jen Chiang
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- High School Talent Student in Life Science Project at Academia Sinica and Taipei Municipal Chenggong High School, Taipei, Taiwan
| | - Shi-Bing Yang
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Daniel K. Hsu
- Department of Dermatology, University of California Davis, Sacramento, California, United States of America
| | - Fu-Tong Liu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Dermatology, University of California Davis, Sacramento, California, United States of America
| | - Jung-Hsiang Tai
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
12
|
Shrimp Antimicrobial Peptides: A Multitude of Possibilities. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Lujan AL, Croci DO, Rabinovich GA, Damiani MT. Galectins as potential therapeutic targets in STIs in the female genital tract. Nat Rev Urol 2022; 19:240-252. [PMID: 35105978 DOI: 10.1038/s41585-021-00562-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
Every day, more than one million people worldwide acquire a sexually transmitted infection (STI). This public health problem has a direct effect on women's reproductive and sexual health as STIs can cause irreversible damage to fertility and can have negative consequences associated with discrimination and social exclusion. Infection with one sexually transmitted pathogen predisposes to co-infection with others, suggesting the existence of shared pathways that serve as molecular links between these diseases. Galectins, a family of β-galactoside-binding proteins, have emerged as endogenous mediators that facilitate cell-surface binding, internalization and cell invasion of many sexually transmitted pathogens, including Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, Candida albicans, HIV and herpes simplex virus. The ability of certain galectins to dimerize or form multimeric complexes confers the capacity to interact simultaneously with glycosylated ligands on both the pathogen and the cervico-vaginal tissue on these proteins. Galectins can act as a bridge by engaging glycans from the pathogen surface and glycosylated receptors from host cells, which is a mechanism that has been shown to be shared by several sexually transmitted pathogens. In the case of viruses and obligate intracellular bacteria, binding to the cell surface promotes pathogen internalization and cell invasion. Inflammatory responses that occur in cervico-vaginal tissue might trigger secretion of galectins, which in turn control the establishment, evolution and severity of STIs. Thus, galectin-targeted therapies could potentially prevent or decrease STIs caused by a diverse array of pathogenic microorganisms; furthermore, anti-galectin agents might reduce treatment costs of STIs and reach the most vulnerable populations.
Collapse
Affiliation(s)
- Agustin L Lujan
- Laboratorio de Bioquímica e Inmunidad, Instituto de Bioquímica y Biotecnología, Facultad de Ciencias Médicas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo (UNCUYO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Diego O Croci
- Laboratorio de Inmunopatología, Facultad de Ciencias Exactas y Naturales, Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo (UNCUYO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), C1428AGE, Buenos Aires, Argentina.
| | - Maria T Damiani
- Laboratorio de Bioquímica e Inmunidad, Instituto de Bioquímica y Biotecnología, Facultad de Ciencias Médicas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo (UNCUYO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.
| |
Collapse
|
14
|
Ayona D, Zarza SM, Landemarre L, Roubinet B, Decloquement P, Raoult D, Fournier PE, Desnues B. Human galectin-1 and galectin-3 promote Tropheryma whipplei infection. Gut Microbes 2022; 13:1-15. [PMID: 33573443 PMCID: PMC7889132 DOI: 10.1080/19490976.2021.1884515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Tropheryma whipplei, is an actinobacterium that causes different infections in humans, including Whipple's disease. The bacterium infects and replicates in macrophages, leading to a Th2-biased immune response. Previous studies have shown that T. whipplei harbors complex surface glycoproteins with evidence of sialylation. However, the exact contribution of these glycoproteins for infection and survival remains obscure. To address this, we characterized the bacterial glycoprofile and evaluated the involvement of human β-galactoside-binding lectins, Galectin-1 (Gal-1) and Galectin-3 (Gal-3) which are highly expressed by macrophages as receptors for bacterial glycans. Tropheryma whipplei glycoproteins harbor different sugars including glucose, mannose, fucose, β-galactose and sialic acid. Mass spectrometry identification revealed that these glycoproteins were membrane- and virulence-associated glycoproteins. Most of these glycoproteins are highly sialylated and N-glycosylated while some of them are rich in poly-N-acetyllactosamine (Poly-LAcNAc) and bind Gal-1 and Gal-3. In vitro, T. whipplei modulates the expression and cellular distribution of Gal-1 and Gal-3. Although both galectins promote T. whipplei infection by enhancing bacterial cell entry, only Gal-3 is required for optimal bacterial uptake. Finally, we found that serum levels of Gal-1 and Gal-3 were altered in patients with T. whipplei infections as compared to healthy individuals, suggesting that galectins are also involved in vivo. Among T. whipplei membrane-associated proteins, poly-LacNAc rich-glycoproteins promote infection through interaction with galectins. T. whipplei modulates the expression of Gal-1 and Gal-3 both in vitro and in vivo. Drugs interfering with galectin-glycan interactions may provide new avenues for the treatment and diagnosis of T. whipplei infections.
Collapse
Affiliation(s)
- Diyoly Ayona
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France,IHU-Méditerranée Infection, Marseille, France
| | - Sandra Madariaga Zarza
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France,IHU-Méditerranée Infection, Marseille, France
| | | | - Benoît Roubinet
- Glycodiag, Rue De Chartres, BP6759, 45067, Orléans cedex 2, France
| | - Philippe Decloquement
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France,IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France,IHU-Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- IHU-Méditerranée Infection, Marseille, France,Aix Marseille Univ, IRD, APHM, VITROME, Marseille, France,Pierre-Edouard Fournier Aix Marseille Univ, VITROME, IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005Marseille, France
| | - Benoit Desnues
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France,IHU-Méditerranée Infection, Marseille, France,CONTACT Benoit Desnues MEPHI, IHU - Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| |
Collapse
|
15
|
Jofre BL, Eliçabe RJ, Silva JE, Pérez Sáez JM, Paez MD, Callegari E, Mariño KV, Di Genaro MS, Rabinovich GA, Davicino RC. Galectin-1 Cooperates with Yersinia Outer Protein (Yop) P to Thwart Protective Immunity by Repressing Nitric Oxide Production. Biomolecules 2021; 11:1636. [PMID: 34827634 PMCID: PMC8615707 DOI: 10.3390/biom11111636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
Yersinia enterocolitica (Ye) inserts outer proteins (Yops) into cytoplasm to infect host cells. However, in spite of considerable progress, the mechanisms implicated in this process, including the association of Yops with host proteins, remain unclear. Here, we evaluated the functional role of Galectin-1 (Gal1), an endogenous β-galactoside-binding protein, in modulating Yop interactions with host cells. Our results showed that Gal1 binds to Yops in a carbohydrate-dependent manner. Interestingly, Gal1 binding to Yops protects these virulence factors from trypsin digestion. Given that early control of Ye infection involves activation of macrophages, we evaluated the role of Gal1 and YopP in the modulation of macrophage function. Although Gal1 and YopP did not influence production of superoxide anion and/or TNF by Ye-infected macrophages, they coordinately inhibited nitric oxide (NO) production. Notably, recombinant Gal1 (rGal1) did not rescue NO increase observed in Lgals1-/- macrophages infected with the YopP mutant Ye ∆yopP. Whereas NO induced apoptosis in macrophages, no significant differences in cell death were detected between Gal1-deficient macrophages infected with Ye ∆yopP, and WT macrophages infected with Ye wt. Strikingly, increased NO production was found in WT macrophages treated with MAPK inhibitors and infected with Ye wt. Finally, rGal1 administration did not reverse the protective effect in Peyer Patches (PPs) of Lgals1-/- mice infected with Ye ∆yopP. Our study reveals a cooperative role of YopP and endogenous Gal1 during Ye infection.
Collapse
Affiliation(s)
- Brenda Lucila Jofre
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Ricardo Javier Eliçabe
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Juan Eduardo Silva
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Juan Manuel Pérez Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires C1428ADN, Argentina; (J.M.P.S.); (G.A.R.)
| | - Maria Daniela Paez
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 66544, USA; (M.D.P.); (E.C.)
| | - Eduardo Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 66544, USA; (M.D.P.); (E.C.)
| | - Karina Valeria Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires C1428ADN, Argentina;
| | - María Silvia Di Genaro
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Gabriel Adrián Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires C1428ADN, Argentina; (J.M.P.S.); (G.A.R.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina
| | - Roberto Carlos Davicino
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
- Roberto Davicino, División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de los Andes 950, San Luis CP5700, Argentina
| |
Collapse
|
16
|
Maruszewska-Cheruiyot M, Stear M, Donskow-Łysoniewska K. Galectins - Important players of the immune response to CNS parasitic infection. Brain Behav Immun Health 2021; 13:100221. [PMID: 34589740 PMCID: PMC8474370 DOI: 10.1016/j.bbih.2021.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/18/2021] [Accepted: 01/30/2021] [Indexed: 11/18/2022] Open
Abstract
Galectins are a family of proteins that bind β-galactosides and play key roles in a variety of cellular processes including host defense and entry of parasites into the host cells. They have been well studied in hosts but less so in parasites. As both host and parasite galectins are highly upregulated proteins following infection, galectins are an area of increasing interest and their role in immune modulation has only recently become clear. Correlation of CNS parasitic diseases with mental disorders as a result of direct or indirect interaction has been observed. Therefore, galectins produced by the parasite should be taken into consideration as potential therapeutic agents.
