1
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Chaidee A, Charoenram N, Sengthong C, Dangtakot R, Pinlaor P, Pongking T, Pinlaor S. Transcriptome changes of liver fluke Opisthorchis viverrini in diabetic hamsters. Parasite 2024; 31:54. [PMID: 39269256 PMCID: PMC11396942 DOI: 10.1051/parasite/2024056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
A recent study in hamsters showed that infection with the liver fluke Opisthorchis viverrini in diabetic hosts worsens the severity of hepatobiliary disease. However, the effects of diabetes on the worm's phenotype and gene expression pattern remain unknown. This study investigated the impact of diabetes on the global gene expression and development of O. viverrini in diabetic hamsters. Parasitological parameters were assessed, and mRNA sequencing with bioinformatic analysis was performed. The study revealed that worm establishment rates in diabetic hamsters were directly correlated with fasting plasma glucose levels. Interestingly, worms collected from diabetic hosts exhibited stunted growth and reduced egg production. Transcriptomic analysis revealed significant alterations in gene expression, with 4314 and 567 differentially expressed genes at 21- and 35-days post-infection, respectively. Gene ontology enrichment analysis highlighted changes in biological processes related to stress response, metabolism, and cellular organization. Notably, genes associated with parasite virulence, including granulin, tetraspanins, and thioredoxins, showed significant upregulation in diabetic hosts. These findings demonstrate the profound impact of host diabetic status on O. viverrini development and gene expression, providing insights into the complex interplay between host metabolism and parasite biology, including molecular adaptations of O. viverrini in hosts. This study contributes to our understanding of opisthorchiasis in the context of metabolic disorders and may inform future strategies for disease management in diabetic human populations.
Collapse
Affiliation(s)
- Apisit Chaidee
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand - Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Naruechar Charoenram
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chatchawan Sengthong
- Institute for Urban Disease Control and Prevention, Department of Disease Control, Ministry of Public Health, Bangkok 10220, Thailand
| | - Rungtiwa Dangtakot
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand - Department of Medical Technology, Faculty of Allied Health Sciences, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand
| | - Porntip Pinlaor
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand - Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thatsanapong Pongking
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand - Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand - Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
3
|
Shah M, Sitara F, Sarfraz A, Shehroz M, Wara TU, Perveen A, Ullah N, Zaman A, Nishan U, Ahmed S, Ullah R, Ali EA, Ojha SC. Development of a subunit vaccine against the cholangiocarcinoma causing Opisthorchis viverrini: a computational approach. Front Immunol 2024; 15:1281544. [PMID: 39050853 PMCID: PMC11266093 DOI: 10.3389/fimmu.2024.1281544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Opisthorchis viverrini is the etiological agent of the disease opisthorchiasis and related cholangiocarcinoma (CCA). It infects fish-eating mammals and more than 10 million people in Southeast Asia suffered from opisthorchiasis with a high fatality rate. The only effective drug against this parasite is Praziquantel, which has significant side effects. Due to the lack of appropriate treatment options and the high death rate, there is a dire need to develop novel therapies against this pathogen. In this study, we designed a multi-epitope chimeric vaccine design against O. viverrini by using immunoinformatics approaches. Non-allergenic and immunogenic MHC-1, MHC-2, and B cell epitopes of three candidate proteins thioredoxin peroxidase (Ov-TPx-1), cathepsin F1 (Ov-CF-1) and calreticulin (Ov-CALR) of O. viverrini, were predicted to construct a potent multiepitope vaccine. The coverage of the HLA-alleles of these selected epitopes was determined globally. Four vaccine constructs made by different adjuvants and linkers were evaluated in the context of their physicochemical properties, antigenicity, and allergenicity. Protein-protein docking and MD simulation found that vaccines 3 was more stable and had a higher binding affinity for TLR2 and TLR4 immune receptors. In-silico restriction cloning of vaccine model led to the formation of plasmid constructs for expression in a suitable host. Finally, the immune simulation showed strong immunological reactions to the engineered vaccine. These findings suggest that the final vaccine construct has the potential to be validated by in vivo and in vitro experiments to confirm its efficacy against the CCA causing O. viverrini.
Collapse
Affiliation(s)
- Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Farva Sitara
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Asifa Sarfraz
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Shehroz
- Department of Bioinformatics, Kohsar University Murree, Murree, Pakistan
| | - Tehreem Ul Wara
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Asia Perveen
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Najeeb Ullah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Aqal Zaman
- Department of Microbiology & Molecular Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Sarfraz Ahmed
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Rinaldi G, Loukas A, Sotillo J. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:507-539. [PMID: 39008274 DOI: 10.1007/978-3-031-60121-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematode infections stand out as one of the frequently overlooked tropical diseases, despite their wide global prevalence and remarkable capacity to parasitize diverse host species and tissues. Furthermore, these parasites hold significant socio-economic, medical, veterinary and agricultural implications. Over the past decades, substantial strides have been taken to bridge the information gap concerning various "omic" tools, such as proteomics and genomics, in this field. In this edition of the book, we highlight recent progress in genomics and proteomics concerning trematodes with a particular focus on the advances made in the past 5 years. Additionally, we present insights into cutting-edge technologies employed in studying trematode biology and shed light on the available resources for exploring the molecular facets of this particular group of parasitic helminths.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
5
|
Geadkaew-Krenc A, Grams R, Siricoon S, Kosa N, Krenc D, Phadungsil W, Martviset P. Cystatins from the Human Liver Fluke Opisthorchis viverrini: Molecular Characterization and Functional Analysis. Pathogens 2023; 12:949. [PMID: 37513796 PMCID: PMC10386146 DOI: 10.3390/pathogens12070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
A high incidence of cholangiocarcinoma (bile duct cancer) has been observed in Thailand. This usually rare cancer has been associated with infection with the human liver fluke, Opisthorchis viverrini. Secretions of the parasite that interact with the host are thought to be a major component of its pathogenicity and proteolysis is a key biological activity of the secreted molecules. In this study, we present a molecular analysis of cysteine proteinase inhibitors (cystatins) of Opisthorchis viverrini. Six cDNA coding sequences of Opisthorchis viverrini cystatins, OvCys1-6, were cloned from the adult stage of the parasite using RT-PCR. Based on their sequences, OvCys1 and OvCys2 are classified as type 1 cystatins, while OvCys3-6 are classified as type 2 cystatins, with each containing a signal peptide and only one C-terminal disulfide bond. Their C-terminal region sequences are diverse compared with other cystatin members. Cystatins OvCys1, 3 and 4 were found in crude worm extracts and excretory-secretory (ES) products from the adult parasite using Western blot detection, while the other isoforms were not. Thus, OvCys1, 3 and 4 were selected for inhibition analysis and immune reactivity with Opisthorchis viverrini-infected hamster sera. OvCys1, 3, and 4 inhibited mammalian cathepsin L more effectively than cathepsin B. The pH range for their full activity was very wide (pH 3-9) and they were heat stable for at least 3 h. Unlike Fasciola gigantica cystatins, they showed no immune reactivity with infected hamster sera based on indirect ELISA. Our findings suggest that Opisthorchis viverrini cystatins are not major antigenic components in the ES product of this parasite and that other effects of Opisthorchis viverrini cystatins should be investigated.
