1
|
Luis J, Eastlake K, Lamb WDB, Limb GA, Jayaram H, Khaw PT. Cell-Based Therapies for Glaucoma. Transl Vis Sci Technol 2023; 12:23. [PMID: 37494052 PMCID: PMC10383000 DOI: 10.1167/tvst.12.7.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Glaucomatous optic neuropathy (GON) is the major cause of irreversible visual loss worldwide and can result from a range of disease etiologies. The defining features of GON are retinal ganglion cell (RGC) degeneration and characteristic cupping of the optic nerve head (ONH) due to tissue remodeling, while intraocular pressure remains the only modifiable GON risk factor currently targeted by approved clinical treatment strategies. Efforts to understand the mechanisms that allow species such as the zebrafish to regenerate their retinal cells have greatly increased our understanding of regenerative signaling pathways. However, proper integration within the retina and projection to the brain by the newly regenerated neuronal cells remain major hurdles. Meanwhile, a range of methods for in vitro differentiation have been developed to derive retinal cells from a variety of cell sources, including embryonic and induced pluripotent stem cells. More recently, there has been growing interest in the implantation of glial cells as well as cell-derived products, including neurotrophins, microRNA, and extracellular vesicles, to provide functional support to vulnerable structures such as RGC axons and the ONH. These approaches offer the advantage of not relying upon the replacement of degenerated cells and potentially targeting earlier stages of disease pathogenesis. In order to translate these techniques into clinical practice, appropriate cell sourcing, robust differentiation protocols, and accurate implantation methods are crucial to the success of cell-based therapy in glaucoma. Translational Relevance: Cell-based therapies for glaucoma currently under active development include the induction of endogenous regeneration, implantation of exogenously derived retinal cells, and utilization of cell-derived products to provide functional support.
Collapse
Affiliation(s)
- Joshua Luis
- NIHR Biomedical Research Centre for Ophthalmology, UCL Institute of Ophthalmology & Moorfields Eye Hospital, London, UK
| | - Karen Eastlake
- NIHR Biomedical Research Centre for Ophthalmology, UCL Institute of Ophthalmology & Moorfields Eye Hospital, London, UK
| | - William D. B. Lamb
- NIHR Biomedical Research Centre for Ophthalmology, UCL Institute of Ophthalmology & Moorfields Eye Hospital, London, UK
| | - G. Astrid Limb
- NIHR Biomedical Research Centre for Ophthalmology, UCL Institute of Ophthalmology & Moorfields Eye Hospital, London, UK
| | - Hari Jayaram
- NIHR Biomedical Research Centre for Ophthalmology, UCL Institute of Ophthalmology & Moorfields Eye Hospital, London, UK
| | - Peng T. Khaw
- NIHR Biomedical Research Centre for Ophthalmology, UCL Institute of Ophthalmology & Moorfields Eye Hospital, London, UK
| |
Collapse
|
2
|
Zargani M, Ramirez-Campillo R, Arabzadeh E. Swimming and L-arginine loaded chitosan nanoparticles ameliorates aging-induced neuron atrophy, autophagy marker LC3, GABA and BDNF-TrkB pathway in the spinal cord of rats. Pflugers Arch 2023; 475:621-635. [PMID: 36869900 DOI: 10.1007/s00424-023-02795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 03/05/2023]
Abstract
Aging is associated with muscle atrophy, and erosion and destruction of neuronal pathways in the spinal cord. The study aim was to assess the effect of swimming training (Sw) and L-arginine loaded chitosan nanoparticles (LA-CNPs) on the sensory and motor neuron population, autophagy marker LC3, total oxidant status/total antioxidant capacity, behavioural test, GABA and BDNF-TrkB pathway in the spinal cord of aging rats. The rats were randomized to five groups: young (8-weeks) control (n = 7), old control (n = 7), old Sw (n = 7), old LA-CNPs (n = 7) and old Sw + LA-CNPs (n = 7). Groups under LA-CNPs supplementation received 500 mg/kg/day. Sw groups performed a swimming exercise programme 5 days per week for 6 weeks. Upon the completion of the interventions the rats were euthanized and the spinal cord was fixed and frozen for histological assessment, IHC, and gene expression analysis. The old group had more atrophy in the spinal cord with higher changes in LC3 as an indicator of autophagy in the spinal cord compared to the young group (p < 0.0001). The old Sw + LA-CNPs group increased (improved) spinal cord GABA (p = 0.0187), BDNF (p = 0.0003), TrkB (p < 0.0001) gene expression, decreased autophagy marker LC3 protein (p < 0.0001), nerve atrophy and jumping/licking latency (p < 0.0001), improved sciatic functional index score and total oxidant status/total antioxidant capacity compared to the old group (p < 0.0001). In conclusion, swimming and LA-CNPs seems to ameliorate aging-induced neuron atrophy, autophagy marker LC3, oxidant-antioxidant status, functional restoration, GABA and BDNF-TrkB pathway in the spinal cord of aging rats. Our study provides experimental evidence for a possible positive role of swimming and L-arginine loaded chitosan nanoparticles to decrease complications of aging.
Collapse
Affiliation(s)
- Mehdi Zargani
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538, Santiago, Chile
| | - Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Fafure AA, Edem EE, Obisesan AO, Enye LA, Adekeye AO, Adetunji AE, Nebo KE, Olusegun AA, Fafure OE. Fermented maize slurry (Ogi) and its supernatant (Omidun) mitigate elevated intraocular pressure by modulating BDNF expression and glial plasticity in the retina-gut axis of glaucomatous rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:887-896. [PMID: 34380184 DOI: 10.1515/jcim-2021-0114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Growing interest has been reported on the health benefits of fermented foods, which includes cognition enhancement and inflammation attenuation. BDNF is a known protectant against retinal degeneration, however, therapies that target this neurotrophic factor has been limited. Therefore, we assessed the reaction of BDNF and glial cells in glaucomatous rats and their response to treatment with fermented maize products. METHODS Thirty male adult rats were either injected via the episcleral vein with hypertonic saline to elevate intraocular pressure (IOP) or treated with fermented maize slurry (Ogi) or its supernatant (Omidun). Following sacrifice, the retina and duodenum were studied by immunohistochemical analysis using antibodies directed against GFAP, AIF-1 and BDNF. RESULTS Hypertonic saline injection produced hypertrophy of the Müller cells and increased GFAP and AIF-1 expression in the retina and gut when compared to the control. Treatment with Ogi and Omidun produced varying degrees of reduction of gliosis, protection against hypertonic saline-induced retinal ganglion cell loss, and reduced intraocular pressure. BDNF expression was downregulated following the hypertonic saline assault, while Omidun and Ogi treatment abrogated its reduction following the hypertonic saline assault. CONCLUSIONS Collectively, our findings suggest that acute elevation of IOP alters crosstalk between gut and retina with consequent aberrant activation of glial cells; and that probiotic bacteria like the lactic acid bacteria rich in fermented foods including Ogi and Omidun may offer neuroprotection to the ganglionic cells by attenuating the retinal glial reaction and improving BDNF activity.
Collapse
Affiliation(s)
- Adedamola Adediran Fafure
- Neuroscience Unit, Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Edem Ekpenyong Edem
- Neuroscience Unit, Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Abiola Oluwatosin Obisesan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Linus Anderson Enye
- Neuroscience Unit, Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Adeshina Oloruntoba Adekeye
- Neuroscience Unit, Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Adedeji Enitan Adetunji
- Neuroscience Unit, Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Kate Eberechukwu Nebo
- Neuroscience Unit, Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Adebayo Adeoluwa Olusegun
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe-Babalola University, Ado-Ekiti, Nigeria
| | | |
Collapse
|
4
|
Choudhari JK, Eberhardt M, Chatterjee T, Hohberger B, Vera J. Glaucoma-TrEl: A web-based interactive database to build evidence-based hypotheses on the role of trace elements in glaucoma. BMC Res Notes 2022; 15:348. [PMID: 36401306 PMCID: PMC9673420 DOI: 10.1186/s13104-022-06210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022] Open
Abstract
Objective Glaucoma is a chronic neurological disease that is associated with high intraocular pressure (IOP), causes gradual damage to retinal ganglion cells, and often culminates in vision loss. Recent research suggests that glaucoma is a complex multifactorial disease in which multiple interlinked genes and pathways play a role during onset and development. Also, differential availability of trace elements seems to play a role in glaucoma pathophysiology, although their mechanism of action is unknown. The aim of this work is to disseminate a web-based repository on interactions between trace elements and protein-coding genes linked to glaucoma pathophysiology. Results In this study, we present Glaucoma-TrEl, a web database containing information about interactions between trace elements and protein-coding genes that are linked to glaucoma. In the database, we include interactions between 437 unique genes and eight trace elements. Our analysis found a large number of interactions between trace elements and protein-coding genes mutated or linked to the pathophysiology of glaucoma. We associated genes interacting with multiple trace elements to pathways known to play a role in glaucoma. The web-based platform provides an easy-to-use and interactive tool, which serves as an information hub facilitating future research work on trace elements in glaucoma.