Collapse
Affiliation(s)
- Marta Maruszewska-Cheruiyot
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163, Warsaw, Poland
- Corresponding author.
| | - Michael Stear
- Department of Animal, Plant and Soil Science, Agribio, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Katarzyna Donskow-Łysoniewska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163, Warsaw, Poland
| |
Collapse
|
17
|
Fichorova RN, DeLong AK, Cu-Uvin S, King CC, Jamieson DJ, Klein RS, Sobel JD, Vlahov D, Yamamoto HS, Mayer KH. Protozoan-Viral-Bacterial Co-Infections Alter Galectin Levels and Associated Immunity Mediators in the Female Genital Tract. Front Cell Infect Microbiol 2021; 11:649940. [PMID: 34422675 PMCID: PMC8375472 DOI: 10.3389/fcimb.2021.649940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/29/2021] [Indexed: 01/05/2023] Open
Abstract
Co-infections with sexually transmittable pathogens are common and more likely in women with disturbed vaginal bacteriome. Among those pathogens, the protozoan parasite Trichomonas vaginalis (TV) is most common after accounting for the highly persistent DNA viruses human papillomavirus (HPV) and genital herpes. The parasitic infection often concurs with the dysbiotic syndrome diagnosed as bacterial vaginosis (BV) and both are associated with risks of superimposed viral infections. Yet, the mechanisms of microbial synergisms in evading host immunity remain elusive. We present clinical and experimental evidence for a new role of galectins, glycan-sensing family of proteins, in mixed infections. We assessed participants of the HIV Epidemiology Research Study (HERS) at each of their incident TV visits (223 case visits) matched to controls who remained TV-negative throughout the study. Matching criteria included age, race, BV (by Nugent score), HIV status, hysterectomy, and contraceptive use. Non-matched variables included BV status at 6 months before the matched visit, and variables examined at baseline, within 6 months of and/or at the matched visit e.g. HSV-2, HPV, and relevant laboratory and socio-demographic parameters. Conditional logistic regression models using generalized estimating equations calculated odds ratios (OR) for incident TV occurrence with each log10 unit higher cervicovaginal concentration of galectins and cytokines. Incident TV was associated with higher levels of galectin-1, galectin-9, IL-1β and chemokines (ORs 1.53 to 2.91, p <0.001). Galectin-9, IL-1β and chemokines were up and galectin-3 down in TV cases with BV or intermediate Nugent versus normal Nugent scores (p <0.001). Galectin-9, IL-1β and chemokines were up in TV-HIV and down in TV-HPV co-infections. In-vitro, TV synergized with its endosymbiont Trichomonasvirus (TVV) and BV bacteria to upregulate galectin-1, galectin-9, and inflammatory cytokines. The BV-bacterium Prevotella bivia alone and together with TV downregulated galectin-3 and synergistically upregulated galectin-1, galectin-9 and IL-1β, mirroring the clinical findings of mixed TV–BV infections. P. bivia also downregulated TVV+TV-induced anti-viral response e.g. IP-10 and RANTES, providing a mechanism for conducing viral persistence in TV-BV co-infections. Collectively, the experimental and clinical data suggest that galectin-mediated immunity may be dysregulated and exploited by viral–protozoan–bacterial synergisms exacerbating inflammatory complications from dysbiosis and sexually transmitted infections.
Collapse
Affiliation(s)
- Raina N Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Allison K DeLong
- Center for Statistical Sciences, School of Public Health, Brown University, Providence, RI, United States
| | - Susan Cu-Uvin
- Department of Obstetrics and Gynecology, Brown University, The Miriam Hospital, Providence, RI, United States
| | - Caroline C King
- National Center for Chronic Disease Prevention and Health Promotion/Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Denise J Jamieson
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert S Klein
- Hudson Infectious Diseases Associates, Briarcliff Manor, NY, United States
| | - Jack D Sobel
- Division of Infectious Diseases, School of Medicine, Wayne State University, Detroit, MI, United States
| | - David Vlahov
- Department of Community Health Systems, School of Nursing, University of California at San Francisco, San Francisco, CA, United States
| | - Hidemi S Yamamoto
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Kenneth H Mayer
- The Fenway Institute, Fenway Health, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Exploration of Galectin Ligands Displayed on Gram-Negative Respiratory Bacterial Pathogens with Different Cell Surface Architectures. Biomolecules 2021; 11:biom11040595. [PMID: 33919637 PMCID: PMC8074145 DOI: 10.3390/biom11040595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/29/2022] Open
Abstract
Galectins bind various pathogens through recognition of distinct carbohydrate structures. In this work, we examined the binding of four human galectins to the Gram-negative bacteria Klebsiella pneumoniae (Kpn) and non-typeable Haemophilus influenzae (NTHi), which display different surface glycans. In particular, Kpn cells are covered by a polysaccharide capsule and display an O-chain-containing lipopolysaccharide (LPS), whereas NTHi is not capsulated and its LPS, termed lipooligosacccharide (LOS), does not contain O-chain. Binding assays to microarray-printed bacteria revealed that galectins-3, -4, and -8, but not galectin-1, bind to Kpn and NTHi cells, and confocal microscopy attested binding to bacterial cells in suspension. The three galectins bound to array-printed Kpn LPS. Moreover, analysis of galectin binding to mutant Kpn cells evidenced that the O-chain is the docking point for galectins on wild type Kpn. Galectins-3, -4, and -8 also bound the NTHi LOS. Microarray-assisted comparison of the binding to full-length and truncated LOSs, as well as to wild type and mutant cells, supported LOS involvement in galectin binding to NTHi. However, deletion of the entire LOS oligosaccharide chain actually increased binding to NTHi cells, indicating the availability of other ligands on the bacterial surface, as similarly inferred for Kpn cells devoid of both O-chain and capsule. Altogether, the results illustrate galectins’ versatility for recognizing different bacterial structures, and point out the occurrence of so far overlooked galectin ligands on bacterial surfaces.
Collapse
|
19
|
Abstract
Trichomonas vaginalis is an anaerobic/microaerophilic protist parasite which causes trichomoniasis, one of the most prevalent sexually transmitted diseases worldwide. T. vaginalis not only is important as a human pathogen but also is of great biological interest because of its peculiar cell biology and metabolism, in earlier times fostering the erroneous notion that this microorganism is at the root of eukaryotic evolution. This review summarizes the major advances in the last five years in the T. vaginalis field with regard to genetics, molecular biology, ecology, and pathogenicity of the parasite.
Collapse
Affiliation(s)
- David Leitsch
- Department of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Molgora BM, Rai AK, Sweredoski MJ, Moradian A, Hess S, Johnson PJ. A Novel Trichomonas vaginalis Surface Protein Modulates Parasite Attachment via Protein:Host Cell Proteoglycan Interaction. mBio 2021; 12:e03374-20. [PMID: 33563826 PMCID: PMC7885099 DOI: 10.1128/mbio.03374-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Trichomonas vaginalis is a highly prevalent, sexually transmitted parasite which adheres to mucosal epithelial cells to colonize the human urogenital tract. Despite adherence being crucial for this extracellular parasite to thrive within the host, relatively little is known about the mechanisms or key molecules involved in this process. Here, we have identified and characterized a T. vaginalis hypothetical protein, TVAG_157210 (TvAD1), as a surface protein that plays an integral role in parasite adherence to the host. Quantitative proteomics revealed TvAD1 to be ∼4-fold more abundant in parasites selected for increased adherence (MA parasites) than the isogenic parental (P) parasite line. De novo modeling suggested that TvAD1 binds N-acetylglucosamine (GlcNAc), a sugar comprising host glycosaminoglycans (GAGs). Adherence assays utilizing GAG-deficient cell lines determined that host GAGs, primarily heparan sulfate (HS), mediate adherence of MA parasites to host cells. TvAD1 knockout (KO) parasites, generated using CRISPR-Cas9, were found to be significantly reduced in host cell adherence, a phenotype that is rescued by overexpression of TvAD1 in KO parasites. In contrast, there was no significant difference in parasite adherence to GAG-deficient lines by KO parasites compared with wild-type, which is contrary to that observed for KO parasites overexpressing TvAD1. Isothermal titration calorimetric (ITC) analysis showed that TvAD1 binds to HS, indicating that TvAD1 mediates host cell adherence via HS interaction. In addition to characterizing the role of TvAD1 in parasite adherence, these studies reveal a role for host GAG molecules in T. vaginalis adherence.IMPORTANCE The ability of the sexually transmitted parasite Trichomonas vaginalis to adhere to its human host is critical for establishing and maintaining an infection. Yet how parasites adhere to host cells is poorly understood. In this study, we employed a novel adherence selection method to identify proteins involved in parasite adherence to the host. This method led to the identification of a protein, with no previously known function, that is more abundant in parasites with increased capacity to bind host cells. Bioinformatic modeling and biochemical analyses revealed that this protein binds a common component on the host cell surface proteoglycans. Subsequent creation of parasites that lack this protein directly demonstrated that the protein mediates parasite adherence via an interaction with host cell proteoglycans. These findings both demonstrate a role for this protein in T. vaginalis adherence to the host and shed light on host cell molecules that participate in parasite colonization.