Collapse
Affiliation(s)
- Amornrat Geadkaew-Krenc
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Rudi Grams
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sinee Siricoon
- Thailand Institute of Scientific and Technological Research, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nanthawat Kosa
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Dawid Krenc
- Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wansika Phadungsil
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
6
|
Huson KM, Atcheson E, Oliver NAM, Best P, Barley JP, Hanna REB, McNeilly TN, Fang Y, Haldenby S, Paterson S, Robinson MW. Transcriptome and Secretome Analysis of Intra-Mammalian Life-Stages of Calicophoron daubneyi Reveals Adaptation to a Unique Host Environment. Mol Cell Proteomics 2021; 20:100055. [PMID: 33581320 PMCID: PMC7973311 DOI: 10.1074/mcp.ra120.002175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Paramphistomosis, caused by the rumen fluke, Calicophoron daubneyi, is a parasitic infection of ruminant livestock, which has seen a rapid rise in prevalence throughout Western Europe in recent years. After ingestion of metacercariae (parasite cysts) by the mammalian host, newly excysted juveniles (NEJs) emerge and invade the duodenal submucosa, which causes significant pathology in heavy infections. The immature flukes then migrate upward, along the gastrointestinal tract, and enter the rumen where they mature and begin to produce eggs. Despite their emergence, and sporadic outbreaks of acute disease, we know little about the molecular mechanisms used by C. daubneyi to establish infection, acquire nutrients, and avoid the host immune response. Here, transcriptome analysis of four intramammalian life-cycle stages, integrated with secretome analysis of the NEJ and adult parasites (responsible for acute and chronic diseases, respectively), revealed how the expression and secretion of selected families of virulence factors and immunomodulators are regulated in accordance with fluke development and migration. Our data show that while a family of cathepsins B with varying S2 subsite residues (indicating distinct substrate specificities) is differentially secreted by NEJs and adult flukes, cathepsins L and F are secreted in low abundance by NEJs only. We found that C. daubneyi has an expanded family of aspartic peptidases, which is upregulated in adult worms, although they are under-represented in the secretome. The most abundant proteins in adult fluke secretions were helminth defense molecules that likely establish an immune environment permissive to fluke survival and/or neutralize pathogen-associated molecular patterns such as bacterial lipopolysaccharide in the microbiome-rich rumen. The distinct collection of molecules secreted by C. daubneyi allowed the development of the first coproantigen-based ELISA for paramphistomosis which, importantly, did not recognize antigens from other helminths commonly found as coinfections with rumen fluke.
Collapse
Affiliation(s)
- Kathryn M Huson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Erwan Atcheson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Nicola A M Oliver
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Philip Best
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Jason P Barley
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland
| | - Robert E B Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland
| | - Tom N McNeilly
- Disease Control Department, Moredun Research Institute, Edinburgh, Scotland
| | - Yongxiang Fang
- Centre for Genomic Research, University of Liverpool, Liverpool, England
| | - Sam Haldenby
- Centre for Genomic Research, University of Liverpool, Liverpool, England
| | - Steve Paterson
- Centre for Genomic Research, University of Liverpool, Liverpool, England
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
7
|
Arimatsu Y, Teimoori S, Surapaitoon A, Sripa B. Production and characterization of monoclonal antibodies against highly immunogenic Opisthorchis viverrini proteins and development of coproantigen detection. Mol Biochem Parasitol 2020; 240:111323. [PMID: 32980451 DOI: 10.1016/j.molbiopara.2020.111323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
Opisthorchis viverrini and other foodborne trematode infections are major health concerns in the Greater Mekong Subregion. Currently, the gold-standard diagnostic method for opisthorchiasis is conventional stool examination for the presence of parasite eggs. This method lacks sensitivity and needs an experienced technician. We therefore produced monoclonal antibodies to highly immunogenic O. viverrini proteins aiming at detecting specific antigens in the feces. In this study, BALB/C mice were immunized using semi-purified somatic antigens and spleen cells were fused with a Sp2/0 myeloma cell line. Four hybridomas (1A2, 1E12, 2C7 and 8D6) were selected and cloned due to their strong reaction against O. viverrini somatic protein, resulting in three IgM clones and one IgG2 clone. Immunohistochemistry showed that 1A2, 1E12, 2C7 and 8D6 stained the parenchyma cells, gut, tegument and muscles, respectively. Western-blot analysis revealed that only antibody 1A2 could detect coproantigen (approx. 73 kDa protein) in feces of hamsters infected with O. viverrini. The 1A2 monoclonal antibody may be of value in the diagnosis of opisthorchiasis by coproantigen detection.
Collapse
Affiliation(s)
- Yuji Arimatsu
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Salma Teimoori
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arpa Surapaitoon
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
8
|
Li S, Chen X, Zhou J, Xie Z, Shang M, He L, Liang P, Chen T, Mao Q, Liang C, Li X, Huang Y, Yu X. Amino acids serve as an important energy source for adult flukes of Clonorchis sinensis. PLoS Negl Trop Dis 2020; 14:e0008287. [PMID: 32352979 PMCID: PMC7217481 DOI: 10.1371/journal.pntd.0008287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/12/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022] Open
Abstract
Clonorchiasis, caused by chronic infection with Clonorchis sinensis (C. sinensis), is an important food-borne parasitic disease that seriously afflicts more than 35 million people globally, resulting in a socioeconomic burden in endemic regions. C. sinensis adults long-term inhabit the microaerobic and limited-glucose environment of the bile ducts. Energy metabolism plays a key role in facilitating the adaptation of adult flukes to crowded habitat and hostile environment. To understand energy source for adult flukes, we compared the component and content of free amino acids between C. sinensis-infected and uninfected bile. The results showed that the concentrations of free amino acids, including aspartic acid, serine, glycine, alanine, histidine, asparagine, threonine, lysine, hydroxylysine, and urea, were significantly higher in C. sinensis-infected bile than those in uninfected bile. Furthermore, exogenous amino acids could be utilized by adult flukes via the gluconeogenesis pathway regardless of the absence or presence of exogenous glucose, and the rate-limiting enzymes, such as C. sinensis glucose-6-phosphatase, fructose-1,6-bisphosphatase, phosphoenolpyruvate carboxykinase, and pyruvate carboxylase, exhibited high expression levels by quantitative real-time PCR analysis. Interestingly, no matter whether exogenous glucose was present, inhibition of gluconeogenesis reduced the glucose and glycogen levels as well as the viability and survival time of adult flukes. These results suggest that gluconeogenesis might play a vital role in energy metabolism of C. sinensis and exogenous amino acids probably serve as an important energy source that benefits the continued survival of adult flukes in the host. Our study will be a cornerstone for illuminating the biological characteristics of C. sinensis and the host-parasite interactions. Clonorchiasis, closely related to cholangiocarcinoma and hepatocellular carcinoma, has led to a negative socioeconomic impact in global areas especially some Asian endemic regions. Owing to the emergence of drug resistance and hypersensitivity reactions after the massive and repeated use of praziquantel as well as the lack of effective vaccines, searching for new strategies that prevent and treat clonorchiasis has become an urgent matter. Clonorchis sinensis, the causative agent of clonorchiasis, long-term inhabits the microaerobic and limited-glucose environment of the bile ducts. Adequate nutrients are essential for adult flukes to resist the adverse condition and survive in the crowed habitat. Studies on energy metabolism of adult flukes are beneficial for further exploring host-parasite interactions and developing novel anti-parasitic drugs. Our results suggest that gluconeogenesis probably plays a vital role in energy metabolism of Clonorchis sinensis and exogenous amino acids might be an essential energy source for adult flukes to successfully survive in the host. Our foundational study opens a new avenue for explaining energy metabolism of Clonorchis sinensis and provides a valuable strategy that the gluconeogenesis pathway will be a potential and novel target for the prevention and treatment of clonorchiasis.
Collapse
Affiliation(s)
- Shan Li
- Department of Pathology and Pathophysiology, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Xueqing Chen
- Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Juanjuan Zhou
- Zhengzhou Key Laboratory for Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Zhizhi Xie
- Clinical Laboratory, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Mei Shang
- Clinical Laboratory, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Lei He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Pei Liang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Tingjin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Qiang Mao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Chi Liang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
- * E-mail: (YH); (XY)
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
- * E-mail: (YH); (XY)
| |
Collapse
|
9
|
Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol 2020; 55:111-165. [PMID: 32290726 DOI: 10.1080/10409238.2020.1742090] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.