Collapse
|
5
|
Lambuk L, Mohd Lazaldin MA, Ahmad S, Iezhitsa I, Agarwal R, Uskoković V, Mohamud R. Brain-Derived Neurotrophic Factor-Mediated Neuroprotection in Glaucoma: A Review of Current State of the Art. Front Pharmacol 2022; 13:875662. [PMID: 35668928 PMCID: PMC9163364 DOI: 10.3389/fphar.2022.875662] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cells (RGCs) are neurons of the visual system that are responsible for transmitting signals from the retina to the brain via the optic nerve. Glaucoma is an optic neuropathy characterized by apoptotic loss of RGCs and degeneration of optic nerve fibers. Risk factors such as elevated intraocular pressure and vascular dysregulation trigger the injury that culminates in RGC apoptosis. In the event of injury, the survival of RGCs is facilitated by neurotrophic factors (NTFs), the most widely studied of which is brain-derived neurotrophic factor (BDNF). Its production is regulated locally in the retina, but transport of BDNF retrogradely from the brain to retina is also crucial. Not only that the interruption of this retrograde transport has been detected in the early stages of glaucoma, but significantly low levels of BDNF have also been detected in the sera and ocular fluids of glaucoma patients, supporting the notion that neurotrophic deprivation is a likely mechanism of glaucomatous optic neuropathy. Moreover, exogenous NTF including BDNF administration was shown reduce neuronal loss in animal models of various neurodegenerative diseases, indicating the possibility that exogenous BDNF may be a treatment option in glaucoma. Current literature provides an extensive insight not only into the sources, transport, and target sites of BDNF but also the intracellular signaling pathways, other pathways that influence BDNF signaling and a wide range of its functions. In this review, the authors discuss the neuroprotective role of BDNF in promoting the survival of RGCs and its possible application as a therapeutic tool to meet the challenges in glaucoma management. We also highlight the possibility of using BDNF as a biomarker in neurodegenerative disease such as glaucoma. Further we discuss the challenges and future strategies to explore the utility of BDNF in the management of glaucoma.
Collapse
Affiliation(s)
- Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | | | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Igor Iezhitsa
- Department of Pharmacology and Therapeutics, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia
| | - Renu Agarwal
- Department of Pharmacology and Therapeutics, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, United States
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, United States
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
6
|
Sharif NA. Therapeutic Drugs and Devices for Tackling Ocular Hypertension and Glaucoma, and Need for Neuroprotection and Cytoprotective Therapies. Front Pharmacol 2021; 12:729249. [PMID: 34603044 PMCID: PMC8484316 DOI: 10.3389/fphar.2021.729249] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Damage to the optic nerve and the death of associated retinal ganglion cells (RGCs) by elevated intraocular pressure (IOP), also known as glaucoma, is responsible for visual impairment and blindness in millions of people worldwide. The ocular hypertension (OHT) and the deleterious mechanical forces it exerts at the back of the eye, at the level of the optic nerve head/optic disc and lamina cribosa, is the only modifiable risk factor associated with glaucoma that can be treated. The elevated IOP occurs due to the inability of accumulated aqueous humor (AQH) to egress from the anterior chamber of the eye due to occlusion of the major outflow pathway, the trabecular meshwork (TM) and Schlemm’s canal (SC). Several different classes of pharmaceutical agents, surgical techniques and implantable devices have been developed to lower and control IOP. First-line drugs to promote AQH outflow via the uveoscleral outflow pathway include FP-receptor prostaglandin (PG) agonists (e.g., latanoprost, travoprost and tafluprost) and a novel non-PG EP2-receptor agonist (omidenepag isopropyl, Eybelis®). TM/SC outflow enhancing drugs are also effective ocular hypotensive agents (e.g., rho kinase inhibitors like ripasudil and netarsudil; and latanoprostene bunod, a conjugate of a nitric oxide donor and latanoprost). One of the most effective anterior chamber AQH microshunt devices is the Preserflo® microshunt which can lower IOP down to 10–13 mmHg. Other IOP-lowering drugs and devices on the horizon will be also discussed. Additionally, since elevated IOP is only one of many risk factors for development of glaucomatous optic neuropathy, a treatise of the role of inflammatory neurodegeneration of the optic nerve and retinal ganglion cells and appropriate neuroprotective strategies to mitigate this disease will also be reviewed and discussed.
Collapse
Affiliation(s)
- Najam A Sharif
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, United States
| |
Collapse
|
7
|
Vernazza S, Oddone F, Tirendi S, Bassi AM. Risk Factors for Retinal Ganglion Cell Distress in Glaucoma and Neuroprotective Potential Intervention. Int J Mol Sci 2021; 22:7994. [PMID: 34360760 PMCID: PMC8346985 DOI: 10.3390/ijms22157994] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cells (RGCs) are a population of neurons of the central nervous system (CNS) extending with their soma to the inner retina and with their axons to the optic nerve. Glaucoma represents a group of neurodegenerative diseases where the slow progressive death of RGCs results in a permanent loss of vision. To date, although Intra Ocular Pressure (IOP) is considered the main therapeutic target, the precise mechanisms by which RGCs die in glaucoma have not yet been clarified. In fact, Primary Open Angle Glaucoma (POAG), which is the most common glaucoma form, also occurs without elevated IOP. This present review provides a summary of some pathological conditions, i.e., axonal transport blockade, glutamate excitotoxicity and changes in pro-inflammatory cytokines along the RGC projection, all involved in the glaucoma cascade. Moreover, neuro-protective therapeutic approaches, which aim to improve RGC degeneration, have also been taken into consideration.
Collapse
Affiliation(s)
- Stefania Vernazza
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy; (S.T.); (A.M.B.)
| | | | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
8
|
Shpak AA, Guekht AB, Druzhkova TA, Rider FK, Gulyaeva NV. Brain-derived neurotrophic factor in blood serum and lacrimal fluid of patients with focal epilepsy. Epilepsy Res 2021; 176:106707. [PMID: 34225232 DOI: 10.1016/j.eplepsyres.2021.106707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/01/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To evaluate brain-derived neurotrophic factor (BDNF) level in blood serum (BS) and lacrimal fluid (LF) of people with epilepsy (PWE). METHODS It was a case-control study of 72 consecutive patients with focal epilepsy (cases, Epilepsy group) and 60 age- and gender-matched healthy volunteers (controls). Based on comorbid depression, two subgroups of PWE were formed. BDNF level was measured by enzyme-linked immunosorbent assay (ELISA) in BS and LF. RESULTS Compared to controls, BDNF level (pg/mL) in PWE was lower both in BS (22,520 ± 3810 vs. 26,360 ± 3090, P < 0.000) and in LF (100.8 ± 23.3 vs. 113.4 ± 19.3, P = 0.001). However, no significant correlation was found between BDNF level in BS and LF either in the Epilepsy group or in controls. No impact of comorbid depression on BDNF level was found either in BS or LF of PWE. We revealed a higher BDNF level in LF of men as compared to women in controls and a similar non-significant trend in PWE. Higher BDNF level in BS of PWE receiving valproates versus other AEDs was found, however, a relatively small number of observations and use of polytherapy in most cases should be taken into account. SIGNIFICANCE In patients with focal epilepsy, BDNF level is decreased both in BS and LF, though with no correlation between them. No association of BDNF levels with age and epilepsy characteristics, as well as the occurrence of depression, was found. Low BDNF level in LF could be considered as a non-invasive biomarker of focal epilepsy.
Collapse
Affiliation(s)
- Alexander A Shpak
- The S. Fyodorov Eye Microsurgery Federal State Institution, Moscow, Russian Federation.
| | - Alla B Guekht
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation; Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Tatiana A Druzhkova
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
| | - Flora K Rider
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
| | - Natalia V Gulyaeva
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
9
|
Prospects for the application of Müller glia and their derivatives in retinal regenerative therapies. Prog Retin Eye Res 2021; 85:100970. [PMID: 33930561 DOI: 10.1016/j.preteyeres.2021.100970] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Neural cell death is the main feature of all retinal degenerative disorders that lead to blindness. Despite therapeutic advances, progression of retinal disease cannot always be prevented, and once neuronal cell damage occurs, visual loss cannot be reversed. Recent research in the stem cell field, and the identification of Müller glia with stem cell characteristics in the human eye, have provided hope for the use of these cells in retinal therapies to restore vision. Müller glial cells, which are the major structural cells of the retina, play a very important role in retinal homeostasis during health and disease. They are responsible for the spontaneous retinal regeneration observed in zebrafish and lower vertebrates during early postnatal life, and despite the presence of Müller glia with stem cell characteristics in the adult mammalian retina, there is no evidence that they promote regeneration in humans. Like many other stem cells and neurons derived from pluripotent stem cells, Müller glia with stem cell potential do not differentiate into retinal neurons or integrate into the retina when transplanted into the vitreous of experimental animals with retinal degeneration. However, despite their lack of integration, grafted Müller glia have been shown to induce partial restoration of visual function in spontaneous or induced experimental models of photoreceptor or retinal ganglion cell damage. This improvement in visual function observed after Müller cell transplantation has been ascribed to the release of neuroprotective factors that promote the repair and survival of damaged neurons. Due to the development and availability of pluripotent stem cell lines for therapeutic uses, derivation of Müller cells from retinal organoids formed by iPSC and ESC has provided more realistic prospects for the application of these cells to retinal therapies. Several opportunities for research in the regenerative field have also been unlocked in recent years due to a better understanding of the genomic and proteomic profiles of the developing and regenerating retina in zebrafish, providing the basis for further studies of the human retina. In addition, the increased interest on the nature and function of cellular organelle release and the characterization of molecular components of exosomes released by Müller glia, may help us to design new approaches that could be applied to the development of more effective treatments for retinal degenerative diseases.