Collapse
Affiliation(s)
- Brenda M Molgora
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Anand Kumar Rai
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Annie Moradian
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Sonja Hess
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Patricia J Johnson
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
21
|
Cutine AM, Bach CA, Veigas F, Merlo JP, Laporte L, Manselle Cocco MN, Massaro M, Sarbia N, Perrotta RM, Mahmoud YD, Rabinovich GA. Tissue-specific control of galectin-1-driven circuits during inflammatory responses. Glycobiology 2021; 31:891-907. [PMID: 33498084 DOI: 10.1093/glycob/cwab007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/12/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
The relevance of glycan-binding protein in immune tolerance and inflammation has been well established, mainly by studies of C-type lectins, siglecs and galectins both in experimental models and patient samples. Galectins, a family of evolutionarily conserved lectins, are characterized by sequence homology in the carbohydrate-recognition domain (CRD), atypical secretion via an ER-Golgi-independent pathway and the ability to recognize β-galactoside-containing saccharides. Galectin-1 (Gal-1), a prototype member of this family displays mainly anti-inflammatory and immunosuppressive activities, although, similar to many cytokines and growth factors, it may also trigger paradoxical pro-inflammatory effects under certain circumstances. These dual effects could be associated to tissue-, time- or context-dependent regulation of galectin expression and function, including particular pathophysiologic settings and/or environmental conditions influencing the structure of this lectin, as well as the availability of glycosylated ligands in immune cells during the course of inflammatory responses. Here, we discuss the tissue-specific role of Gal-1 as a master regulator of inflammatory responses across different pathophysiologic settings, highlighting its potential role as a therapeutic target. Further studies designed at analyzing the intrinsic and extrinsic pathways that control Gal-1 expression and function in different tissue microenvironments may contribute to design tailored therapeutic strategies aimed at positively or negatively modulate this glycan-binding protein in pathologic inflammatory conditions.
Collapse
Affiliation(s)
- Anabela M Cutine
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Camila A Bach
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Florencia Veigas
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Joaquín P Merlo
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Lorena Laporte
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Montana N Manselle Cocco
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Mora Massaro
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Nicolas Sarbia
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Ramiro M Perrotta
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Yamil D Mahmoud
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Instituto de Biología y Medicina Experimental (IBYME), Laboratorios de Inmunopatología, Glicómica Funcional e Inmuno-Oncología Translacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Buenos Aires, Argentina
| |
Collapse
|
22
|
Ayona D, Fournier PE, Henrissat B, Desnues B. Utilization of Galectins by Pathogens for Infection. Front Immunol 2020; 11:1877. [PMID: 32973776 PMCID: PMC7466766 DOI: 10.3389/fimmu.2020.01877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022] Open
Abstract
Galectins are glycan-binding proteins which are expressed by many different cell types and secreted extracellularly. These molecules are well-known regulators of immune responses and involved in a broad range of cellular and pathophysiological functions. During infections, host galectins can either avoid or facilitate infections by interacting with host cells- and/or pathogen-derived glycoconjugates and less commonly, with proteins. Some pathogens also express self-produced galectins to interfere with host immune responses. This review summarizes pathogens which take advantage of host- or pathogen-produced galectins to establish the infection.
Collapse
Affiliation(s)
- Diyoly Ayona
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | | | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, France
- USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Benoit Desnues
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
23
|
Galectins in Host-Pathogen Interactions: Structural, Functional and Evolutionary Aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:169-196. [PMID: 32152947 DOI: 10.1007/978-981-15-1580-4_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Galectins are a family of ß-galactoside-binding lectins characterized by a unique sequence motif in the carbohydrate recognition domain, and evolutionary and structural conservation from fungi to invertebrates and vertebrates, including mammals. Their biological roles, initially understood as limited to recognition of endogenous ("self") carbohydrate ligands in embryogenesis and early development, dramatically expanded in later years by the discovery of their roles in tissue repair, cancer, adipogenesis, and regulation of immune homeostasis. In recent years, however, evidence has also accumulated to support the notion that galectins can bind ("non-self") glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity. Thus, this evidence has established a new paradigm by which galectins can function not only as pattern recognition receptors but also as effector factors, by binding to the microbial surface and inhibiting adhesion and/or entry into the host cell, directly killing the potential pathogen by disrupting its surface structures, or by promoting phagocytosis, encapsulation, autophagy, and pathogen clearance from circulation. Strikingly, some viruses, bacteria, and protistan parasites take advantage of the aforementioned recognition roles of the vector/host galectins, for successful attachment and invasion. These recent findings suggest that galectin-mediated innate immune recognition and effector mechanisms, which throughout evolution have remained effective for preventing or fighting viral, bacterial, and parasitic infection, have been "subverted" by certain pathogens by unique evolutionary adaptations of their surface glycome to gain host entry, and the acquisition of effective mechanisms to evade the host's immune responses.
Collapse
|
24
|
Kalia N, Singh J, Kaur M. Immunopathology of Recurrent Vulvovaginal Infections: New Aspects and Research Directions. Front Immunol 2019; 10:2034. [PMID: 31555269 PMCID: PMC6722227 DOI: 10.3389/fimmu.2019.02034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/12/2019] [Indexed: 12/25/2022] Open
Abstract
Recurrent vulvovaginal infections (RVVI), a devastating group of mucosal infection, are severely affecting women's quality of life. Our understanding of the vaginal defense mechanisms have broadened recently with studies uncovering the inflammatory nature of bacterial vaginosis, inflammatory responses against novel virulence factors, innate Type 17 cells/IL-17 axis, neutrophils mediated killing of pathogens by a novel mechanism, and oxidative stress during vaginal infections. However, the pathogens have fine mechanisms to subvert or manipulate the host immune responses, hijack them and use them for their own advantage. The odds of hijacking increases, due to impaired immune responses, the net magnitude of which is the result of numerous genetic variations, present in multiple host genes, detailed in this review. Thus, by underlining the role of the host immune responses in disease etiology, modern research has clarified a major hypothesis shift in the pathophilosophy of RVVI. This knowledge can further be used to develop efficient immune-based diagnosis and treatment strategies for this enigmatic disease conditions. As for instance, plasma-derived MBL replacement, adoptive T-cell, and antibody-based therapies have been reported to be safe and efficacious in infectious diseases. Therefore, these emerging immune-therapies could possibly be the future therapeutic options for RVVI.
Collapse
Affiliation(s)
- Namarta Kalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Jatinder Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
25
|
Pekmezovic M, Mogavero S, Naglik JR, Hube B. Host-Pathogen Interactions during Female Genital Tract Infections. Trends Microbiol 2019; 27:982-996. [PMID: 31451347 DOI: 10.1016/j.tim.2019.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/25/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
Dysbiosis in the female genital tract (FGT) is characterized by the overgrowth of pathogenic bacterial, fungal, or protozoan members of the microbiota, leading to symptomatic or asymptomatic infections. In this review, we discuss recent advances in studies dealing with molecular mechanisms of pathogenicity factors of Gardnerella vaginalis, Mycoplasma genitalium, Mycoplasma hominis, Neisseria gonorrhoeae, Streptococcus agalactiae, Chlamydia trachomatis, Trichomonas vaginalis, and Candida spp., as well as their interactions with the host and microbiota in the various niches of the FGT. Taking a holistic approach to identifying fundamental commonalities and differences during these infections could help us to better understand reproductive tract health and improve current prevention and treatment strategies.