Collapse
Affiliation(s)
- Lise Boon
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Choi YJ, Fontenla S, Fischer PU, Le TH, Costábile A, Blair D, Brindley PJ, Tort JF, Cabada MM, Mitreva M. Adaptive Radiation of the Flukes of the Family Fasciolidae Inferred from Genome-Wide Comparisons of Key Species. Mol Biol Evol 2020; 37:84-99. [PMID: 31501870 DOI: 10.1093/molbev/msz204] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver and intestinal flukes of the family Fasciolidae cause zoonotic food-borne infections that impact both agriculture and human health throughout the world. Their evolutionary history and the genetic basis underlying their phenotypic and ecological diversity are not well understood. To close that knowledge gap, we compared the whole genomes of Fasciola hepatica, Fasciola gigantica, and Fasciolopsis buski and determined that the split between Fasciolopsis and Fasciola took place ∼90 Ma in the late Cretaceous period, and that between 65 and 50 Ma an intermediate host switch and a shift from intestinal to hepatic habitats occurred in the Fasciola lineage. The rapid climatic and ecological changes occurring during this period may have contributed to the adaptive radiation of these flukes. Expansion of cathepsins, fatty-acid-binding proteins, protein disulfide-isomerases, and molecular chaperones in the genus Fasciola highlights the significance of excretory-secretory proteins in these liver-dwelling flukes. Fasciola hepatica and Fasciola gigantica diverged ∼5 Ma near the Miocene-Pliocene boundary that coincides with reduced faunal exchange between Africa and Eurasia. Severe decrease in the effective population size ∼10 ka in Fasciola is consistent with a founder effect associated with its recent global spread through ruminant domestication. G-protein-coupled receptors may have key roles in adaptation of physiology and behavior to new ecological niches. This study has provided novel insights about the genome evolution of these important pathogens, has generated genomic resources to enable development of improved interventions and diagnosis, and has laid a solid foundation for genomic epidemiology to trace drug resistance and to aid surveillance.
Collapse
Affiliation(s)
- Young-Jun Choi
- McDonnell Genome Institute at Washington University in St. Louis, St. Louis, MO
| | - Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Peter U Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Thanh Hoa Le
- Immunology Department, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Alicia Costábile
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - David Blair
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC
| | - Jose F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Miguel M Cabada
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Texas Medical Branch, Galveston, TX
| | - Makedonka Mitreva
- McDonnell Genome Institute at Washington University in St. Louis, St. Louis, MO.,Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
11
|
Chen D, Tian AL, Hou JL, Li JX, Tian X, Yuan XD, Li X, Elsheikha HM, Zhu XQ. The Multitasking Fasciola gigantica Cathepsin B Interferes With Various Functions of Goat Peripheral Blood Mononuclear Cells in vitro. Front Immunol 2019; 10:1707. [PMID: 31396222 PMCID: PMC6664072 DOI: 10.3389/fimmu.2019.01707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/08/2019] [Indexed: 01/14/2023] Open
Abstract
Cathepsin B, a lysosomal cysteine protease, is thought to be involved in the pathogenesis of Fasciola gigantica infection, but its exact role remains unclear. In the present study, a recombinant F. gigantica cathepsin B (rFgCatB) protein was expressed in the methylotrophic yeast Pichia pastoris. Western blot analysis confirmed the reactivity of the purified rFgCatB protein to serum from F. gigantica-infected goats. The effects of serial concentrations (10, 20, 40, 80, and 160 μg/ml) of rFgCatB on various functions of goat peripheral blood mononuclear cells (PBMCs) were examined. We demonstrated that rFgCatB protein can specifically bind to the surface of PBMCs. In addition, rFgCatB increased the expression of cytokines (IL-2, IL-4, IL-10, IL-17, TGF-β, and IFN-γ), and increased nitric oxide production and cell apoptosis, but reduced cell viability. These data show that rFgCatB can influence cellular and immunological functions of goat PBMCs. Further characterization of the posttranslational modification and assessment of rFgCatB in immunogenicity studies is warranted.
Collapse
Affiliation(s)
- Dan Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ai-Ling Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun-Ling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie-Xi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XiaoWei Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Dan Yuan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
12
|
Sotillo J, Pearson MS, Loukas A. Trematode Genomics and Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:411-436. [PMID: 31297769 DOI: 10.1007/978-3-030-18616-6_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Trematode infections are among the most neglected tropical diseases despite their worldwide distribution and extraordinary ability to parasitise many different host species and host tissues. Furthermore, these parasites are of great socioeconomic, medical, veterinary and agricultural importance. During the last 10 years, there have been increasing efforts to overcome the lack of information on different "omic" resources such as proteomics and genomics. Herein, we focus on the recent advances in genomics and proteomics from trematodes of human importance, including liver, blood, intestinal and lung flukes. We also provide information on the latest technologies applied to study the biology of trematodes as well as on the resources available for the study of the molecular aspects of this group of helminths.
Collapse
Affiliation(s)
- Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| | - Mark S Pearson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
13
|
Laha T, Brindley PJ, Suyapoh W, Suttiprapa S. RNA Interference as an Approach to Functional Genomics Genetic Manipulation of Opisthorchis viverrini. ADVANCES IN PARASITOLOGY 2018; 102:25-43. [PMID: 30442309 DOI: 10.1016/bs.apar.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The availability of genome and transcriptome data of the liver fluke Opisthorchis viverrini provides the foundation for exploration of gene function and its effect on host-parasite interactions and pathogenesis of O. viverrini-associated bile duct cancer. Functional genomics approaches address the function of DNA at levels of the gene, RNA transcript and protein product using informative manipulations of the genome, epigenome, transcriptome, proteome, microbiome and metabolome. Advances in functional genomics for O. viverrini have thus far focused on RNA interference. The flukes have been transfected with double-stranded RNAs aiming to silence target gene expression. In general, this approach for functional genomics investigation of this pathogen has been found to be tractable and efficient: suppression of messenger RNA expression in O. viverrini results in reduction of protein activity and phenotypic changes. Future perspectives for functional genomics of this liver fluke and close phylogenetic relatives are also discussed.
Collapse
Affiliation(s)
- Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Tropical Diseases of Poverty, School of Medicine & Health Sciences, The George Washington University, Washington DC, United States
| | - Watcharapol Suyapoh
- Biomedical Science Graduate Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Tropical Disease Research Center, Tropical Medicine Graduate Program, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
14
|
Sanpool O, Aung WPP, Rodpai R, Maleewong W, Intapan PM. Human liver fluke Opisthorchis viverrini (Trematoda, Opisthorchiidae) in Central Myanmar: New records of adults and metacercariae identified by morphology and molecular analysis. Acta Trop 2018; 185:149-155. [PMID: 29772216 DOI: 10.1016/j.actatropica.2018.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/06/2018] [Accepted: 05/12/2018] [Indexed: 12/20/2022]
Abstract
Opisthorchis-like metacercariae were found in cyprinoid fish, Puntius brevis, bought from markets in the Bago region, Central Myanmar. Adult worms recovered from experimentally-infected hamsters resembled Opisthorchis viverrini. DNA was extracted from adults and metacercariae. A portion of the mitochondrial cytochrome c oxidase subunit 1 (cox1) and the internal transcribed spacer 2 (ITS2) regions were amplified using the polymerase chain reaction and then sequenced. The sequences confirmed that the flukes were O. viverrini. In phylogenetic analyses, sequences of O. viverrini, including our new sequences, clustered in a group with high bootstrap support for ITS2 (80%) and the cox1 gene (99%). Interestingly, ITS2 and cox1 sequences of O. viverrini and O. lobatus were very similar, raising a question about the identity of the latter. This is the first report of O. viverrini in cyprinoid fish in Central Myanmar, and only the second report of the species in Myanmar. It is an urgent warning against consuming raw or semi-cooked freshwater fish dishes. Development of an effective food-safety strategy should be provided for the prevention and control of opisthorchiasis and other foodborne diseases.