Collapse
|
10
|
Wójcik-Gryciuk A, Gajewska-Woźniak O, Kordecka K, Boguszewski PM, Waleszczyk W, Skup M. Neuroprotection of Retinal Ganglion Cells with AAV2-BDNF Pretreatment Restoring Normal TrkB Receptor Protein Levels in Glaucoma. Int J Mol Sci 2020; 21:ijms21176262. [PMID: 32872441 PMCID: PMC7504711 DOI: 10.3390/ijms21176262] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Intravitreal delivery of brain-derived neurotrophic factor (BDNF) by injection of recombinant protein or by gene therapy can alleviate retinal ganglion cell (RGC) loss after optic nerve injury (ONI) or laser-induced ocular hypertension (OHT). In models of glaucoma, BDNF therapy can delay or halt RGCs loss, but this protection is time-limited. The decreased efficacy of BDNF supplementation has been in part attributed to BDNF TrkB receptor downregulation. However, whether BDNF overexpression causes TrkB downregulation, impairing long-term BDNF signaling in the retina, has not been conclusively proven. After ONI or OHT, when increased retinal BDNF was detected, a concomitant increase, no change or a decrease in TrkB was reported. We examined quantitatively the retinal concentrations of the TrkB protein in relation to BDNF, in a course of adeno-associated viral vector gene therapy (AAV2-BDNF), using a microbead trabecular occlusion model of glaucoma. We show that unilateral glaucoma, with intraocular pressure ( IOP) increased for five weeks, leads to a bilateral decrease of BDNF in the retina at six weeks, accompanied by up to four-fold TrkB upregulation, while a moderate BDNF overexpression in a glaucomatous eye triggers changes that restore normal TrkB concentrations, driving signaling towards long-term RGCs neuroprotection. We conclude that for glaucoma therapy, the careful selection of the appropriate BDNF concentration is the main factor securing the long-term responsiveness of RGCs and the maintenance of normal TrkB levels.
Collapse
Affiliation(s)
- Anna Wójcik-Gryciuk
- Laboratory of Neurobiology of Vision, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.W.-G.); (K.K.); (W.W.)
- Mediq Clinic, 05-120 Legionowo, Poland
| | - Olga Gajewska-Woźniak
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Katarzyna Kordecka
- Laboratory of Neurobiology of Vision, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.W.-G.); (K.K.); (W.W.)
| | - Paweł M. Boguszewski
- Laboratory of Behavioral Methods, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Wioletta Waleszczyk
- Laboratory of Neurobiology of Vision, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.W.-G.); (K.K.); (W.W.)
| | - Małgorzata Skup
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
- Correspondence:
| |
Collapse
|
11
|
Shpak AA, Guekht AB, Druzhkova TA, Zinchuk MS, Gulyaeva NV. Brain-Derived Neurotrophic Factor and Ciliary Neurotrophic Factor in Patients with Depression. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420020117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Shen T, Gupta VK, Klistorner A, Chitranshi N, Graham SL, You Y. Sex-Specific Effect of BDNF Val66Met Genotypes on the Progression of Open-Angle Glaucoma. Invest Ophthalmol Vis Sci 2019; 60:1069-1075. [PMID: 30897622 DOI: 10.1167/iovs.18-26364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate whether the brain-derived neurotrophic factor (BDNF) Val66Met genotype is associated with the rate of progression of open-angle glaucoma (OAG). Methods In this retrospective cohort study, 148 OAG patients (292 eyes) were enrolled with a median follow-up period of 5.3 (range, 1.1-8.6) years. All participants had undergone regular clinical examinations by using spectral-domain optical coherence tomography (SD-OCT) scans and Humphrey (SITA) visual field tests. BDNF Val66Met polymorphisms were genotyped in all participants. Longitudinal visual field and retinal nerve fiber layer (RNFL) changes were compared between Met carriers (n = 68, 135 eyes) and Val homozygotes (n = 80, 157 eyes) by using the generalized estimating equations (GEE) model and Kaplan-Meier survival analysis. Results There was no significant difference in mean rates of progression for the two genotypes. However, there was a significant association between the Val66Met genotypes and slower OAG progression, as suggested by a higher rate of global RNFL loss in Val/Val homozygotes (P = 0.008) in the long-term survival analysis. The effect demonstrated a degree of sex specificity, with the significant difference present only in females (P = 0.016) but not males. Similar sexual dimorphism was presented in superior (P = 0.005 in females, P = 0.38 in males) and inferior (P = 0.004 in females, P = 0.41 in males) RNFL loss. No significant difference was observed in visual field parameters. Conclusions Our results suggested that carriage of Met allele reduces the rate of long-term OAG progression. However, the fact that this effect is observed only in females indicates BDNF Val66Met influences the progression rate of OAG in a sex-specific manner.
Collapse
Affiliation(s)
- Ting Shen
- Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Vivek K Gupta
- Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alexander Klistorner
- Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.,Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Nitin Chitranshi
- Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Stuart L Graham
- Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.,Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Yuyi You
- Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.,Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Towards A Microbead Occlusion Model of Glaucoma for a Non-Human Primate. Sci Rep 2019; 9:11572. [PMID: 31399621 PMCID: PMC6689098 DOI: 10.1038/s41598-019-48054-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/27/2019] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a group of optic neuropathies associated with aging and sensitivity to intraocular pressure (IOP). The disease causes vision loss through the degeneration of retinal ganglion cell neurons and their axons in the optic nerve. Using an inducible model of glaucoma, we elevated IOP in the squirrel monkey (Saimiri boliviensis) using intracameral injection of 35 μm polystyrene microbeads and measured common pathogenic outcomes in the optic projection. A 42% elevation in IOP over 28 weeks reduced anterograde transport of fluorescently-labeled cholera toxin beta from retina to the lateral geniculate nucleus (60% decrease), and to the superior colliculus (49% decrease). Pressure also reduced survival of ganglion cellaxons in the optic nerve by 22%. The same elevation caused upregulation of proteins associated with glaucomatous neurodegeneration in the retina and optic nerve, including complement 1q, interleukin 6, and brain-derived neurotrophic factor. That axon degeneration in the nerve lagged deficits in anterograde transport is consistent with progression in rodent models, while the observed protein changes also occur in tissue from human glaucoma patients. Thus, microbead occlusion in a non-human primate with a visual system similar to our own represents an attractive model to investigate neurodegenerative mechanisms and therapeutic interventions for glaucoma.
Collapse
|
14
|
Inanc Tekin M, Sekeroglu MA, Demirtas C, Tekin K, Doguizi S, Bayraktar S, Yilmazbas P. Brain-Derived Neurotrophic Factor in Patients With Age-Related Macular Degeneration and Its Correlation With Retinal Layer Thicknesses. Invest Ophthalmol Vis Sci 2019; 59:2833-2840. [PMID: 30025135 DOI: 10.1167/iovs.18-24030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine brain-derived neurotrophic factor (BDNF) levels in serum and aqueous humor (AH) and to assess the relationship between BDNF levels and retinal layer thicknesses in age-related macular degeneration (AMD). Methods A total of 48 AMD patients (AMD group) that was composed of twenty-three nonexudative and 25 exudative patients and 26 control subjects (control group) were included in the study. Serum and AH BDNF levels were assessed by ELISA method. Retinal layer thicknesses were calculated by segmentation analysis of optical coherence tomography. Results The mean BDNF levels in AH were found to be significantly lower in both the nonexudative and exudative AMD groups than in the control group (P = 0.003 and P < 0.001, respectively). Optical coherence tomography segmentation analysis revealed that the total average retina pigment epithelium thickness was statistically significantly thinner in the nonexudative AMD group compared with the exudative AMD and control groups (P = 0.001 and P = 0.040, respectively). The total average outer nuclear layer (ONL) thicknesses of nonexudative and exudative AMD cases were reduced compared to control group; however, the decrement was statistically significant only in the nonexudative AMD group (P = 0.009). In the correlation analysis of BDNF levels with retinal layer thicknesses, statistically significant correlations exist between BDNF levels of AH with ONL thicknesses in cases of AMD and with retina pigment epithelium thicknesses in the nonexudative AMD group. Conclusions BDNF concentrations in AH decreased in the AMD group and this decrease correlates with outer retinal layer thicknesses. Low BDNF levels detected in the AMD group may be insufficient to protect the photoreceptors, resulting in thinning of ONL.