Collapse
Affiliation(s)
- Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral, and Craniofacial Sciences, King's College London, SE1 1UL, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany. @leibniz-hki.de
| |
Collapse
|
26
|
Handrich MR, Garg SG, Sommerville EW, Hirt RP, Gould SB. Characterization of the BspA and Pmp protein family of trichomonads. Parasit Vectors 2019; 12:406. [PMID: 31426868 PMCID: PMC6701047 DOI: 10.1186/s13071-019-3660-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/08/2019] [Indexed: 11/16/2022] Open
Abstract
Background Trichomonas vaginalis is a human-infecting trichomonad and as such the best studied and the only for which the full genome sequence is available considering its parasitic lifestyle, T. vaginalis encodes an unusually high number of proteins. Many gene families are massively expanded and some genes are speculated to have been acquired from prokaryotic sources. Among the latter are two gene families that harbour domains which share similarity with proteins of Bacteroidales/Spirochaetales and Chlamydiales: the BspA and the Pmp proteins, respectively. Results We sequenced the transcriptomes of five trichomonad species and screened for the presence of BspA and Pmp domain-containing proteins and characterized individual candidate proteins from both families in T. vaginalis. Here, we demonstrate that (i) BspA and Pmp domain-containing proteins are universal to trichomonads, but specifically expanded in T. vaginalis; (ii) in line with a concurrent expansion of the endocytic machinery, there is a high number of BspA and Pmp proteins which carry C-terminal endocytic motifs; and (iii) both families traffic through the ER and have the ability to increase adhesion performance in a non-virulent T. vaginalis strain and Tetratrichomonas gallinarum by a so far unknown mechanism. Conclusions Our results initiate the functional characterization of these two broadly distributed protein families and help to better understand the origin and evolution of BspA and Pmp domains in trichomonads. Electronic supplementary material The online version of this article (10.1186/s13071-019-3660-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria R Handrich
- Institute for Molecular Evolution, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ewen W Sommerville
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert P Hirt
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
27
|
Rada P, Kellerová P, Verner Z, Tachezy J. Investigation of the Secretory Pathway inTrichomonas vaginalisArgues against a Moonlighting Function of Hydrogenosomal Enzymes. J Eukaryot Microbiol 2019; 66:899-910. [DOI: 10.1111/jeu.12741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/01/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Petr Rada
- Department of Parasitology Faculty of Science Charles University, BIOCEV Průmyslová 595 Vestec 25242 Czech Republic
| | - Pavlína Kellerová
- Department of Parasitology Faculty of Science Charles University, BIOCEV Průmyslová 595 Vestec 25242 Czech Republic
| | - Zdeněk Verner
- Department of Parasitology Faculty of Science Charles University, BIOCEV Průmyslová 595 Vestec 25242 Czech Republic
| | - Jan Tachezy
- Department of Parasitology Faculty of Science Charles University, BIOCEV Průmyslová 595 Vestec 25242 Czech Republic
| |
Collapse
|
28
|
Mercer F, Johnson PJ. Trichomonas vaginalis: Pathogenesis, Symbiont Interactions, and Host Cell Immune Responses. Trends Parasitol 2018; 34:683-693. [PMID: 30056833 PMCID: PMC11132421 DOI: 10.1016/j.pt.2018.05.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/21/2018] [Accepted: 05/30/2018] [Indexed: 01/03/2023]
Abstract
The parasite Trichomonas vaginalis (Tv) causes a highly prevalent sexually transmitted infection. As an extracellular pathogen, the parasite mediates adherence to epithelial cells to colonize the human host. In addition, the parasite interfaces with the host immune system and the vaginal microbiota. Modes of Tv pathogenesis include damage to host tissue mediated by parasite killing of host cells, disruption of steady-state vaginal microbial ecology, and eliciting inflammation by activating the host immune response. Recent Tv research has uncovered new players that contribute to multifactorial mechanisms of host-parasite adherence and killing, and has examined the relationship between Tv and vaginal bacteria. Mechanisms that may lead to parasite recognition and killing, or the evasion of host immune cells, have also been revealed.
Collapse
Affiliation(s)
- Frances Mercer
- Department of Biological Sciences, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, USA.
| | - Patricia J Johnson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, 1602 Molecular Sciences Building, 609 Charles E. Young Drive East, Los Angeles, CA 90095-1489, USA.
| |
Collapse
|
29
|
A Cell Surface Aggregation-Promoting Factor from Lactobacillus gasseri Contributes to Inhibition of Trichomonas vaginalis Adhesion to Human Vaginal Ectocervical Cells. Infect Immun 2018; 86:IAI.00907-17. [PMID: 29784856 DOI: 10.1128/iai.00907-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/12/2018] [Indexed: 01/08/2023] Open
Abstract
Trichomoniasis, a prevalent sexually transmitted infection, is commonly symptomatic in women. The causative agent is Trichomonas vaginalis, an extracellular protozoan parasite. The host-protective mechanisms and molecules of vaginal lactobacilli that counteract this pathogen are largely unknown. This study examines the inhibition promoted by Lactobacillus gasseri against the adhesion of T. vaginalis to host cells, a critical virulence aspect of this pathogen. We observed that the vaginal strain L. gasseri ATCC 9857 is highly inhibitory by various contact-dependent mechanisms and that surface proteins are largely responsible for this inhibitory phenotype. We found that the aggregation-promoting factor APF-2 from these bacteria significantly contributes to inhibition of the adhesion of T. vaginalis to human vaginal ectocervical cells. Understanding the molecules and mechanisms used by lactobacilli to protect the host against T. vaginalis might help in the development of novel and specific therapeutic strategies that take advantage of the natural microbiota.
Collapse
|
30
|
Glycosylation-dependent galectin-receptor interactions promote Chlamydia trachomatis infection. Proc Natl Acad Sci U S A 2018; 115:E6000-E6009. [PMID: 29891717 DOI: 10.1073/pnas.1802188115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chlamydia trachomatis (Ct) constitutes the most prevalent sexually transmitted bacterium worldwide. Chlamydial infections can lead to severe clinical sequelae including pelvic inflammatory disease, ectopic pregnancy, and tubal infertility. As an obligate intracellular pathogen, Ct has evolved multiple strategies to promote adhesion and invasion of host cells, including those involving both bacterial and host glycans. Here, we show that galectin-1 (Gal1), an endogenous lectin widely expressed in female and male genital tracts, promotes Ct infection. Through glycosylation-dependent mechanisms involving recognition of bacterial glycoproteins and N-glycosylated host cell receptors, Gal1 enhanced Ct attachment to cervical epithelial cells. Exposure to Gal1, mainly in its dimeric form, facilitated bacterial entry and increased the number of infected cells by favoring Ct-Ct and Ct-host cell interactions. These effects were substantiated in vivo in mice lacking Gal1 or complex β1-6-branched N-glycans. Thus, disrupting Gal1-N-glycan interactions may limit the severity of chlamydial infection by inhibiting bacterial invasion of host cells.
Collapse
|
31
|
Robinson BS, Arthur CM, Kamili NA, Stowell SR. Galectin Regulation of Host Microbial Interactions. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1738.1se] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Brian S. Robinson
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine
| | - Connie M. Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine
| | - Nourine A. Kamili
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine
| | - Sean R. Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine
| |
Collapse
|
32
|
Tamai R, Kobayashi-Sakamoto M, Kiyoura Y. Extracellular galectin-1 enhances adhesion to and invasion of oral epithelial cells by Porphyromonas gingivalis. Can J Microbiol 2018; 64:465-471. [PMID: 29544077 DOI: 10.1139/cjm-2017-0461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Galectin-1 and galectin-3 are C-type lectin receptors that bind to lipopolysaccharide in the cell wall of gram-negative bacteria. In this study, we investigated the effects of galectin-1 and galectin-3 on adhesion to and invasion of the human gingival epithelial cell line Ca9-22 by Porphyromonas gingivalis, a periodontal pathogenic gram-negative bacterium. Recombinant galectin-1, but not galectin-3, enhanced P. gingivalis adhesion and invasion, although both galectins bound similarly to P. gingivalis. Flow cytometry also revealed that Ca9-22 cells express low levels of galectin-1 and moderate levels of galectin-3. Ca9-22 cells in which galectin-3 was knocked-down did not exhibit enhanced P. gingivalis adhesion and invasion. Similarly, specific antibodies to galectin-1 and galectin-3 did not inhibit P. gingivalis adhesion and invasion. These results suggest that soluble galectin-1, but not galectin-3, may exacerbate periodontal disease by enhancing the adhesion to and invasion of host cells by periodontal pathogenic bacteria.