Collapse
Affiliation(s)
- Oranuch Sanpool
- Department of Parasitology, and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Win Pa Pa Aung
- Department of Microbiology, University of Medicine 2, Yangon, Ministry of Health and Sport, Myanmar
| | - Rutchanee Rodpai
- Department of Parasitology, and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Pewpan M Intapan
- Department of Parasitology, and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
15
|
Pitaksakulrat O, Webster BL, Webster JP, Laha T, Saijuntha W, Lamberton PHL, Kiatsopit N, Andrews RH, Petney TN, Sithithaworn P. Phylogenetic relationships within the Opisthorchis viverrini species complex with specific analysis of O. viverrini sensu lato from Sakon Nakhon, Thailand by mitochondrial and nuclear DNA sequencing. INFECTION GENETICS AND EVOLUTION 2018; 62:86-94. [PMID: 29679744 DOI: 10.1016/j.meegid.2018.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/09/2018] [Accepted: 04/17/2018] [Indexed: 01/23/2023]
Abstract
The liver fluke Opisthorchis viverrini sensu lato causes serious public-health problems in Northeast Thailand and Southeast Asian countries. A hypothesis has been proposed that O. viverrini represents a species complex with varying levels of genetic differentiation in Thailand and Lao PDR. This study aimed to clarify whether O. viverrini populations can be genetically divided into separate taxa. We collected O. viverrini s.l. from eight different locations in Lao PDR and Thailand. The results of nad1, cox1, CF-int6, Pm-int9, ITS2 and 28S rDNA sequence analysis revealed that sub-structuring occurred between the eight populations. We found that O. viverrini s.l. from Sakon Nakhon (SK), Thailand, shows significant genetic differentiation (P < .05) from all other isolates from different localities in Thailand and Lao PDR. This was supported by haplotype and phylogenetic tree analyses in which the SK isolate was separated from all other isolates. This suggests that O. viverrini s.l. from SK is a cryptic species. The data, however, also confirm the association between genetic groups of O. viverrini s.l. and specific wetland systems, and raise important questions regarding the epidemiological significance of these genetic differences.
Collapse
Affiliation(s)
- Opal Pitaksakulrat
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Bonnie L Webster
- Department of Life Sciences, Parasites and Vectors Division, Natural History Museum, London SW7 5BD, UK; The London Centre for Neglected Tropical Disease Research (LCNTDR), Faculty of Medicine (St Mary's Campus), Imperial College, Norfolk Place, London W2 1PG, UK
| | - Joanne P Webster
- The London Centre for Neglected Tropical Disease Research (LCNTDR), Faculty of Medicine (St Mary's Campus), Imperial College, Norfolk Place, London W2 1PG, UK; Department of Infectious Disease Epidemiology, Faculty of Medicine (St Mary's Campus), Imperial College, Norfolk Place, London W2 1PG, UK; Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Popluation Sciences, Royal Veterinary College, University of London, Hawkshead Campus, Herts, AL9 7TA, UK
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Weerachai Saijuntha
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Poppy H L Lamberton
- Wellcome Centre for Molecular Parasitology, Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, The University of Glasgow, Glasgow G12 8QQ, UK
| | - Nadda Kiatsopit
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ross H Andrews
- Liver Fluke and Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Infectious Disease Epidemiology, Faculty of Medicine (St Mary's Campus), Imperial College, Norfolk Place, London W2 1PG, UK; Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Trevor N Petney
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand; Institute of Zoology 1: Ecology and Parasitology, Karlsruhe Institute of Technology, Kornblumen Strasse 13, Karlsruhe, Germany
| | - Paiboon Sithithaworn
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
16
|
Suttiprapa S, Sotillo J, Smout M, Suyapoh W, Chaiyadet S, Tripathi T, Laha T, Loukas A. Opisthorchis viverrini Proteome and Host-Parasite Interactions. ADVANCES IN PARASITOLOGY 2018; 102:45-72. [PMID: 30442310 DOI: 10.1016/bs.apar.2018.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The omics technologies have improved our understanding of the molecular events that underpin host-parasite interactions and the pathogenesis of parasitic diseases. In the last decade, proteomics and genomics in particular have been used to characterize the surface and secreted products of the carcinogenic liver fluke Opisthorchis viverrini and revealed important roles for proteins at the host-parasite interface to ensure that the flukes can migrate, feed and reproduce in a hostile environment. This review summarizes the advances made in this area, primarily focusing on discoveries enabled by the publication of the fluke secreted proteomes over the last decade. Protein families that will be covered include proteases, antioxidants, oncogenic proteins and the secretion of exosome-like extracellular vesicles. Roles of these proteins in host-parasite interactions and pathogenesis of fluke-induced hepatobiliary diseases, including cholangiocarcinogenesis, are discussed. Future directions for the application of this knowledge to control infection and disease will also be discussed.
Collapse
|
17
|
Chaibangyang W, Geadkaew-Krenc A, Vichasri-Grams S, Tesana S, Grams R. Molecular and Biochemical Characterization of Opisthorchis viverrini Calreticulin. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:643-652. [PMID: 29320819 PMCID: PMC5776890 DOI: 10.3347/kjp.2017.55.6.643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 01/26/2023]
Abstract
Calreticulin (CALR), a multifunctional protein thoroughly researched in mammals, comprises N-, P-, and C-domain and has roles in calcium homeostasis, chaperoning, clearance of apoptotic cells, cell adhesion, and also angiogenesis. In this study, the spatial and temporal expression patterns of the Opisthorchis viverrini CALR gene were analyzed, and calcium-binding and chaperoning properties of recombinant O. viverrini CALR (OvCALR) investigated. OvCALR mRNA was detected from the newly excysted juvenile to the mature parasite by RT-PCR while specific antibodies showed a wide distribution of the protein. OvCALR was localized in tegumental cell bodies, testes, ovary, eggs, Mehlis’ gland, prostate gland, and vitelline cells of the mature parasite. Recombinant OvCALR showed an in vitro suppressive effect on the thermal aggregation of citrate synthase. The recombinant OvCALR C-domain showed a mobility shift in native gel electrophoresis in the presence of calcium. The results imply that OvCALR has comparable function to the mammalian homolog as a calcium-binding molecular chaperone. Inferred from the observed strong immunostaining of the reproductive tissues, OvCALR should be important for reproduction and might be an interesting target to disrupt parasite fecundity. Transacetylase activity of OvCALR as reported for calreticulin of Haemonchus contortus could not be observed.
Collapse
Affiliation(s)
- Wanlapa Chaibangyang
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand
| | - Amornrat Geadkaew-Krenc
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand
| | | | - Smarn Tesana
- Food-borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rudi Grams
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand
| |
Collapse
|
18
|
Verma S, Dixit R, Pandey KC. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets. Front Pharmacol 2016; 7:107. [PMID: 27199750 PMCID: PMC4842899 DOI: 10.3389/fphar.2016.00107] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/08/2016] [Indexed: 02/05/2023] Open
Abstract
Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases.