Collapse
Affiliation(s)
| | | | - Canan Demirtas
- Department of Medical Biochemistry, Gazi University, Ankara, Turkey
| | - Kemal Tekin
- Department of Ophthalmology, Kars State Hospital, Kars, Turkey
| | - Sibel Doguizi
- Ankara Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| | - Serdar Bayraktar
- Ankara Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| | - Pelin Yilmazbas
- Ankara Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
15
|
Alqawlaq S, Flanagan JG, Sivak JM. All roads lead to glaucoma: Induced retinal injury cascades contribute to a common neurodegenerative outcome. Exp Eye Res 2018; 183:88-97. [PMID: 30447198 DOI: 10.1016/j.exer.2018.11.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 11/25/2022]
Abstract
Glaucoma describes a distinct optic neuropathy with complex etiology and a variety of associated risk factors, but with similar pathological endpoints. Risk factors such as age, increased intraocular pressure (IOP), low mean arterial pressure, and autoimmune disease, can all be associated with death of retinal ganglion cells (RGCs) and optic nerve head remodeling. Today, IOP management remains the standard of care, even though IOP elevation is not pathognomonic of glaucoma, and patients can continue to lose vision despite effective IOP control. A contemporary view of glaucoma as a complex, neurodegenerative disease has developed, along with the recognition of a need for new disease modifying retinal treatment strategies and improved outcomes. However, the distinction between risk factors triggering the disease process and retinal injury responses is not always clear. In this review, we attempt to distinguish between the various triggers, and their association with subsequent key RGC injury mechanisms. We propose that distinct glaucomatous risk factors result in similar retinal and optic nerve injury cascades, including oxidative and metabolic stress, glial reactivity, and altered inflammatory responses, which induce common molecular signals to induce RGC apoptosis. This organization forms a coherent disease framework and presents conserved targets for therapeutic intervention that are not limited to specific risk factors.
Collapse
Affiliation(s)
- Samih Alqawlaq
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Vision Science Research Program, Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - John G Flanagan
- School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, CA, USA
| | - Jeremy M Sivak
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Vision Science Research Program, Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Osborne A, Khatib TZ, Songra L, Barber AC, Hall K, Kong GYX, Widdowson PS, Martin KR. Neuroprotection of retinal ganglion cells by a novel gene therapy construct that achieves sustained enhancement of brain-derived neurotrophic factor/tropomyosin-related kinase receptor-B signaling. Cell Death Dis 2018; 9:1007. [PMID: 30258047 PMCID: PMC6158290 DOI: 10.1038/s41419-018-1041-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 01/17/2023]
Abstract
Previous studies have demonstrated that intravitreal delivery of brain-derived neurotrophic factor (BDNF) by injection of recombinant protein or by gene therapy can alleviate retinal ganglion cell (RGC) loss after optic nerve injury. BDNF gene therapy can improve RGC survival in experimental models of glaucoma, the leading cause of irreversible blindness worldwide. However, the therapeutic efficacy of BDNF supplementation alone is time limited at least in part due to BDNF receptor downregulation. Tropomyosin-related receptor kinase-B (TrkB) downregulation has been reported in many neurological diseases including glaucoma, potentially limiting the effect of sustained or repeated BDNF delivery. Here, we characterize a novel adeno-associated virus (AAV) gene therapy (AAV2 TrkB-2A-mBDNF) that not only increases BDNF production but also improves long-term neuroprotective signaling by increasing expression of the BDNF receptor (TrkB) within the inner retina. This approach leads to significant and sustained elevation of survival signaling pathways ERK and AKT within RGCs over 6 months and avoids the receptor downregulation which we observe with treatment with AAV2 BDNF alone. We validate the neuroprotective efficacy of AAV2 TrkB-2A-mBDNF in a mouse model of optic nerve injury, where it outperforms conventional AAV2 BDNF or AAV2 TrkB therapy, before showing powerful proof of concept neuroprotection of RGCs and axons in a rat model of chronic intraocular pressure (IOP) elevation. We also show that there are no adverse effects of the vector on retinal structure or function as assessed by histology and electroretinography in young or aged animals. Further studies are underway to explore the potential of this vector as a candidate for progression into clinical studies to protect RGCs in patients with glaucoma and progressive visual loss despite conventional IOP-lowering treatment.
Collapse
Affiliation(s)
- Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Quethera Ltd, Babraham Research Campus, Cambridge, UK
| | - Tasneem Z Khatib
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Eye Department, Addenbrooke's Hospital, Cambridge, UK
| | - Lalana Songra
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Amanda C Barber
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Katie Hall
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - George Y X Kong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | | | - Keith R Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Quethera Ltd, Babraham Research Campus, Cambridge, UK. .,Eye Department, Addenbrooke's Hospital, Cambridge, UK. .,Cambridge NIHR Biomedical Research Centre, Cambridge, UK. .,Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Osborne A, Wang AX, Tassoni A, Widdowson PS, Martin KR. Design of a Novel Gene Therapy Construct to Achieve Sustained Brain-Derived Neurotrophic Factor Signaling in Neurons. Hum Gene Ther 2018; 29:828-841. [PMID: 29466871 PMCID: PMC6066195 DOI: 10.1089/hum.2017.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 02/19/2018] [Indexed: 12/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) acting through the tropomyosin-related receptor-B (TrkB) is an important signaling system for the maintenance and survival of neurons. Gene therapy using either recombinant adeno-associated virus (AAV) or lentiviral vectors can provide sustained delivery of BDNF to tissues where reduced BDNF signaling is hypothesized to contribute to disease pathophysiology. However, elevation in BDNF at target sites has been shown to lead to a downregulation of TrkB receptors, thereby reducing the effect of chronic BDNF delivery over time. A novel gene sequence has been designed coding both the ligand (BDNF) and the TrkB receptor in a single transgene separated by a short viral-2A sequence. The single transgene is efficiently processed intracellularly in vitro and in vivo to yield the two mature proteins, which are then independently transported to their final cellular locations: TrkB receptors to the cell surface, and BDNF contained within secretory vesicles. To accommodate the coding sequences of both BDNF and TrkB receptors within the narrow confines of the AAV vectors (4.7 kb pairs), the coding region for the pro-domain of BDNF was removed and the signal peptide sequence modified to improve production, intracellular transport, and secretion of mature BDNF (mBDNF). Intracellular processing and efficacy was shown in HEK293 cells and SH-SY5Y neuroblastoma cells using plasmid DNA and after incorporating the TrkB-2A-mBDNF into an AAV2 vector. Increased BDNF/TrkB-mediated intracellular signaling pathways were observed after AAV2 vector transfection while increased TrkB phosphorylation could be detected in combination with neuroprotection from hydrogen peroxide-induced oxidative stress. Correct processing was also shown in vivo in mouse retinal ganglion cells after AAV2 vector administration to the eye. This novel construct is currently being investigated for its efficacy in animal models to determine its potential to progress to human clinical studies in the future.
Collapse
Affiliation(s)
- Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Quethera Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Aiden X.Z. Wang
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Alessia Tassoni
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Keith R. Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Quethera Ltd., Babraham Research Campus, Cambridge, United Kingdom
- Cambridge NIHR Biomedical Research Centre, Cambridge, United Kingdom
- Eye Department, Addenbrooke's Hospital, Cambridge, United Kingdom
- Wellcome Trust—MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Progress in Gene Therapy to Prevent Retinal Ganglion Cell Loss in Glaucoma and Leber's Hereditary Optic Neuropathy. Neural Plast 2018; 2018:7108948. [PMID: 29853847 PMCID: PMC5954906 DOI: 10.1155/2018/7108948] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/04/2018] [Indexed: 12/24/2022] Open
Abstract
The eye is at the forefront of the application of gene therapy techniques to medicine. In the United States, a gene therapy treatment for Leber's congenital amaurosis, a rare inherited retinal disease, recently became the first gene therapy to be approved by the FDA for the treatment of disease caused by mutations in a specific gene. Phase III clinical trials of gene therapy for other single-gene defect diseases of the retina and optic nerve are also currently underway. However, for optic nerve diseases not caused by single-gene defects, gene therapy strategies are likely to focus on slowing or preventing neuronal death through the expression of neuroprotective agents. In addition to these strategies, there has also been recent interest in the potential use of precise genome editing techniques to treat ocular disease. This review focuses on recent developments in gene therapy techniques for the treatment of glaucoma and Leber's hereditary optic neuropathy (LHON). We discuss recent successes in clinical trials for the treatment of LHON using gene supplementation therapy, promising neuroprotective strategies that have been employed in animal models of glaucoma and the potential use of genome editing techniques in treating optic nerve disease.