Collapse
Affiliation(s)
- Riyoko Tamai
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan.,Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Michiyo Kobayashi-Sakamoto
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan.,Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Yusuke Kiyoura
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan.,Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| |
Collapse
|
33
|
Vasta GR, Feng C, González-Montalbán N, Mancini J, Yang L, Abernathy K, Frost G, Palm C. Functions of galectins as 'self/non-self'-recognition and effector factors. Pathog Dis 2018; 75:3753447. [PMID: 28449072 DOI: 10.1093/femspd/ftx046] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
Carbohydrate structures on the cell surface encode complex information that through specific recognition by carbohydrate-binding proteins (lectins) modulates interactions between cells, cells and the extracellular matrix, or mediates recognition of potential microbial pathogens. Galectins are a family of ß-galactoside-binding lectins, which are evolutionary conserved and have been identified in most organisms, from fungi to invertebrates and vertebrates, including mammals. Since their discovery in the 1970s, their biological roles, initially understood as limited to recognition of endogenous carbohydrate ligands in embryogenesis and development, have expanded in recent years by the discovery of their roles in tissue repair and regulation of immune homeostasis. More recently, evidence has accumulated to support the notion that galectins can also bind glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity, thus establishing a new paradigm. Furthermore, some parasites 'subvert' the recognition roles of the vector/host galectins for successful attachment or invasion. These recent findings have revealed a striking functional diversification in this structurally conserved lectin family.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Chiguang Feng
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Nuria González-Montalbán
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Justin Mancini
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Lishi Yang
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Kelsey Abernathy
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Graeme Frost
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Cheyenne Palm
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| |
Collapse
|
34
|
Sciacchitano S, Lavra L, Morgante A, Ulivieri A, Magi F, De Francesco GP, Bellotti C, Salehi LB, Ricci A. Galectin-3: One Molecule for an Alphabet of Diseases, from A to Z. Int J Mol Sci 2018; 19:ijms19020379. [PMID: 29373564 PMCID: PMC5855601 DOI: 10.3390/ijms19020379] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 (Gal-3) regulates basic cellular functions such as cell-cell and cell-matrix interactions, growth, proliferation, differentiation, and inflammation. It is not surprising, therefore, that this protein is involved in the pathogenesis of many relevant human diseases, including cancer, fibrosis, chronic inflammation and scarring affecting many different tissues. The papers published in the literature have progressively increased in number during the last decades, testifying the great interest given to this protein by numerous researchers involved in many different clinical contexts. Considering the crucial role exerted by Gal-3 in many different clinical conditions, Gal-3 is emerging as a new diagnostic, prognostic biomarker and as a new promising therapeutic target. The current review aims to extensively examine the studies published so far on the role of Gal-3 in all the clinical conditions and diseases, listed in alphabetical order, where it was analyzed.
Collapse
Affiliation(s)
- Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy.
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Luca Lavra
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Alessandra Morgante
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Alessandra Ulivieri
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Fiorenza Magi
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Gian Paolo De Francesco
- Department of Oncological Science, Breast Unit, St Andrea University Hospital, Via di Grottarossa, 1035/39, 00189 Rome, Italy.
| | - Carlo Bellotti
- Operative Unit Surgery of Thyroid and Parathyroid, Sapienza University of Rome, S. Andrea Hospital, Via di Grottarossa, 1035/39, 00189 Rome, Italy.
| | - Leila B Salehi
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
- Department of Biopathology and Diagnostic Imaging, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy.
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine, Sapienza University, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
35
|
The roles of galectins in parasitic infections. Acta Trop 2018; 177:97-104. [PMID: 28986248 DOI: 10.1016/j.actatropica.2017.09.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/10/2017] [Accepted: 09/29/2017] [Indexed: 12/18/2022]
Abstract
Galectins is a family of multifunctional lectins. Fifteen galectins have been identified from a variety of cells and tissues of vertebrates and invertebrates. Galectins have been shown to play pivotal roles in host-pathogen interaction such as adhesion of pathogens to host cells and activation of host innate and adaptive immunity. In recent years, the roles of galectins during parasite infections have gained increasing attention. Galectins produced by different hosts can act as pattern recognition receptors detecting conserved pathogen-associated molecular patterns of parasites, while galectins produced by parasites can modulate host responses. This review summarizes some recent studies on the roles of galectins produced by parasitic protozoa, nematodes, and trematodes and their hosts. Understanding the roles of galectins in host-parasite interactions may provide targets for immune intervention and therapies of parasitic infections.
Collapse
|
36
|
Dos Santos O, Rigo GV, Macedo AJ, Tasca T. Trichomonas vaginalis clinical isolates: cytoadherence and adherence to polystyrene, intrauterine device, and vaginal ring. Parasitol Res 2017; 116:3275-3284. [PMID: 29026991 DOI: 10.1007/s00436-017-5638-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022]
Abstract
The parasitism by Trichomonas vaginalis is complex and in part is mediated by cytoadherence accomplished via five surface proteins named adhesins and a glycoconjugate called lipophosphoglycan (TvLPG). In this study, we evaluated the ability of T. vaginalis isolates to adhere to cells, plastic (polystyrene microplates), intrauterine device (IUD), and vaginal ring. Of 32 T. vaginalis isolates, 4 (12.5%) were strong adherent. The T. vaginalis isolates TV-LACM6 and TV-LACM14 (strong polystyrene-adherent) were also able to adhere to IUD and vaginal ring. Following chemical treatments, results demonstrated that the T. vaginalis components, lipophosphoglycan, cytoskeletal proteins, and surface molecules, were involved in both adherence to polystyrene and cytoadherence. The gene expression level from four adhesion proteins was highest in trophozoites adhered to cells than trophozoites adhered to the abiotic surface (polystyrene microplate). Our data indicate the major involvement of TvLPG in adherence to polystyrene, and that adhesins are important for cytoadherence. Furthermore, to our knowledge, this is the first report showing the T. vaginalis adherence to contraceptive devices, reaffirming its importance as pathogen among women in reproductive age.
Collapse
Affiliation(s)
- Odelta Dos Santos
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil
| | - Graziela Vargas Rigo
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 43431, Porto Alegre, 91501-970, Brazil
| | - Tiana Tasca
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS, 90610-000, Brazil.
| |
Collapse
|
37
|
Davicino RC, Méndez-Huergo SP, Eliçabe RJ, Stupirski JC, Autenrieth I, Di Genaro MS, Rabinovich GA. Galectin-1–Driven Tolerogenic Programs AggravateYersinia enterocoliticaInfection by Repressing Antibacterial Immunity. THE JOURNAL OF IMMUNOLOGY 2017; 199:1382-1392. [DOI: 10.4049/jimmunol.1700579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
|
38
|
Arthur CM, Patel SR, Mener A, Kamili NA, Fasano RM, Meyer E, Winkler AM, Sola-Visner M, Josephson CD, Stowell SR. Innate immunity against molecular mimicry: Examining galectin-mediated antimicrobial activity. Bioessays 2016; 37:1327-37. [PMID: 26577077 DOI: 10.1002/bies.201500055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adaptive immunity provides the unique ability to respond to a nearly infinite range of antigenic determinants. Given the inherent plasticity of the adaptive immune system, a series of tolerance mechanisms exist to reduce reactivity toward self. While this reduces the probability of autoimmunity, it also creates an important gap in adaptive immunity: the ability to recognize microbes that look like self. As a variety of microbes decorate themselves in self-like carbohydrate antigens and tolerance reduces the ability of adaptive immunity to react with self-like structures, protection against molecular mimicry likely resides within the innate arm of immunity. In this review, we will explore the potential consequences of microbial molecular mimicry, including factors within innate immunity that appear to specifically target microbes expressing self-like antigens, and therefore provide protection against molecular mimicry.
Collapse
Affiliation(s)
- Connie M Arthur
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Seema R Patel
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Amanda Mener
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Nourine A Kamili
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Ross M Fasano
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Erin Meyer
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Annie M Winkler
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Cassandra D Josephson
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Sean R Stowell
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
39
|
Menezes CB, Tasca T. Trichomoniasis immunity and the involvement of the purinergic signaling. Biomed J 2016; 39:234-243. [PMID: 27793265 PMCID: PMC6138788 DOI: 10.1016/j.bj.2016.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 12/31/2022] Open
Abstract
Innate and adaptive immunity play a significant role in trichomoniasis, the most common non-viral sexually transmitted disease worldwide. In the urogenital tract, innate immunity is accomplished by a defense physical barrier constituted by epithelial cells, mucus, and acidic pH. During infection, immune cells, antimicrobial peptides, cytokines, chemokines, and adaptive immunity evolve in the reproductive tract, and a proinflammatory response is generated to eliminate the invading extracellular pathogen Trichomonas vaginalis. However, the parasite has developed complex evolutionary mechanisms to evade the host immune response through cysteine proteases, phenotypic variation, and molecular mimicry. The purinergic system constitutes a signaling cellular net where nucleotides and nucleosides, enzymes, purinoceptors and transporters are involved in almost all cells and tissues signaling pathways, especially in central and autonomic nervous systems, endocrine, respiratory, cardiac, reproductive, and immune systems, during physiological as well as pathological processes. The involvement of the purinergic system in T. vaginalis biology and infection has been demonstrated and this review highlights the participation of this signaling pathway in the parasite immune evasion strategies.