Collapse
Affiliation(s)
- Sonia Verma
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research New Delhi, India
| | - Rajnikant Dixit
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research New Delhi, India
| | - Kailash C Pandey
- Department of Biochemistry, National Institute for Research in Environmental Health, Indian Council of Medical Research Bhopal, India
| |
Collapse
|
19
|
Schistosoma mekongi cathepsin B and its use in the development of an immunodiagnosis. Acta Trop 2016; 155:11-9. [PMID: 26655041 DOI: 10.1016/j.actatropica.2015.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/17/2015] [Accepted: 11/27/2015] [Indexed: 11/24/2022]
Abstract
Schistosomiasis mekongi is one of the most important human parasitic diseases caused by Schistosoma mekongi in South-east Asia. The endemic area is the Mekong River sub-region from Laos to Cambodia. This parasite also infects dogs and pigs which are its alternative host species. Currently, the lack of reliable rapid diagnosis makes it difficult to monitor the infection and spreading of the disease. In this study, we screened the antigens of the parasite with sera of infected mice using Western blotting and identified proteins of interest with LC-MS/MS to obtain potential candidate proteins for diagnostic development. This assay yielded 2 immunoreactive bands at molecular masses of 31 and 22kDa. The 31kDa protein was the major band identified as cathepsin B, and its gene was cloned to obtain a full cDNA sequence (SmekCatB). The cDNA consisted of 1123bp and its longest reading frame encoded for 342 amino acids with some putative post translation modifications. The recombinant SmekCatB (rSmekCatB) with hexahistidine tag at the C-terminus was expressed in Escherichia coli and purified by Ni-NTA resin under denaturing conditions. The rSmekCatB reacted with sera of S. mekongi-infected mice. Indirect ELISA using rSmekCatB as the antigen to detect mouse antibodies, revealed a sensitivity of 91.67% for schistosomiasis mekongi and the specificity of 100%. Our data suggested that SmekCatB is one of the most promising parasitic antigens that could be used for the diagnosis of S. mekongi infection.
Collapse
|
20
|
Fuzita FJ, Pinkse MWH, Patane JSL, Juliano MA, Verhaert PDEM, Lopes AR. Biochemical, transcriptomic and proteomic analyses of digestion in the scorpion Tityus serrulatus: insights into function and evolution of digestion in an ancient arthropod. PLoS One 2015; 10:e0123841. [PMID: 25875018 PMCID: PMC4398375 DOI: 10.1371/journal.pone.0123841] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/25/2015] [Indexed: 01/29/2023] Open
Abstract
Scorpions are among the oldest terrestrial arthropods and they have passed through small morphological changes during their evolutionary history on land. They are efficient predators capable of capturing and consuming large preys and due to envenomation these animals can become a human health challenge. Understanding the physiology of scorpions can not only lead to evolutionary insights but also is a crucial step in the development of control strategies. However, the digestive process in scorpions has been scarcely studied. In this work, we describe the combinatory use of next generation sequencing, proteomic analysis and biochemical assays in order to investigate the digestive process in the yellow scorpion Tityus serrulatus, mainly focusing in the initial protein digestion. The transcriptome generated database allowed the quantitative identification by mass spectrometry of different enzymes and proteins involved in digestion. All the results suggested that cysteine cathepsins play an important role in protein digestion. Two digestive cysteine cathepsins were isolated and characterized presenting acidic characteristics (pH optima and stability), zymogen conversion to the mature form after acidic activation and a cross-class inhibition by pepstatin. A more elucidative picture of the molecular mechanism of digestion in a scorpion was proposed based on our results from Tityus serrulatus. The midgut and midgut glands (MMG) are composed by secretory and digestive cells. In fasting animals, the secretory granules are ready for the next predation event, containing enzymes needed for alkaline extra-oral digestion which will compose the digestive fluid, such as trypsins, astacins and chitinase. The digestive vacuoles are filled with an acidic proteolytic cocktail to the intracellular digestion composed by cathepsins L, B, F, D and legumain. Other proteins as lipases, carbohydrases, ctenitoxins and a chitolectin with a perithrophin domain were also detected. Evolutionarily, a large gene duplication of cathepsin L occurred in Arachnida with the sequences from ticks being completely divergent from other arachnids probably due to the particular selective pressures over this group.
Collapse
Affiliation(s)
- Felipe J. Fuzita
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, Brazil
- Biotechnology Program, University of São Paulo, São Paulo, Brazil
| | - Martijn W. H. Pinkse
- Laboratory of Analytical Biotechnology & Innovative Peptide Biology, Delft University of Technology, Delft, The Netherlands
| | - José S. L. Patane
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Peter D. E. M. Verhaert
- Laboratory of Analytical Biotechnology & Innovative Peptide Biology, Delft University of Technology, Delft, The Netherlands
| | - Adriana R. Lopes
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
21
|
Chen W, Wang X, Lv X, Tian Y, Xu Y, Mao Q, Shang M, Li X, Huang Y, Yu X. Characterization of the secreted cathepsin B cysteine proteases family of the carcinogenic liver fluke Clonorchis sinensis. Parasitol Res 2014; 113:3409-18. [PMID: 24985496 DOI: 10.1007/s00436-014-4006-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/16/2014] [Indexed: 01/15/2023]
Abstract
Clonorchis sinensis excretory/secretory products (ESP) have gained high attentions because of their potential to be vaccine candidates and drug targets in C. sinensis prevention. In this study, we extensively profiled the characteristics of four C. sinensis cathepsin B cysteine proteases (CsCB1, CsCB2, CsCB3, and CsCB4). Bioinformatics analysis showed all CsCBs contained signal peptides at the N-terminal. Functional domains and residues were found in CsCB sequences. We expressed four CsCBs and profiled immune responses followed by vaccine trials. Recombinant CsCBs could induce high IgG titers, indicating high immunogenicity of CsCB family. Additionally, ELISA results showed that both IgG1 and IgG2a levels apparently increased post-immunization with all four CsCBs, showing that combined Th1/Th2 immune responses were triggered by CsCB family. Both Real-time polymerase chain reaction (RT-PCR) and Western blotting confirmed that four CsCBs have distinct expression patterns in C. sinensis life stages. More importantly, we validated our hypothesis that CsCBs were C. sinensis excretory/secretory products. CsCBs could be recognized by C. sinensis-infected sera throughout the infection period, indicating that secreted CsCBs are immune triggers during C. sinensis infection. The protective effect was assessed by comparing the worm burden and egg per gram (EPG) between CsCB group and control group, showing that worm burden (P < 0.01) and EPG (P < 0.01) in CsCB2 and CsCB3 groups were significantly lower than in control group. In conclusion, we profiled secreted cathepsin B cysteine proteases family for the first time and demonstrated that all CsCB family were C. sinensis excretory/secretory products that may regulate host immune responses.
Collapse
Affiliation(s)
- Wenjun Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pomaznoy M, Tatkov S, Katokhin A, Afonnikov D, Babenko V, Furman D, Brusentsov I, Belavin P, Najakshin A, Guselnikov S, Vasiliev G, Sivkov A, Prokhortchouk E, Skryabin K, Mordvinov V. Adult Opisthorchis felineus major protein fractions deduced from transcripts: comparison with liver flukes Opisthorchis viverrini and Clonorchis sinensis. Exp Parasitol 2013; 135:297-306. [PMID: 23891942 DOI: 10.1016/j.exppara.2013.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 12/16/2022]
Abstract
The epidemiologically important liver flukes Opisthorchis felineus, Opisthorchis viverrini, and Clonorchis sinensis are of interest to health professionals, epidemiologists, pharmacologists, and molecular biologists. Recently the transcriptomes of the latter two species were intensively investigated. However our knowledge on molecular biology of O. felineus is scarce. We report the first results of the O. felineus transcriptome analysis. We isolated and annotated a total of 2560 expressed sequence tag (EST) sequences from adult O. felineus (deposited within the database of expressed sequence tags (dbEST), under accession numbers GenBank: JK624271-JK626790, JK006511-JK006547, JK649790-JK649792). Clustering and analysis resulted in the detection of 267 contigs. Of the protein sequences deduced from these, 82% had homologs in the NCBI (nr) protein database and 63% contained conserved domains, allowing the functions to be interpreted using the Gene Ontology terms. Comprehensive analysis of Opisthorchiidae- and Trematoda-specific substitutions within amino acid sequences deduced for the proteins myoglobin, vitelline precursor protein, cathepsin F, and 28kDa glutathione transferase was carried out. The gene set of the 32 ribosomal proteins for the three Opisthorchiidae species with the addition of available Schistosoma and Fasciola orthologs was created and is provided in the supplementary. The orthologous gene set created was used for inferring phylogeny within the Trematoda with special attention to interrelations within the Opisthorchiidae. The phylogenetic analysis revealed a closer relationship between C. sinensis and O. viverrini and some divergence of O. felineus from either O. viverrini or C. sinensis.