Collapse
|
19
|
Shpak AA, Guekht AB, Druzhkova TA, Kozlova KI, Gulyaeva NV. Brain-Derived Neurotrophic Factor in Patients with Primary Open-Angle Glaucoma and Age-related Cataract. Curr Eye Res 2017; 43:224-231. [DOI: 10.1080/02713683.2017.1396617] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Alexander A Shpak
- Department for Clinical and Functional Diagnostics, The S. Fyodorov Eye Microsurgery Federal State Institution, Moscow, Russian Federation
| | - Alla B Guekht
- Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department of Moscow, Moscow, Russian Federation
| | - Tatiana A Druzhkova
- Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department of Moscow, Moscow, Russian Federation
| | - Ksenia I Kozlova
- Department for Clinical and Functional Diagnostics, The S. Fyodorov Eye Microsurgery Federal State Institution, Moscow, Russian Federation
| | - Natalia V Gulyaeva
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
20
|
Chen DW, Foldvari M. In vitro bioassay model for screening non-viral neurotrophic factor gene delivery systems for glaucoma treatment. Drug Deliv Transl Res 2017; 6:676-685. [PMID: 27549107 DOI: 10.1007/s13346-016-0324-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The feasibility of a two-layer contact-independent 3D neuronal co-culture model to test the bioactivity of brain-derived neurotrophic factor (BDNF), produced by non-virally transfected A7 astrocytes (trA7), on neurite growth in a second cell population of SH-SY5Y (CRL-2266) neuroblastoma cells with (oxSH-SY5Y) or without oxidative damage (SH-SY5Y) was evaluated. Transfection of A7 astrocytes was carried out with BDNF-encoding plasmid using K2® nanoparticle gene delivery system (K2-NPs). The physicochemical characteristics of K2-NPs, transfection efficiency, and BDNF production were evaluated using dynamic light scattering, flow cytometry, and enzyme-linked immunosorbent assay (ELISA), respectively. Neurite counts and length measurements were performed after anti-neuron-specific β-III tubulin antibody immunostaining using confocal laser scanning microscopy. Transfection efficiency of A7 astrocytes by K2-NPs (diameter 83.9 ± 0.4 nm, zeta potential +57.3 ± 2.8 mV) was 39.5 ± 4.6 % with cell viability of 73 ± 2 %. BDNF levels produced were 3750.8 ± 251.1, 9052.6 ± 1391.2, and 10,367.1 ± 390.8 pg/mL at 24, 48, and 72 h, respectively. The increased number of neurites with higher neurite lengths confirmed the bioactivity of BDNF secreted from the transfected A7 astrocytes over 72 h. Neurite count comparisons showed that both trA7/oxSH-SY5Y and trA7/SH-SY5Y consistently produced higher neurite counts compared to A7/oxSH-SY5Y and oxSH-SY5Y only experimental conditions. The results of this study demonstrate that neurite outgrowth quantitation in astrocyte-SH-SY5Y cell co-culture is a suitable bioassay model for evaluating non-viral gene delivery systems. Furthermore, it also demonstrates a proof-of-concept for nanoparticle-based neurotrophic factor gene delivery to astrocytes and stimulation of neurite outgrowth.
Collapse
Affiliation(s)
- Ding Wen Chen
- School of Pharmacy, Waterloo Institute of Nanotechnology and Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Marianna Foldvari
- School of Pharmacy, Waterloo Institute of Nanotechnology and Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
21
|
Neuroprotection in Glaucoma: Old and New Promising Treatments. Adv Pharmacol Sci 2017; 2017:4320408. [PMID: 30723498 PMCID: PMC5664381 DOI: 10.1155/2017/4320408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/02/2017] [Accepted: 09/13/2017] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is a major global cause of blindness, but the molecular mechanisms responsible for the neurodegenerative damage are not clear. Undoubtedly, the high intraocular pressure (IOP) and the secondary ischemic and mechanical damage of the optic nerve have a crucial role in retinal ganglion cell (RGC) death. Several studies specifically analyzed the events that lead to nerve fiber layer thinning, showing the importance of both intra- and extracellular factors. In parallel, many neuroprotective substances have been tested for their efficacy and safety in hindering the negative effects that lead to RGC death. New formulations of these compounds, also suitable for chronic oral administration, are likely to be used in clinical practice in the future along with conventional therapies, in order to control the progression of the visual impairment due to primary open-angle glaucoma (POAG). This review illustrates some of these old and new promising agents for the adjuvant treatment of POAG, with particular emphasis on forskolin and melatonin.
Collapse
|
22
|
Hu ZL, Li N, Wei X, Tang L, Wang TH, Chen XM. Neuroprotective effects of BDNF and GDNF in intravitreally transplanted mesenchymal stem cells after optic nerve crush in mice. Int J Ophthalmol 2017; 10:35-42. [PMID: 28149774 DOI: 10.18240/ijo.2017.01.06] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/04/2016] [Indexed: 02/05/2023] Open
Abstract
AIM To assess the neuro-protective effect of bone marrow mesenchymal stem cells (BMSCs) on retinal ganglion cells (RGCs) following optic nerve crush in mice. METHODS C56BL/6J mice were treated with intravitreal injection of PBS, BMSCs, BDNF-interference BMSCs (BIM), and GDNF-interference BMSCs (GIM) following optic nerve crush, respectively. The number of surviving RGCs was determined by whole-mount retinas and frozen sections, while certain mRNA or protein was detected by q-PCR or ELISA, respectively. RESULTS The density (cell number/mm2) of RGCs was 410.77±56.70 in the retina 21d after optic nerve crush without any treatment, compared to 1351.39±195.97 in the normal control (P<0.05). RGCs in BMSCs treated eyes was 625.07±89.64/mm2, significantly higher than that of no or PBS treatment (P<0.05). While RGCs was even less in the retina with intravitreal injection of BIM (354.07+39.77) and GIM (326.67+33.37) than that without treatment (P<0.05). BMSCs injection improved the internal BDNF expression in retinas. CONCLUSION Optic nerve crush caused rust loss of RGCs and intravitreally transplanted BMSCs at some extent protected RGCs from death. The effect of BMSCs and level of BDNF in retinas are both related to BDNF and GDNF expression in BMSCs.
Collapse
Affiliation(s)
- Zong-Li Hu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ni Li
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiao-Ming Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
23
|
Abstract
In many health-related fields, there is great interest in the identification of biomarkers that distinguish diseased from healthy individuals. In addition to identifying the diseased state, biomarkers have potential use in predicting disease risk, monitoring disease progression, evaluating treatment efficacy, and informing pathogenesis. This review details the genetic and biochemical markers associated with canine primary glaucoma. While there are numerous molecular markers (biochemical and genetic) associated with glaucoma in dogs, there is no ideal biomarker that allows early diagnosis and/or identification of disease progression. Genetic mutations associated with canine glaucoma include those affecting ADAMTS10, ADAMTS17, Myocilin, Nebulin, COL1A2, RAB22A, and SRBD1. With the exception of Myocilin, there is very limited crossover in genetic biomarkers identified between human and canine glaucomas. Mutations associated with canine glaucoma vary between and within canine breeds, and gene discoveries therefore have limited overall effects as a screening tool in the general canine population. Biochemical markers of glaucoma include indicators of inflammation, oxidative stress, serum autoantibodies, matrix metalloproteinases, tumor necrosis factor–α, and transforming growth factor–β. These markers include those that indicate an adaptive or protective response, as well as those that reflect the damage arising from oxidative stress.
Collapse
Affiliation(s)
- K. L. Graham
- Department of Ophthalmology and Eye Health, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - C. McCowan
- Department of Pathology, Faculty of Veterinary Science, University of Melbourne, Parkville, Australia
- Department of Economic Development, Jobs, Transport and Resources, Victoria, Australia
| | - A. White
- Department of Ophthalmology and Eye Health, Sydney Medical School, University of Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Shpak AA, Guekht AB, Druzhkova TA, Kozlova KI, Golovin AV, Gulyaeva NV. Brain-derived neurotrophic factor in patients with age-related cataract. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416030120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Abstract
Glaucoma is a chronic optic neuropathy characterized by progressive damage to the optic nerve, death of retinal ganglion cells and ultimately visual field loss. It is one of the leading causes of irreversible loss of vision worldwide. The most important trigger of glaucomatous damage is elevated eye pressure, and the current standard approach in glaucoma therapy is reduction of intraocular pressure (IOP). However, despite the use of effective medications or surgical treatment leading to lowering of IOP, progression of glaucomatous changes and loss of vision among patients with glaucoma is common. Therefore, it is critical to prevent vision loss through additional treatment. To implement such treatment(s), it is imperative to identify pathophysiological changes in glaucoma and develop therapeutic methods taking into account neuroprotection. Currently, there is no method of neuroprotection with long-term proven effectiveness in the treatment of glaucoma. Among the most promising molecules shown to protect the retina and optic nerve are neurotrophic factors. Thus, the current focus is on the development of safe and non-invasive methods for the long-term elevation of the intraocular level of neurotrophins through advanced gene therapy and topical eye treatment and on the search for selective agonists of neurotrophin receptors affording more efficient neuroprotection.
Collapse
Affiliation(s)
- Anna Wójcik-Gryciuk
- Department of Ophthalmology, MSW Hospital, Warsaw, Poland
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Małgorzata Skup
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
26
|
Nafissi N, Foldvari M. Neuroprotective therapies in glaucoma: II. Genetic nanotechnology tools. Front Neurosci 2015; 9:355. [PMID: 26528114 PMCID: PMC4604245 DOI: 10.3389/fnins.2015.00355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/17/2015] [Indexed: 01/01/2023] Open
Abstract
Neurotrophic factor genome engineering could have many potential applications not only in the deeper understanding of neurodegenerative disorders but also in improved therapeutics. The fields of nanomedicine, regenerative medicine, and gene/cell-based therapy have been revolutionized by the development of safer and efficient non-viral technologies for gene delivery and genome editing with modern techniques for insertion of the neurotrophic factors into clinically relevant cells for a more sustained pharmaceutical effect. It has been suggested that the long-term expression of neurotrophic factors is the ultimate approach to prevent and/or treat neurodegenerative disorders such as glaucoma in patients who do not respond to available treatments or are at the progressive stage of the disease. Recent preclinical research suggests that novel neuroprotective gene and cell therapeutics could be promising approaches for both non-invasive neuroprotection and regenerative functions in the eye. Several progenitor and retinal cell types have been investigated as potential candidates for glaucoma neurotrophin therapy either as targets for gene therapy, options for cell replacement therapy, or as vehicles for gene delivery. Therefore, in parallel with deeper understanding of the specific protective effects of different neurotrophic factors and the potential therapeutic cell candidates for glaucoma neuroprotection, the development of non-invasive and highly specific gene delivery methods with safe and effective technologies to modify cell candidates for life-long neuroprotection in the eye is essential before investing in this field.