Collapse
Affiliation(s)
- Camila Braz Menezes
- Parasitology Research Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Parasitology Research Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Sul, Brazil.
| |
Collapse
|
40
|
Systems-level effects of ectopic galectin-7 reconstitution in cervical cancer and its microenvironment. BMC Cancer 2016; 16:680. [PMID: 27558259 PMCID: PMC4997669 DOI: 10.1186/s12885-016-2700-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/09/2016] [Indexed: 12/20/2022] Open
Abstract
Background Galectin-7 (Gal-7) is negatively regulated in cervical cancer, and appears to be a link between the apoptotic response triggered by cancer and the anti-tumoral activity of the immune system. Our understanding of how cervical cancer cells and their molecular networks adapt in response to the expression of Gal-7 remains limited. Methods Meta-analysis of Gal-7 expression was conducted in three cervical cancer cohort studies and TCGA. In silico prediction and bisulfite sequencing were performed to inquire epigenetic alterations. To study the effect of Gal-7 on cervical cancer, we ectopically re-expressed it in the HeLa and SiHa cervical cancer cell lines, and analyzed their transcriptome and SILAC-based proteome. We also examined the tumor and microenvironment host cell transcriptomes after xenotransplantation into immunocompromised mice. Differences between samples were assessed with the Kruskall-Wallis, Dunn’s Multiple Comparison and T tests. Kaplan–Meier and log-rank tests were used to determine overall survival. Results Gal-7 was constantly downregulated in our meta-analysis (p < 0.0001). Tumors with combined high Gal-7 and low galectin-1 expression (p = 0.0001) presented significantly better prognoses (p = 0.005). In silico and bisulfite sequencing assays showed de novo methylation in the Gal-7 promoter and first intron. Cells re-expressing Gal-7 showed a high apoptosis ratio (p < 0.05) and their xenografts displayed strong growth retardation (p < 0.001). Multiple gene modules and transcriptional regulators were modulated in response to Gal-7 reconstitution, both in cervical cancer cells and their microenvironments (FDR < 0.05 %). Most of these genes and modules were associated with tissue morphogenesis, metabolism, transport, chemokine activity, and immune response. These functional modules could exert the same effects in vitro and in vivo, even despite different compositions between HeLa and SiHa samples. Conclusions Gal-7 re-expression affects the regulation of molecular networks in cervical cancer that are involved in diverse cancer hallmarks, such as metabolism, growth control, invasion and evasion of apoptosis. The effect of Gal-7 extends to the microenvironment, where networks involved in its configuration and in immune surveillance are particularly affected. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2700-8) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Mercer F, Diala FGI, Chen YP, Molgora BM, Ng SH, Johnson PJ. Leukocyte Lysis and Cytokine Induction by the Human Sexually Transmitted Parasite Trichomonas vaginalis. PLoS Negl Trop Dis 2016; 10:e0004913. [PMID: 27529696 PMCID: PMC4986988 DOI: 10.1371/journal.pntd.0004913] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 11/18/2022] Open
Abstract
Trichomonas vaginalis (Tv) is an extracellular protozoan parasite that causes the most common non-viral sexually transmitted infection: trichomoniasis. While acute symptoms in women may include vaginitis, infections are often asymptomatic, but can persist and are associated with medical complications including increased HIV susceptibility, infertility, pre-term labor, and higher incidence of cervical cancer. Heightened inflammation resulting from Tv infection could account for these complications. Effective cellular immune responses to Tv have not been characterized, and re-infection is common, suggesting a dysfunctional adaptive immune response. Using primary human leukocyte components, we have established an in vitro co-culture system to assess the interaction between Tv and the cells of the human immune system. We determined that in vitro, Tv is able to lyse T-cells and B-cells, showing a preference for B-cells. We also found that Tv lysis of lymphocytes was mediated by contact-dependent and soluble factors. Tv lysis of monocytes is far less efficient, and almost entirely contact-dependent. Interestingly, a common symbiont of Tv, Mycoplasma hominis, did not affect cytolytic activity of the parasite, but had a major impact on cytokine responses. M. hominis enabled more diverse inflammatory cytokine secretion in response to Tv and, of the cytokines tested, Tv strains cleared of M. hominis induced only IL-8 secretion from monocytes. The quality of the adaptive immune response to Tv is therefore likely influenced by Tv symbionts, commensals, and concomitant infections, and may be further complicated by direct parasite lysis of effector immune cells.
Collapse
Affiliation(s)
- Frances Mercer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Fitz Gerald I. Diala
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Yi-Pei Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Brenda M. Molgora
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Shek Hang Ng
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Patricia J. Johnson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Menezes CB, Frasson AP, Tasca T. Trichomoniasis - are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:404-419. [PMID: 28357378 PMCID: PMC5354568 DOI: 10.15698/mic2016.09.526] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 02/03/2023]
Abstract
ETIOLOGY Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease (STD) in the world. Transmission: Trichomoniasis is transmitted by sexual intercourse and transmission via fomites is rare. Epidemiology, incidence and prevalence: The WHO estimates an incidence of 276 million new cases each year and prevalence of 187 million of infected individuals. However, the infection is not notifiable. Pathology/Symptomatology: The T. vaginalis infection results in a variety of clinical manifestations - in most cases the patients are asymptomatic, but some may develop signs typically associated to the disease. Importantly, the main issue concerning trichomoniasis is its relationship with serious health consequences such as cancer, adverse pregnancy outcomes, infertility, and HIV acquisition. Molecular mechanisms of infection: To achieve success in parasitism trichomonads develop a complex process against the host cells that includes dependent- and independent-contact mechanisms. This multifactorial pathogenesis includes molecules such as soluble factors, secreted proteinases, adhesins, lipophosphoglycan that culminate in cytoadherence and cytotoxicity against the host cells. Treatment and curability: The treatment with metronidazole or tinidazole is recommended; however, cure failures remain problematic due to noncompliance, reinfection and/or lack of treatment of sexual partners, inaccurate diagnosis, or drug resistance. Therefore, new therapeutic alternatives are urgently needed. Protection: Strategies for protection including sexual behavior, condom usage, and therapy have not contributed to the decrease on disease prevalence, pointing to the need for innovative approaches. Vaccine development has been hampered by the lack of long-lasting humoral immunity associated to the absence of good animal models.