Collapse
Affiliation(s)
- Mikhail Pomaznoy
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk 630090, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Novinec M, Lenarčič B. Papain-like peptidases: structure, function, and evolution. Biomol Concepts 2013; 4:287-308. [DOI: 10.1515/bmc-2012-0054] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/11/2013] [Indexed: 12/16/2022] Open
Abstract
AbstractPapain-like cysteine peptidases are a diverse family of peptidases found in most known organisms. In eukaryotes, they are divided into multiple evolutionary groups, which can be clearly distinguished on the basis of the structural characteristics of the proenzymes. Most of them are endopeptidases; some, however, evolved into exopeptidases by obtaining additional structural elements that restrict the binding of substrate into the active site. In humans, papain-like peptidases, also called cysteine cathepsins, act both as non-specific hydrolases and as specific processing enzymes. They are involved in numerous physiological processes, such as antigen presentation, extracellular matrix remodeling, and hormone processing. Their activity is tightly regulated and dysregulation of one or more cysteine cathepsins can result in severe pathological conditions, such as cardiovascular diseases and cancer. Other organisms can utilize papain-like peptidases for different purposes and they are often part of host-pathogen interactions. Numerous parasites, such as Plasmodium and flukes, utilize papain-like peptidases for host invasion, whereas plants, in contrast, use these enzymes for host defense. This review presents a state-of-the-art description of the structure and phylogeny of papain-like peptidases as well as an overview of their physiological and pathological functions in humans and in other organisms.
Collapse
Affiliation(s)
- Marko Novinec
- 1Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | | |
Collapse
|
24
|
Molecular changes in Opisthorchis viverrini (Southeast Asian liver fluke) during the transition from the juvenile to the adult stage. PLoS Negl Trop Dis 2012; 6:e1916. [PMID: 23209858 PMCID: PMC3510066 DOI: 10.1371/journal.pntd.0001916] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/04/2012] [Indexed: 01/23/2023] Open
Abstract
Background The Southeast Asian liver fluke (Opisthorchis viverrini) chronically infects and affects tens of millions of people in regions of Asia, leading to chronic illness and, importantly, inducing malignant cancer ( = cholangiocarcinoma). In spite of this, little is known, at the molecular level, about the parasite itself, its interplay with its hosts or the mechanisms of disease and/or carcinogenesis. Methodology/Principal Findings Here, we generated extensive RNA-Seq data (Illumina) representing adult and juvenile stages of O. viverrini, and combined these sequences with previously published transcriptomic data (454 technology) for this species, yielding a combined assembly of significantly increased quality and allowing quantitative assessment of transcription in the juvenile and adult stage. Conclusions This enhanced assembly reveals that, despite the substantial biological similarities between the human liver flukes, O. viverinni and Clonorchis sinensis, there are previously unrecognized differences in major aspects of their molecular biology. Most notable are differences among the C13 and cathepsin L-like cysteine peptidases, which play key roles in tissue migration, immune evasion and feeding, and, thus, represent potential drug and/or vaccine targets. Furthermore, these data indicate that major lineages of cysteine peptidases of socioeconomically important trematodes have evolved through a process of gene loss rather than independent radiation, contrasting previous proposals. Opistorchis viverrini is an important and neglected parasite affecting ∼9 million people in South-east Asia. The parasite has a complex life-cycle which involves an intermediate phase in cyprinoid fishes. Consumption of raw or under-cooked fish infected with the metacercarial (larval) stage of O. viverreni results in infection, with adult worms living primarily in the intra-hepatic bile duct. In addition to the affects of the infection itself, O. viverrini is directly carcinogenic, with up to 70% of infected individuals in endemic regions developing malignant cholangiocarcinomas. Control of the parasite relies exclusively on the use of praziquantel and little is known about the mechanisms through which O. viverrini stimulates carcinogenesis. An improved understanding of the molecular biology of O. viverrini is urgently needed. In our study, we employed RNAseq technology to assess changes in gene transcription during the development of O. viverrini within the definitive host, and significantly improved the characterization of the transcriptome of this parasite. In so doing, we shed new light on the evolution of a major group proteins (i.e., the cysteine peptidases) which, given their important function roles as excreted/secreted molecules, have been proposed as attractive drug/vaccine targets for a wide-range of neglected flukes, including species of Opistorchis, Clonorchis, Schistosoma and Fasciola.
Collapse
|
25
|
Sripa B, Brindley PJ, Mulvenna J, Laha T, Smout MJ, Mairiang E, Bethony JM, Loukas A. The tumorigenic liver fluke Opisthorchis viverrini--multiple pathways to cancer. Trends Parasitol 2012; 28:395-407. [PMID: 22947297 DOI: 10.1016/j.pt.2012.07.006] [Citation(s) in RCA: 318] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/12/2022]
Abstract
Liver fluke infection caused by Opisthorchis viverrini is a major public health problem in Thailand and adjacent countries. In addition to infection-associated morbidity, infection with O. viverrini and the related Clonorchis sinensis are unarguable risk factors for cholangiocarcinoma (CAA, bile-duct cancer). Here we review the pathogenesis of opisthorchiasis and the association between O. viverrini infection and bile-duct cancer, focusing on the molecular parallels between wound healing, chronic inflammation, and cancer development. We review a schema for human disease progression from fluke infection, chronic opisthorchiasis, advanced periductal fibrosis, and cholangiocarcinogenesis, and present a rationale for biomarker discovery to facilitate early intervention. We conclude by addressing post-genomic advances with a view to developing new control strategies to combat this infectious cancer.
Collapse
Affiliation(s)
- Banchob Sripa
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jílková A, Řezáčová P, Lepšík M, Horn M, Váchová J, Fanfrlík J, Brynda J, McKerrow JH, Caffrey CR, Mareš M. Structural basis for inhibition of cathepsin B drug target from the human blood fluke, Schistosoma mansoni. J Biol Chem 2011; 286:35770-35781. [PMID: 21832058 PMCID: PMC3195637 DOI: 10.1074/jbc.m111.271304] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/19/2011] [Indexed: 11/06/2022] Open
Abstract
Schistosomiasis caused by a parasitic blood fluke of the genus Schistosoma afflicts over 200 million people worldwide. Schistosoma mansoni cathepsin B1 (SmCB1) is a gut-associated peptidase that digests host blood proteins as a source of nutrients. It is under investigation as a drug target. To further this goal, we report three crystal structures of SmCB1 complexed with peptidomimetic inhibitors as follows: the epoxide CA074 at 1.3 Å resolution and the vinyl sulfones K11017 and K11777 at 1.8 and 2.5 Å resolutions, respectively. Interactions of the inhibitors with the subsites of the active-site cleft were evaluated by quantum chemical calculations. These data and inhibition profiling with a panel of vinyl sulfone derivatives identify key binding interactions and provide insight into the specificity of SmCB1 inhibition. Furthermore, hydrolysis profiling of SmCB1 using synthetic peptides and the natural substrate hemoglobin revealed that carboxydipeptidase activity predominates over endopeptidolysis, thereby demonstrating the contribution of the occluding loop that restricts access to the active-site cleft. Critically, the severity of phenotypes induced in the parasite by vinyl sulfone inhibitors correlated with enzyme inhibition, providing support that SmCB1 is a valuable drug target. The present structure and inhibitor interaction data provide a footing for the rational design of anti-schistosomal inhibitors.