Collapse
Affiliation(s)
| | - Marianna Foldvari
- School of Pharmacy and Waterloo Institute of Nanotechnology, University of WaterlooWaterloo, ON, Canada
| |
Collapse
|
27
|
Pearson C, Martin K. Stem cell approaches to glaucoma: from aqueous outflow modulation to retinal neuroprotection. PROGRESS IN BRAIN RESEARCH 2015; 220:241-56. [PMID: 26497794 DOI: 10.1016/bs.pbr.2015.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Long-term pharmacological management of glaucoma currently relies on self-administered drugs to regulate intraocular pressure (IOP). A number of approaches using stem cells have recently shown promise as potential future treatment strategies complementary to IOP lowering. Several sources of endogenous stem cells have been identified in the eye, some of which may be able to repair the damaged trabecular meshwork and restore functional regulation of aqueous outflow. Neural and mesenchymal stem cells secrete growth factors which provide neuroprotective effects, reducing loss of retinal ganglion cells (RGCs) in animal models. In the future, stem cells may even replace RGCs to reform functional connections between the eye and the brain, although the complexity of such a repair task is formidable. With advances in biomaterial cell scaffolds and concurrent efforts in other neural systems, stem cell therapies are becoming a realistic option for treating multiple eye diseases, and despite ongoing challenges, there are reasons for optimism that stem cells may play a role in the treatment of human glaucoma in the future.
Collapse
Affiliation(s)
- Craig Pearson
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK; Cambridge NIHR Biomedical Research Centre, Cambridge, UK; National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keith Martin
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK; Cambridge NIHR Biomedical Research Centre, Cambridge, UK; Wellcome Trust Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
28
|
Emre E, Yüksel N, Duruksu G, Pirhan D, Subaşi C, Erman G, Karaöz E. Neuroprotective effects of intravitreally transplanted adipose tissue and bone marrow-derived mesenchymal stem cells in an experimental ocular hypertension model. Cytotherapy 2015; 17:543-59. [PMID: 25618560 DOI: 10.1016/j.jcyt.2014.12.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS The purpose of this study was to investigate the neuroprotective effects of bone marrow bone marrow-derived and adipose tissue-derived mesenchymal stromal cells (MSCs) that were intravitreally transplanted in an experimental ocular hypertension (OHT) model. METHODS An OHT rat model was generated by means of intracameral injection of hyaluronic acid into the anterior chamber. MSCs labeled with green fluorescence protein were transplanted intravitreally 1 week after OHT induction. At the end of the second and fourth weeks, retinal ganglion cells were visualized with the use of a flat-mount retina method and were evaluated by means of immunofluorescence staining against green fluorescence protein, vimentin, CD105, and cytokines (interleukin [IL]-1Ra, prostaglandin E2 receptor, IL-6, transforming growth factor-β1, interferon-γ and tumor necrosis factor-α). RESULTS The retinal ganglion cell numbers per area were significantly improved in stem cell-treated OHT groups compared with that in the non-treated OHT group (P < 0.05). The results of immunohistochemical analyses indicated that a limited number of stem cells had integrated into the ganglion cell layer and the inner nuclear layer. The number of cells expressing proinflammatory cytokines (interferon-γ and tumor necrosis factor-α) decreased in the MSC-transferred group compared with that in the OHT group after 4 weeks (P < 0.01). On the other hand, IL-1Ra and prostaglandin E2 receptor expressions were increased in the rat bone marrow-derived MSC group but were more significant in the rat adipose tissue-derived MSC group (P < 0.01). CONCLUSIONS After intravitreal transplantation, MSCs showed a neuroprotective effect in the rat OHT model. Therefore, MSCs promise an alternative therapy approach for functional recovery in the treatment of glaucoma.
Collapse
Affiliation(s)
- Esra Emre
- Department of Ophthalmology, Çerkezköy State Hospital, Tekirdağ, Turkey.
| | - Nurşen Yüksel
- Department of Ophthalmology, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Gökhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Dilara Pirhan
- Department of Ophthalmology, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Cansu Subaşi
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (Liv MedCell) Istanbul, Turkey
| | - Gülay Erman
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Erdal Karaöz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (Liv MedCell) Istanbul, Turkey
| |
Collapse
|
29
|
Nowak A, Szaflik JP, Gacek M, Przybylowska-Sygut K, Kamińska A, Szaflik J, Majsterek I. BDNF and HSP gene polymorphisms and their influence on the progression of primary open-angle glaucoma in a Polish population. Arch Med Sci 2014; 10:1206-13. [PMID: 25624860 PMCID: PMC4296062 DOI: 10.5114/aoms.2014.45089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/20/2013] [Accepted: 05/30/2013] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Glaucoma is a neurodegenerative disease that is often associated with high intraocular pressure (IOP). One of the effects of elevated IOP is disorder of neurotrophic molecules transport, including brain-derived neurotrophic factor (BDNF) and recruit specific cellular proteins called "heat shock proteins" (HSPs). The aim of this study was to evaluate a relationship between the BDNF and HSP70-1 gene polymorphisms with risk occurrence of primary open-angle glaucoma (POAG). MATERIAL AND METHODS The study consisted of 167 patients with POAG (mean age: 73 ±9) and 193 healthy subjects (mean age: 64 ±13). Genomic DNA was extracted from peripheral blood. Analysis of the gene polymorphisms was performed using PCR-RFLP, using the following restriction enzymes: NlaIII (rs6265) and BsrBI (rs1043618). The Heidelberg retinal tomography (HRT) clinical parameters were also analyzed. The odds ratios (ORs) and 95% confidence intervals (CIs) for each genotype and allele were calculated. RESULTS Comparison of the distributions of genotypes and alleles of the 196G/A polymorphism of the BDNF gene as well as 190G/C polymorphism of the HSP70-1 gene and analysis of the odds ratio (OR) showed no statistically significant differences between POAG patients and controls (p > 0.05). However, there was a statistically significant association of the 196G/A of BDNF and 190G/C of HSP70-1 gene polymorphisms with progression of POAG depending on values of clinical parameters. 196G/A of BDNF correlated with the parameters GDx and RA (p = 0.03; p = 0.002, respectively), while 190G/C of HSP70-1 correlated with c/d and RA (p = 0.014, p = 0.024, respectively). CONCLUSIONS The BDNF 196G/A and HSP70-1 190G/C gene polymorphisms may be related to progression of POAG.
Collapse
Affiliation(s)
- Alicja Nowak
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Poland
| | - Jacek P. Szaflik
- Department of Ophthalmology II, Medical Faculty, Medical University of Warsaw, Poland
| | - Mira Gacek
- Department of Ophthalmology II, Medical Faculty, Medical University of Warsaw, Poland
| | | | - Anna Kamińska
- Department of Ophthalmology II, Medical Faculty, Medical University of Warsaw, Poland
| | - Jerzy Szaflik
- Department of Ophthalmology II, Medical Faculty, Medical University of Warsaw, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Poland
| |
Collapse
|
30
|
Gupta V, You Y, Li J, Gupta V, Golzan M, Klistorner A, van den Buuse M, Graham S. BDNF impairment is associated with age-related changes in the inner retina and exacerbates experimental glaucoma. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1567-78. [PMID: 24942931 DOI: 10.1016/j.bbadis.2014.05.026] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/21/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) stimulation of its high-affinity receptor TrkB results in activation of pro-survival cell-signalling pathways that can afford neuroprotection to the retina. Reduction in retrograde axonal transport of neurotrophic factors such as BDNF from the brain to the neuronal cell bodies in the retina has been suggested as a critical factor underlying progressive and selective degeneration of ganglion cell layer and optic nerve in glaucoma. We investigated the role of BDNF in preserving inner retinal homeostasis in normal and glaucoma states using BDNF(+/-) mice and compared it with wild type controls. This study demonstrated that BDNF(+/-) animals were more susceptible to functional, morphological and molecular degenerative changes in the inner retina caused by age as well as upon exposure to experimental glaucoma caused by increased intraocular pressure. Glaucoma induced a down regulation of BDNF/TrkB signalling and an increase in levels of neurotoxic amyloid β 1-42 in the optic nerve head which were exacerbated in BDNF(+/-) mice. Similar results were obtained upon analysing the human optic nerve head tissues. Our data highlighted the role of BDNF in maintaining the inner retinal integrity under normal conditions and the detrimental effects of its insufficiency on the retina and optic nerve in glaucoma.