Collapse
Affiliation(s)
- Camila Braz Menezes
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia,
Universidade Federal do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul, Brazil
| | - Amanda Piccoli Frasson
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia,
Universidade Federal do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Laboratório de Pesquisa em Parasitologia, Faculdade de Farmácia,
Universidade Federal do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
43
|
Li Y, Yuan C, Wang L, Lu M, Wang Y, Wen Y, Yan R, Xu L, Song X, Li X. Transmembrane protein 147 (TMEM147): another partner protein of Haemonchus contortus galectin on the goat peripheral blood mononuclear cells (PBMC). Parasit Vectors 2016; 9:355. [PMID: 27337943 PMCID: PMC4918192 DOI: 10.1186/s13071-016-1640-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/13/2016] [Indexed: 12/03/2022] Open
Abstract
Background Recombinant galectins of male and female Haemonchus contortus (rHco-gal-m/f) have been recognized as significant regulators of the functions of goat peripheral blood mononuclear cells (PBMC). In previous research, transmembrane protein 63A (TMEM63A) was identified as a partner protein in the regulation associated with H. contortus infection. However, in the identification of binding partners for galectins of male and female H. contortus (Hco-gal-m/f) by yeast two-hybrid (YTH) screening, it was found that the transmembrane protein 147 (TMEM147) could also bind to Hco-gal-m/f. In this study, the functions of TMEM147 in the regulations of H. contortus galectin on the goat PBMC were investigated. Methods To identify Hco-gal-m/f-interacting proteins, a yeast two-hybrid system to detect interactions was used. Co-immunoprecipitation and immunoblotting were used to validate the interaction between recombinant galectins of male H. contortus (rHco-gal-m) and candidate binding protein. The localization of TMEM147 in PBMC was explored by immunofluorescence in confocal imaging studies. Flow cytometry was used to determine the distribution of TMEM147 in T cells, B cells and monocytes in PBMC. The modulatory effects of rHco-gal-m and TMEM147 on cell proliferation, phagocytosis, nitric oxide production, migration, apoptosis and cytokine mRNA transcription were observed by co-incubation of rHco-gal-m and knockdown of the tmem147 gene. Results In this research, it was demonstrated that TMEM147 could bind to rHco-gal-m/f. Immunofluorescence assays showed that TMEM147 was localized to the cell membrane and within the cell membrane in goat PBMC. Flow cytometric analysis revealed that TMEM147 was expressed in all B cells and monocytes in goat PBMC. However, 3.8 % of T cells did not express this protein. Knockdown of the tmem147 gene using RNA interference (RNAi) showed that the interaction of galectin with TMEM147 mainly mediated cell proliferation, cell apoptosis, transcription of interleukin-10 (IL-10) and transforming growth factor-β1 (TGF-β1) of goat PBMC. This membrane protein, together with TMEM63A, was also related to the regulation of galectin on phagocytosis and nitric oxide production of goat PBMC. However, it might not be involved in the regulation of galectin on the migration and interferon-γ (IFN-γ) transcription of goat PBMC. Conclusions Our results showed that TMEM147 was a binding partner of Hco-gal-m/f and mediated the immunological regulation of Hco-gal-m/f on goat PBMC in a manner different to that of TMEM63A. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1640-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Cheng Yuan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - LiKun Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - MingMin Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - YuJian Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - YuLing Wen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - RuoFeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - LiXin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - XiaoKai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
44
|
Nita-Lazar M, Mancini J, Feng C, González-Montalbán N, Ravindran C, Jackson S, de Las Heras-Sánchez A, Giomarelli B, Ahmed H, Haslam SM, Wu G, Dell A, Ammayappan A, Vakharia VN, Vasta GR. The zebrafish galectins Drgal1-L2 and Drgal3-L1 bind in vitro to the infectious hematopoietic necrosis virus (IHNV) glycoprotein and reduce viral adhesion to fish epithelial cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:241-252. [PMID: 26429411 PMCID: PMC4684960 DOI: 10.1016/j.dci.2015.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/17/2015] [Accepted: 09/17/2015] [Indexed: 06/05/2023]
Abstract
The infectious hematopoietic necrosis virus (IHNV; Rhabdoviridae, Novirhabdovirus) infects teleost fish, such as salmon and trout, and is responsible for significant losses in the aquaculture industry and in wild fish populations. Although IHNV enters the host through the skin at the base of the fins, the viral adhesion and entry mechanisms are not fully understood. In recent years, evidence has accumulated in support of the key roles played by protein-carbohydrate interactions between host lectins secreted to the extracellular space and virion envelope glycoproteins in modulating viral adhesion and infectivity. In this study, we assessed in vitro the potential role(s) of zebrafish (Danio rerio) proto type galectin-1 (Drgal1-L2) and a chimera galectin-3 (Drgal3-L1) in IHNV adhesion to epithelial cells. Our results suggest that the extracellular Drgal1-L2 and Drgal3-L1 interact directly and in a carbohydrate-dependent manner with the IHNV glycosylated envelope and glycans on the epithelial cell surface, significantly reducing viral adhesion.
Collapse
Affiliation(s)
- Mihai Nita-Lazar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Justin Mancini
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Chiguang Feng
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Núria González-Montalbán
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Chinnarajan Ravindran
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Shawn Jackson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Ana de Las Heras-Sánchez
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Barbara Giomarelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Hafiz Ahmed
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Stuart M Haslam
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College, London, UK
| | - Gang Wu
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College, London, UK
| | - Anne Dell
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College, London, UK
| | - Arun Ammayappan
- Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Vikram N Vakharia
- Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Fichorova RN, Yamamoto HS, Fashemi T, Foley E, Ryan S, Beatty N, Dawood H, Hayes GR, St-Pierre G, Sato S, Singh BN. Trichomonas vaginalis Lipophosphoglycan Exploits Binding to Galectin-1 and -3 to Modulate Epithelial Immunity. J Biol Chem 2016; 291:998-1013. [PMID: 26589797 PMCID: PMC4705417 DOI: 10.1074/jbc.m115.651497] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 10/29/2015] [Indexed: 11/06/2022] Open
Abstract
Trichomoniasis is the most common non-viral sexually transmitted infection caused by the vaginotropic extracellular protozoan parasite Trichomonas vaginalis. The infection is recurrent, with no lasting immunity, often asymptomatic, and linked to pregnancy complications and risk of viral infection. The molecular mechanisms of immune evasion by the parasite are poorly understood. We demonstrate that galectin-1 and -3 are expressed by the human cervical and vaginal epithelial cells and act as pathogen-recognition receptors for the ceramide phosphoinositol glycan core (CPI-GC) of the dominant surface protozoan lipophosphoglycan (LPG). We used an in vitro model with siRNA galectin knockdown epithelial clones, recombinant galectins, clinical Trichomonas isolates, and mutant protozoan derivatives to dissect the function of galectin-1 and -3 in the context of Trichomonas infection. Galectin-1 suppressed chemokines that facilitate recruitment of phagocytes, which can eliminate extracellular protozoa (IL-8) or bridge innate to adaptive immunity (MIP-3α and RANTES (regulated on activation normal T cell expressed and secreted)). Silencing galectin-1 increased and adding exogenous galectin-1 suppressed chemokine responses to Trichomonas or CPI-GC/LPG. In contrast, silencing galectin-3 reduced IL-8 response to LPG. Live Trichomonas depleted the extracellular levels of galectin-3. Clinical isolates and mutant Trichomonas CPI-GC that had reduced affinity to galectin-3 but maintained affinity to galectin-1 suppressed chemokine expression. Thus via CPI-GC binding, Trichomonas is capable of regulating galectin bioavailability and function to the benefit of its parasitic survival. These findings suggest novel approaches to control trichomoniasis and warrant further studies of galectin-binding diversity among clinical isolates as a possible source for symptom disparity in parasitic infections.
Collapse
Affiliation(s)
- Raina N Fichorova
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115,
| | - Hidemi S Yamamoto
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Titilayo Fashemi
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Evan Foley
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Stanthia Ryan
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Noah Beatty
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Hassan Dawood
- From the Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Gary R Hayes
- the Departments of Biochemistry and Molecular Biology and Obstetrics and Gynecology, State University of New York Upstate Medical University, Syracuse, New York 13210, and
| | - Guillaume St-Pierre
- the Laboratory of Glycobiology and Bioimaging, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec, Quebec G1V 4G2, Canada
| | - Sachiko Sato
- the Laboratory of Glycobiology and Bioimaging, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec, Quebec G1V 4G2, Canada
| | - Bibhuti N Singh
- the Departments of Biochemistry and Molecular Biology and Obstetrics and Gynecology, State University of New York Upstate Medical University, Syracuse, New York 13210, and
| |
Collapse
|
46
|
Kushwaha B, Mandalapu D, Bala V, Kumar L, Pandey A, Pandey D, Yadav SK, Singh P, Shukla PK, Maikhuri JP, Sankhwar SN, Sharma VL, Gupta G. Ammonium salts of carbamodithioic acid as potent vaginal trichomonacides and fungicides. Int J Antimicrob Agents 2015; 47:36-47. [PMID: 26706422 DOI: 10.1016/j.ijantimicag.2015.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022]
Abstract
Chemical attenuation of the reactive oxygen species (ROS)-sensitive anaerobes Trichomonas vaginalis, which is the most prevalent non-viral sexually transmitted infection, and two often coexisting vaginal infections, namely Candida albicans and Staphylococcus aureus, which are opportunistic reproductive tract infections, was attempted with novel ammonium salts of carbamodithioic acid through inhibition of free thiols. In vitro and in vivo efficacies of the designed compounds were evaluated as topical vaginal microbicides. Five compounds showed exceptional activity against drug-resistant and -susceptible strains with negligible toxicity to host (HeLa) cells in vitro in comparison with the standard vaginal microbicide nonoxynol-9 (N-9), without disturbing the normal vaginal flora (i.e. Lactobacillus). The compounds significantly inhibited the cytopathic effects of Trichomonas on HeLa cells in vitro with efficacies comparable with metronidazole (MTZ); however, their efficacy to rescue host cells from co-infection (protozoal and fungal) was greater than that of MTZ. The compounds inhibited β-haemolysis of red blood cells caused by Trichomonas and were found to be active in vivo in the mouse subcutaneous abscess assay. Some compounds rapidly immobilized human sperm. A mechanism involving inhibition of free thiols and consequently the cysteine proteases of T. vaginalis by the new compounds has been proposed. Thus, a unique scaffold of antimicrobial agents has been discovered that warrants further investigation for development as contraceptive vaginal microbicides.