Collapse
Affiliation(s)
- Adéla Jílková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic; Department of Structural Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Jana Váchová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic; Department of Structural Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - James H McKerrow
- Sandler Center for Drug Discovery, California Institute for Quantitative Biosciences and Department of Pathology, University of California San Francisco, San Francisco, California 94158
| | - Conor R Caffrey
- Sandler Center for Drug Discovery, California Institute for Quantitative Biosciences and Department of Pathology, University of California San Francisco, San Francisco, California 94158
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic.
| |
Collapse
|
27
|
Nair SS, Bommana A, Pakala SB, Ohshiro K, Lyon AJ, Suttiprapa S, Periago MV, Laha T, Hotez PJ, Bethony JM, Sripa B, Brindley PJ, Kumar R. Inflammatory response to liver fluke Opisthorchis viverrini in mice depends on host master coregulator MTA1, a marker for parasite-induced cholangiocarcinoma in humans. Hepatology 2011; 54:1388-97. [PMID: 21725997 PMCID: PMC3184196 DOI: 10.1002/hep.24518] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/12/2011] [Indexed: 12/26/2022]
Abstract
UNLABELLED Based on the recently established role for the master coregulator MTA1 and MTA1-containing nuclear remodeling complexes in oncogenesis and inflammation, we explored the links between parasitism by the carcinogenic liver fluke Opisthorchis viverrini and this coregulator using both an Mta1(-/-) mouse model of infection and a tissue microarray of liver fluke-induced human cholangiocarcinomas (CCAs). Intense foci of inflammation and periductal fibrosis in the liver and kidneys of wild-type Mta1(+/+) mice were evident at 23 days postinfection with O. viverrini. In contrast, little inflammatory response was observed in the same organs of infected Mta1(-/-) mice. Livers of infected Mta1(+/+) mice revealed strong up-regulation of fibrosis-associated markers such as cytokeratins 18 and 19 and annexin 2, as determined both by immunostaining and by reverse-transcription polymerase chain reaction compared with infected Mta1(-/-) mice. CD4 expression was up-regulated by infection in the livers of both experimental groups; however, its levels were several-fold higher in the Mta1(+/+) mice than in infected Mta1(-/-) mice. Mta1(-/-) infected mice also exhibited significantly higher systemic and hepatic levels of host cytokines such as interleukin (IL)-12p70, IL-10, and interferon-γ compared with the levels of these cytokines in the Mta1(+/+) mice, suggesting an essential role of MTA1 in the cross-regulation of the Th1 and Th2 responses, presumably due to chromatin remodeling of the target chromatin genes. Immunohistochemical analysis of ≈ 300 liver tissue cores from confirmed cases of O. viverrini-induced CCA showed that MTA1 expression was elevated in >80% of the specimens. CONCLUSION These findings suggest that MTA1 status plays an important role in conferring an optimal cytokine response in mice following infection with O. viverrini and is a major player in parasite-induced CCA in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Sutas Suttiprapa
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, 20037, USA
| | - Maria V Periago
- Human Hookworm Vaccine Initiative Laboratório de Imunologia Celular Molecular, Belo Horizonte-MG, CEP 30190-002, Brazil
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Peter J. Hotez
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, 20037, USA
| | - Jeffrey M Bethony
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, 20037, USA
- Human Hookworm Vaccine Initiative Laboratório de Imunologia Celular Molecular, Belo Horizonte-MG, CEP 30190-002, Brazil
| | - Banchob Sripa
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, 20037, USA
| | | |
Collapse
|
28
|
Sripa J, Brindley PJ, Sripa B, Loukas A, Kaewkes S, Laha T. Evaluation of liver fluke recombinant cathepsin B-1 protease as a serodiagnostic antigen for human opisthorchiasis. Parasitol Int 2011; 61:191-5. [PMID: 21704728 DOI: 10.1016/j.parint.2011.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 05/01/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
A cathepsin B-like cysteine protease belonging to family C1 is abundantly expressed in the transcriptome and proteome of the carcinogenic liver fluke of humans, Opisthorchis viverrini. This enzyme is present in excretory/secretory (ES) products released by parasites cultured in vitro. This study evaluated the performance of recombinant O. viverrini cathepsin B1 (rOv-CB-1) as an antigen for immunodiagnosis of opisthorchiasis. The full length Ov-CB-1 cDNA was cloned and recombinant protein was produced in catalytically active form in Pichia pastoris. The recombinant Ov-CB-1 (rOv-CB-1) was affinity purified via nickel-NTA chromatography and tested in enzyme-linked immunosorbent assays (ELISA) with human sera from an opisthorchiasis endemic area. Sera from egg-positive O. viverrini infections produced a strong IgG antibody response to rOv-CB-1 both in ELISA and immunoblot analysis. The sensitivity and specificity of the ELISA test was 67% and 81%, respectively. These findings support the feasibility of using recombinant Ov-CB-1 in ELISA for the serodiagnosis of human opisthorchiasis.
Collapse
Affiliation(s)
- Jittiyawadee Sripa
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | | | | |
Collapse
|
29
|
Sripa J, Pinlaor P, Brindley PJ, Sripa B, Kaewkes S, Robinson MW, Young ND, Gasser RB, Loukas A, Laha T. RNA interference targeting cathepsin B of the carcinogenic liver fluke, Opisthorchis viverrini. Parasitol Int 2011; 60:283-8. [PMID: 21565281 DOI: 10.1016/j.parint.2011.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 01/30/2023]
Abstract
Functional genomics have not been reported for Opisthorchis viverrini or the related fish-borne fluke, Clonorchis sinensis. Here we describe the introduction by square wave electroporation of Cy3-labeled small RNA into adult O. viverrini worms. Adult flukes were subjected to square wave electroporation employing a single pulse for 20 ms of 125V in the presence of 50 μg/ml of Cy3-siRNA. The parasites tolerated this manipulation and, at 24 and 48 h after electroporation, fluorescence from the Cy3-siRNA was evident throughout the parenchyma of the worms, with strong fluorescence evident in the guts and reproductive organs of the adult worms. Second, other worms were treated using the same electroporation settings with double stranded RNA targeting an endogenous papain-like cysteine protease, cathepsin B. This manipulation resulted in a significant reduction in specific mRNA levels encoding cathepsin B, and a significant reduction in cathepsin B activity against the diagnostic peptide, Z-Arg-Arg-AMC. This appears to be the first report of introduction of reporter genes into O. viverrini and the first report of experimental RNA interference (RNAi) in this fluke. The findings indicated the presence of an intact RNAi pathway in these parasites which, in turn, provides an opportunity to probe gene functions in this neglected tropical disease pathogen.