Collapse
Affiliation(s)
- Vivek Gupta
- Australian School of Advanced Medicine, Macquarie University, Australia.
| | - Yuyi You
- Australian School of Advanced Medicine, Macquarie University, Australia
| | - Jonathan Li
- Australian School of Advanced Medicine, Macquarie University, Australia
| | - Veer Gupta
- School of Medical Sciences, Edith Cowan University, Perth, Australia
| | - Mojtaba Golzan
- Australian School of Advanced Medicine, Macquarie University, Australia
| | - Alexander Klistorner
- Australian School of Advanced Medicine, Macquarie University, Australia; Save Sight Institute, Sydney University, Australia
| | - Maarten van den Buuse
- Behavioural Neuroscience Laboratory, Florey Institute for Neuroscience and Mental Health, Melbourne, Australia; Department of Pharmacology, University of Melbourne, Australia; School of Psychological Science, La Trobe University, Melbourne, Australia
| | - Stuart Graham
- Australian School of Advanced Medicine, Macquarie University, Australia; Save Sight Institute, Sydney University, Australia
| |
Collapse
|
31
|
Liao YJ, Hwang JJ. Treatment of anterior ischemic optic neuropathy: Clues from the bench. Taiwan J Ophthalmol 2014. [DOI: 10.1016/j.tjo.2013.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
32
|
Johnson TV, Bull ND, Martin KR. Stem cell therapy for glaucoma: possibilities and practicalities. EXPERT REVIEW OF OPHTHALMOLOGY 2014; 6:165-174. [PMID: 21686079 DOI: 10.1586/eop.11.3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glaucoma is a progressive, neurodegenerative, optic neuropathy in which currently available therapies cannot always prevent, and do not reverse, vision loss. Stem cell transplantation may provide a promising new avenue for treating many presently incurable degenerative conditions, including glaucoma. This article will explore the various ways in which transplantation of stem or progenitor cells may be applied for the treatment of glaucoma. We will critically discuss the translational prospects of two cell transplantation-based treatment modalities: neuroprotection and retinal ganglion cell replacement. In addition, we will identify specific questions that need to be addressed and obstacles to overcome on the path to clinical translation, and offer insight into potential strategies for approaching this goal.
Collapse
Affiliation(s)
- Thomas V Johnson
- Cambridge Centre for Brain Repair, University of Cambridge ED Adrian Building Forvie Site, Robinson Way, Cambridge, CB2 OPY, UK
| | | | | |
Collapse
|
33
|
Weber AJ, Harman CD. BDNF treatment and extended recovery from optic nerve trauma in the cat. Invest Ophthalmol Vis Sci 2013; 54:6594-604. [PMID: 23989190 DOI: 10.1167/iovs.13-12683] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE We examined the treatment period necessary to restore retinal and visual stability following trauma to the optic nerve. METHODS Cats received unilateral optic nerve crush and no treatment (NT), treatment of the injured eye with brain-derived neurotrophic factor (BDNF), or treatment of the injured eye combined with treatment of visual cortex for 2 or 4 weeks. After 1-, 2-, 4-, or 6-week survival periods, pattern electroretinograms (PERGs) were obtained and retinal ganglion cell (RGC) survival determined. RESULTS In the peripheral retina, RGC survival for NT, eye only, and eye + cortex animals was 55%, 78%, and 92%, respectively, at 1 week, and 31%, 60%, and 93%, respectively, at 2 weeks. PERGs showed a similar pattern of improvement. After 4 weeks, RGC survival was 7%, 29%, and 53% in each group, with PERGs in the dual-treated animals similar to the 1- to 2-week animals. For area centralis (AC), the NT, eye only, and eye + cortex animals showed 47%, 78%, and 82% survival, respectively, at 2 weeks, and 13%, 54%, and 81% survival, respectively, at 4 weeks. Removing the pumps at 2 weeks resulted in ganglion cell survival levels of 76% and 74% in the AC at 4 and 6 weeks postcrush, respectively. The PERGs from 2-week treated, but 4- and 6-week survival animals were comparable to those of the 2-week animals. CONCLUSIONS Treating the entire central visual pathway is important following optic nerve trauma. Long-term preservation of central vision may be achieved with as little as 2 weeks of treatment using this approach.
Collapse
Affiliation(s)
- Arthur J Weber
- Department of Physiology, Neuroscience Training Program, Michigan State University, East Lansing, Michigan
| | | |
Collapse
|
34
|
Pumphrey SA, Pizzirani S, Pirie CG, Anwer MS, Logvinenko T. Western blot patterns of serum autoantibodies against optic nerve antigens in dogs with goniodysgenesis-related glaucoma. Am J Vet Res 2013; 74:621-8. [PMID: 23531071 DOI: 10.2460/ajvr.74.4.621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To investigate whether differences existed between clinically normal dogs and dogs with goniodysgenesis-related glaucoma (GDRG) in serum autoantibodies against optic nerve antigens. ANIMALS 16 dogs with GDRG, 17 healthy dogs with unremarkable pectinate ligament and iridocorneal angle morphology, and 13 euthanized dogs with no major ocular abnormalities or underlying diseases. PROCEDURES Western blotting was performed with optic nerve extracts from the euthanized dogs as an antigen source and serum from clinically normal dogs and dogs with GDRG as a primary antibody (autoantibody) source. Blots were evaluated for presence and density of bands. RESULTS Multiple bands were identified on western blots from all dogs with GDRG and all clinically normal dogs, with a high degree of variability among individual dogs. Dogs with GDRG were significantly more likely than healthy dogs to have bands present at 38, 40, and 68 kDa. Dogs with GDRG had significant increases in autoreactivity at 40 and 53 kDa and a significant decrease in autoreactivity at 48 kDa. CONCLUSIONS AND CLINICAL RELEVANCE Significant differences in serum autoantibodies against optic nerve antigens were found in dogs with versus without GDRG. Although it remains unclear whether these differences were part of the pathogenesis of disease or were sequelae to glaucomatous changes, these findings provide support for the hypothesis that immune-mediated mechanisms play a role in the development or progression of GDRG. However, the high degree of variability among individual dogs and the considerable overlap between groups suggest that the clinical usefulness of this technique for distinguishing dogs with GDRG from clinically normal dogs is likely limited.
Collapse
Affiliation(s)
- Stephanie A Pumphrey
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | | | | | | | | |
Collapse
|
35
|
Dees DD, Fritz KJ, MacLaren NE, Esson DW, Sheehan Gaerig AM, Atkins RM, Knollinger AM. Efficacy of prophylactic antiglaucoma and anti-inflammatory medications in canine primary angle-closure glaucoma: a multicenter retrospective study (2004-2012). Vet Ophthalmol 2013; 17:195-200. [DOI: 10.1111/vop.12069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Dustin Dees
- Eye Care for Animals; 1021 E. 3300 S. Salt Lake City UT 84106 USA
| | - Kevin J. Fritz
- Eye Care for Animals; 3025 Edinger Avenue Tustin CA 92780 USA
| | | | | | | | | | | |
Collapse
|
36
|
Luo D, Liu K, Zhu B, Xu X. Expression profiling in glaucomatous human lamina cribrosa cells based on graph-clustering approach. Curr Eye Res 2013; 38:767-73. [PMID: 23484957 DOI: 10.3109/02713683.2013.770039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE In primary open angle glaucoma (POAG) patients, elevated intraocular pressure usually leads to extracellular matrix remodeling and astrocytes activation. Thus, lamina cribrosa (LC) cells may play an important role in POAG progression. The objective of this study was to comprehensively explore gene expression profiles in LC cells of POAG patients. MATERIALS AND METHODS Using the GSE13534 microarray datasets downloaded from Gene Expression Omnibus database, the differentially expressed genes (DEGs) between LC cells from POAG patients and controls were firstly screened based on the classical t-test and false discovery rate <0.05 as a significant threshold. Subsequently, these DEGs were grouped into gene sets using a graph-clustering approach. The underlying molecular mechanisms were investigated by the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. RESULTS A total of 57 DEGs were identified and 478 co-expression relationships were constructed among these DEGs. Among them, cytochrome p450 family 1 subfamily B (CYP1B1), brain-derived neurotrophic factor (BDNF) and myelin basic protein (MBP) showed high-degree relationships and they could interact with several genes. CYP1B1 is an important genetic gene involved in POAG and BDNF is an effective growth neurotrophic factor to weak POAG damage. MBP, versican (VCAN), integrin, alpha 4 (ITGA4) and N-cadherin (CDH2) may be involved in extracellular matrix remodeling in LC cells. FZD2 and FZD7 were enriched in basal cell carcinoma pathway. CONCLUSIONS The results demonstrate that the genes above may be associated with the pathogenesis of POAG.
Collapse
Affiliation(s)
- Dawei Luo
- Division of Ophthalmology, The First Affiliated People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | |
Collapse
|
37
|
Weber AJ. Autocrine and paracrine interactions and neuroprotection in glaucoma. Cell Tissue Res 2013; 353:219-30. [DOI: 10.1007/s00441-013-1556-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/03/2013] [Indexed: 12/21/2022]
|
38
|
Protective effects of 7,8-dihydroxyflavone on retinal ganglion and RGC-5 cells against excitotoxic and oxidative stress. J Mol Neurosci 2012; 49:96-104. [PMID: 23054592 DOI: 10.1007/s12031-012-9899-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/26/2012] [Indexed: 01/28/2023]
Abstract
A preferential loss of retinal ganglion cells (RGCs) is observed in glaucoma and optic neuritis. Loss of tropomyosin-related kinase receptor B (TrkB)-mediated signaling has been implicated in this degeneration. Our study indicates that 7,8-dihydroxyflavone (7,8 DHF) robustly upregulates the TrkB signaling in the primary rat RGCs and the retinal neuronal precursor RGC-5 cell line by promoting phosphorylation of TrkB receptor, leading to enhanced TrkB receptor tyrosine kinase activity. The flavonoid derivative 7,8 DHF acts a potent TrkB agonist and upregulates the downstream AKT and MAPK/ERK survival signaling pathways in a TrkB-dependent manner in both primary rat RGCs as well as the RGC-5 cell line. Excitotoxicity and oxidative injury have been alleged in the specific RGC degeneration in various forms of glaucoma. A novel finding of this study is that treatment with 7,8 DHF protects these cells significantly from excitotoxic and oxidative stress-induced apoptosis and cell death. 7,8 DHF also promotes neuritogenesis by stimulating neurite outgrowth, suggesting a possible therapeutic strategy for protection of RGCs in various optic neuropathies.