Collapse
Affiliation(s)
- Bhavana Kushwaha
- Division of Endocrinology, CSIR - Central Drug Research Institute, Lucknow 226 031, India
| | - Dhanaraju Mandalapu
- Division of Medicinal and Process Chemistry, CSIR - Central Drug Research Institute, Lucknow 226 031, India
| | - Veenu Bala
- Division of Medicinal and Process Chemistry, CSIR - Central Drug Research Institute, Lucknow 226 031, India
| | - Lokesh Kumar
- Division of Endocrinology, CSIR - Central Drug Research Institute, Lucknow 226 031, India
| | - Aastha Pandey
- Division of Endocrinology, CSIR - Central Drug Research Institute, Lucknow 226 031, India
| | - Deepti Pandey
- Division of Endocrinology, CSIR - Central Drug Research Institute, Lucknow 226 031, India
| | - Santosh Kumar Yadav
- Division of Endocrinology, CSIR - Central Drug Research Institute, Lucknow 226 031, India
| | - Pratiksha Singh
- Division of Microbiology, CSIR - Central Drug Research Institute, Lucknow 226 031, India
| | - P K Shukla
- Division of Microbiology, CSIR - Central Drug Research Institute, Lucknow 226 031, India
| | - Jagdamba P Maikhuri
- Division of Endocrinology, CSIR - Central Drug Research Institute, Lucknow 226 031, India
| | - Satya N Sankhwar
- Department of Urology, King George's Medical University, Lucknow 226 003, India
| | - Vishnu L Sharma
- Division of Medicinal and Process Chemistry, CSIR - Central Drug Research Institute, Lucknow 226 031, India
| | - Gopal Gupta
- Division of Endocrinology, CSIR - Central Drug Research Institute, Lucknow 226 031, India.
| |
Collapse
|
47
|
Heiss C, Wang Z, Black I, Azadi P, Fichorova RN, Singh BN. Novel structural features of the immunocompetent ceramide phospho-inositol glycan core from Trichomonas vaginalis. Carbohydr Res 2015; 419:51-9. [PMID: 26671321 DOI: 10.1016/j.carres.2015.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 12/23/2022]
Abstract
The ceramide phosphoinositol glycan core (CPI-GC) of the lipophosphoglycan of Trichomonas vaginalis is a major virulent factor of this common genitourinary parasite. While its carbohydrate composition has been reported before, its structure has remained largely unknown. We isolated the glycan portions of CPI-GC by nitrous acid deamination and hydrofluoric acid treatment and investigated their structures by methylation analysis and 1- and 2-D NMR. We found that the α-anomer of galactose is a major constituent of CPI-GC. The β-anomer was found exclusively at the non-reducing end of CPI-GC side chains. Furthermore the data showed that the rhamnan backbone is more complex than previously thought and that the inositol residue at the reducing end is linked to a 4-linked α-glucuronic acid (GlcA) residue. This appears to be the most striking and novel feature of this GPI-anchor type molecule.
Collapse
Affiliation(s)
- Christian Heiss
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
| | - Zhirui Wang
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Ian Black
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Raina N Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Bibhuti N Singh
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| |
Collapse
|
48
|
Vasta GR, Feng C, Bianchet MA, Bachvaroff TR, Tasumi S. Structural, functional, and evolutionary aspects of galectins in aquatic mollusks: From a sweet tooth to the Trojan horse. FISH & SHELLFISH IMMUNOLOGY 2015; 46:94-106. [PMID: 25982395 PMCID: PMC4509915 DOI: 10.1016/j.fsi.2015.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 05/02/2023]
Abstract
Galectins constitute a conserved and widely distributed lectin family characterized by their binding affinity for β-galactosides and a unique binding site sequence motif in the carbohydrate recognition domain (CRD). In spite of their structural conservation, galectins display a remarkable functional diversity, by participating in developmental processes, cell adhesion and motility, regulation of immune homeostasis, and recognition of glycans on the surface of viruses, bacteria and protozoan parasites. In contrast with mammals, and other vertebrate and invertebrate taxa, the identification and characterization of bona fide galectins in aquatic mollusks has been relatively recent. Most of the studies have focused on the identification and domain organization of galectin-like transcripts or proteins in diverse tissues and cell types, including hemocytes, and their expression upon environmental or infectious challenge. Lectins from the eastern oyster Crassostrea virginica, however, have been characterized in their molecular, structural and functional aspects and some notable features have become apparent in the galectin repertoire of aquatic mollusks. These including less diversified galectin repertoires and different domain organizations relative to those observed in vertebrates, carbohydrate specificity for blood group oligosaccharides, and up regulation of galectin expression by infectious challenge, a feature that supports their proposed role(s) in innate immune responses. Although galectins from some aquatic mollusks have been shown to recognize microbial pathogens and parasites and promote their phagocytosis, they can also selectively bind to phytoplankton components, suggesting that they also participate in uptake and intracellular digestion of microalgae. In addition, the experimental evidence suggests that the protozoan parasite Perkinsus marinus has co-evolved with the oyster host to be selectively recognized by the oyster hemocyte galectins over algal food or bacterial pathogens, thereby subverting the oyster's innate immune/feeding recognition mechanisms to gain entry into the host cells.
Collapse
Affiliation(s)
- G R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA.
| | - C Feng
- Department of Microbiology and Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - M A Bianchet
- Department of Neurology, and Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - T R Bachvaroff
- University of Maryland Center for Environmental Science, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - S Tasumi
- Department of Microbiology and Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| |
Collapse
|
49
|
Poncini CV, Ilarregui JM, Batalla EI, Engels S, Cerliani JP, Cucher MA, van Kooyk Y, González-Cappa SM, Rabinovich GA. Trypanosoma cruziInfection Imparts a Regulatory Program in Dendritic Cells and T Cells via Galectin-1–Dependent Mechanisms. THE JOURNAL OF IMMUNOLOGY 2015; 195:3311-24. [DOI: 10.4049/jimmunol.1403019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 08/03/2015] [Indexed: 11/19/2022]
|
50
|
Chatterjee A, Ratner DM, Ryan CM, Johnson PJ, O’Keefe BR, Secor WE, Anderson DJ, Robbins PW, Samuelson J. Anti-Retroviral Lectins Have Modest Effects on Adherence of Trichomonas vaginalis to Epithelial Cells In Vitro and on Recovery of Tritrichomonas foetus in a Mouse Vaginal Model. PLoS One 2015; 10:e0135340. [PMID: 26252012 PMCID: PMC4529277 DOI: 10.1371/journal.pone.0135340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/21/2015] [Indexed: 11/24/2022] Open
Abstract
Trichomonas vaginalis causes vaginitis and increases the risk of HIV transmission by heterosexual sex, while Tritrichomonas foetus causes premature abortion in cattle. Our goals were to determine the effects, if any, of anti-retroviral lectins, which are designed to prevent heterosexual transmission of HIV, on adherence of Trichomonas to ectocervical cells and on Tritrichomonas infections in a mouse model. We show that Trichomonas Asn-linked glycans (N-glycans), like those of HIV, bind the mannose-binding lectin (MBL) that is part of the innate immune system. N-glycans of Trichomonas and Tritrichomonas bind anti-retroviral lectins (cyanovirin-N and griffithsin) and the 2G12 monoclonal antibody, each of which binds HIV N-glycans. Binding of cyanovirin-N appears to be independent of susceptibility to metronidazole, the major drug used to treat Trichomonas. Anti-retroviral lectins, MBL, and galectin-1 cause Trichomonas to self-aggregate and precipitate. The anti-retroviral lectins also increase adherence of ricin-resistant mutants, which are less adherent than parent cells, to ectocervical cell monolayers and to organotypic EpiVaginal tissue cells. Topical application of either anti-retroviral lectins or yeast N-glycans decreases by 40 to 70% the recovery of Tritrichomonas from the mouse vagina. These results, which are explained by a few simple models, suggest that the anti-retroviral lectins have a modest potential for preventing or treating human infections with Trichomonas.
Collapse
Affiliation(s)
- Aparajita Chatterjee
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Daniel M. Ratner
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Christopher M. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Patricia J. Johnson
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Barry R. O’Keefe
- Molecular Targets Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - W. Evan Secor
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Deborah J. Anderson
- Department of Obstetrics and Gynecology, Boston Medical Center, Boston, Massachusetts, United States of America
| | - Phillips W. Robbins
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|