Collapse
Affiliation(s)
- Jittiyawadee Sripa
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Smout MJ, Sripa B, Laha T, Mulvenna J, Gasser RB, Young ND, Bethony JM, Brindley PJ, Loukas A. Infection with the carcinogenic human liver fluke, Opisthorchis viverrini. MOLECULAR BIOSYSTEMS 2011; 7:1367-75. [PMID: 21311794 PMCID: PMC3739706 DOI: 10.1039/c0mb00295j] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Throughout Southeast Asia there is a strikingly high incidence of cholangiocarcinoma (CCA--hepatic cancer of the bile duct epithelium), particularly in people from rural settings in Laos and Northeast Thailand who are infected with the liver fluke, Opisthorchis viverrini, one of only three carcinogenic eukaryotic pathogens. More ubiquitous carcinogenic microbes, such as Helicobacter pylori, induce cancer in less than 1% of infected people, while as many as one-sixth of people with opisthorchiasis will develop CCA. The mechanisms by which O. viverrini causes cancer are multi-factorial, involving mechanical irritation from the activities and movements of the flukes, immunopathology, dietary nitrosamines and the secretion of parasite proteins that promote a tumourigenic environment. Genomic and proteomic studies of the liver fluke secretome have accelerated the discovery of parasite proteins with known/potential roles in pathogenesis and tumourigenesis, establishing a framework towards understanding, and ultimately preventing, the morbidity and mortality attributed to this highly carcinogenic parasite.
Collapse
Affiliation(s)
- Michael J Smout
- Queensland Tropical Health Alliance, James Cook University, Cairns, QLD, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Robinson MW, Corvo I, Jones PM, George AM, Padula MP, To J, Cancela M, Rinaldi G, Tort JF, Roche L, Dalton JP. Collagenolytic activities of the major secreted cathepsin L peptidases involved in the virulence of the helminth pathogen, Fasciola hepatica. PLoS Negl Trop Dis 2011; 5:e1012. [PMID: 21483711 PMCID: PMC3071364 DOI: 10.1371/journal.pntd.0001012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/21/2010] [Indexed: 11/18/2022] Open
Abstract
Background The temporal expression and secretion of distinct members of a family of virulence-associated cathepsin L cysteine peptidases (FhCL) correlates with the entry and migration of the helminth pathogen Fasciola hepatica in the host. Thus, infective larvae traversing the gut wall secrete cathepsin L3 (FhCL3), liver migrating juvenile parasites secrete both FhCL1 and FhCL2 while the mature bile duct parasites, which are obligate blood feeders, secrete predominantly FhCL1 but also FhCL2. Methodology/Principal Findings Here we show that FhCL1, FhCL2 and FhCL3 exhibit differences in their kinetic parameters towards a range of peptide substrates. Uniquely, FhCL2 and FhCL3 readily cleave substrates with Pro in the P2 position and peptide substrates mimicking the repeating Gly-Pro-Xaa motifs that occur within the primary sequence of collagen. FhCL1, FhCL2 and FhCL3 hydrolysed native type I and II collagen at neutral pH but while FhCL1 cleaved only non-collagenous (NC, non-Gly-X-Y) domains FhCL2 and FhCL3 exhibited collagenase activity by cleaving at multiple sites within the α1 and α2 triple helix regions (Col domains). Molecular simulations created for FhCL1, FhCL2 and FhCL3 complexed to various seven-residue peptides supports the idea that Trp67 and Tyr67 in the S2 subsite of the active sites of FhCL3 and FhCL2, respectively, are critical to conferring the unique collagenase-like activity to these enzymes by accommodating either Gly or Pro residues at P2 in the substrate. The data also suggests that FhCL3 accommodates hydroxyproline (Hyp)-Gly at P3-P2 better than FhCL2 explaining the observed greater ability of FhCL3 to digest type I and II collagens compared to FhCL2 and why these enzymes cleave at different positions within the Col domains. Conclusions/Significance These studies further our understanding of how this helminth parasite regulates peptidase expression to ensure infection, migration and establishment in host tissues. Fasciola hepatica is a helminth parasite that causes liver fluke disease (fasciolosis) in domestic animals (sheep and cattle) and humans worldwide. In order to infect their mammalian hosts, F. hepatica larvae must penetrate and traverse the intestinal wall of the duodenum, move through the peritoneum and penetrate the liver. After migrating through the liver, causing extensive tissue damage, the parasites move to their final niche in the bile ducts where they mature and feed on host haemoglobin to support the production of eggs. To achieve these tasks, F. hepatica secretes a number of distinct cathepsin L cysteine peptidases (FhCL). Thus, the infective larvae that penetrate the host gut secrete cathepsin L3 (FhCL3), the migrating liver-stage juvenile parasites secrete both FhCL1 and FhCL2 while mature bile duct parasites that feed on host blood secrete predominantly FhCL1 but also FhCL2. Here we show that the major cathepsin L peptidases secreted by F. hepatica (FhCL1, FhCL2 and FhCL3) display differential ability to degrade host collagen (an important component of host tissues) and investigate this phenomenon at the molecular level.
Collapse
Affiliation(s)
- Mark W Robinson
- Infection, Immunity and Innovation (i3) Institute, University of Technology Sydney, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Stack C, Dalton JP, Robinson MW. The phylogeny, structure and function of trematode cysteine proteases, with particular emphasis on the Fasciola hepatica cathepsin L family. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:116-35. [PMID: 21660662 DOI: 10.1007/978-1-4419-8414-2_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Helminth parasites (nematodes, flatworms and cestodes) infect over 1 billion of the world's population causing high morbidity and mortality. The large tissue-dwelling worms express papain-like cysteine peptidases, termed cathepsins that play important roles in virulence including host entry, tissue migration and the suppression of host immune responses. Much of our knowledge of helminth cathepsins comes from studies using flatworms or trematode (fluke) parasites. The developmentally-regulated expression of these proteases correlates with the passage of parasites through host tissues and their encounters with different host macromolecules. Recent phylogenetic, biochemical and structural studies indicate that trematode cathepsins exhibit overlapping but distinct substrate specificities due to divergence within the protease active site. Here we provide an overview of the evolution, biochemistry and structure of these important enzymes and highlight how recent advances in proteomics and gene silencing techniques are allowing researchers to probe their biological functions. We focus mainly on members of the cathepsin L gene family of the animal and human pathogen, Fasciola hepatica, because of our deep understanding of their function, biochemistry and structure.
Collapse
Affiliation(s)
- Colin Stack
- School of Biomedical and Health Sciences, University of Western Sydney (UWS), Narellan Road, Campbelltown, NSW, Australia
| | | | | |
Collapse
|
33
|
Young ND, Jex AR, Cantacessi C, Campbell BE, Laha T, Sohn WM, Sripa B, Loukas A, Brindley PJ, Gasser RB. Progress on the transcriptomics of carcinogenic liver flukes of humans—Unique biological and biotechnological prospects. Biotechnol Adv 2010; 28:859-70. [DOI: 10.1016/j.biotechadv.2010.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/12/2010] [Accepted: 07/16/2010] [Indexed: 12/22/2022]
|
34
|
Ruggiero A, Marasco D, Squeglia F, Soldini S, Pedone E, Pedone C, Berisio R. Structure and Functional Regulation of RipA, a Mycobacterial Enzyme Essential for Daughter Cell Separation. Structure 2010; 18:1184-90. [DOI: 10.1016/j.str.2010.06.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/09/2010] [Accepted: 06/17/2010] [Indexed: 10/19/2022]
|
35
|
Smooker PM, Jayaraj R, Pike RN, Spithill TW. Cathepsin B proteases of flukes: the key to facilitating parasite control? Trends Parasitol 2010; 26:506-14. [PMID: 20580610 DOI: 10.1016/j.pt.2010.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 05/31/2010] [Accepted: 06/01/2010] [Indexed: 01/22/2023]
Abstract
Cysteine proteases are important virulence factors for parasites. This review will focus on the cathepsin B proteases of trematodes (also known as flukes) which are abundant in juvenile and immature flukes. Recent research, primarily in Fasciola, using inhibitors, RNA interference (RNAi) and vaccination studies indicates that cathepsin Bs play a key role in the biology of trematodes. As these proteases are largely expressed by infective parasite stages, their inactivation by chemotherapy or vaccination will greatly reduce the damage wrought by flukes as they invade host tissues. This validates cathepsin Bs as key strategic targets for fluke control.
Collapse
|