Collapse
|
39
|
Alqawlaq S, Huzil JT, Ivanova MV, Foldvari M. Challenges in neuroprotective nanomedicine development: progress towards noninvasive gene therapy of glaucoma. Nanomedicine (Lond) 2012; 7:1067-83. [PMID: 22846092 DOI: 10.2217/nnm.12.69] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Over the past decade the application of gene therapy of retinal diseases such as glaucoma has produced promising results. However, optic nerve regeneration and restoration of vision in patients with glaucoma is still far from reality. Neuroprotective approaches in the form of gene therapy may provide significant advantages, but are still limited by many factors both at the organ and cellular levels. In general, gene delivery systems for eye diseases range from simple eye drops and ointments to more advanced bio- and nanotechnology-based systems such as muco-adhesive systems, polymers, liposomes and ocular inserts. Most of these technologies were developed for front-of-the-eye ophthalmic therapies and are not applicable as back-of-the-eye delivery systems. Currently, only the invasive intravitreal injections are capable of successfully delivering genes to the retina. Here we review the challenges and possible strategies for the noninvasive gene therapy of glaucoma including the barriers in the eye and in neural cells, and present a cross-sectional view of gene delivery as it pertains to the prevention and treatment of glaucoma.
Collapse
Affiliation(s)
- Samih Alqawlaq
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - J Torin Huzil
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Marina V Ivanova
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Marianna Foldvari
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
40
|
Gao L, Li LH, Xing RX, Ou S, Liu GD, Wang YP, Zhang H, Gao GD, Wang TH. Gastrocnemius-derived BDNF promotes motor function recovery in spinal cord transected rats. Growth Factors 2012; 30:167-75. [PMID: 22515203 DOI: 10.3109/08977194.2012.678842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study evaluated the role of gastrocnemius-derived brain-derived neurotrophic factor (BDNF) and possible mechanism in motor improvement in T10 spinal cord transection (SCT) rats. There was complete paralysis in hindlimbs immediately after SCT, followed by partial functional restoration with time going. The level of BDNF but not its mRNA gradually increased in caudal stump after SCT, whereas a significant increase in both BDNF and its mRNA was simultaneously seen in gastrocnemius. Injection of BDNF antibody into the gastrocnemius significantly decreased hindlimb locomotor function, downregulated the level of BDNF and its mRNA together with extracellular signal-regulated kinase 1/2 (Erk1/2). Moreover, ventral root ligation led to decrease both BDNF and Erk in caudal stump, indicating BDNF transportation from gastrocnemius into the spinal cord. We concluded that gastrocnemius-derived BDNF reduced motor functional deficits in SCT rats through Erk signaling pathway. These novel findings suggested the usage of BDNF in muscle for the treatment of spinal cord injury in clinic.
Collapse
Affiliation(s)
- Li Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kato K, Sasaki N, Shastry BS. Retinal ganglion cell (RGC) death in glaucomatous beagles is not associated with mutations in p53 and NTF4 genes. Vet Ophthalmol 2012; 15 Suppl 2:8-12. [DOI: 10.1111/j.1463-5224.2012.01024.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
|
43
|
Johnson TV, Bull ND, Martin KR. Neurotrophic factor delivery as a protective treatment for glaucoma. Exp Eye Res 2010; 93:196-203. [PMID: 20685205 DOI: 10.1016/j.exer.2010.05.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 04/21/2010] [Accepted: 05/23/2010] [Indexed: 12/13/2022]
Abstract
Glaucoma is a progressive optic neuropathy and a major cause of visual impairment worldwide. Neuroprotective therapies for glaucoma aim to ameliorate retinal ganglion cell degeneration through direct or indirect action on these neurons. Neurotrophic factor (NTF) delivery is a key target for the development of potential neuroprotective glaucoma treatments. This article will critically summarize the evidence that NTF deprivation and/or dysfunction plays a role in the pathogenesis of glaucoma. Experimental support for the neuroprotective potential of NTF supplementation in animal models of glaucoma will be reviewed, in particular for brain-derived neurotrophic factor, ciliary neurotrophic factor, and glial cell line-derived neurotrophic factor. Finally, the challenges of clinical translation will be considered with an emphasis on the most promising NTF delivery strategies including slow-release drug delivery, gene therapy, and cell transplantation.
Collapse
Affiliation(s)
- Thomas V Johnson
- Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | | | | |
Collapse
|
44
|
Ghaffariyeh A, Honarpisheh N, Shakiba Y, Puyan S, Chamacham T, Zahedi F, Zarrineghbal M. Brain-derived neurotrophic factor in patients with normal-tension glaucoma. ACTA ACUST UNITED AC 2010; 80:635-8. [PMID: 19861219 DOI: 10.1016/j.optm.2008.09.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/21/2008] [Accepted: 09/14/2008] [Indexed: 01/18/2023]
Abstract
PURPOSE The aim of this study was to detect and measure brain-derived neurotrophic factor (BDNF) in the tears of normal subjects and patients with normal-tension glaucoma (NTG). MATERIALS AND METHODS Twenty patients with NTG as the case group and 20 normal subjects with the same age range as the control group were tested. The control group consisted of 16 men and 4 women, ranging in age from 40 to 75, without any apparent ocular or systemic disease. The case group consisted of 15 men and 5 women, ranging in age from 45 to 74. BDNF levels in tears were determined by enzyme-linked immunosorbent assay using monoclonal antibodies specific for BDNF (R&D Systems, Minneapolis, Minnesota). RESULTS The mean level of BDNF detected in the tears of the normal subjects was 77.09 +/- 4.84 ng/mL and the BDNF levels in the tears of case group were 24.33 +/- 1.48 ng/mL (P < 0.001). CONCLUSION We suggest that BDNF in the tears might be a useful biochemical marker for early detection of normal-tension glaucoma (NTG).
Collapse
|
45
|
Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci 2009; 51:2051-9. [PMID: 19933193 DOI: 10.1167/iovs.09-4509] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose. Retrograde neurotrophic factor transport blockade has been implicated in the pathophysiology of glaucoma. Stem cell transplantation appears to ameliorate some neurodegenerative conditions in the brain and spinal cord, in part by neurotrophic factor secretion. The present study was conducted to determine whether local or systemic bone marrow-derived mesenchymal stem cell (MSC) transplantation can confer neuroprotection in a rat model of laser-induced ocular hypertensive glaucoma. Methods. MSCs were isolated from the bone marrow of adult wild-type and transgenic rats that ubiquitously express green fluorescent protein. MSCs were transplanted intravitreally 1 week before, or intravenously on the day of, ocular hypertension induction by laser photocoagulation of the trabecular meshwork. Ocular MSC localization and integration were determined by immunohistochemistry. Optic nerve damage was quantified by counting axons within optic nerve cross-sections 4 weeks after laser treatment. Results. After intravitreal transplantation, MSCs survived for at least 5 weeks. Cells were found mainly in the vitreous cavity, though a small proportion of discrete cells migrated into the host retina. Intravitreal MSC transplantation resulted in a statistically significant increase in overall RGC axon survival and a significant decrease in the rate of RGC axon loss normalized to cumulative intraocular pressure exposure. After intravenous transplantation, MSCs did not migrate to the injured eye. Intravenous transplantation had no effect on optic nerve damage. Conclusions. Local, but not systemic, transplantation of MSCs was neuroprotective in a rat glaucoma model. Autologous intravitreal transplantation of MSCs should be investigated further as a potential neuroprotective therapy for glaucoma.
Collapse
Affiliation(s)
- Thomas V Johnson
- Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
46
|
Retinal TrkB receptors regulate neural development in the inner, but not outer, retina. Mol Cell Neurosci 2008; 38:431-43. [PMID: 18511296 DOI: 10.1016/j.mcn.2008.04.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 04/05/2008] [Accepted: 04/09/2008] [Indexed: 01/19/2023] Open
Abstract
BDNF signaling through its TrkB receptor plays a pivotal role in activity-dependent refinement of synaptic connectivity of retinal ganglion cells. Additionally, studies using TrkB knockout mice have suggested that BDNF/TrkB signaling is essential for the development of photoreceptors and for synaptic communication between photoreceptors and second order retinal neurons. Thus the action of BDNF on refinement of synaptic connectivity of retinal ganglion cells could be a direct effect in the inner retina, or it could be secondary to its proposed role in rod maturation and in the formation of rod to bipolar cell synaptic transmission. To address this matter we have conditionally eliminated TrkB within the retina. We find that rod function and synaptic transmission to bipolar cells is not compromised in these conditional knockout mice. Consistent with previous work, we find that inner retina neural development is regulated by retinal BDNF/TrkB signaling. Specifically we show here also that the complexity of neuronal processes of dopaminergic cells is reduced in conditional TrkB knockout mice. We conclude that retinal BDNF/TrkB signaling has its primary role in the development of inner retinal neuronal circuits, and that this action is not a secondary effect due to the loss of visual signaling in the outer retina.
Collapse
|